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Abstract—The inductive nature of artificial neural models
makes dataset quality a key factor of their proper functionality.
For this reason, multiple research studies proposed metrics
to assess the quality of the models’ datasets, such as dataset
correctness, completeness, and consistency. However, these studies
commonly lack a point of reference against which the proposed
quality metrics could be assessed.

To this end, this paper proposes a generic process that extracts
the necessary knowledge to build a reliable reference point for
the purpose of explanation, assessment, and augmentation of
the AI-software dataset. This process automatically builds a
benchmark specific to the software operational domain, interprets
the training and validation datasets of AI-enabled perception
software systems, and evaluates the dataset semantic quality and
completeness relative to the benchmark. We implemented this
process within a framework called Concept Augmentation and
Dataset Evaluation (CADE), which leverages a series of novel
natural language and image processing techniques to construct
a semantic benchmark with respect to the domain specifications.

The application of CADE to three commonly-used autonomous
driving datasets showed several common weaknesses present in
the arbitrarily-collected datasets against the encoded domain
specifications, demonstrating dataset divergence from the domain
concepts and under-represented variances of the concepts in the
data. The qualitative evaluation results showed an average of
about 75% relevancy of CADE generated topics.

I. INTRODUCTION

William Deming (1900-1993), the leading management thinker
in the field of quality, has a well-known saying, adopted by
software engineers to emphasize the importance of following a
systematic development process. The phrase states “if you can
not describe what you are doing as a process, you do not
know what you are doing.” In the past decades, this phrase
has been referred to in different phases of software
development process, including requirements engineering [27].
With rapid prevalence of AI-enabled perception software sys-
tems (AIS) in a wide range of applications, this statement is
barely applicable to the intelligent softwares. For instance, for
developing software with visual perception capabilities data-
driven neural models are often deployed. These models are
known for behaving as black boxes since the intuitive process
behind their predictions is not fully describable for the end-
users.

Along with the application of data-driven AI and ML
models in software, the domain of requirements engineering is
altering as well. For instance, with the application of

neural models to the visual perception tasks in a majority of
autonomous vehicles domain, requirements specifications are
gradually transforming from being explicitly articulated in the
textual format or formal rules into being implicit within a set of
training data, such as images and video frames.

During the conventional development processes, the soft-
ware implements a set of pre-defined “agreed-upon” require-
ments specifications, gathered from stakeholders, domain ex-
perts, and customers [25], while software enabled with deep
learning (DL) models instead learns and suggests the speci-
fications from data. The model’s learning ability is beneficial in
developing perception capabilities for software, operating in
domains containing concepts which are difficult to describe and
therefore, are hard to program [28]. For instance, what is the
exact specification for recognizing a cancerous tumor in
computed tomography (CT) images in the medical domain?

The description of malignant lung tumors requires to cover
the characteristics of any instance of cancerous tumors, but
also exclude the characteristics of all cases of benign tu-
mors. Defining such concepts whose instances vary over a
wide range of features and values is a non-trivial task for
humans, if not impossible. Therefore, the programmers lack
sufficient instructions to program a diagnosis application for
the domain concepts, which are difficult to describe, while
several software applications are developed for diagnosis of
malignant tumors, adopting DL models. The predictive models
inductively learn the characteristics of both types of tumors
from a large set of collected images, and further generalize
their data-driven knowledge to unseen CT images of new
patients. We refer to domain concepts which are challenging to
specify due to their various instances with characteristics that
are hard to predict (e.g., tumors differ from each other in terms
of shape, size, and density) as hard-to-specify domain
concepts, for which deriving a generic definition to include
the entire vastly-deviated instances is difficult.

In the context of visual perception, we propose that dataset
requirements relate to the specifications of hard-to-specify
domain concepts, and therefore, need to be formulated with
respect to these specifications. We believe here, the problem of
dataset requirements and the problem of specifying hard-to-
specify domain concepts both refer to the same concern. In
order to enable AIS to visually perceive varying instances of a
domain concept, the primary requirement is the quality
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of a dataset in representing the concept. While a high-quality
dataset is not the only requirement for AIS visual perception, it
surely is the necessary requirement. For instance, in the case of
training a data-driven model, to recognize the malignant
tumors, the necessary requirement is the dataset capability to
provide a diverse, accurate, consistent and complete instances
of both types tumors for the model.

In this regard, this paper aims to evaluate a dataset through
identifying the gap between specification of hard-to-specify
domain concepts and their visualization in the dataset. For
this a generic process is proposed and is further implemented in
a framework, called CADE. Adopting NLP algorithms and
image processing methods, CADE systematically construct a
benchmark for the specification of hard-to-specify domain
concepts. This benchmark plays the role of a reference point
for assessing and certifying the semantic completeness of a
dataset with respect to one or multiple targeted concepts.
Throughout this paper, we refer to a hard-to-specify domain
concept whose recognition is an AIS objective as a targeted
concept (e.g., tumor). Later, with a reference to the established
benchmark, CADE identifies the missing and under-visualized
dimensions of the concept in the dataset. Figure 1 represents a
high-level design of CADE process.

Identifying the primary features of domain concepts, CADE
additionally provides a map and guidance for next data col-
lection processes. Moreover CADE contributes to the area of
explainable AI by providing insight on the contained variations
of a domain concept in a dataset.

Research Questions: We phrase our research questions as:

1) RQ1: In AIS perception tasks, how can we address the
problem of specifying dataset requirements?

2) RQ2: Based on results from RQ1, how can we verify a
dataset against the specifications?

Contributions: This paper’s contributions include:

• Demonstrating that RE domain analysis can be adopted,
adapted, and applied to the process of AIS engineering;

• Demonstrating that leveraging domain specifications, the
quality of AIS datasets can be evaluated and analyzed;

• Implementing novel methods for deriving partial speci-
fications to assess, improve, and represent the semantic
completeness of AIS dataset.

All artifacts of this work are made public online1.

II. THE PROBLEM DOMAIN

This section explains the nature of the problem, as well as
the primary root causes of the problem from our point of view.

A. Dataset Limitations
Nevertheless, the emergence of data requirements has posed

new issues for the RE community. Sandkuhl [52] argued
while data needed for AI projects are accessible from several
companies, the available data lacks the structure and rules
necessary to implement and train AIS. Whereas the existing
requirements only address the data sampling rate and only

1https://anonymous.4open.science/r/CADE-9BE6/

Knowledge-base (KB) Training Data (TD)
Instances of Concept                  Instances of Concept

KB Histogram TD Histogram

Missing and Under-represented
Instances of Domain Concept

Fig. 1. The identification of dataset weakness points.

provide non-measurable characteristics of data quality [4].
Shin et al. argue that more samples in a dataset give a more
diverse representation of domain [53], while ignoring the
major problem of overfitting the models. Overfitting is a fun-
damental issue in supervised machine learning which prevents
the model from being generalizable to unseen data during the
operation [67]. The overfitted models, while performing well
on the datasets they have been trained on, perform poorly on
unseen data [19]. This is because the model is excessively
tailored for some target dataset (training data), whose samples
distribution is significantly different from the distribution of
actual data during the operation. While most of the existing
studies emphasize the importance of data requirements for
AIS, there is limited empirical research available in this area.

The training datasets are collected in unsystematic and
arbitrary manners. Hence, datasets used to train ML models
are generally limited in the number and diversity of samples
they comprise [24], [48]. For instance, the most recently
established datasets in the context of autonomous driving, such
as Caltech [20], are collected by a vehicle-mounted camera
aimlessly navigating rural roads [24]. Unsystematic and un-
guided collection of datasets may result in an incomplete,
unrepresentative, and undiversified dataset, leading to biased
models. For instance, one prior research performed a simple
cross-dataset evaluation to reveal that the majority of the
state-of-the-art pedestrian detectors are biased and, therefore,
are vulnerable to small domain shifts [24]. This is because
the arbitrarily-collected datasets may not be a complete or
fair representation of the actual concepts in the operational
domain [9]. Without a high-quality and comprehensive dataset
that includes a wide variety of the concept’s instances, there
will be a significant and inevitable misalignment between
the specification of a domain’s concept and what a collected
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dataset represents as the targeted concept [28], [51].

B. The Necessity of Dataset Requirements

As discussed in Section I, the data-driven characteristic of
AI and ML is particularly desirable for programming hard-to-
specify concepts for which limited description exists to guide
software programmers. However, the inductive nature of AI
and ML makes the software’s functionality highly reliant on
the quality of the model’s training dataset.

For this data-centered characteristic of AI, the primary
requirement for AIS, as discussed in the literature, is to ensure
the quality of training data is appropriate [4], [52], [60].
One study argues that the practices in RE mainly focus on
requirements that are user-centric and do not pay enough
attention to data requirements [5].

C. Reference Point of Dataset Requirements

There are a few studies in software engineering literature
which focus on AIS dataset requirements. Among them a few
propose several quality metrics as AIS dataset requirement.
For instance, Challa et al. [13] list five essential characteristics
contributing to the quality of data as accuracy, completeness,
consistency, credibility and correctness. Vogelsang et al. argue
that specifying data requirements includes information about
the necessary quantity and quality of data [60]. Another
work by A. Banks and R. Ashmore includes nine dataset
quality metric including data sufficiency, self-consistency and
absence of bias, to build confidence in training data [8].
Another research, identifies representativeness, balancedness,
timeliness as the critical quality concerns in dataset [41]

The attention to dataset requirements is not limited to the
software engineering domain. For instance, in the medical do-
main, Marc D. Kohli et al. proposed the specifications should
be clearly defined for medical image data, covering all aspects
of image management, including image metadata, pixel data,
post-processing techniques, and image cataloging [30].

The common objective here is to improve the dataset’s
quality to lay a better foundation for training the AI model and
ultimately improve the quality of the emerging AIS. However,
the aforementioned works lack to provide a standard or point
of reference against which the datasets can be evaluated. A
research principle is to evaluate the outcomes and express
preferences relative to an existing reference point. For exam-
ple, for the automated pedestrian collision avoidance system,
what are the specific criteria of data sufficiency for recognizing
the concept “pedestrian”? The dataset characteristics, such as
correctness, completeness, and quantity, should be assessed
with respect to which benchmark? How much data is enough?

Without a reliable point of reference for assessment, the
quality metrics sound rather abstract since once achieved, yet
we will not know that the criteria are met. Several studies
released large datasets as a benchmark against which the other
collected data samples could be compared. However, the to-be-
benchmark dataset themselves are arbitrarily collected without
a systematic collection process or based on a reliable source
according to which the comprehensiveness of the dataset could

be measured. Furthermore, as discussed earlier, size is not a
criterion of a dataset quality since overfitting in data-driven
modeling methods is a common problem [67]. Overfitting the
training data leads to the deterioration of the generalization
properties of the model and results in its untrustworthy per-
formance when deployed in the real world.

III. THE PROPOSED SOLUTION

In this section, we share the motivation and domain of our
interest in this problem, discuss the adequacy of the solution
we propose, and a generic process for the proposed solution in
the form of a pseudo code.

A. Reference Point in Visual-Perception Tasks

The autonomous vehicles domain contain methods for ac-
quiring, processing, analyzing, and understanding images and,
in general, high dimensional data from the real world to
produce numerical or symbolic information in the form of
decisions. In this context, data-driven models are majorly
adopted for visual perception of these systems’ surroundings.
Visual tasks are trained on the image and video frame datasets of
the AIS targeted concept. For instance, a pedestrian detector is
trained based on image and video dataset of numerous
different-looking instances of pedestrians. An obstacle detector
is trained on visual data of varying-looking obstacles.

However, depending on the context, the specification of
targeted concepts may differ from domain to domain. For
instance, potential obstacles of an autonomous boat contain a
large number of static and dynamic obstacles such as shore,
piers, boats, swimmers, debris, and buoys [71], while on-
road obstacles of autonomous vehicles include pedestrians,
cars and animals. Hence, the visual perception tasks are
often domain-specific, and therefore neural models in each
domain are particularly trained for the targeted concepts in that
domain. Therefore, requirement specifications in perception
tasks mirror the perception of the specifications of targeted
concepts in a particular domain. For instance, the primary
requirement of a pedestrian detector is to detect pedestrians
with a minimum number of failures.

Specifying requirements for perception tasks is straightfor-
ward: to detect a targeted concept as accurately as possible.
However, the problem here is demonstrated in the ambiguous
term of targeted concept. Requirements specifications in AIS
perception start with our very limited understanding of how
hard-to-specify concepts should be defined even at the high
level and how they should be represented in the training data.
As such in perception tasks, the primary dataset requirement is
to represent a comprehensive specification of hard-to-specify
domain concepts properly since the dataset reflects the AIS
domain concepts. To address the problem of dataset require-
ments, we need to address the problem of specifying hard-to-
specify targeted domain concepts.

B. Domain Specification as a Reference Point

In conventional RE, to define requirements, the engineers
are required to analyze the domain specifications to extract
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and classify domain properties. In general, terms found in user
scenarios, such as domain elements (e.g., account record), are
organized in a central domain specification knowledge base to
be re-used in the future implementation of other applications in
the same or similar domain. For instance, in the medical
domain, to develop a domain-specific software, such as a pace-
maker application, typically first the user manual, description
of functionalities, implantation and configuration instructions,
and hazards documents are either automatically or manually
parsed to extract the necessary domain information about
pacemaker requirements. Once domain specifications become
available, the requirements engineers typically continue cre-
ating a set of user scenarios and elaborating fully-fledged
requirements specifications, based on which the software is
later designed and implemented.

Domain knowledge is typically collected ad hoc and evolves
over time until enough experience is accumulated that generic
abstractions can be isolated and reused. In scenarios which
the to-be-developed application is not the first attempt, the
specifications of domain concepts are often available. For
instance, concepts such as “account record“ are possibly spec-
ified in domain documents available to developers to develop a
banking application. In domains for which domain docu-
ments are not available, common practices still directly make
such reuse, often through reusing terminologies from publicly
available lexical databases, such as WordNet [40]. This, for
instance, would involve adding concepts like “account record“
to the specific application domain, either manually or through
automated links. While the retrieval of domain specifications is
not new in RE, the importance and application of domain
specifications are neglected in RE of AIS.

Concerning the visual perception tasks, we propose to
extract the specifications of a targeted domain and then assess
the quality of a randomly-collected training dataset. In the
following sections, we propose and implement a generic
process for this purpose. The ultimate goal here is to make AIS
better meet domain specifications by the automated creation of
domain-specific benchmarks for AIS to be referred to evaluate
their dataset requirements. In short, we tend to improve the in-
ductive nature of AIS with domain analysis. The improvement
occurs through incorporating domain knowledge into AIS
training datasets, which in turn compensates for the missing
variants of a targeted concept within the dataset, providing an
augmented source of knowledge for neural models.

IV. THE PROPOSED PROCESS

Domain specifications are typically retrieved during domain
analysis, identifying the objects, operators, and relationships
between what domain experts perceive to be important about a
domain [42]. The experts’ domain knowledge often be-
comes accessible to developers by analyzing the domain-
specific documents. Several prior works have successfully
extracted knowledge from the existing domain documents,
either automatically or semi-automatically, for a large variety
of domain applications [15], [23], [59]. Some studies, in addi-
tion, represented and stored the retrieved domain knowledge

in the form of a semantic web (e.g., ontology) to formally
capture metadata of the gathered knowledge about the domain
and also to incrementally improve the web and re-use the
information [18], [35]. Regardless of the presentation format,
the objective is to remove any potential ambiguity from the
terms specific to the domain. For instance, in a card-playing
domain, such as poker applications, the domain specification
models the playing card meaning of the word. In contrast,
another specification in the computer domain may model
the card as the hardware memory or video card meanings.
These embedded semantics offer significant advantages, such
as reasoning over data, operating with heterogeneous data
sources, and dissolving ambiguities in the requirements. For
instance, common metadata vocabularies (i.e., ontology) de-
scribe concepts as relationships between entities and categories
of things. Each domain ontology typically models domain-
specific definitions of terms. For example, the word card
contains different meanings.

As discussed, hard-to-specify concepts refer to a domain
element whose features and characteristics often vary from one
instance to another, making it difficult to specify the concept
for the software [50]. As such, no definite concept description
exists to be passed to developers for implementation purposes,
yet the software is expected to recognize varying instances of
the concept during operation. To specify and verify dataset
requirements with respect to variations of domain concepts,
we propose the pseudocode below:

Algorithm 1 Concept Augmentation & Dataset Evaluation
(CADE)
Require: C ,  the domain concepts to be evaluated.

1: C  ← c .  Domain Concept
2: D  ← d                                                                         .  Data set
3: for each c � C do
4: F c  ←Augment (c)
5: Fd  ← Interpret (d)
6: end for
7: report ← Evaluate (Fd , Fc )
8: return report
9: function AUGMENT(Concept c)

10: return Fc ; .  Primary Features
11: end function
12: function INTERPRET(Dataset d)
13: return Fd ; .  Primary Features
14: end function
15: function EVALUATE(array1, array2)
16: return array1 −  array2;
17: end function

The algorithm receives hard-to-specify concepts common to a
domain (c � C ), specifies each concept, and returns an
assessment report for a given data set (d � D ).
For each concept, c, the auxiliary function, Augment(c), will
select and abstract common features which characterize vari-
ances of the input concept, Fc .  Later, the I nterpret(d) func-
tion will select and abstract common features that characterize
variances of the same concept in d a collected data set, Fd .
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Fig. 2. The Automated Framework for Concept Augmentation and Dataset Evaluation (CADE).

The algorithm further, calls the Evaluate(array1 , array2) to
evaluate the quality and quantity of data set representation of c
with reference to Fc ,  Fd  −  Fc .  We have created procedures to
automate the above-mentioned operations.

V. THE FUNCTIONS DEFINITION

This     section     provides     a     more     detailed     description
of Augment(concept c), Interpret(dataset d) and
Evaluate(arrays arr1, arr2) functions, as well as possible
implementations for each function.

A. Function Augment(Concept) → F c

Hard-to-specify concepts are inherently difficult to delin-
eate, yet most humans have an intuition of what they refer to.
In fact, their indescribable nature is the primary reason to adopt
AI for their specification in the first place.

The initial challenge in gathering domain knowledge for
the hard-to-specify concepts is the lack of knowledge sources.
For instance, pedestrian is a socially constructed concept
for which no relatively complete domain document exists.
Although there are a few general domain semantic webs that
include a limited specification of the term pedestrian, such as
WordNet [40], they fail to adequately capture all varying
instances of the concept in sufficient detail. For example,
WordNet defines a pedestrian as a “person who travels by
foot“ and associates the word with the terms walker and footer.
However, this definition is limited given that it excludes, for
example, pedestrians riding a bike, roller-skating, or using a
wheelchair. It also fails to describe a pedestrian’s appearance in
terms of attributes, such as clothing and posture.

To tackle the limited documents challenge for hard-to-
specify domain concepts, we propose to extract domain
knowledge from the online knowledge base, such as online
books, articles, encyclopedia, dictionaries, semantic webs,
legal documents, social media, news feeds, image and video
repository. Due to different artifact types in the repositories,
multiple processing methods can be applied. Regardless of the
processing methods, the aim is to acquire domain knowledge
through identifying a set of primary attributes associated with
various instances of a concept as they appear in the knowledge-
base. As such, we aim to define these concepts based on their
sparse instantiating across a variety of sources.

In cases that domain knowledge is stored in a textual format,
a wide range of Natural Language Processing (NLP) tech-
niques [11], [14], [63], such as topic modeling [63], [69] and
latent Dirichlet allocation (LDA) [11], [69], can be adapted to
automatically mine textual sources of knowledge for important
accompanying features of the concept. The importance of the

features can be determined based on semantic, lexical, or syn-
tactic characteristics, such as cosine similarity [47], frequency
of co-occurrence [16], and grammatical importance [61], or
based on a combination of multiple metrics.

Further to process visual sources of domain knowledge,
such as available video and image sets, a variety of im-age
processing techniques and convolutional neural networks
(CNNs) [44], [56], [66], are available to be adopted. For
instance, scene graph generation (SGG) techniques [56], [65],
[68] translate the pixel-level visual data, such as video and
image information, to natural language.

Later, to structure and re-use the extracted information, a
series of machine learning (ML) techniques, such as classifi-
cation and clustering [29], [62], can be applied to organize the
information in a more readable format meaningfully.

B. Function Interpret(Dataset) → Fd

In the computer vision domain, a wide range of Con-
volutional Neural Network models, such as Convolutional
Neural Networks (R-CNNs) and Faster R-CNN [49], [49]
are proposed and developed for visual perception tasks, such as
object detection [56], [57], [65], [68]. A majority of these
networks are previously trained on large-size data sets and can
recognize various generic objects with high accuracy.

Yet, a pre-trained model can be re-trained for a specific
domain to learn the specific hard-to-specify domain concepts
and improve its perception of varying instances of the concept.
For instance, several pre-trained models are particularly trained
for pedestrian detection, car detection, and obstacle detection
in a particular domain as an obstacle is described differently in
the automotive domain than the naval domain. The application
of the models on a data set will provide a label and a short
description of the image scenes in natural language [33].

Training any similar model with the domain-specific con-
cepts, the model is then applicable to a collected dataset to
describe the images in a natural language containing the
domain-specific terms (labels). This function also contributes
to the explainable AI (XAI), understanding and interpreting
the predictions made by the models [7].

C. Function Evaluate(Fd , Fc ) → report

The primary goal of the two previous functions of
Augment(Concept) and Interpret(Dataset) is to facilitate
mapping the artifacts of different natures to each other. Given
the converted artifacts into the same human-understandable
type (i.e., natural language), the presence of each defined
variance of the concept in F c  is then searched within the data
set descriptions of the same nature, Fd . However, a pragmatic
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TABLE I
TOP FIVE TOPICS OF DOMAIN CONCEPTS car AND pedestrian.

Id      Car Topic Top Term Examples
351 car manufacturer volkswagen, jaguar, beetle, mini, bmw,

vehicle
131 automobile ford, chrysler, motor, automotive, en-

gine, chevrolet
805 subcompact cars subcompact, chevrolet,

ford,volkswagen,        sedan,        toyota,
mercedesbenz

67      v8 cars buick, v8, chevrolet, oldsmobile, sedan,
coupe, v6

793 automobile company vehicle, motor, brand,
guangzhou,company, truck, factory

Id      Pedestrian Topic Top Term Examples
196 walking areas pedestrian, crossing, crosswalk, traffic,

signal, stripe
412 walkability walk, walking, walkable,pedestrian, ar-

rested
172 traffic traffic, road, vehicles, streets, trans-

portation, cars, lanes, pedestrian
363 victim victim, stalking, bystander, intervene,

witnesses, assault
198 parking parking, garages, vehicles, cars,

parkjockey, towing, park

solution is to apply the existing automated traceability methods
[43] to trace the derived features of the concept to the data set
labels. This verification process, in turn, characterizes the
extent to which a data set contains or lacks features that are
important to learning the concept.

This process enables a systematic and semantic-based as-
sessment of a visual dataset according to the domain specifi-
cations. In addition, the same process is applicable to generate
an initial map and guidance for data set collection in contrast to
ad hoc collection manners. This process will improve the
dataset quality and thus create a more representative data set,
which trains a more reliable AIS.

VI. EVALUATION

To implement the proposed process, we developed an au-
tomated framework for Concept Augmentation and Dataset
Evaluation (CADE). Figure 2 represents the primary phases of
CADE process. This framework receives any number of
domain-specific terms as input, automatically creates and
visualizes domain benchmarks specific to the visual perception
tasks, then evaluates a given visual dataset relative to the
benchmarks, and finally generates a report of the dataset
weaknesses for future improvements.

A. Concept Augmentation
In the initial step of the process, a large set of knowledge-

base is searched for any term contextually related to the
input, creating an initial domain-specific search query. For
example, recognizing a person as opposed to a non-person in
autonomous vehicles domain is a common use case for per-
ceiving hard-to-specify domain concepts. Hence, we selected
cars and pedestrians as two contextually related concepts to
be augmented by CADE automated process in this domain.
Each process is computationally expensive since a large set of
knowledge bases, such as Google n-gram [17] Onelook [2] and,
RelatedWords [3] are thoroughly searched for each query.

Google n-gram is an online search engine that provides a
search for 155 billion words from American English and 34
billion words from British English and provides high-
frequency terms associated with a given term as a search
query. The RelatedWords is an open-source project that runs
several algorithms, such as word embedding, to convert words
into multidimensional real-valued vectors representing their
meanings. The generated vectors of the words are then mapped
in a space of pre-computed vectors according to a set of
existing corpora. The similarity of the vectors is then specified
according to their distance in the space. RelatedWords also
uses ConceptNet [55] to retrieve words that have meaningful
relationships to our query. Onelook indexes over a thousand
online dictionaries and encyclopedias to return the words
related to a search query. In addition to dictionaries and
encyclopedias, Onelook internally works on Datamuse API to
search various data sources.

We implemented a two-phase process to retrieve the most
related terms to our initial seeds. First, the Google n-
gram knowledge base is searched for accompanying and co-
occurring terms with each concept. The database will return
all terms that more frequently occurred within a given short
distance (up to four terms before and after) of the initial
term. Yet to identify the related terms that did not appear
within our identified range, the RelatedWords and OneLook
are searched for semantically related terms to the input. This
process resulted in retrieving 1,052 and 412 terms as car-
related and pedestrian-related, respectively.

We then applied lemmatization to the retrieved words,
resulting in 957 and 358 related terms, respectively, for car
and pedestrian [10]. We decided to use lemmatization rather
than stemming since both reduce the inflectional forms of
terms, while lemmatization preserves the derivationally related

words, such as those starting or ending with un-, dis-, mis-,
-ness, -ish, -ism, -ful, and -less. This is accomplished by

specifying the words’ part-of-speech tags (grammatical roles).
Given the expanded list of domain-specific terms, to further

improve the quality of the search, each term was automatically
searched in additional sources, possibly including detailed
specifications of the concept-related term, such as online dic-
tionaries and documents. For this purpose, two different online
encyclopedias, namely Britannica and Wikipedia, were first
searched for each term in the extended list. The Google search
engine was secondly utilized for each term, being replaced in
a search query as “What is the term?”. The documents related
to the first 100 returned links were retrieved for each query.
We performed level one web scraping for each document,
meaning that we only extracted the textual information and
not the additional links within each page. This phase retrieved
a large set of documents related to each augmented term.

As we used publicly available services, we faced Google
search engine rate limit of 5 requests per 20 minutes and 20-30
requests per minute on Wikipedia and Britannica. Given the 957
terms related to the car and the rate limit, this process took about
127.6 hours in total for using the Google search engine to find
the related links on Britannica and Wikipedia which
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Fig. 3. Topic Hierarchy Relevant to the Domain Concept Car.

led to retrieving a total of 130,964 documents in 72.7 hours.
The document length average for the retrieved terms related to
cars was about 73 lines. Given 358 terms related to pedestrians,
search process took approximately 47.7 hours in total and led to
retrieving 51,963 documents in 28.8 hours. The document
length average for retrieved terms related to pedestrians was
about 52 lines. Table I represents the five most similar topics of
each hard-to-specify domain concept, car, and pedestrian. Due
to space limitations, the rest of topics are available in our
repository.

B. Concept Representation
Each set of documents is then organized into a meaningful

hierarchy of topics. Although topic models such as LDA [11]
and NMF [34] have shown promises for topic modeling, tuning
their hyper-parameters is often challenging. For this reason, to
identify dominant topics of relevance to the domain concept,
we adopted a transformer-based topic modeling technique [22]
shown to produce highly cohesive clusters [58].

TABLE II
HIGH-LEVEL TOPICS OF car AND pedestrian DOMAIN CONCEPTS.

Id Car Topic Pedestrian Topic
a wheels transportation modes
b car lots locomotive
c car-related movies road features
d jaguar cars car accidents
e engine features road types
f engine combustion system racial protest
g larger cars pedestrians in customs
h smaller more efficient cars visual perception difficulties
i car makers pedestrians with moving disabilities
j car types safety
k car racing children
l - car communication system
m - background context
n - careless pedestrians
o - campers

This approach first converts any sentence of each docu-
ment to an embedding vector (numerical values). It maps
each vector in a multi-dimensional space so that vectors of
contextually similar sentences are placed closer to each other.
The model we selected was pre-trained, containing the
embedding representations of generic words and sentences.

However, due to the domain-specificity characteristics of the
concept, we decided to retrain the model with the collection of
domain-specific documents we earlier retrieved. To facilitate
the arrangement of the embedding vectors, later a dimension
reduction technique was selected, namely UMAP [39], shown
to well preserve a significant portion of the structure of high-
dimensional data. Later a hierarchical density-based algorithm,
namely HDBSCAN [38] was applied to optimally cluster the
documents embedding according to the clusters cohesion.

As the hierarchy is meant to display the concept, it is
essential to provide meaningful names for each topic. Our
approach selects the top four important words to represent the
topic of each cluster. The importance of the word is computed
according to class-based TF-IDF metric (c-score), which is
the same as the standard TF-IDF only regularizes the frequent
words in each cluster instead of each document. Hence, the
scores are a proxy of information density relevant to each
cluster. Looking at the top words we manually selected a
general topic for each cluster. The topic selection took less
that five minutes for the both domain concepts.

A few default parameters in the topic model which we
adopted [22] could be tuned to improve the model perfor-
mance. We chose not to adjust the parameters to minimize the
manual interference with our automated process. For instance,
the default parameter retrieves the ten most similar words
per topic, but the top n words parameter could modify this
number. The topic representations can be controlled through
the n gram range variable, specifying the number of most
similar words selected as the topic. In addition, the number of
the clusters can be adjusted, while setting the parameter too
low for a large set of documents leads to a large number of
microclusters which a higher parameter will merge to
reduce their number. There are other variables related to the
UMAP for controlling the number of neighboring, reducing
the embedding dimensionality and distance metric.

This process lead to identifying 1,699 and 843 topics for
cars and pedestrians, respectively. Due to the nature of HDB-
SCAN, we cannot specify the number of clusters in advance,
but we can reduce the number of topics that have been created
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Fig. 4. Topic Hierarchy Relevant to the Domain Concept Pedestrian.

by merging the most similar topics automatically. As such, the
model will reduce the number of topics, starting from the least
frequent topic, as long as the two topics’ similarity exceeds a
minimum similarity of 0.915. To use this option, we set nr
topics to auto. After the automatic topics reduction, 920 and 452
topics for cars and pedestrians were made, respectively.

To facilitate interpreting the hierarchy of topics, we man-
ually assigned a higher-level topic to a set of topics in the
same car hierarchy branch. These super-topics are represented
in Table II and each corresponding id is displayed in the
hierarchy in Figure 3. For instance, both clusters under node k
contain terms closely relevant to car racing. For instance,
cluster 166 includes terms such as NASCAR (National Asso-
ciation for Stock Car Auto Racing), Wallace (Bubba Wallace),
Daytona (500-mile-long NASCAR Cup Series), motorsports
(the website of racing results, news, and driver information),
lap, race, speedway, Busch (Kyle Busch) and cluster 656 has
words such as F1, IndyCar, McLaren, Andretti, race, Ferrari.
As another example node j  consists of clusters with car
manufacturer topics, such as Benz, Tesla, Alfa Romeo, BMW,
etc. Node h primarily contains small and fuel-efficient cars and
related terms while node g includes terms relevant to large-size
vehicles, such as van, SUV, and truck, under the right branch,
and safety-related terms within the left-side clusters, such as
NHSTA (National Highway Traffic Safety Administration),
pedestrian, car, and collision in cluster 771, as well as device,
texting, vehicle, crash, and driver in cluster 430.

Similarly, the last column of Table II, shows the high-level
topics we selected for a subset of clusters within a hierarchical
branch for the pedestrian benchmark in Figure 4. For instance,
the clusters under node i  talk about pedestrians with moving
disabilities as cluster 192 contain Ataxia, Diplegia, Palsy,
Cerebellum (a part in the brain that controls walking balance),
gait, disorder, syndrome, and cerebral. Cluster 20 contains
leg-related terms such as leg, ankle, foot, toe, dance, and
crossing. Cluster 114 consists of terms related to people
with disabilities, such as a wheelchair, Paralympic, disability,
and Paralympics. As another example, the node l directly

refers to issues relevant to in-car communication systems
which lead to car collisions as cluster 250 contains terms
such as Linux, driver, vehicle, umdf (User Mode Driver
Framework), and kmdf (Kernel-Mode Driver Framework), and
cluster 426 consists of communication technology terms, such
as vanet (Kernel-Mode Driver Framework), v2x, v2v, cv2x
(communication technologies), vehicle, vehicular, and 80211p (
IEEE 802.11 standard to add wireless access in vehicular
environments (WAVE), a vehicular communication system).
On the other hand, cluster 80 within the same branch contains
the collision-related terms, including brake, fatality, NHSTA,
collision, accidents, velocity, drive, and momentum.

C. Dataset Interpretation
To evaluate the benchmarks, we selected three datasets spe-

cific to the autonomous driving domain: the CityPerson [70],
EuroCity [12], and Caltech [20] datasets, respectively includ-
ing 2,975, 23,892, and 4,285 image frames.

To interpret the datasets with respect to the classes of
pedestrian and car, we used an anchor-based object detection
technique related to computer vision and image processing
[21]. The process of object detection typically happens through
two levels: one involving image classification and the other
object localization. While image classification assigns an ob-
ject to one or multiple existing classes, object localization
identifies the location of a potential object by drawing an
imaginary surrounding bounding box around its extent. To
localize an object, the anchor-based object detection algorithm
first predicts an object’s position in an image by creating
predefined anchor boxes in the image. Anchor boxes are
referred to as candidate boxes a model initially predicts to
identify an object’s location, size, and shape. For each anchor
box later, the detector calculates a probability according to the
Intersection over Union (IoU), implying the overlapping areas
of the finally selected anchor box and the ground truth [49].

We adopted a Faster R-CNN model equipped with
ResNeXt-101-FPN backbone [37], [64], a batch size of 8, and
an initial learning rate of 8 ×  103. We trained the model on the
training set of Visual Genome, a large and dense general

71



Authorized licensed use limited to: Argonne National Laboratory. Downloaded on June 29,2023 at 16:44:19 UTC from IEEE Xplore. Restrictions apply.



dataset containing 108,077 images with a detailed description
of each image [32]. The dataset includes 75,729 unique objects
(labels), and each image has an average of 35 objects, 26
attributes, and 21 pairwise relationships between objects [32].
The model detected 81, 116, and 96 distinct objects in the
CityPerson, EuroCity, and Caltech datasets out of the 141 of
the visual genome distinct objects present in the three datasets.

D. Dataset Evaluation

We then automatically searched the detected objects within
both car and pedestrian benchmarks for each dataset. Figures 5
and 6 represents the topics with respect to each benchmark. The
nodes marked in orange represent the missed topics by each
dataset which is marked with a circle on top of the node. The
blue circle illustrates the missing topics of CityPerson, while
green and yellow are representative of EuroCity and CalTech
Datasets.

As shown, 60% and 48% of topics are missed by the
three datasets in car and pedestrian benchmarks, respectively.
With respect to the car variances, as identified in Table II, the
racing cars, racing-relevant concepts, and a majority of car
makes such as Benz, Cadillac, and luxurious cars (e.g.,
Bentley and Rolls-Royce in topic 675), smaller cars (coup and
hatchback cars), and engine-related or external car parts (e.g.,
exhaust and thrust) are not recognized in any of the datasets.
With respect to the pedestrian benchmark as displayed in
Figure 6 the branch of pedestrians with walking disabilities, as
well as node n related to unexpected pedestrians containing
terms, such as stochastic, walk, step, Brownian (movement),
Markov, diffusion, and random in cluster 388 (randomly
walking pedestrians); book, magazine, Pulitzer, novel, walk
and reading in cluster 432 (distracted walking pedestrians);
and PERS (Pedestrian Environment Review System), preps,
arrest, walk, walkability, pedestrian, and walkable (pedestrians
walking in unexpected areas due to the walkability issues of
the environment), are not covered by any of the datasets.

E. Qualitative Evaluation

We manually tested the terms in the most similar 50 topics of
both car and pedestrian domain terms to verify the relevance of
the terms to the given topic, as well as to the domain. Yet
to additionally seek an external opinion, we designed an
evaluation process. For obvious reasons, the generated topics
and terms in this domain (i.e., driving) do not necessarily
require domain experts and rare domain expertise; instead,
they can be evaluated by the common sense knowledge of
regular drivers. Therefore, for evaluation purposes, we created
an online multiple-choice survey. Each question contained a
topic and the 10 top words of the topic. We sent the survey to
five computer science PhD students who were not involved in
the research topic. We asked the participants to mark as many
terms below a topic as they find relevant to the given topic.

The surveys indicated an average of 72% and 78% partici-
pants’ agreement with the relevance of the extracted terms and
the suggested topics in the pedestrians and cars topic models,
respectively. The surveys are available in our repository.

VII. RELATED WORK

RE for AI: Since engineering software systems with AI com-
ponents highly depend on data with limited or no insight on
how to map the data to the system performance, RE faces new
challenges in this domain [4]. One main focus of RE for AI
research area is on data requirement [4]. For instance, multiple
work emphasized on differences of development process in
conventional software and software systems with machine-
learned components. In such systems, part of development is
derived by data [26], [28], [46].

To this end, the Google PAIR guideline emphasizes bias
prevention by ensuring that data is comprehensive [1]. An-
other work highlights that during the RE analysis phase,
requirements engineers need first to understand the prescriptive
data lineage to facilitate the discussion of data quality and
preparation between customers and the data scientists [60].

In [53], the authors investigated the requirements of data
quality, applying machine learning algorithms in the energy
desegregation domain. The findings point out that the perfor-
mance of algorithms has a highly positive correlation with the
data sampling rate. Furthermore, [13] states that researchers
should not solely rely on static methods to verify the qualita-
tive characteristics of data. Therefore, they listed five essential
characteristics for data quality, including accuracy, complete-
ness, consistency, credibility, and correctness.
Domain analysis: Extracting and making use of domain
knowledge has played a significant role in improving the
quality of software products and the efficacy of software
development processes [6], [42], [45]. For this reason, several
studies in the SE domain have previously sought to extract
domain knowledge for various concepts from the existing
domain documents [15], [23], [59]. Several studies have gone
further by capturing the retrieved information in the form of a
semantic web or ontology [18], [35].
Visual perception: Many of the advanced automated driv-
ing functionalities require software components to perceive
the environment in the automotive domain. The majority of
perception-related functionalities may not be completely
specifiable due to the presence of hard-to-specify concepts in
the environment, such as pedestrian and automobile [54]. In
this regard, Kondermann [31] argues that the RE practices are
not yet properly applied to AI, specifically in tasks relevant to
AI tasks relevant to visual perception (e.g., pedestrian recog-
nition). He later emphasizes the need to investigate further
applications of RE to include data selection techniques [31].
For example, while one study provides evidence for overfitting
the state-of-the-art pedestrian detectors [24], another prior
inspection of a commonly used pedestrian dataset revealed the
lack of images of pedestrians in wheelchairs [46]. The acces-
sible domain semantic webs include a short and incomplete
specification of the term pedestrian while failing to capture
the details of varying instances of the concept sufficiently.
For example, WordNet defines a pedestrian as a “person who
travels by foot” and associates the word with the terms walker
and footer. However, this definition is limited given that it
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Fig. 5. The Missed topics(Orange nodes) of Car Hierarchical Topics in the Three Autonomous Driving Benchmark Datasets.
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Fig. 6. The Missed topics(Orange nodes) of Pedestrian Hierarchical Topics in the Three Autonomous Driving Benchmark Datasets.

excludes, for example, pedestrians riding a bike, roller-skating,
or using a wheelchair. It also fails to describe a pedestrian’s
appearance in terms of attributes, such as clothing and posture.

VIII. THREATS

Although we used multiple sources, such as online en-
cyclopedias and Britannica, to create the reference points
for automotive-related datasets, the benchmark completeness
can be questioned. We tried to at least estimate the topics
completeness relative to domain-specific dataset benchmarks.
As discussed, several primary and sensitive topics within
the benchmarks were not covered in any of the datasets. A
threat to the construct validity may arise from the evaluations
with a limited number of datasets and object detectors. For
instance, the missing topics in the dataset benchmarks may be
due to poor training of the object detector since they are
trained on a set of limited objects. We minimized this threat by
selecting well-performing detectors and most commonly used
state-of-the-art datasets. For our future work, we intend to use
more advanced image processing techniques, such as scene
graph generation and region captioning [36], to extract more
information from the visual datasets to be compared

against our automotive domain benchmarks. A threat to the
external validity is carrying out the experiments only in one
domain (automotive) and two domain concepts (pedestrian and
car). We designed a generalizable process, and implemented a
general framework, and referred to general knowledge sources.
Therefore, no limitation is foreseen to extend the application
domain. However, due to the expensive computations, we
limited the application to two concepts of the automotive
domain for which the accuracy of visual perception tasks is
particularly important for the reliability of the functions.

IX. CONCLUSION

This paper presented a generic process for evaluating dataset
requirements of AI-enabled perception software. We empha-
sized on extracting the necessary knowledge to build an
inclusive reference point of domain concepts against which the
relative completeness of a dataset can be assessed. To build a
reference point, we implemented an automated approach to
collect domain-specific knowledge from online sources such
as encyclopedias and dictionaries. We evaluated our
framework, called CADE, against three autonomous driving
dataset benchmarks and identified that several critical topics
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related to the concepts were missing in the widely-used dataset
benchmarks. We then qualitatively evaluated the generated
hierarchies of topics with independent researchers resulting in
75% participants agreement.
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