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ABSTRACT
In scientific studies with low-prevalence outcomes, probability sampling
may be supplemented by nonprobability sampling to boost the sample
size of desired subpopulation while remaining representative to the entire
study population. To utilize both probability and nonprobability samples
appropriately, several methods have been proposed in the literature to
generate pseudo-weights, including ad-hoc weights, inclusion probability
adjusted weights, and propensity score adjusted weights. We empirically
compare various weighting strategies via an extensive simulation study,
where probability and nonprobability samples are combined. Weight nor-
malization and raking adjustment are also considered. Our simulation
results suggest that the unity weight method (with weight normalization)
and the inclusion probability adjusted weight method yield very good
overall performance. This work is motivated by the Buckeye Teen Health
Study, which examines risk factors for the initiation of smoking among
teenage males in Ohio. To address the low response rate in the initial
probability sample and low prevalence of smokers in the target popula-
tion, a small convenience sample was collected as a supplement. Our pro-
posed method yields estimates very close to the ones from the analysis
using only the probability sample and enjoys the additional benefit of
being able to track more teens with risky behaviors through follow-ups.
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1. Introduction

Probability sampling has been the standard practice in survey research for decades. Analysis fol-
lowing the sampling design provides unbiased estimates of the population quantities under the
sampling distribution. Well executed probability sampling with good cooperation can guard
against selection bias, which is a major threat to the generalizability of sample data. Moreover,
probability sampling provides a mathematically sound framework to assess the precision of the
estimates, as we know the selection probability for each unit (Lohr 2019). In recent years, how-
ever, survey researchers and practitioners have experienced substantially declining response rates
in probability surveys. For example, seven nationwide large-scale surveys sponsored by the
Department of Health and Human Services showed declining response rates from 1995 to 2015,
with some surveys showing a decreasing trend over the first half of the period, while others
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showing a steady decrease in recent years (Czajka and Beyler 2016). Kohut et al. 2012 reported
that the response rate for a typical telephone survey at Pew Research dropped from 36% in 2007
to 9% in 2012. Such low response rate makes the sample more vulnerable to nonresponse bias.
Therefore, the validity of using probability samples to make inference about the general popula-
tion may be in question (Groves 2006; Brick 2011). Meanwhile, the cost and effort required to
obtain acceptable levels of cooperation have increased substantially.

Over the past two decades, survey researchers have witnessed the fast growth of nontraditional
data collection methods. Aided by advances in technology, a vast amount of data can be gathered
in more efficient ways, e.g., via mobile devices, online surveys, and volunteer community samples
(Link 2018). These data, however, are collected without a clearly defined sampling framework or
a probability-based selection rule. Usually, they are referred to as nonprobability samples
(Vehovar, Toepoel, and Steinmetz 2016). Compared with probability samples, nonprobability
samples may not have full coverage of the target population due to heterogeneous access to sur-
vey platforms (Cornesse et al. 2020) or may have representativeness issue such as in volunteer
community samples or general convenient samples. Without a probability sampling foundation,
strong modeling or calibration assumptions are usually required to infer population estimates.
Though nonprobability samples have performed well in certain areas, such as electoral polling,
evidence of accuracy is insufficient in other domains (Dutwin and Buskirk 2017).

When the response rate turns out to be lower than expected or required for key analyses,
researchers might need to supplement the probability sample with nonprobability sample, either
for the study overall or for only some specific domains of interest (Berzofsky, Williams, and
Biemer 2009). This strategy, if implemented appropriately, may help to improve the representa-
tiveness and unbiasedness of a probability sample in practice. Following the works of Schonlau
et al. 2004, Lee and Valliant 2009, Valliant and Dever 2011, and Elliott and Valliant 2017, our
approach is to combine probability and nonprobability samples by calculating the pseudo-weights
for the nonprobability sample, and then using combined sample (adjusted probability weights for
the probability sample and pseudo-weights for the non-probability sample) for design-
based estimation.

From a methodological perspective, there are generally two types of approaches to making
inference from nonprobability samples—quasi-randomization and superpopulation models (Elliott
and Valliant 2017). The quasi-randomization approach tries to mimic a probability sampling
framework by calculating the inclusion probabilities of the nonprobability sample. Pseudo-weights
are generated based on inclusion probabilities and are calibrated to a reference probability sample
(Schonlau, Van Soest, and Kapteyn 2007). The superpopulation model approach focuses on mod-
eling the relationship between an outcome and relevant covariates, then projects the sample to
the target population based on the model. The key difference between the two approaches is that
the former uses design-based inference and the latter uses model-based inference conditioning on
the collected sample. Recent methodological development also suggests a way of combining the
two, namely doubly robust approach (Valliant 2020). Model-assisted weights are calculated based
on quasi-randomization weights to construct approximately consistent estimators if the pseudo-
inclusion probability distribution or the superpopulation model is correctly specified. Robbins,
Ghosh-Dastidar, and Ramchand 2021 further discussed the blending of probability and nonprob-
ability samples using propensity scores by considering two strategies—disjoint blending and sim-
ultaneous blending.

In this paper, we focus on producing pseudo-weights by implementing the quasi-randomiza-
tion method, as it is conceptually closely related to the conventional probability sampling. It only
needs one set of pseudo-weight for all outcomes. In contrast, in superpopulation modeling, differ-
ent models may need to be generated for different outcomes, which leads to varied efficiencies
across survey outcomes The quasi-randomization approach is also more robust to the misspecifi-
cations of the outcome model.
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Our research is motivated by the Buckeye Teen Health Study (BTHS), a population survey for
examining tobacco use behaviors among adolescent males in Ohio (Evans et al. 2018; Friedman
et al. 2018). The original design was to use a two-stage stratified probability sampling design
(stratified by urban/rural status and county) through address-based sampling (ABS). After several
months of fielding, the response rate was lower than expected and it was unlikely we could reach
the target sample size. The primary outcome was teens’ tobacco use behaviors, including the use
of cigarettes and/or smokeless tobacco products. Because the prevalence of use was expected to
be low, we needed a large enough sample size to track the use of different tobacco products.
Therefore we decided to include a nonprobability convenience sample to supplement the prob-
ability sample so that we could identify more boys with risky behaviors and track their long-term
tobacco use status. Since the probability sample accounts for a large portion of the data, we tried
to use quasi-randomization method to take advantage of the probability sampling design.

The major thrust of our paper is to compare several strategies for combining probability and
nonprobability samples through a large simulation study, using a sampling design motivated by
our BTHS data. Several weighting strategies are considered, from the naive weighting for the non-
probability sample to the more theory-based pseudo-weight modeling method. We also modify
the propensity score approach to obtain weights that balance the distribution between the prob-
ability and nonprobability samples. To improve the estimation, weight normalization (Hahs-
Vaughn 2005) is usually needed so that the sum of the normalized combined weights is equal to
the sum of the original probability sample weights, and we propose a strategy that is consistent
with the original survey design. Many of these methods are used in practice without a thorough
comparison of their statistical performance. We attempt to fill the gap by providing insights
regarding their practical utility through simulation studies. The rest of the paper is organized as
follows: Sec. 2 describes different estimation strategies being compared; Sec. 3 introduces our
motivating example, the BTHS; Sec. 4 presents the simulation study design and results; Sec. 5
shows the data analysis results; and Sec. 6 concludes with a discussion on practical implications
and limitations.

2. Methodology

Design-based estimation, which includes point and variance estimation, under probability sam-
pling has been established for many “classical” sampling designs (Cochran 1977), as well as for
more complex designs (Lohr 2019). Within the framework of total survey errors, the variance of
the estimate has been accepted as a quality measure for the sampling error. Under the design-
based estimation approach, weighted estimation is commonly used to produce design-unbiased
estimate of the population parameter. The sampling weight computed as the inverse of selection
probability is one of the most important components for the design-based estimation. In practice,
this weight is adjusted to account for survey nonresponse and then may be subjected to calibra-
tion to produce the final analysis weight. Unfortunately, with the nonprobability sample, the sam-
pling weight cannot be calculated without strong assumptions, which results in some researchers
ignore weighting when analyzing the nonprobability sample.

Under the quasi-randomization approach, pseudo inclusion probabilities are estimated for the
nonprobability sample. In our application, the pseudo sampling weights (hereafter the pseudo-
weights) are generated for the nonprobability sample, which is then pooled with the probability
sample to create a combined sample. Design-based formulas are used for inference.

We first take a stratified probability simple random sample, and then a convenience sample is
collected from the remaining population. For a stratified random sampling with proportional allo-
cation procedure, the sampling weights for the probability sample are equal within each stratum.
When adding the nonprobability sample, there are generally three steps to prepare weights for
the final inference: (1) pseudo-weights estimation for the nonprobability sample, (2) weight
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normalization, and (3) raking. Our research considered four different pseudo-weight estimations,
two weight normalizations, and three raking approaches, which are summarized in Table 1 and
described in more detail in the following subsections.

2.1. Pseudo-weights estimation

We consider four methods to estimate pseudo-weights for the nonprobability sample: naïve
weight (Naïve), unity weight (Unity), inclusion probability adjusted weight (IPA), and propensity
score adjusted weight (PSA).

Pseudo-weight 1 or PW(1):
The naïve weight method treats nonprobability sample units as if they were selected the same
way as probability sample units. The nonprobability sample units can be merged into their corre-
sponding strata based on their covariates, and the sampling weight can be calculated directly. For
both probability and nonprobability sample units, stratified simple random sampling weight can
be calculated as the population size over the total sample size (probability plus nonprobabil-
ity samples).

Pseudo-weight 2 or PW(2):
The unity weight method assumes that each nonprobability sample unit only represents itself, so
its pseudo-weight is set to 1. Nonprobability sample units are merged into their corresponding
strata based on their covariates. For the probability sample, weights are unchanged and sum to
the population size. As a result, in the combined sample, the sum of weights exceeds the popula-
tion size, and thus requires normalization (methods described in the next section). When the size
of the probability sample is large enough and the probability sample is assumed to produce

Table 1. Summary of approaches implemented in weighting comparisons.

Method and notation Description

Pseudo-weight estimation:
PW(1) Treats nonprobability sample units as if they were selected the same way as

probability sample units, assuming the nonprobability sample is
independent of the probability sample.

PW(2) Sets the pseudo-weight to 1 (nonprobability sample unit only
represents itself).

PW(3) Estimates the pseudo-weight using a model which relies on a probability
sample with commonly observed covariates in probability and non-
probability samples.

PW(4) Estimates the pseudo-weight using a model based on the combined
probability and non-probability samples, and balances the propensity
scores by re-weighting the nonprobability sample to make it look like
the probability sample.

Weight normalization:
WN(1) Treats the nonprobability sample as a separate stratum and normalizing the

pseudo-weights by their sample sizes to preserve the proportion of each
sample in the combined sample.

WN(2) Treats both nonprobability and probability sample units as coming from the
sampling strata defined by the design variables, and normalizes the
pseudo-weights to preserve the total weight of each stratum as the
population size in the combined sample.

Raking:
RK(1) No raking.
RK(2) Rakes to the known marginal population distribution.
RK(3) Rakes to the marginal distribution in the probability sample.

4 W. XI ET AL.



design-unbiased estimates, a small size of the nonprobability sample may not have significant
impact on the accuracy or the precision of the estimates.

Pseudo-weight 3 or PW(3):
The inclusion probability adjusted weight method is based on Elliott 2009. It assumes that the
nonprobability sample also has some unknown selection probability, which relies on a probability
sample with commonly observed covariates. The nonprobability sample is assumed to be inde-
pendent of the probability sample, and the inclusion into the study may be assumed to be inde-
pendent of outcome given sample design, though in practice the probability selection may
correlate with the exposure of interest.

We let Zi ¼ 0 if unit i is in the probability sample and Zi ¼ 1 if unit i is in the nonprobability
sample. We let Si be the indicator that unit i is sampled for the probability sample, and xi be the
vector of commonly observed covariates that are predictive of participation. Elliott and Valliant
2017 showed that pseudo-weight wi for the nonprobability sample unit i is given by:

wi / ~wi
P̂ Zi ¼ 0 j xi ¼ x0ð Þ
P̂ Zi ¼ 1 j xi ¼ x0ð Þ , (1)

where ~wi ¼ 1=P̂ðSi ¼ 1jxi ¼ x0Þ is the weight associated with selecting a sample unit i in the
probability sampling frame; that is, the inverse of the probability of selecting a sample unit with
covariates xi ¼ x0 in the probability sampling frame. If the probability sample is drawn via strati-
fied simple random sampling with proportional allocation, then ~wi is the same for all i, hence
can be dropped in (1). In situations where xi do not correspond exactly with the probability sam-
pling design variables, beta regression can be used to predict the selection probability for the

probability sample P̂ðS ¼ 1jxi ¼ x0Þ (Ferrari and Cribari-Neto 2004). The probability PðZi ¼
zjxi ¼ x0Þ can be estimated via logistic regression in the combined sample. For the probability
sample, weights are calculated following the sampling design.

Pseudo-weight 4 or PW(4):
The propensity score adjusted weight method has been used to calculate pseudo-weights for non-
probability web surveys (Schonlau et al. 2004; Lee and Valliant 2009). Valliant and Dever 2011
used the propensity score stratification to calibrate weights for an online convenience sample
based on a reference probability sample. We borrow the idea of propensity grouping but modify
the calculation of propensity score weights by taking advantage of the balancing property of pro-
pensity scores. That is, we re-weight the combined sample to make it look like the probability
sample in terms of covariate distributions (Austin 2011). Since the target population distribution
is based on the probability sample, which is supposed to be representative, we will model the pro-
pensity score as the probability of being in the probability sample. The specific steps are:

Step 1: Combine the probability and nonprobability samples. Use weighted logistic regression to
estimate the propensity score, ei ¼ P Zi ¼ 0 jXið Þ, of belonging to the probability sample.
The weight used in the model was defined as the initial sampling weights for probability
sample units and unity weights for nonprobability sample units. Include all relevant cova-
riates in the propensity score model.

Step 2: Based on the propensity score, classify the data into a fixed number of groups. The num-
ber of groups depends on the total sample size and the distribution of propensity scores.
The number cannot be too small; otherwise, the propensity score adjustment is not effect-
ive. It also cannot be too large, because we need a reasonable amount of probability
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sample units in each group. In our simulation, we used 20 equal-sized groups. For group
j, the average propensity score is calculated and denoted as ej:

Step 3: Within each group, calculate the propensity score weight for each unit. To ensure the
covariate distribution is balanced, for units from the probability sample, propensity score
weights are set to 1 (vi ¼ 1); for units from the nonprobability sample, propensity score
weights are calculated as for unit i in group j:

vi ¼
ej

1� ej
, (2)

Step 4: Within each group, calculate pseudo-weights for nonprobability sample units (while
adjusting the initial sampling weights for probability sample units). To ensure the com-
bined sample represents the target population as the probability sample, we re-distribute
the sum of probability sample weights to all units. The pseudo-weight for unit i in group
s is:

wi ¼
P

j2s I Zj ¼ 0
� �

~wjP
j2s vj

� vi (3)

where Ið�Þ denotes the indicator function with value equal to 1 if Zj ¼ 0 and 0 otherwise, vj is
calculated in Step 3, and ~wj is the probability sample weight if the jth unit is from the probability
sample and 0 for the nonprobability sample. Note that weights for the probability sample are also
adjusted after this step.

2.2. Weight normalization

Since nonprobability and probability samples are combined for final inference, weights need to be
normalized (Korn and Graubard 1999). We consider two approaches:

Weight normalization 1 or WN(1):
Elliott 2009 proposed treating the nonprobability sample as a separate stratum and normalizing
the pseudo-weights to preserve the proportion of each sample in the combined sample. For non-
probability sample unit i, the normalized pseudo-weight is (the superscript “ss” stands for
“separate stratum”):

ŵss
i ¼ nnp

np þ nnp
�
Pnpþnnp

j¼1
I Zj ¼ 0
� �

~wjPnpþnnp
j¼1

I Zj ¼ 1
� �

wj

� wi, (4)

where nnp is the size of the nonprobability sample, and np is the size of the probability sample.
For probability sample unit i, the normalized weight is:

ŵss
i ¼ np

np þ nnp
� ~wi: (5)

Weight normalization 2 or WN(2):
Though Elliot’s method stabilizes the total weight, it represents a deviation from the original sur-
vey design by introducing an additional stratum. We propose a normalization strategy that is
consistent with the original probability sample design by treating both nonprobability and
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probability sample units as coming from the sampling strata defined by the design variables, and
normalizing the pseudo-weights to preserve the total weight of each stratum as the population
size in the combined sample. In the combined sample, for unit i of stratum s, the normalized
pseudo-weight is (the superscript “dc” stands for probability sample “design consistent”):

ŵdc
i ¼ NsP

j2s wj
� wi, (6)

where Ns is the population size in stratum s: Practically, the weight normalization step can be
combined with the pseudo-weight step to simplify the coding.

2.3. Raking

Following standard survey practice, we implement raking to ensure that the sample distributions
match those of the population. Depending on whether the population-level information is avail-
able, there are two ways to rake pseudo-weights. When population-level information is available,
the raking procedure can be applied to match covariates with their marginal distributions in the
population. When population-level information is unavailable, estimates based on the probability
sample can be used as proxies to population quantities and the raking procedure can be applied
to match up covariates with their marginal distributions in the probability sample. To represent
the entire population, raked pseudo-weights are then proportionally inflated so that they sum up
to the target population size. In our simulation, we consider the following three strategies:

Raking 1 or RK(1): without raking;
Raking 2 or RK(2): raking to the known marginal population distribution;
Raking 3 or RK(3): raking to the marginal distribution in the probability sample.

3. Real data example: The Buckeye Teen Health Study

The research presented in this paper was motivated by the BTHS. The goal of the study was to
determine factors associated with the initiation of tobacco use. Participants were recruited
through the use of both probability and nonprobability methods, specifically, ABS (Iannacchione
2011) and community recruitment, in ten Ohio counties, which consisted of one urban county
(Franklin) and nine rural Appalachian counties (Brown, Guernsey, Lawrence, Muskingum, Scioto,
Washington, Clermont, Morgan, and Noble). Of the 1,220 participants enrolled in the study, 991
(81.2%) were recruited through ABS and 229 (18.8%) were from community recruitment. All pro-
cedures were approved by the Institutional Review Board at The Ohio State University.

The ABS was implemented with stratification by counties. The addresses were taken from the
US Postal Service computerized delivery sequence file. Within each stratum, the probability of
selecting each address is equal. Initially, a postcard was sent stating that a letter would arrive with
a study opportunity. Selected households were then sent a letter describing the study along with a
$2 bill incentive and a short questionnaire, in which the adult members of the household were to
be listed along with the gender and age of any children living in the household. If no response
was received, a second letter and questionnaire, without the $2 incentive, were sent, approxi-
mately three weeks after the initial mailing with incentive and questionnaire. Households with an
adolescent male between 11 and 16 who indicated interest in the study were contacted by a
trained interviewer to ensure eligibility and then, if eligible, to schedule a baseline interview. We
obtained both consent from the parent and assent from the youth. Only a single youth was inter-
viewed per household. If multiple boys were eligible we interviewed the youth with the most
recent birthday relative to the screening date.

The ABS recruitment took longer than initially anticipated and was thus supplemented with
the community recruitment to obtain the target number of participants. During the fielding, the
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data collection through ABS resulted in a total of 991 respondents (20.3% unweighted response
rate). The potential bias due to survey nonresponses was addressed through weighting. However,
because the target precision based on designed sample size might not be achieved, we decided to
add the nonprobability sample through community recruitment. Any household not sampled by
the probability survey was eligible for the nonprobability survey. This supplementation was par-
ticularly important for the BTHS because of the low prevalence of tobacco use in the tar-
get population.

The study was advertised both on the radio and in local newspapers. The study staff also
attended community-based events, including county fairs, farmer’s markets, and other local
events, to recruit participants. Investigators also spoke on the radio and on television to promote
the study. Households recruited directly from the community were subsequently screened to
determine eligibility and, if eligible, a baseline interview was scheduled. A total of 229 participants
were recruited using these methods. Potential selection bias was addressed through calibration
weighting based on the assumption of ignorability in selection.

In this paper, we focus on estimating the prevalence of tobacco use at baseline and mean body
mass index (BMI), to illustrate various strategies for combining probability and nonprobability
samples using both binary and continuous outcomes.

4. Simulation studies

We first generated a fixed finite hypothetic population, then applied different sampling designs
and obtained repeated samples. Within each sample, different pseudo-weighting strategies were
implemented, and survey weight-adjusted inferences were conducted. The results are summarized
over repeated samples to evaluate the performance.

4.1. Hypothetic population

A finite population of 50,000 (N ¼ 50, 000) individuals, with two stratification variables, four
covariates, and four outcome variables, was generated as the underlying true population. Table 2
summarizes the characteristics of each variable and how they were generated. Specifically, to

Table 2. Hypothetic population for simulation.

Description Model

Stratification Variables
S1 Binary: 0, 1
S2 Categorical: 1� 10
Covariates
X1 Continuous Normal (Mean ¼ 20, SD ¼ 3)
X2 Binary: 0, 1 P ¼ 0:9 if S1 ¼ 0; and P ¼ 0:65 if S1 ¼ 1
X3 Categorical: 1, 2, 3 P ¼ ð0:45, 0:3, 0:25Þ if S1 ¼ 0; and

P ¼ ð0:25, 0:3, 0:45Þ if S1 ¼ 1
X4 Categorical: 1, 2, 3 P ¼ ð0:1, 0:3, 0:6Þ
Outcome Variables
Y1 Continuous; strongly

affected by X4
Normal (Mean ¼ 1þ 2S1 þ 3X1 þ 4X2þ

5X4:2 þ 6X4:3, SD ¼ 10)
Y2 Continuous; weakly

affected by X4
Normal (Mean ¼ 1þ 2S1 þ 3X1 þ 4X2 þ 0:5X4:2þ

0:6X4:3, SD ¼ 10)
Y3 Binary; strongly

affected by X4
logit pð Þ ¼ � 2þ 0:2S1 þ 0:3X1 � 0:4X2 �

0:5X3:2 � 0:6X3:3 � 3X4:2 � 4X4:3
Y4 Binary; weakly

affected by X4
logit pð Þ ¼ � 5þ 0:2S1 þ 0:3X1 � 0:4X2 �

0:5X3:2 � 0:6X3:3 � 0:3X4:2 � 0:4X4:3
where Xi:j is dummy/binary variable derived from variable Xi with reference value Xi ¼ 0, and value Xi:j ¼ 1 if Xi ¼ j; other-
wise, Xi:j ¼ 0:
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mimic the BTHS, two stratification variables, S1 and S2, were used. Variable S1 had two strata (1
and 0), indicating the urbanicity status (urban or rural) of each county. Variable S2 was nested
within S1 and had ten strata in total, representing counties. The first eight counties (S2 ¼ 1, :::, 8)
were nested within S1 ¼ 0 and had population sizes of N1 ¼ 1, 000, N2 ¼ 1, 400, N3 ¼ 1, 800,
N4 ¼ 2, 200, N5 ¼ 2, 600, N6 ¼ 3, 000, N7 ¼ 5, 000, and N8 ¼ 8, 000: The last two counties
(S2 ¼ 9 and 10) were nested within S1 ¼ 1 and had population sizes of N9 ¼ 10, 000 and N10 ¼
15, 000: Four covariates were considered: X1 was continuous (normally distributed), X2 was bin-
ary, X3 and X4 were categorical with three categories each. To thoroughly examine the pseudo-
weighting methods, two types of outcome variables were considered: variables Y1 and Y2 were
continuous (normally distributed), with X4 strongly associated with Y1 and weakly associated
with Y2; variables Y3 and Y4 were binary, with X4 strongly associated with Y3 and weakly associ-
ated with Y4: Variables Y1 and Y2 were generated based on S1, X1, X2, and X4 through linear
models. Variables Y3 and Y4 were generated based on S1, X1, X2, X3, and X4 through logistic
regression models.

4.2. Sampling design

The simulation process repeatedly drew a 10% combined sample (5,000 individuals;
n ¼ np þ nnp ¼ 5, 000) from the hypothetical population 5,000 times (m ¼ 5, 000 replications),
where np indicates the sample size for probability sample and nnp indicates the sample size for
nonprobability sample. To evaluate the practical performance of each method, five different com-
binations of probability and nonprobability sample proportions were considered: the proportions
of probability sample were set at 10%, 25%, 50%, 75%, and 90%. For each combination, the prob-
ability sample was first selected using proportional allocation across strata and the nonprobability
sample was then selected based on a logistic regression model with one outcome of interest as a
covariate to mimic the nonprobability sampling mechanism.

Following Valliant and Dever 2011, we used a complex underlying probability sampling mech-
anism to generate the nonprobability sample. Though the assumption used in PW(3) and PW(4)
is that outcome is independent of selection probability, to represent the practical mechanism, we
include a situation where an outcome variable was included to reflect the fact that the underlying
probability sampling mechanism was unknown and therefore could not be modeled correctly.
The following mechanism was considered, where probabilities of being selected p depended on
covariates (X1, X2, X3, and X4) and one outcome variable collected in the survey (Y4). The non-
probability sample was selected based on the estimated probability from the following model:

logit pð Þ ¼ �10þ X1 � 2X2 þ 3X3:2 þ 4X3:3 � 5X4:2 � 6X4:3 þ 7Y4 (7)

Note that the selection of nonprobability sample depends on X2 and X3, both of which depend
on the stratification variable S1: So, this model allows the nonprobability samples to be
“imbalanced” with regards to sampling stratification characteristics.

4.3. Metrics for evaluation

After the probability sample was drawn, sampling weights were first calculated based on the selec-
tion probabilities. Then the nonprobability sample was pooled with the probability sample to cre-
ate pseudo-weights (PW). All four PW methods (i.e., PW(1), PW(2), PW(3), and PW(4))
discussed in Sec. 3 were applied.

In the IPA procedure, the logistic regression model estimating probabilities
P Zi ¼ z j xi ¼ x0ð Þ, z ¼ 0, 1, included all covariates, i.e., X1, X2, X3, and X4: In the PSA pro-
cedure, the weighted logistic regression model also included all covariates, X1, X2, X3, and X4,
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to estimate the propensity score of belonging to the probability sample (Step 1). Based on these
scores, data were divided into 20 equal-sized subgroups (Step 2).

After calculating pseudo-weights for the nonprobability sample (and updating weights for the
probability sample in PW(1) and PW(4)), every unit in the combined sample has either a weight
or a pseudo-weight. The combined sample can be treated as a stratified sample with different
weights (except for the naïve weight method) within each stratum, and weight normalization
(WN) and raking (RK) may be applied. The post-stratification (raking) step only involves cat-
egorical covariates, i.e., X2, X3, and X4 using their marginal distributions.

Several statistical measures were reported in the simulation. To define them, let us first intro-
duce the following notations:

N : Grand population size.
Nh : Population size in Stratum h:
nhj : Sample size in Stratum h in the j-th simulated combined sample; j ¼ 1, :::,m:

m : Number of repeated simulation runs; m ¼ 5, 000:
Yi, pop : Population mean of the i-th variable Yi, i ¼ 1, 2, 3, 4:
yhkij : Value of k-th unit Yi in Stratum h in the j-th simulated combined sample; i ¼

1, 2, 3, 4, j ¼ 1, :::,m, k ¼ 1, :::, nhj , h ¼ 1, :::, 10:

whk
j : Weight/Pseudo-weight of k-th unit in Stratum h in the j-th simulated combined sample;

j ¼ 1, :::,m, k ¼ 1, :::, nhj , h ¼ 1, :::, 10:
yij : Estimated mean of Yi in the j-th simulated combined sample; yij ¼ 1

N

P10
h¼1

Pnhj
k¼1

whk
j yhkij ; i ¼

1, 2, 3, 4, j ¼ 1, :::,m .
SE yij

� �
: Standard error of yij; which was calculated using the Taylor Series method (calculated

using R survey package).

The reported statistical measures are summarized below:
� Percent Bias (% Bias)

The difference between the mean of point estimates and the population truth Yi, pop as the per-

centage of Yi, pop, 1
m

Pm
j¼1 yij � Yi, pop

� �
=Yi, pop

h i
� 100:

� 95% Confidence Interval Coverage (95% CI CVGE.)
Percentage of 95% confidence intervals of yij that cover the population truth Yi, pop: The 95%

confidence interval of yij is defined as ðyij � 1:96� SE yij
� �

, yij þ 1:96� SE yij
� �Þ:

� Monte Carlo Standard Error (SE.MC)

Standard error of the point estimates,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m�1

Pm
j¼1 yij � 1

m

Pm
j¼1 yij

� �2
r

:

Table 3. Summary of simulation methods.

Naïve Unity IPA PSA
Probability
Sample Only

1: PW(1) þ RK(1) 4: PW(2) þ WN(1) þ RK(1) 10: PW(3) þ WN(1) þ RK(1) 16: PW(4) þ WN(1) þ RK(1) 22: RK(1)
2: PW(1) þ RK(2) 5: PW(2) þ WN(1) þ RK(2) 11: PW(3) þ WN(1) þ RK(2) 17: PW(4) þ WN(1) þ RK(2) 23: RK(2)
3: PW(1) þ RK(3) 6: PW(2) þ WN(1) þ RK(3) 12: PW(3) þ WN(1) þ RK(3) 18: PW(4) þ WN(1) þ RK(3) 24: RK(3)

7: PW(2) þ WN(2) þ RK(1) 13: PW(3) þ WN(2) þ RK(1) 19: PW(4) þ WN(2) þ RK(1)
8: PW(2) þ WN(2) þ RK(2) 14: PW(3) þ WN(2) þ RK(2) 20: PW(4) þ WN(2) þ RK(2)
9: PW(2) þ WN(2) þ RK(3) 15: PW(3) þ WN(2) þ RK(3) 21: PW(4) þ WN(2) þ RK(3)

Abbreviations: Pseudo-weight methods: PW(1): naïve method; PW(2): unity method; PW(3): inclusion probability adjusted
method; PW(4): propensity score adjusted method. Weight normalization methods: WN(1): nonprobability sample as a separ-
ate stratum; WN(2): nonprobability sample strata consistent with probability sample. Raking methods: RK(1): No raking;
RK(2): use external information to rake; RK(3): use internal information to rake.
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Figure 1. Percent bias of outcome variables.

Figure 2. Mean squared error of outcome variables.
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� Mean Squared Error (MSE)
Mean squared error of the point estimates, 1

m

Pm
j¼1 yij � Yi, pop

� �2:

4.4. Simulation results

Twenty-four methods were compared (see Table 3) and the simulation results on bias and MSE
are summarized in Figures 1 and 2. Additional results on coverage and SE.MC are reported in
the supplementary material (Figures A.1 and A.2). Detailed numerical summaries can also be
found in the supplementary material (Tables A.1–A.5). Three methods (22� 24) use only the
probability sample and thus serve as a benchmark to assess the performance of pseudo-weights.
Estimates are reported for four outcome variables: a continuous variable (Y1) that is highly
affected by X4, i.e., large X4 coefficient in the data generating model; a continuous variable (Y2)
that is weakly affected by X4, i.e., small X4 coefficient in the data generating model; a binary vari-
able (Y3) that is highly affected by X4; and a binary variable (Y4) that is weakly affected by X4:

With respect to the simulation scenarios, we found: Continuous outcomes were estimated with
less percentage bias than binary outcomes. All bias measures dropped substantially as the propor-
tion of probability sample increased. The 95% CI coverages were generally poor with the low pro-
portion of probability sample, except for methods 7, 8, and 9. But the coverage improved
substantially when the probability sample proportion increased. MSEs were not directly compar-
able between continuous and binary outcomes because of the scale difference, but they were also
improved when the probability sample proportion increased, except for methods 16-21, the MSEs
increased in Scenarios 4 and 5 (when the proportion of nonprobability sample was 25% and 10%,
respectively).

With respect to the pseudo-weight methods being compared, we found that the naïve weight
methods 1–3 performed poorly, with large biases and poor CI coverages. This is expected as they
simply treat the nonprobability sample the same way as the probability sample.

The unity weight methods 4–9 resulted in improvements, some dramatic. If the nonprobability
sample was treated as a separate stratum during weight normalization (i.e., WN(1)), methods 4–6
yielded poor results, similar to the naïve methods. However, if the weight normalization was con-
sistent with the original design strata (i.e., WN(2)), methods 7–9 tended to yield very good overall
performance, especially in terms of 95% CI coverages and relative biases. With low probability
sample proportion, biases were a bit larger than inclusion probability adjusted weight methods
(except for Y4). The differences diminished when the probability sample proportion increased.

The model-based pseudo-weight methods 10–15 also show very good overall performance with
the smallest biases and MSEs (except for Y4) when the probability sample proportion was low.
This is likely due to the use of the model. However, the 95% CI coverages were under the nom-
inal level.

The propensity score adjusted pseudo-weight methods 16–21 showed fairly good results for
Y1, Y2, and Y3, when the probability sample proportion was low. But, when the probability sam-
ple proportion became high, they showed larger biases and MSEs than both the unity weight and
the inclusion probability adjusted weight methods. Their 95% CI coverages were also not ideal,
either below or above the nominal level. These methods were not good for Y4, performing poorly
with low probability sample proportion and yielding large biases even with high proportion
(methods 19–21). This is likely because we used the average propensity score within each stratum
to calculate the weight, which might result in inaccurate weight when the stratum covers a large
range of propensity score values.

Overall, we would recommend methods 7–9 for survey practitioners, as they offer the most
credible 95% CI coverages across all scenarios with small bias. When the proportion of probabil-
ity sample is too low, however, alternative methods such as methods 13-15 provide better MSEs.
Their results are also fairly consistent regardless of the raking strategy. This is likely due to the
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weight normalization, which is based on the probability sample weights. The probability sample
weights are usually raked to ensure the sample characteristics match with those from the popula-
tion. Such effect may be carried over by the nonprobability sample, which makes the additional
raking step less critical. When the probability sample proportion is high, inclusion probability
adjusted weighting strategies coupled with appropriate weight normalization (methods 10–12)
provides slightly more accurate estimates, but they tend to underestimate the variance when the
probability sample proportion is low.

Last but not least, analyses using only the probability sample showed very good performance,
even when the probability sample proportion was low, i.e., 10%. As expected, point estimates
were virtually unbiased and 95% CI coverages were always adequate. But due to the smaller sam-
ple size used, the MSE results were not as good as pseudo-weight-based methods for binary out-
comes when the proportion of probability sample was low. Overall, our recommended methods
7-9 and probability-sample-only methods had similar outcomes in terms of estimating population
quantities, but methods 7-9 enjoy the benefit of including more sample, which is important for
studies focusing on low-prevalence outcomes.

5. Results from The Buckeye Teen Health Study

One important focus of the BTHS is on risk factors for smokeless tobacco (ST) initiation and
dual use of ST and cigarettes. To track the initiation of ST use or dual use, it is important to get
an accurate estimate of any tobacco product use at baseline. Therefore, we applied the series of
methods discussed in Sec. 2 to estimate the prevalence of tobacco use at baseline, using the binary
variable “ever use of any tobacco products.” To illustrate the estimation of a continuous outcome,
we considered the body mass index (BMI), as it is an important indicator of adolescents’ health
development. BMI is calculated as weight (in kilograms) over height (in centimeters) squared. We
also considered five covariates that are potentially related to the selection into probability or non-
probability samples: age (continuous), race (White vs. Non-White), annual household income
(<$25K, $25K – $50K, >$50K), parents’ highest education (<High School, GED/High School,
>¼College), and parents’ tobacco use (Yes vs. No). Because the level of missing data for these
covariates was low, hot deck single imputation was used to create a complete analytic dataset.
Two participants had missing BMI, therefore, the analysis of BMI only included 1,218 subjects.
The comparison of means and proportions for selected covariates and outcome variables between
probability and nonprobability samples are given in Table 4.

To estimate pseudo-weights for the nonprobability sample, all five covariates were used in
both the logistic regression model in the inclusion probability adjusted weight method (IPA) and
the weighted logistic regression model in Step 1 of the propensity score adjusted weight method
(PSA). As in the simulation study, in Step 2 of PSA, data were divided into 20 equal-sized sub-
groups, based on the estimated propensity scores. Since true covariate distributions in the popula-
tion are unknown, the second raking method (RK(2)), which relies on external information,
cannot be applied. In the third raking method (RK(3)), we used the probability sample compo-
nent to produce the target marginal distribution quantities for all four discrete covariates (i.e.,
race, annual household income, parents’ highest education, and parents’ tobacco use), then raked
the combined sample to match them. For population level quantities, the probability sample esti-
mates may serve as good proxies, as its sample size is large and accounts for more than 80% of
the total sample (as verified by our simulation studies). For comparison, weighted population
mean and standard error estimates, both without raking (method 22) and with raking (method
24), were also reported using only the probability sample.

The results of the BTHS analysis are summarized in Table 5 (Y1 for BMI and Y2 for tobacco
product use). The reported mean and SE correspond to yij and SEðyijÞ, respectively, defined in

Sec. 4.3, except that here j ¼ m ¼ 1: We only used methods that performed reasonably well in
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the simulation study. All selected methods produced very similar results, with methods 7 and 9
being closest to the probability-sample-based estimates. These results are expected, since most of
the participants (81.2%) were from the probability sample, and methods 7 and 9 performed very
well in most of the simulated scenarios in Sec. 4. Inclusion probability adjusted weight methods
10 and 12 were also very good with smaller standard error estimates, but this might be at the
cost of inadequate confidence interval coverage as we observed in simulations. Propensity score
methods 19 and 21 seemed to underestimate the mean of BMI and overestimate the stand-
ard errors.

6. Discussion

Our research on identifying good practical strategies of combining probability and nonprobability
samples is motivated by an adolescent male health survey. A large portion of participants were
selected as a probability sample and a convenience sample was added to boost the sample size of
potential smokers. Given the high proportion of probability sample, we focused on popular
approaches under the pseudo-randomization framework, to take advantage of the probability
sampling design. We conducted a simulation study to compare their empirical performance under
scenarios with different probability sample proportions. The results suggested that unity weight
methods with weight normalization that is consistent with the original sampling strata and the
inclusion probability adjusted weight methods yield very good overall performance. This finding

Table 4. BTHS mean and proportions of selected variables by type of samples.

Outcome
Probability sample,

unweighted
Probability sample, weighted

by sampling weight
Nonprobability

sample, unweighted

Mean of Age 14.118 13.993 13.759
Proportion of White 0.774 0.721 0.690
Proportion of

Household Income
< 25 K 0.150 0.142 0.166
25K � 50 K 0.194 0.211 0.218
> 50 K 0.656 0.648 0.616

Proportion of Parent’s
Highest Education:
< High School 0.024 0.023 0.035
GED/High School 0.122 0.106 0.096
>¼ College 0.854 0.871 0.869

Proportion of Parents’
Tobacco Use

0.322 0.307 0.301

BMI 22.860 22.679 22.704
Prevalence of Tobacco

Products Use
0.191 0.166 0.157

Table 5. BTHS results. The methods are numbered in consistent with the simulation methods defined in Table 3.

Methods

Y1 Y2

Mean SE Mean SE

7 22.68 0.32 0.17 0.02
9 22.72 0.33 0.17 0.01
10 22.74 0.28 0.17 0.01
12 22.78 0.28 0.17 0.01
13 22.73 0.30 0.16 0.01
15 22.81 0.31 0.16 0.02
19 22.50 0.42 0.17 0.04
21 22.57 0.44 0.18 0.04
22 22.68 0.32 0.17 0.02
24 22.72 0.33 0.17 0.01
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is also consistent with Mercer, Lau, and Kennedy 2018, where they found that complex statistical
methods may not yield more accurate results for online opt-in samples and emphasized the
choice of covariates over the structure of the model. The real data analysis also revealed that both
the unity weight method with normalization and inclusion probability adjusted weight methods
performed well, with results close to the analysis only using the probability sample. This implies
that using the pseudo-weight-based methods does not sacrifice the estimation accuracy and the
additional benefit is to keep a larger dataset, which is critical for studies demanding a sufficient
sample size to track individuals with low-prevalence outcomes.

Following the probability sampling design, we calculated the variance using a design-based
approach (Taylor series linearization), which is consistent with the implementation in Robbins,
Ghosh-Dastidar, and Ramchand (2021). Our simulation results also imply that combining a large
portion of probability sample with a small portion of nonprobability sample seems to provide
reasonable variance estimates. However, when the proportion of nonprobability sample is large,
the estimates may become too unstable, not suitable for publication in practice. To further
account for the fact that the pseudo weights are estimated, Valliant (2020) suggested the use of
resampling-based technique, such as jackknife and bootstrap, both of which are computationally
intensive methods. It will be an interesting future research topic to compare linearization and
resampling methods to see if the additional computation cost is justified by the possible gain in
variance estimation.

Since our findings are based on simulation studies, they depend on the simulation setup. We
set the distribution and parameter values to mimic the BTHS design. There are several limita-
tions: First, we only consider stratified sampling design. As clustered sampling design is also
popular in practice, future simulation studies may need to include a clustering component to see
how these methods perform differently. Second, technically, it is challenging to generate nonprob-
ability sample in simulation. We followed Valliant and Dever 2011, but their approach is still
based on a probability sampling model. The trick is that the true selection model is not known,
so it can be viewed as nonprobability to some degree. In practice, the nature of the nonprobabil-
ity sample might be more extreme than what a simple probability model can predict. It may add
another layer of complexity in the estimation process. Unfortunately, there is not much literature
regarding how to simulate nonprobability data and it could be an interesting direction to explore
further. Third, we compared methods only under the pseudo-randomization framework. This is
because our motivating example has a large portion of probability sample and the design-based
inference should be more appropriate. When the portion of probability sample is low, the model-
based inference may be helpful. A mis-specified model will introduce bias and our simulation
study shows that inclusion probability adjusted weights tend to underestimate the variance, thus
leading to low coverage of confidence intervals. A more rigorous comparison between pseudo-
randomization methods and superpopulation models under low probability sample proportion
settings may be needed. Finally, in our simulation we treated the weights for both the probability
and nonprobability samples as if they had accounted for nonresponse so that potential nonres-
ponse bias was not included in the simulation.
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