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1 Introduction

1.1 Causal Inference for Observational Survival Data

In biomedical studies, time-to-event is a commonly used outcome measure and the statistical analyses for
such data are usually referred to as survival analysis. Investigating the causal relationship between expo-
sure and the time-to-event outcome is an important topic, with either randomized trials or observational
studies. Causal inference for observational survival data has several challenges. First, since not all subjects
can be observed for the full duration of time to event, the survival data suffer from censoring, which is a
type of missing data problem. Therefore, standard statistical methods are usually not sufficient to handle
both censoring and the missingness of potential outcomes. Second, the hazard ratio is a popular choice
for measuring the association of survival outcomes between two groups, for convenience and easy interpre-
tation. However, the hazard ratio is generally not an appropriate marginal causal effect measure due to
its noncollapsibility property [1-3]. Other effect measures need to be considered to warrant valid marginal
causal interpretation for survival data. Third, confounding is a major challenge in observational studies,
which includes both measured and unmeasured confounders. Propensity score adjustments are popular
tools for controlling the observed confounding [4]. But even with successful adjustment of observed con-
founding, observational data are still vulnerable to unmeasured confounding. Thus, appropriate sensitivity
analysis needs to be developed to assess the impact of hidden bias [5].

The issues of using the hazard ratio as a marginal causal effect measure have been discussed extensively
in the literature. Greenland et al. [1] pointed out that the hazard ratio has the noncollapsibility property
when the treatment effect is nonzero. Herndn [6] argued that using the hazard ratio as a treatment effect
measure may not have valid causal interpretation even in randomized studies, since the hazard ratio has a
built-in selection bias and may change over time. Martinussen and Vansteeland [2] studied the estimation
of treatment effect in the presence of confounders and found the amount of confounding due to noncol-
lapsibility in the Cox proportional hazards (PH) model would be very difficult to quantify. Aalen et al.
[7] offered a more theoretical perspective on the conditions under which the hazard has a valid causal
interpretation. They suggested that the hazard function h(t,z,z) must satisfy an additive assumption
h(t,z,z) = a(t, z) + b(t, z) to yield a causal interpretation, where a(t, z) is a function of survival time ¢t and
treatment assignment z and b(¢,x) is a function of survival time ¢ and covariates z. Ni et al. [8] further
illustrated that even under a PH model, the marginal hazard ratio is not a constant, after integrating out
covariates. Thus, a valid and simple-to-use causal effect measure for survival outcomes is highly desirable.

1.2 RMST Difference as A Marginal Causal Effect Measure

The restricted mean survival time (RMST) has been used in randomized clinical studies to evaluate treat-
ment effects [9, 10]. The RMST difference is more advantageous than the hazard ratio as a marginal effect
measure. First, the RMST has an intuitive interpretation as the area under the survival curve over a cer-
tain time horizon. Second, the RMST difference is the difference of truncated mean survival time between
two groups, which is essentially a mean difference. So it is collapsible, meaning that the marginal and
conditional effects are compatible. Third, the treatment effect measured by the RMST difference can be
asymptotically unbiasedly estimated without PH assumption, while the conventional Cox model heavily
relies on such assumption.

To take advantage of the collapsibility of RMST difference, we can construct RMST regression by
including covariates to control for confounding or increase estimation efficiency. Several methods of re-
gressing RMST on multiple covariates have been developed. Karrison [11] examined the RMST as an
index for comparing survival in two groups and proposed to model the hazard with piece-wise exponential
models assuming covariates have a multiplicative effect on the hazard. Zucker [12] further simplified the
implementation procedure for Karrison’s method and provided an extended version to achieve robustness
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against model misspecification. Andersen et al. [13] compared several regression analysis methods of mean
survival time and RMST, and they proposed a regression method based on pseudo-observations. Tian et
al. [14] developed an RMST regression model with adjustment for baseline covariates. They constructed
an estimating equation with the inverse probability of censoring weighting (IPCW) to obtain consistent
estimates. Wang and Schaubel [15] modeled the RMST using generalized estimating equation methods,
which allows censoring to depend on both baseline covariates and time-dependent factors.

Though RMST differences have been reported in many randomized clinical studies, there is only limited
discussion of using RMST in observational studies, probably due to the challenge of confounding adjust-
ment. Propensity score weighting and stratification methods have been explored in the literature. Zhang
and Schaubel [16] derived a double-robust estimator for RMST difference based on the inverse probability
of treatment weighted (IPTW) estimating equation with augmentation term. To adjust for confounding
factors, they built three working models for survival time, treatment assignment, and censoring, then incor-
porated them into the augmentation term. They assumed the PH assumption in outcome modeling, which
might be violated in practice. Conner et al. [17] proposed a weighted method to compare the adjusted
RMST difference directly. Unlike Zhang and Schaubel’s work, Conner et al. estimated the RMST based on
the Kaplan-Meier(KM) estimator rather than the Nelson-Aalen estimator. They adjusted the KM estima-
tor with IPTW and derived the adjusted RMST by integrating the IPTW-adjusted KM estimator. Ni et
al. [8] proposed a propensity score stratified RMST difference estimation strategy to examine the marginal
causal effect with observational survival data, which can combine stratification with further regression ad-
justment. Some existing methods still rely on modeling assumptions, and no matching based method has
been proposed. More importantly, none of them touches on unmeasured confounding assessment, which is a
big issue in observational studies. The matched design provides more flexibility in confounding adjustment.
Observed confounding can be controlled via matching and additional regression modeling. Unobserved con-
founding can be explored via sensitivity analysis in matched data sets. To address the void of literature, we
propose a matching based RMST difference estimation strategy, which also facilitates the implementation
of sensitivity analysis for hidden bias.

1.3 A Motivating Example: Atherosclerosis Risk in Communities (ARIC)

In the United States, stroke is a severe disease that causes serious disability for adults and is a leading
cause of death [18, 19]. Several previous studies have shown that smoking is an important risk factor for
stroke [20, 21], and even passive smoking could increase the risk of stroke [22]. Although the causal pathway
between smoking and stroke is unclear, Shah and Cole [23] found that the more people smoke the more
likely they were to have a stroke, and people who quit smoking showed a significantly lower risk of stroke,
which provides some evidence for the causal relationship between smoking and stroke.

The Atherosclerosis Risk in Communities (ARIC) Study [24] is a prospective cohort study conducted
in four U.S. communities. Four thousand adults aged 45-64 years old were randomly sampled from each of
four U.S. communities, and the final dataset contains information of 15,792 individuals. After a baseline
examination during 1987 to 1989, subjects were followed up for the development of incident ischemic stroke,
and the first definite or probable hospitalized stroke. Due to the length of follow-up, not all event times were
observed, so the data were subjected to censoring. One primary outcome is the time to first stroke or death
(whichever comes first), and a subject is censored if the incidence of stroke or death is not observed by the
end of the study. We try to answer a causal question, using this ARIC dataset: how smokers’ stroke-free
survival would change had they not smoked at baseline. Matched design is a natural choice to address this
as it is about the causal effect of those being exposed to smoking, rather than for the entire population.

Existing literature mostly used the Cox PH model to analyze the ARIC data. Kwon et al. [25] and
Ding et al. [26] studied the association between smoking status and risk of stroke, using the Cox PH model
to estimate the HR of smoking status on the risk of stroke. Thus, the estimated effects were interpreted as
conditional rather than marginal. Moreover, it is possible that some prognostic factors were not included
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in the confounder adjusted regression model, which would lead to biased estimates of conditional effects.
An analysis with RMST as the effect measure may provide new insight into this research.

In this paper, we propose a propensity score matching based RMST difference estimator and develop
a corresponding sensitivity analysis strategy for assessing the impact due to unmeasured confounding. We
apply this method to the ARIC study to examine the causal effect of smoking on stroke-free survival. The
rest of the paper is organized as follows: In section 2, we set up the notation and assumptions, and describe
the proposed RMST estimator with its theoretical properties. In section 3, we conduct a simulation study
to examine the empirical performance of our proposed method under different scenarios and also compare
it with several commonly used methods in practice. In section 4, we develop a sensitivity analysis strategy
by adapting the E-value approach to matched data. In section 5, we present the analysis results of the
ARIC data. Section 6 concludes the paper with some discussions.

2 Method: Matched RMST Difference Estimation

2.1 Notation and Assumptions

We follow the potential outcomes framework proposed by Rubin [27] to define the causal effects. In a two-
arm survival analysis study, let A be the treatment assignment indicator (or more generally, the exposure
status), such that A = 1 indicates being exposed to the treatment and A = 0 indicates being exposed to
the control. Let T* denote the potential event time and S®(¢) denote the corresponding survival function
for a subject if under treatment value a. The following two assumptions are extensions of commonly used
assumptions for causal inference in observational studies [28].

Assumption 1. Stable Unit Treatment Value Assumption (SUTVA). The potential survival times for one
individual in the population do not vary with the treatment assigned to others. And there are no different
versions of the specified treatment level.

Assumption 2. Treatment assignment is strongly ignorable given covariates X, that is (TO, T%) 1 A|X
and 0 < pr(A=11X) < 1.

The potential restricted event time is defined as Z% = min(7%, 7), where 7 is the truncation time point,
which is usually pre-specified at the design stage based on clinical relevance and study feasibility. Both
T and Z% are subject to censoring by a random variable C'. We introduce two additional assumptions for
survival data.

Assumption 3. Censoring is independent of potential survival times and baseline covariates within each
treatment group, that is CIL(T°, T1)|A and CILX|A.

This assumption ensures that we can asymptotically unbiasedly estimate the survival function via the KM
approach within the matched sample. This also implies the conditional independence between censoring
and the truncated survival times, Z¢.

Assumption 4. The truncation time point is smaller than the largest follow up time, T < tmax, where
tmax 1S the largest follow up time (event or censored).

Assumption 4 is a technical one to ensure that the pre-specified 7 is clinically meaningful and RMST can
be asymptotically unbiasedly estimated.

Let 6 = I(Z* < C) denote the censoring indicator, then the observed restricted time is defined as
Y® = min(Z%,C) = (Z%)° C(1=%"). For a subject under treatment value a, the potential outcome of
restricted mean survival time is defined as p®(7) = E(Z%) = fOT S%(t)dt, then the average treatment effect
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(ATE) on RMST, denoted by A g7, can be defined as
-
AaTE = ,ul(T) - uO(T) = E(Zl) - E(ZO) = /[Sl(t) - So(t)}dt.
0

Then the average treatment effect for the treated (ATT) on RMST, denoted by A opr , can be defined as

T

Aarr = paey (7) — py () = E(Z'|A=1) - E(Z°|A=1) = /[S}le(t) — SO (1)]dt,
0

which is more meaningful for many observational study applications, where only a portion of the popu-
lation, not everyone, could have been exposed to the treatment. Since Z¢ = min(7%,7) and 7 is a fixed
constant, (79 T1) Il A|X implies (Z°, Z')_L A|X, and similar conclusions could be made about assumption
3. Following Theorem 3 in Rosenbaum and Rubin [4], we can establish the strong ignorability based on
propensity score e(X) = P(A = 1|X) for survival outcomes in proposition 1 (proof provided in Appendix

A).

Proposition 1. Given assumptions 1-2, we have (T°, T*) 1L A|e(X), which further implies (Z°, Z1)ILAle(X).

2.2 Matched RMST Difference Estimator

In randomized trials, the marginal causal effect of treatment on RMST can be asymptotically unbiasedly
estimated [29] by direct contrast of group-specific RMST estimates since confounding effects are eliminated
by design. In observational studies, however, additional adjustments are needed for confounding control.
Propensity score based approaches are popular for this purpose, which may take the form of matching,
stratification, or weighting [4, 30]. Among different propensity score adjustment strategies, matching is a
design tool that selects comparable control units to match with treated units and it often results in more
robust causal effect estimates as it does not rely on outcome model specification. Usually, matching uses
all treated and a subset of control units, so it estimates the average treatment effect on the treated (ATT)
[28].

Our proposed propensity score matched RMST estimation includes the following steps:
(1) Propensity Score Estimation
The propensity score is defined as the conditional probability of treatment given a vector of observed co-
variates [4]. We estimate the propensity score by fitting a logistic regression on A with X, though other
estimation options, either parametric or nonparametric, are also available [31, 32].
(2) Propensity Score Matching
We use the optimal matching algorithm by Hansen and Klopfer [33] to create pair matches without replace-
ment based on the estimated propensity score, the unmatched controls will be removed from the matched
sample. Matching quality is assessed by checking the post-matching covariate balance. Any substantial co-
variate imbalance would lead to a recalibration of the propensity score model. We will proceed to the next
step only after a satisfactory balance is achieved. Note that matching is used as a design procedure and the
specific propensity score values are not used in the subsequent estimation process (e.g. not a part of any
estimating equations). So the uncertainty of propensity score estimation is not considered in subsequent
analysis and variance calculation.
(8) Treatment Effect Estimation
Suppose we obtain n pairs of data through matching, where each pair contains exactly one treated and
one control subject. We estimate the RMST, u(7), by fi(1) = fOT S(t)d(t), where S(t) is estimated by the
nonparametric KM method. Let S°(t) and S'(t) denote the KM estimates of survival function for control
and treated groups in the matched sample, respectively. Based on the matched sample, our estimator for
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averaged treatment effect on the treated (ATT) is

T

Aarr = pM(r) — pO(7) = / [SL(8) — 8(t)]dt.
0

The following two propositions show that the matched RMST difference estimator is asymptotically
unbiased (both proofs are provided in Appendix A).

Proposition 2. Given assumptions 1-4, the RMST estimator based on KM method given propensity score
e(X) and treatment group A, denoted as fi(x), 4, is an asymptotically unbiased estimator for jie(xy, 4 given

T < tmax-

Proposition 3. Given assumptions 1-4, Aarr is asymptotically unbiased.

2.3 Variance Estimation

The matching process may introduce correlations between the two subjects in the same pair, as they are
matched on similar propensity scores. Therefore, the variance calculation of A gp7 needs to account for
such correlation:

T T T

var(AATT) = var[/ So(to )dto) —|—var/ St(ty) )dt1] —2001}[/ So(to)dto,/gl(tl)dtl].

0 0 0 0

The overall variance has two components, the marginal variance of RMST estimates and their covariance.
For two dependent event times with independent censoring and no competing risk, Murray and Cole [34]
provided closed-form asymptotic covariance formulas for KM survival estimates and corresponding RMST
estimates. To address the dependence structure introduced in the matching process, we adapt their formulas
to compute the covariance between the control and treated group RMST estimates in the matched sample.

Specifically, let Tp be the event time for a subject from the control group with marginal hazard function
ho(+), and T; be the event time for a subject from the treatment group with marginal hazard function hq (-),
then the event times for a matched pair of control and treated can be denoted as (Tp,71). Let Cp and
C7 be the censoring variables for the control and treated subject, respectively. Then the observed time
can be denoted as Ty = min(Ty, Cp) for control group with censoring indicator &g = I(Ty < Cp), and
Ty = min(Ty,Cy) for treated group with censoring indicator 6; = I(Ty < Cp). Then, the joint hazard
function is hyj(u,v) = AuliAm OﬁP(u <Ty <u+Au,v < Tj <v4Av, 6 =1,05 = 1T; > u,Tj > )
where i,j € {0,1}, and the conditional hazard function is h;;(ulv) = Allitrgoﬁp(u <T; <u+ Au,d; =
1UT; > u, Tj > v) where i,j € {0,1}. Then, the covariance between two RMSTs can be computed as

T T

COU[/go(to)dto,/gl(tl)dtﬂ

to t1

// to Sl tl //G()l U, U d’l}dudtodtl
0 0
:%// /S‘O(t)dt /Sl(t)dt Gor (u, v)dvdu
0 0 v

u

where Go1(u,v) = %[hm(um) —hoj1(uv)ha(v) = hyjo(v|u)ho(u) + ho(u)hi(v)]. Details about

the computation of function Gyi(u,v) are included in Appendix C.
For the marginal variances, two methods may be considered:
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1. Murray’s Method: the above covariance formulas can be used to compute the marginal variance, since

the marginal variance of RMST could be written as the covariance with itself, that is var( fOT S(t)dt) =
T
cov[ [, S(t)dt, fo S(t)dt].

2. Hosmer’s Method. we may also consider the computation method introduced in Hosmer et al. [35].
Let t1 < to < --- < tp represent distinct event times. For each kK = 1,--- | D, let Y} be the number
of surviving units just prior to event time t3, and let d; be the number of events at t;. Let S(tk) =

k
1@ - —) denotes the KM estimate of the survival function at event time tx, and let N, be the

=1
number of ¢ values that are less than truncation time point 7, then the RMST is estimated by

T

N,
/ Z (th—1)(tk — te_1) + S(tn. ) (T — tn,)

0

and the marginal variance of RMST can be estimated as

. N A2
var(/S(t)d — 1ZYk Ve — dn)
0
T 4 Ny
where Ayj, :ft S ZS tl tl+1 7tl)+S(tN )(TftN )and m = Zdl-

l_
In our simulation studies, we present the variance estimates under Murray’s method since the results from

these two methods turn out to be very close.

3 Simulation Studies

3.1 Data Generation

To assess the empirical performance of the proposed method, we simulate an observational dataset with
known confounders. Several existing methods for causal inference with survival outcomes are compared.

We generate ten independent baseline covariates denoted by X; to X19. Among them, X7, X3, -, Xo
are five binary covariates following Bernoulli distribution with parameters 0.2, 0.4, 0.6, 0.8, 0.5, respectively,
and Xo, X4, -+, X10 are five continuous covariates following the standard normal distribution. We then
generate potential survival time 7! as the outcome under treatment and potential survival time T° as the
outcome under control from Weibull distribution [36]. Specifically, we simulate a uniform random variable
Q on [0,1] and then generate the potential survival time as below (j = 1,0),

log(Q)
Aoj exp(faj+ X1 +1.2X4 +14X6 + 1.6X7 +1.6Xg + 1.4X9 + 1.2X19)

L
J

Tj — (_ )1/,-’

where A is the treatment indicator and 4 is the conditional multiplicative treatment effect on the hazard
function given covariates, and v; and Ag; are the shape and baseline scale parameters of Weibull dis-
tribution for treatment group j, respectively. When 1y = vy, we have the proportional hazards model,
otherwise the model is non-proportional hazards. The treatment indicator A is generated from Bernoulli
distribution with P(A = 1|X) defined by the logistic model logit(P(A = 1|X)) = —1.95 + log(1.2)X; +
log(1.1) X2 + log(1.4) X3 + log(1.2) X4 + log(1.6) X5 + log(1.3) Xs + log(1.8) X7. Thus, X1, X4, X¢ and X7
are true confounders. This setup allows about 20% of the population to be exposed to treatment.

In the simulation, we assume censoring variable C' is marginally independent of T% and X over treat-
ment indicator A for simplicity, and C' is generated from an exponential distribution with rate parameter
v, which is chosen to create four different levels of censoring. For simplicity, we use the same censoring
variable for both arms in the simulation.
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Let 7 be the pre-specified truncation time point and the observed event time is 7' = T°(1 — A) + T A,
we generate the restricted event time Z = min(7,7) and the observed restricted time Y = min(Z,C) =
min(7, C, 7). The restricted event time Z is censored if the observed time C' < Z with censoring status
dz = I(Z < C), otherwise it is non-censored.

We simulate 500 datasets of sample size 2500 for each scenario and set the truncation time point 7 to
100. The true RMST difference is determined by calculating the empirical difference between the potential
RMSTSs under treated and control conditions, and we compute both ATT and ATE versions of true RMST
difference to serve as belnchronarks for different methods as appropriate. In the j** simulated dataset, we
calculate A; = Z?:l Z; ;Zi , where ZZ-A = min(TiAﬂ') is the potential restricted event time for the ith
individual and n is the sample size of the treated group (for ATT) or the entire sample (for ATE). Then,
the true marginal effect on RMST is calculated as Ag = 2?0:01 5AT6'

Both proportional hazards (PH) and non-proportional hazards (NP) settings are examined. Under both

settings, we set 54 to five different values: 0, —0.4, —0.8, —1.2, —2. For each treatment effect value, we also
consider four different levels of censoring rates (CR), which are 0%,20%,40%, 60%. Detailed parameter
setup for PH and NP scenarios in observational studies are summarized in Table 1.

Table 1. Simulation Studies: Parameter Setup for Observational Studies Scenarios with Independent Censoring

Nonrandomized PH Rate Parameter gamma
(nu0,lambda0)  (nullambdal) PetaA  gog 20% 40% 60%
(1, exp(-6)) (1, exp(-6)) 0 1.00E-08 0.0051 0.0142 0.0467
(1, exp(-6)) (1, exp(-6)) -0.4 1.00E-08 0.004616 0.0124 0.0345
(1, exp(-6)) (1, exp(-6)) -0.8  1.00E-08 0.00421  0.011  0.0272
(1, exp(-6)) (1, exp(-6)) -1.2 1.00E-08 0.003872 0.00992  0.0226
(1, exp(-6)) (1, exp(-6)) -2 1.00E-08 0.0034 0.0084  0.01731
Nonrandomized nonPH Rate Parameter gamma
(nu0,lambda0)  (nullambdal) ~ DetaA 0% 20% 40% 60%
(1, exp(-6)) (1, exp(-6)) 0 1.00E-08 0.0051 0.0142 0.0467
(1, exp(-6)) (1.5, 1.23E-04) -0.4 1.00E-08 0.003644 0.00904 0.0189
(1, exp(-6)) (1.5, 1.23E-04) -0.8 1.00E-08  0.00343 0.0084  0.01692
(1, exp(-6)) (1.5, 1.23E-04) -1.2 1.00E-08 0.00324  0.00787 0.01542
(1, exp(-6)) (1.5, 1.23E-04) -2 1.00E-08 0.00295 0.00702 0.01335

3.2 Estimation Strategies

The proposed method is compared with three existing estimation strategies:

1. Propensity score matched RMST estimation. This is our proposed method as described in the previous
section, and the propensity score is estimated using the correct model specification. The estimated
treatment effect is compared to the ATT version of the true RMST difference in our simulation.

2. Conner’s IPTW RMST estimation.

This method is proposed by Conner et al. [17], and they estimated the RMST based on inverse prob-
ability treatment weighting (IPTW) adjusted Kaplan-Meier estimator. In our simulation, we use the
ATT version of weight to adjust for observed confounding, so it is compared to the true ATT RMST
difference. The propensity score is estimated using the correct model specification.

3. Tian’s RMST regression.

This method is proposed by Tian et al. [14], which uses the IPCW estimating equation with identity
link function to estimate the treatment effect on RMST with adjustment for covariates. The estimated
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treatment effect is compared to ATE version of the true RMST difference. We consider four different
outcome models in Tian’s RMST regression : (1) outcome model using the treatment indicator only;
(2) outcome model using the true covariate set; (3) outcome model using all covariates; (4) outcome
model using a wrong covariate set. Due to space limitation, only the results of RMST regression with
true covariates are summarized in the following section, which has the best performance among the
four models. An important caveat is that the RMST regression model with the true covariate set does
not represent the true outcome model since the data are generated based on a hazard model.
4. Inverse Probability Treatment Weighting (IPTW) Cox regression.

This method estimates 3 4. The propensity score is estimated using the correct model specification. We
use the ATT weight to fit a weighted Cox regression model and regard 4 as the truth to calculate the
bias and coverage probabilities since there is no single value true marginal hazard ratio. We consider
four different outcome models in the IPTW Cox regression : (1) outcome model using treatment
indicator only; (2) outcome model using the true covariate set; (3) outcome model using all covariates;
(4) outcome model using a wrong covariate set. Due to space limitation, only the results of IPTW
Cox regression with the true covariate set are summarized in the following section, which has the best
performance among the four models. We understand that the results here are not directly comparable
to the first three methods, as they are based on different effect measures. Due to the high popularity
of the IPTW Cox model in practice, however, we think there is some value in presenting the results as
a reference.

3.3 Performance Assessment

We summarize treatment effect estimates from 500 Monte Carlo iterations into four measures: (1) percent-
age bias (Bias %), which is the bias divided by the true value for nonzero treatment effect scenarios. For
the zero treatment effect scenario, we just report the bias. The bias is computed as the average of 500
treatment effect estimates minus the truth; (2) coverage probability (CP), which is the proportion of 500
95% confidence intervals that cover the truth; (3) model-based standard error (SEM), which is the average
of the 500 estimated standard errors from the model-based formula; (4) empirical standard error (SEE),
which is the standard error of the 500 point estimates of the treatment effect.

3.4 Results

Simulation results under the PH setting are summarized in Table 2. The proposed matched RMST method
generates unbiased estimates of the target parameters under most scenarios, and the coverage probabilities
are around 95%. For a small effect size (84 = —0.4), the bias is a bit large for a high censoring rate.
Conner’s method has a similar performance, with moderately larger biases. Averaging across all scenarios,
bias from Conner’s method is 65% higher than our method. The results of the IPTW Cox model are
mostly good since we use the correct outcome model. The coverage probability may be a bit lower than the
nominal level, sometimes, which may be due to the underestimated standard error. Tian’s RMST regression
method shows a relatively large percentage bias and lower coverage probability, especially under scenarios
with large treatment effects. This is likely due to the incorrect covariate functional form specification in
the model even though we include the right covariate set.

Simulation results under the NP setting are summarized in Table 3. Both our matched RMST method
and Conner’s method have similar performance (with the latter having more bias) as under the PH setting
since these methods do not rely on the PH assumption. Tian’s RMST regression method performs somewhat
worse, with a bigger bias and much lower than ideal coverage probabilities. Because the PH assumption
does not hold here, the IPTW Cox model completely misses the target with large bias and very small
coverage probabilities.
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Table 2. Simulation Studies: Results for Proportional Hazards Scenarios with Independent Censoring. Under zero treatment
effect scenarios, bias is reported instead of percentage bias.

Scenario  Bias% cp SEM SEE Bias% cp SEM SEE Bias% CP SEM SEE Bias% CP SEM SEE

Ba CR Matched RMST (Murray) Tian’s RMST regression Conner’s IPTW RMST IPTW Cox (HR)
0 0.032  0.964 2795 2611 -0.020 0.932 1.322 1.402 0.076 0.962 2.284 2.127 0.005 0.938 0.052 0.052
0.2 0.137 0958 2.881 2.666 0.016 0.938 1.481 1.538 0.154 0.960 2.353 2.197 0.005 0.938 0.067 0.069
O 04 0190 0956 3.066 2903 0007 0928 1.924 2.030 0.211 0.962 2.501 2.424 0.009 0.928 0.074 0.078
0.6 0343 0961 4.185 4.115 0.476 0.800 4.735 7.362 0.360 0.954 3.509 3.448 0.011 0.937 0.085 0.087
0 0.724% 0.970 2.795 2588 2.746% 0.944 1326 1.369 1.581% 0.958 2.284 2.101 -1.062% 0.944 0.053 0.052
0.4 0.2 2.740% 0.964 2.873 2.643 3.399% 0.940 1.479 1.510 3.184% 0.956 2.347 2.173 -1.122% 0.938 0.069 0.072
0.4 4.695% 0.966 3.027 2.807 3.944% 0.936 1.862 1.965 4.833% 0.960 2471 2327 -1.533% 0.946 0.076 0.077
0.6 5.925% 0.960 3.686 3.572 7.094% 0.874 4.089 4.811 9.209% 0.964 3.022 2.940 -2.022% 0.936 0.086 0.087
0 0.364% 0.970 2.785 2570 3.819% 0.938 1.329 1.330 0.794% 0.962 2.271 2.078 -0.448% 0.944 0.055 0.053
0.8 0.2 1.255% 0.964 2.857 2.635 4.190% 0.938 1.478 1.482 1.479% 0.962 2.328 2.151 -0.475% 0.938 0.072 0.074
" 04 2193% 0.962 2987 2734 4577% 0938 1.817 1.830 2.237% 0.968 2434 2262 -0.528% 0.944 0.080 0.080
0.6 1.638% 0.964 3.416 3.260 5.107% 0.918 3.316 3.609 3.175% 0.958 2.788 2.672 -0.755% 0.936 0.089 0.089
0 0.144% 0.966 2.765 2550 4.838% 0.934 1.333 1.304 0.481% 0.958 2.245 2.072 -0.260% 0.948 0.058 0.057
1.2 0.2 0.706% 0.960 2.831 2.607 4.991% 0.944 1.479 1.431 0.901% 0.964 2298 2.139 -0.227% 0.932 0.077 0.078
04 1476% 0.966 2.944 2.649 5.634% 0.936 1.788 1.762 1.438% 0.968 2.390 2.197 -0.260% 0.946 0.084 0.083
0.6 1.140% 0.964 3.256 3.054 4.877% 0.944 2.895 2.940 1.878% 0.956 2.644 2539 -0.391% 0.942 0.093 0.093
0 0.077% 0.964 2.698 2531 6.604% 0.854 1.338 1.308 0.296% 0.960 2.160 2.042 -0.094% 0.958 0.067 0.065
2 0.2 0.409% 0.958 2.755 2.545 6.654% 0.876 1.481 1.474 0.571% 0.954 2.206 2.087 0.066% 0.956 0.089 0.087
0.4 0598% 0968 2.848 2.635 6.796% 0.890 1.754 1.785 0.684% 0.952 2.280 2.153 -0.058% 0.954 0.097 0.096
0.6 0.551% 0.968 3.044 2.828 6.250% 0.908 2.484 2575 0.758% 0.970 2.440 2.295 -0.228% 0.958 0.106 0.104

4 Sensitivity Analysis Based on Matched Design

4.1 An Overview of E-value

Propensity score adjustment can only control for observed confounding. Unmeasured confounding is likely
to be present in observational studies since researchers have no control over the treatment assignment.
Thus, sensitivity analysis is important to assess the impact of hidden bias.

Ding and VanderWeele [37, 38] developed a new sensitivity analysis strategy, known as the E-value
method. It assumes a hypothetical unmeasured confounder, U, and provides a lower bound of the strength
of association on the risk ratio scale that U would have to have with both the exposure and the outcome,
to explain away the observed association. Below is a brief review of the conventional E-value method to
set the stage for our sensitivity analysis of RMST difference.

Let A denote a binary exposure and D denote a binary outcome, X is a vector of measured confounders
and U is a binary unmeasured confounder with levels k = 0, 1. The observed relative risk of exposure A on
the outcome D within stratum of X = z is

P(D=1A=1X =1)
PD=1A=0,X =)

obs _
RRAD\% -

Then the relative risk of exposure on level k of the unmeasured confounder U within the stratum of X =z

1S

R _ PU=KA=1,X =x)
AUKe = pU=klA=0,X =)’

Since U is not observed, to facilitate the analysis, we take the maximal relative risk of A on U within
stratum X = =z, denoted as RR sy, = HII?XRRAU’MI. Similarly, we can define an upper bound for the

relative risk between U and D as RRy p|, = max(RRypja—o,2> RRupja=1,2), where RRyyp)4 - is an upper
bound of the relative risk between U and D in exposed or unexposed group respectively, within stratum
X =xz. If X and U are sufficient to control for all confounding effects, the true causal relative risk is

APl =L P(D=1A=0.X = .U = HP(U = kX =)
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Table 3. Simulation Studies: Results for Non-Proportional Hazards Scenarios with Independent Censoring. Under zero

treatment effect scenarios, bias is reported instead of percentage bias.

Scenario  Bias% CcP SEM  SEE  Bias% CcP SEM SEE  Bias% CP SEM  SEE Bias% CcP SEM  SEE
Ba CR Matched RMST (Murray) Tian’s RMST regression Conner’s IPTW RMST IPTW Cox (HR)

0 0.032  0.964 2.795 2.611 -0.020 0.932 1.322 1.402 0.076 0.962 2.284 2.127 0.005 0.938 0.052 0.052

0 0.2 0.137 0.958 2881 2666 0.016 0938 1.481 1.538 0.154 0.960 2.353 2.197 0.005 0.938 0.067 0.069

0.4 0190 0.956 3.066 2.903 0.007 0.928 1.924 2.030 0.211 0.962 2.501 2.424 0.009 0.928 0.074 0.078

06 0343 0.961 4.185 4.115 0.476 0.800 4.735 7.362 0.360 0.954 3.509 3.448 0.011 0.937 0.085 0.087

0 0.196% 0.964 2674 2473 6.560% 0.888 1.244 1.215 0.428% 0.964 2.131 1.966 102.646% 0.000 0.056 0.061

0.2 0.684% 0.966 2.745 2502 6.777% 0.894 1.386 1.347 0.835% 0.964 2.192 2.017 299.268% 0.000 0.079 0.081

04 g4 1.150% 0.964 2.860 2583 7.132% 0.902 1.659 1.643 1.133% 0.964 2.292 2.106 363.043% 0.000 0.091 0.094

0.6 1.168% 0.972 3.122 2917 6.584% 0.920 2.427 2.479 1.389% 0.966 2.521 2.361 420.641% 0.000 0.105 0.109

0 0.158% 0.966 2.644 2461 7.174% 0.820 1.253 1.212 0.345% 0.958 2.091 1.954 33.373% 0.004 0.057 0.062

0.2 0.425% 0.968 2.710 2.468 7.298% 0.850 1.394 1.351 0.561% 0.966 2.148 1.991 139.830% 0.000 0.083 0.085

08 g4 0.801% 0.968 2.815 2.569 7.541% 0.876 1.656 1.660 0.845% 0.964 2.240 2.072 172.413% 0.000 0.096 0.099

0.6 0.906% 0.966 3.032 2.831 7.119% 0.890 2316 2.411 1.014% 0.968 2.429 2.308 200.416% 0.000 0.110 0.114

0 0.079% 0.966 2.605 2.434 7.806% 0.724 1.261 1.224 0.263% 0.960 2.042 1.925 10.204% 0.446 0.059 0.063

1.2 0.2 0.321% 0.962 2.668 2.444 7.912% 0.772 1.402 1.394 0.463% 0.966 2.095 1.960 87.060% 0.000 0.088 0.091

0.4 0.565% 0.970 2.764 2524 7.969% 0.828 1.652 1.661 0.626% 0.956 2.179 2.027 109.224% 0.000 0.103 0.106

0.6 0.599% 0.980 2950 2755 7.634% 0.884 2.243 2.280 0.652% 0.958 2.340 2.242 127.609% 0.000 0.117 0.121

0 0.053% 0.968 2514 2362 9.169% 0.512 1.279 1.238 0.204% 0.958 1.923 1.827 -8.272%  0.274 0.063 0.067

0.2 0.143% 0.962 2569 2.374 9.204% 0.590 1.419 1.426 0.287% 0.952 1.969 1.864 45.545%  0.000 0.101 0.103

2 o4 0.253% 0.966 2.650 2.453 9.131% 0.680 1.654 1.711 0.341% 0.952 2.039 1.940 59.243% 0.000 0.117 0.122

0.6 0.295% 0.966 2.795 2.640 8.792% 0.804 2.158 2.106 0.334% 0.946 2.164 2.110 70.309% 0.000 0.133 0.138

The relative risk pair (RR 4., RRyp|,) are used to measure the strength of confounding between the
exposure A and the outcome D induced by the confounder U within the stratum of X = z. Even though we
cannot, estimate the true relative risk, its ratio with the observed relative risk is bounded by the following
quantity, which is a function of the sensitivity parameters RR o7, and RRypje-

obs
RRY Do - _BRaye xRRypj

RR%TI ~ RRay|s + RRypje — 1

For given values of RR 4y/|, and RRy p|,, we can identify a range of possible values for the true relative
risk. If the range covers one, the observed significant association would be explained away by the presence
of unmeasured confounding at the given magnitude.

4.2 Sensitivity Analysis on RMST Difference with Matched Data

This E-value method can be adapted to conduct sensitivity analysis for our RMST difference estimator in
matched design. There are a series of propositions to justify the theoretical validity of using the E-value for
the RMST difference estimator. In the interest of space, we just illustrate the main idea in this subsection
and leave the propositions and their detailed proofs in Appendix B.

Let A be the treatment indicator and Z = min(7,7) be the RMST outcome, where T' is the event
time and 7 is the truncation time point. Let e(X) be the propensity score and U be a binary unmeasured
confounder with levels k = 0, 1. The relative risk of treatment A on level k of the unmeasured confounder
U with a given propensity score value e(X) = e(z) is defined as

_ PU=klA=1,e(X) = e(x))
RRAUKe) = BT = KA = 0,e(X) = e(a))

The maximal relative risk of A on U with e(X) = e(z) is RRAy|e(x) = m]?XRRAU_Me(I). We define the
expectations of the RMST outcome Z given U = u and e(X) = e(z) with and without treatment as

ri(u) = E(Z|A=1,U = u,e(X) = e(z)),

ro(u) = E(Z|A=0,U = u,e(X) = e(x)).
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Then, the mean ratios of U on Z with and without treatment with e(X) = e(x) are defined as

maxry (u) maxrg(u)
u

MRy 71 A=1,e(X)=c(z) = —= y MRy zia=0,e(X)=c(z) =

minrg (u) minrg(u)’
u u

MRy z)e(X)=e(z) = MaX(M Ry 71 A=1,e(X)=e(z) M RU 2| A=0,e(X)=e(x))-
As shown in proposition 4 in Appendix B, since both unmeasured confounder parameters RR 417|¢( X)=c(x)

and M Ry z|e(X)=e(z) are 1o less than 1, we can identify the bounding factor as

_ RRAy|e(x)=c(a) X M RUZ|e(X)=c(x)
=@ T RR AU e(X)=e(z) + MRUZ|o(X)=e(z) — |

BFyex) (1)
where (RR gy |e(x)=e(z) M RUz|e(X)=e(x)) are pre-specified sensitivity analysis parameters. In theory, one
can identify a separate bounding factor for each matched pair and choose the maximal value to facilitate
the calculation. But this could be quite cumbersome in practice. Instead, we follow the idea of using T in
the conventional Rosenbaum’s sensitivity analysis, which is a pre-specified upper bound of the association.
Denote RRay = I;l(i})((RRAU‘e(X):e(I)) and MRy z = I;l(i})((MRUZ‘e(X):e(I)), then the maximal bounding

factor can be calculated as RRay x MRy

2
RRay + MRyz — 1 (2)
Because B is an increasing function of both RR 4y and M Ry z, taking pre-specified upper bounds

BF}, =

of both associations leads to an upper bound of bounding factors. In practice, one can identify a range of
possible values for (RR 4y, M Ry z) and calculate the upper bound of treatment effects for each combination
using the formulas below.

Let ACEX"“Z‘E denote the true average causal effect. When treatment effect is positive, we have

1 1
ACEYY® > -(1+ 5
U

VE(Z|A=1) %(1 + BF{)E(Z]A = 0). (3)

When treatment effect is negative we have

1
BFy,

ACEYYe < %(1 +BF)E(Z|A=1) — %(1 + VE(Z|A =0). (4)

The sensitivity analysis is generally done by checking the behavior of the 95% confidence interval
bounds. Since our real data analysis shows a negative treatment effect, we focus on equation (4) and
use a one-sided 95% confidence interval for illustration purposes. Equation (4) implies that the treatment
effect estimate should be bounded by a function of the bounding factor and the mean survival times from
each treatment group. Denote the right-hand side quantity as RHS. We can calculate the 95% confidence
interval for RH S using normal approximation and denote the upper confidence bound as RH S,;. Because
ACEde < RHS, we have P(AC’ETZ‘e < RHSyup) > 0.95. Therefore, we can regard RH S, as an upper
bound for the upper 95% confidence bound of the treatment effect estimate. If this value is less than zero,
we would reject the null hypothesis. Otherwise, we would retain the null.

4.3 Interpreting the Sensitivity Analysis

For an unmeasured confounding with a prespecified magnitude of associations (RRay, M Ry z), the bound-
ing factor BF}; can be computed by equation (2). For a positive treatment effect based on the observed data,
we can compute a lower bound for the lower 95% confidence bound of the treatment effect estimate by equa-
tion (3). A positive lower bound indicates that there is still a positive treatment effect with an unmeasured
confounding effect of magnitude (RRAy, M Ryz). A non-positive lower bound indicates that the positive
treatment effect could be explained away by the unmeasured confounding of magnitude (RRay, MRy z).
For a negative treatment effect based on the observed data, we can compute an upper bound for the upper
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95% confidence bound of the treatment effect estimate by equation (4) as described above, and similar
interpretations can be made. A negative upper bound indicates that there is still a negative treatment
effect with an unmeasured confounding effect of magnitude (RRay, M Ry z). A non-negative upper bound
indicates that the negative treatment effect could be explained away by the unmeasured confounding of
magnitude (RRay, MRy z). A detailed numerical example is presented in the next section.

5 Real Data Example

In this section, we apply our proposed method to the ARIC data [24] to examine the causal effect of
baseline smoking on stroke-free survival. Incident ischemic stroke events or death, the primary outcome,
are identified through December 31, 2011. After excluding a small portion of subjects with missing values
in the variables of interest, the total sample size used in the analysis is 14,549. The event time is defined
as the follow-up time (in months) for the first incident stroke or death, whichever comes first, and a
subject is censored if neither incident stroke nor death is observed during the study. There are 5345 events,
corresponding to a 63.3% censoring rate. Given the length of follow-up, we choose 240 months as the
truncation time 7 for the RMST calculation. Exposure is defined as the smoking status at baseline. There
are 3,832 (26.3%) current smokers at baseline. Eight important baseline covariates are included in the
propensity score model: race (black, white), gender (male, female), age (44-66 yrs old), BMI (14.2-65.9),
diabetes (1=yes, 0=no) , HDL (10-163 mg/dL), LDL (0-504.6 mg/dL), and hypertension (1=yes, 0=no).
Table 4 summarizes these variables by baseline smoking status.

Table 4. Real Data Example: Summary Statistics of Covariates by Baseline Smoking Status in ARIC Study

Non-current smoker (10,717)  Current smoker (3,832)

Race, n (%) of white 8161 (76.2%) 2730 (71.2%)
Gender, n (%) of female 5957 (55.6%) 2003 (52.3%)
Age, mean (SD) 54.4 (5.8) 53.7 (5.7)
BMI, mean (SD) 28.1 (5.4) 26.3 (5.0)
Diabetes, n (%) 1044 (9.7%) 333 (8.7%)
HDL (mmol/L), mean (SD) 52.6 (16.8) 49.6 (17.3)
LDL (mmol/L), mean (SD) 137.6 (38.9) 138.6 (40.4)
Hypertension, n (%) 3783 (35.3%) 1225 (32.0%)

We first fit a logistic regression model on baseline smoking status using the eight covariates to estimate
the propensity score. Then, we conduct a 1-1 optimal pair matching without replacement for all subjects
which results in 3832 pairs and unmatched nonsmokers are removed from the matched sample. The covari-
ates balance is measured by the standardized mean difference, and Figure 1 shows the covariates balance
of ARIC data before and after propensity score matching, which indicates our matching achieves very good
covariates balance.

For comparison purposes, the analysis results of the proposed method, Tian’s RMST regression and the
IPTW Cox regression are all reported in Table 5. All methods show significant evidence of a harmful effect
of smoking on the risk of incident ischemic stroke or death. This conclusion agrees with previous findings
in the literature. The matched RMST analysis suggests an average reduction of 22.3 stroke-free survival
months for baseline smokers had they not smoked at the baseline. Tian’s RMST regression method provides
similar results as our proposed method in this dataset. The IPTW Cox regression measures the treatment
effect on the hazard ratio scale which is not directly comparable to RMST differences. The estimated HR
of 2.2 implies that smoking increases the hazard of incident ischemic stroke or death.
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Balance Checking Plot for ARIC Data
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0.0 0.1 0.2
Standardized Mean Difference

Figure 1. Real Data Example: Covariates Balance Checking

Table 5. Real Data Example: ARIC Data Analysis Results. For the Matched RMST method and Tian's RMST Regression
method, the 95% Cl bound is the upper bound. For the IPTW Cox method, the 95% Cl bound is the lower bound.

Estimate SE 95% ClI (One-Sided)

Matched RMST -22.266  1.380 (—o0, —19.996]
Tian’s RMST Regression  -22.666  1.129 (—o0, —20.809]
IPTW Cox (HR) 2.173 0.066 [2.068, c0)

All the above analyses assume the ignorable treatment assignment. However, for such a large obser-
vational study, unmeasured confounding is likely to be present, especially given that we are only able to
control a small number of factors. Therefore, it is important to assess how the observed causal effect may
change in the presence of hidden bias. A sensitivity analysis, as described in section 4.2, is carried out for
different possible impacts of U on the exposure and the outcome.

We calculate the upper bound of the upper 95% confidence bound of estimated treatment effects by
exploring different combinations of (RRAy, M Ryz), where both values are larger than 1. For illustrative
purposes, we focus on a range of values between 1.15 and 1.75 to create a contour plot in Figure 2. Different
grey scales reflect different upper bound values of the upper 95% confidence bound of the treatment effect,
with the lighter color indicating smaller values and the darker color indicating larger values. The solid curve
in the middle of the plot is when the upper bound of the upper 95% confidence bound of the treatment
effect is zero.

For the area below this threshold, the upper bound of the upper 95% confidence bound of the treatment
effect is still negative, implying a true negative causal effect even in the presence of unmeasured confounding.
For the area above this threshold, the upper bound of the upper 95% confidence bound of the treatment
effect becomes positive, implying the initial negative treatment effect can be explained away by the presence
of unmeasured confounding.

In the real data analysis, we observe a negative treatment effect of -22.266 months with 95% CI as
(—00, —19.996] based on our proposed matched RMST method. We also estimate that E(Z]|A = 1) =
195.379 with SD = 1.087 and E(Z]|A = 0) = 217.646 with SD = 0.834, and the covariance between
these two RMSTs is -0.014. For example, with RRA oy = 1.4 and MRyz = 1.45, we can calculate the

bounding factor as: BF}; = Li’ﬁ% = 1.097, then following equation (4), RHS can be calculated as
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ACEYY® < 1(1+1.097) % 195.379 — 3(1 + 1357) * 217.646 = —3.169 = RHS. The variance of RHS is

Var(RHS) :[%(1 +1.097)]% - 1.087% + [%(1 + ﬁ)? -0.8342
1 1 1
=2 [5(1+1.097)] - [5 (1 + 157)] - (-0.014)

=1.962

The 95% one-sided confidence interval is (—oo, —3.169+1.64%+/1.962] = (—oc, —0.872]. Since the upper
95% confidence bound is still less than zero, we would reject the null hypothesis of no causal effect. This is
robust to unmeasured confounding with the magnitude of impact up to RRay = 1.4 and M Ryz = 1.45.

level
(-20, -15]
(-15, -10)
(~10,-5]
(-5, 0]

M os

B o
| RERE]
B s
B

Figure 2. Sensitivity analysis: Contour plot of 95% Cl upper bounds of the treatment effect upper bound. The solid curve
represents value 0.

For small-to-moderate deviations from the ignorability assumption (RRay < 1.43 and M Ry z < 1.43),
a harmful effect still holds, as the upper bound of the 95% confidence bound of the treatment effect is below
the solid zero-curve. For moderate-to-large deviations, the 95% CI upper bound of the treatment effect
upper bound may exceed zero, indicating a possibility of a null effect. For example, at (1.5, 1.5) the upper
bound of the estimated treatment effect is 2.036 and the upper bound of the 95% confidence bound of
the treatment effect is 4.345, which indicates that the harmful treatment effect could be totally explained
away by the unmeasured confounding of magnitude (RRay, MRy z) = (1.5,1.5). Overall, our sensitivity
analysis indicates that the observed significant causal effect is moderately robust to hidden bias.

6 Discussion

In this paper, we adopt the RMST difference as a marginal causal effect measure for survival data, since
it is collapsible and has an easy interpretation. We develop a matching-based RMST difference estimator
that is asymptotically unbiased and does not rely on the PH assumption. But this does not rule out the
use of hazard in causal analysis with survival data. As pointed out by Aalen et al. [7], the hazard function
h(t,z,z) may have a valid causal interpretation, if it satisfies some additive structural constraint.
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An interesting practical issue with RMST is the choice of 7. The common practice is to pre-specify the
truncation time at the study design stage or to make the decision independent of the observed outcomes.
It is usually determined based on content expertise, for example, an important clinical time point for
the disease under study. Kim et al. [39] picked a truncation time of 5 years for the Placement of Aortic
Transcatheter Valves (PARTNER) trial as they were interested in the effect of TAVR procedure versus
routine medical treatment on preventing death in 5 years. Recently, Tian et al. [40] provided a more
thorough discussion on the empirical choice of time window in RMST. They also showed that under a mild
condition on the censoring distribution, one could make inferences about the RMST up to 7 where 7 could
be equal to the largest follow-up time (either observed or censored) in the study. With such choices, RMST
incorporates all available information.

One limitation of our work is that the proposed nonparametric estimator may not be easily extended to
more complex matching designs, such as 1-k or full matching designs. This is because we need to compute
the covariance to account for the correlation in matched sets. But the covariance calculation relies on the
assumption of equal sample sizes in both groups [34]. Therefore the covariance formula can not be applied
directly to other matching designs. One strategy to relax this limitation is to consider fitting a parametric
RMST regression model after matching. This could be more advantageous if we have a good idea about the
outcome model specification, as it may correct residual confounding bias not captured by matching. This
adds more flexibility to post-matching inference, as it can lead to more robust or efficient semiparametric
strategies by combining matching with regression models [41]. It also makes our method more attractive
in practice than Conner’s method as the latter solely relies on KM estimation of survival functions and
cannot include regression models.
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Appendix A: Theoretical Results in Section 2

We will prove the propositions and related lemmas in Section 2 of the main text.
Proposition 1. Given assumptions 1-2, we have (T°, T) 1L Ale(X), which further implies (Z°, Z*) 1 Ale(X).

Proof. Tt is equivalent to show P{A = 1|T1,T° e(X)} = P{A = 1|e(X)}.
By Theorem 2 in Rosenbaum and Rubin [4], we have P(A = 1le(X)) = E{e(X)|e(X)} = e(X), then
it is equivalent to show P{A = 1|T1,T% e(X)} = e(X). We have

P{A=1TY T e(X)} = E{P(A=1T",T° X)|T*,T°, e(X)}
= B{P(A=1|X)|T",T° ¢(X)}(by strongly ignorability)
= E{e(X)|T', 7%, e(X)} = e(X) = P{A = 1|e(X)}.

Thus, we have (70, 7)1l Ale(X) for 0 < pr(A = 1|e(X)) < 1. Since Z4 = min(T4,7) and 7 is a fixed
constant, the above conditional independence also implies (Z°, Z1) 1l Ale(X). O

Lemma 1. Given assumptions 1-3, (T*, T%) 1A holds marginally in the matched sample under the propen-
sity score matching design.

Proof. By assumption 2, we have (T, 7)1 Ale(X) where 0 < P(A = 1|e(X)) < 1. Let M denotes the
matching structure, and €,; denotes the set of propensity scores in the matched sample. Then, we have the
following equation by matching on propensity score e(X) with a constant treatment to control allocation
ratio 1 : k (k = 1 for pair matching),

P(A=1le(X)) = ﬁ, for all e(X) € ep.

Thus, e(X)1LA holds in the matched sample, i.e. far(e(X)|A) = far(e(X)). Consider the joint density of
T' and T° conditional on A in the matched sample, which is denoted as fas (T, T9|A), we have

far (T, 704) = / F(TY TOLA, (X)) far (e(X)| A)de(X)

€M

= / F(TH,TOA, (X)) far(e(X))de(X) [matched by constant allocation ratio
e

:/f(Tl,TO|e(X))fM(e(X))de(X) [by assumption 2]

:fM(TlvTO)'

Since far(T',T°A) = far(T1,T°) implies (7', T%) 1L A in the matched sample, (T',7°)1 A holds
marginally in the matched sample. O

Lemma 2. Let ge(X)’A(t) denotes the KM survival function estimator given propensity score e(X) and
treatment indicator A. For a fized truncation time T,

T

lim | BEr(Sex)a(t) — Se(x),a(t)]dt =0,

n—oo
0
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Proof. Define T' = min(T,C) and Te(x),A(t) = P(T >t) € (0,1), then [1 — Te(x),A(t)]" is a nonnegative
function that increases as t increases. By Lemma 3.2.1 in Fleming and Harrington [29], we know:

T T

/ Brl8u.alt) — Secxy.a(t)]dt < / 11— Sy (N1 — oy (] dt
0 0

T

< / 1~ 7oy A (O]t < 71— 7oy AT
0

Since 7 > 0 is a fixed constant and 1 — 7. (x),4(7) € (0,1), we have

T

lim | Br[S.x)a(t) = Se(x),a(t)ldt < Jim [l —me(x) a(7)]" = 0.

n—00
0

Therefore, we have nli)ngo fOT Er[Se(xy,a(t) — Se(x),a(t)]dt = 0. O
Proposition 2. Given assumptions 1-4, the RMST estimator based on KM method given propensity score

e(X) and treatment group A, denoted as fle(x),A, s an asymptotically unbiased estimator for He(X),A given
T < tmax-

Proof. First, we will show that S'e( x),4(t) is asymptotically unbiased for any time 7" < tyax. Let t;’s be
i.i.d event times ranking from small to large, and Y; is the number of people at risk at event time ¢;. Let
d; be the number of event at event time ¢;, then we have the definition below.

1,if ¢t < ¢; given e(X) and A

Se(x),a(t) = 1_<[ Yi%idi,if t1 <t given e(X) and A
t; <t
Let AE(X alw) = Yl be the Nelson-Aalen estimator for the cumulative hazard function A e(X), Alw)
i<t

given e(X) and A. Accordmg to Theorem 3.2.3 in Fleming and Harrington [29], we have the following
equation if S, x) 4(t) > 0:

Se(x),a(t)

t A
Sexy,alu™)
= [ 20N ) R () = Ay a (W)
50000 / {Aex),a(u) (x),A(uw)}

Se(x),a(w)

. S S, - S
E[Se(x),a(t) = Se(x),a(t)] = Ellir<4y «x.ATH e(fx) ,fT)) e(X)’A(t)}l

Based on Lemma 3.2.1 in Fleming and Harrington [29], the bias E[S’e(x)7A(t) —8¢(x),4(t)] will converge
to zero as sample size n — oo. Thus, S(x) 4(t) is asymptotically unbiased given ¢ < tmax. Similarly,
Se(x),A=0(t) is also asymptotically unbiased given ¢ < tmax.

Second, we will show fle(x),A is an asymptotically unbiased estimator given 7 < fmax. Since
Er(fie(x),a) = Er fo e(X (t)dt] and S, e(x),A(t) is a positive bounded function between 0 and 1
when ¢ € [0, 7], then we have

Er| / 18.00.A(0)dH] = x| / S A (D)) < 7 < .
0 0

By Fubini’s Theorem,

T T

Erl / Sux a(t)dt] = / ErlS.cx.a(t))dr.

0 0
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By propositions 2 and lemma 2, we have the following for fixed truncated time 7.

nlgr;oET(ﬂe(x),A) ~ He(X),A

T T

= lim Brl [ .00,a00] ~ [ S a0
0 0
= lim /ET[SE(X A(t)]dt — /SE(X)’A(t)dt (by Fubini’s Theorem)
n—oo
0 0

T

= lim ET{ge(X),A(t) - Se(X),A(t)}dt < nh—>néo7—[1 - 7T6(X)7A(7')]n =0.

n— 00
0

Therefore, fio(x),a is an asymptotically unbiased estimator for y.(x) 4 when 7 < tmax. O

Lemma 3. For a fized truncation time point T < tmax,

T

lim [ Ep[SAA(t) — SA(t))dt =0,
n—oo
0

Proof. Let T = min(T,C) and n(t) = P(T > t) € (0,1), then [1 — «(t)]" is a nonnegative function which
increases as t increases. Let m4(t) denotes the function 7(t) for treatment indicator A. By Lemma 3.2.1 in

Fleming and Harrington [29], we have

T

/ET[S‘A() S4(t) dt</[1—SA(t)][1—7rA(t) "dt < /I—WA(t)]”dt<T[1—7TA()] .

0 0

Since 7 > 0 is a fixed constant and 1 — w4(7) € (0,1), we have

T

. GAN A . _ no_
nlgréo/ET[S (t) = S4(t))dt < nlgréoT[l ma(t)]" = 0.
0

Proposition 3. Given assumptions 1-{, A gpp = fOT [S1(t) — SO(t)]dt is asymptotically unbiased.

Proof. Since the estimated survival function S(¢) € (0,1) and | fo (t)dt| € (0,7), we also satisfy the
following conditions to use Fubini’s theorem:
Eex){ET| fo e(x),A()dt]} < Eqxy{Er(T)} =7 <0
Eox)lfy 19ex),a(t)dt] < 7 < 00
Er{[; SA(t)dt} <7 < oo
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Thus, we can apply Fubini’s theorem three time to interchange the expectation of e(X) as below:

Ee(x){ET[/ Se(x),a=1(t)dt] — ET[/ Se(x),a=0(t)dt]}
0 0
:ET{Ee(X)[/ Se(x),a=1 (t)dt] — Ee(x)[/ Se(x),A=o(t)dt]}
0 0

T

:ET{/Ee(X)[ge(X),Azl(t)]dt_/Ee(X)[Se(X),A:O(t)]dt}
0

0
T

=Er{ [ S*(t)dt — [ S°(t)dt}
oo |

0
_ / Brl§(0)]dt — / Er[S0(t)]dt.
0 0

By lemma 3, we have

nILII;OEe(X){ET[/ Se(x),a—1(t)dt] — ET[/ Se(x),a=0(t)dt]}
0 0

T T

= lim [ Ep[Si(t))dt — lim Er[SO(t))dt
— [ Exlst@lat ~ [ Erls 0l = - o
0 0

Therefore, our proposed propensity score matched RMST estimator is asymptotically unbiased when trun-
cation time point 7 < tpax- O

Appendix B: Theoretical Results in Section 4

Appendix B.1: Proofs of Propositions about Conditional Effect

We define the expectations of the RMST outcome Z = min(T, 7). The following propositions are proved
within each propensity score value e(X) = e(z).

Proposition 4. For binary unmeasured confounder U = 0,1, we have RRAU|e(X)=e(z) = 1 and
MRy zie(x)=c(z) = 1-

Proof. By definition, we have M Ry 7| a—1,e(X)=e(x) = 1 and MRy 71 4—0,e(X)=e(z) = 1; then MRy zo(x)=e(z) =
max(M Ry zja=1,e(X)=e(z)» MRUZ|A=0,e(X)=e(z)) = 1. Assume RR gy |e(z) = Wax RR 4y kle(z) < 1, then

it implies that

PU=0A=1,e(X)=¢e(z

)) < P(U=0]A=0,e(X) =e(x)),
PU=1A=1,e(X)=ce(z)) <P
(

(U=1A=0,e(X) =e(z)).

This further implies that 1 = P(U = 0|A = 1,e(X) =e(z)) + P(U = 1|A = 1,e(X) = e(x)) < P(U =
0|A =0,e(X) =e(z)) + P(U =1|A = 0,e(X) = e(x)) = 1, which is not true. Thus, we have proved by
contradiction that RRAp7|e(x)=e(x) = 1- O
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Proposition 5.

MRaz MRz MRaz
— = <
CMRyz+ MRZ%& < BFy, CMRyz- MRZ;E_ BFy, CMRAz = MRZ“G < Bly,
Proof. First, let f = P(A =1), then we have
true _ J T1(uw)F(du) Jﬂfrl(u)FH(dU)-%(l-—(f)f7ﬁ(u)5b(dU)
MRY% = (5)
~ [ro()F(du) — f [ro(w)Fi(du) + (1= f) [ ro(u)Fo(du)
ffro F1 du) frl(u)Fl(du) ©)
ffro F1 du) + fro fro(u)Fl(du)
fro )Fo(du) frl o(du) 7)
ffro Fldu+(1— frouFodu fro o(du)’
. ffTo(u)Fl(du) .
Let w = F T rot P () + (11 [ ro(a) Fo(an) € [0, 1], then we have
1 w 1—w
true _ true 1— M trui, —
MRiz MRz + (1= w)MR 7% CMRay; CMRay+ * CMR -

Second, we have

_ MR%y [P (du) [ r(u)Fr(du) wlmgxro(u) +(1- wl)muinro(u)
CMBaz: = MR fro(u)F(du)/fro(u)Fl(du) B womgxro(u) +(1- wo)muinro(u)

f[ro(u)—minro )] Fy(du) f[ro(u)—muinro(u)]Fg(du)
where wy = maxro (u)— mlnro(u) and wo = maxro(u)—minrg(u)
Define I' = “’1 then
w Jlro(u) — minrg(w)]Fi(du)  [[ro(u) — minre(u)]| RRay (u)Fo(du)
= = e = = 8
wo  [[ro(u) — mJnTO(U)]FO(dU) Jlro(u) — muinro(u)]Fo(du) (®)
maxRRAU(u) Jlro(uw) — mlnro( )] Fo(du)
< = RRAyp. (9)

- [lro(u) — muinro( )] Fo(du)
Write wg = “f+, then
[maxrg(u) — minrg(u)]ws + minrg(u)
u u

CMR}, = —* :
AZ ™ [maxrg(u) — minrg(u)]wl/T + minrg(u)

Ifr>1, CMRXZ is increasing in w; according to Lemma A.1 in the eAppendix of Ding and Vander-
Weele [37], then the maximum attains at w; = 1, and we have

J— I' X MRy 7 a=0 < RRay x MRy zia=0
Az = F‘f‘MRUZ\A 0—17 RRav + MRyzja= o—1

Ifr <i, CMRAZ is non-increasing in wj according to Lemma A.1l in the eAppendix of Ding and
VanderWeele [37], then the maximum attains at w; = 0, and we have

RRay x MRy zia=0

CMRY, <1<
Az RRAu + MRyza—0— 1’

P 1 _ w 1—w p
Similarly, by CMRa; = CME. = + CMR,, > Ve have

1 1
>
CMRsz — BFy

. CMRuy < BFy.
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To study the average causal effect of the exposure on the difference scale, we need the following definitions:

—  Define mg = E(Z|A = 0) and m; = E(Z|A = 1) , then the observed mean difference of exposure on
the outcome is m; — myg.

— The average causal effect of the exposure on the outcome for exposed is

ACEYRYS = /E(Z|A =1,U = u)Fi(du) — /E(Z\A =0,U = u)Fi(du)
=my — /ro(u)Fl(du).
— The average causal effect of the exposure on the outcome for unexposed is

ACE'Tse = /E(Z\A =1,U = u)Fy(du) — /E(Z|A =0,U = u)Fy(du)

= /rl(u)Fo(du) —my.
—  The average causal effect of the exposure on the outcome for whole population is
ACEYY® = /E(Z|A =1,U = u)F(du) — /E(Z|A =0,U = u)F(du)
= fACEYYS + (1 — f)ACE Y-

Proposition 6. For nonnegative outcomes and AC’E%’ZQ > 0, the lower bounds for the average causal
effects are

ACEY%% > mq —mg x BFy; ACEY Y% > my /BFy — mo;

ACEY4¢ > (m1 —mq x BFy)[f + (1 — f)/BFy] = ( mo)[f x BFy + (1 - f)].

mi
BFy
Proof. From the data, we can identify

my = /E(Z|A =1,U =u)Fi(du) = /rl(u)Fl(du) =E(Z|A=1);

mo = /E(Z|A =0,U = u)Fy(du) = /To(u)Fo(du) =E(Z|A=0).

The counterfactual probabilities are not identifiable:

BE(Z(1)=1]A=0) = /E(Z = 1A =1,U = u)Fy(du) = /rl(u)Fo(du);

B(Z(0)=1]A=1) = /E(Z = 1A =0,U = u)F(du) = /ro(u)Fl(du).

First, by proposition 5 we have

my _ J r1(w)Fy(du) _ [ ri(w)Fi(du) | [ r(u)Fo(du)
E(Z(1)=1A=0) [ri(u)Fo(du)  [ro(u)Fo(du)’ [ro(u)Fo(du)
MR
- WIE;ZUZE_ = CMRAz— S BFU

Thus, we have E(Z(1 =1)[A=0) > H-.

Second, by proposition 5 again we have

E(Z(0)=1A=1) _ [ ro(uw)Fi(du)
mo fTo(u)Fo(du)

Thus, we have E(Z(0) =1|A =1) < moBFy.

=CMRaz+ < BFy.
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By definition of ACE and the inequalities derived above, we have
ACEYWYS =my — /ro(u)Fl(du) > my —mg X BFy;

ACEX}LE = /rl(u)Fo(du) — m) > ml/BFU — mo;
ACELY® = [- ACE{LS + (1 - )ACESLe

> f(m —moBFy) + (1~ ) g
= (m1 — mg X BFU)[f + (1 — f)/BFU]

= (g, ~mollf x BFy + (1~ f)]

— mO)

Proposition 7. For nonnegative outcomes with ACEgbZS < 0, we have

ACE'Ye < my BFy — mo; ACETSe < my — E;”TO;
U

1-— m
ACEY%® < (miBFy —mo)(f + BiF(f) = (m1 — BF?U

)(fBFy +1—f).

Proof. Define A =1 — A. By applying proposition 6 we have

ACEYYS > E(Z|A=1)— E(Z|A =0) x BFy;
ACEYY® > E(Z|A=1)/BFy — E(Z|A=0);
ACEYY > (E(Z|A=1) — E(Z|A=0) x BFy)[f + (1 — f)/BFy]
_ (E(Z\A =1)
BFy

Because ACEfL—(é‘i = —ACEY%s, ACEZZ“E = —ACEYY¢ and AC’EE{;E = —ACEY%¢, and we also have

E(Z|A=0)=E(Z|A=1)=m; and E(Z|A = 1) = E(Z|A = 0) = mg. Then we have

~ B(Z|A=0))[f x BFy + (1 - f)].

ACE'TY < myBFy —mo; ACEYY < my — ]_;”TO;
U

1 _
ACESY < (miBFy — mo)(f + L) = (my

BFys

J(fBFy +1—f).

Appendix B.2: Proofs of Propositions about the Marginal Effect

To make the bounding factor hold for all propensity score values, we consider the maximum value of BFy
across all values of propensity score e(X), which is defined as BF; = m(aﬁc(BFme(X):e(m)).
e(xr

Proposition 8. For nonnegative outcomes and AC’E%’ZS > 0, we have
ACEYYS > my —mo x BF(; ACEY2S > my/BEF}; — mo;

ACESH® = (m1 = mo x BEG)[f + (1= f)/BF] = (Fpz —mo)lf x BEj + (1= f).
U

For nonnegative outcomes and AC’E%”ZS < 0, we have

ACE'TYe < my BFf, — mo; ACETSe < my — B%};
1-— f) o ( . mo
BF;' ~ " BF}

ACER;® < (miBFj; — mo)(f + )(fBEf +1— f).
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Proof. We will start from showing the results for nonnegative outcomes and ACEZ‘I’ZS > 0. First, we have

mi f7"1 )F1(du) frl (u) F1(du) frl
E(Z(l) = 1|A == 0) f?’l Fo(du) f?"o Fo du fTO
MRAZ *
= MRZ%E =CMR,z- < BFy < BFy).
Thus, we have E(Z(1 =1)|A=0) > g3 > Bn}Flﬁ'
E(Z(0)=1]A=1) _ J ro(w)Fi(du) X
Second, we know that o = fro(u)Fg(du) = CMRsz+ < BFy < BFY;, then we have

By definition of ACE and the inequalities derived above, we have

ACEq S = my — /TO(U)F1(du) > my —mg X BE;
ACEY3S = /Tl(u)Fo(dU) —my > m1/BF; —mo;
ACEfY® = f - ACES4% + (1 - DACE[ 4

> f(m1 = moBFg) + (1= f){ g —mo)

= (m1 —mo x BFG)[f + (1 = f)/BE)]
)If x BFg + (1= f)].

Similarly, we can prove the inequalities hold for nonnegative outcomes and AC’E‘ObS < 0. O

Proposition 9. In the matched sample, we have the following inequality for nonnegative outcomes and
ACEfo’Z‘g >0:

AOEtrue Z 2(1+

BF* VE(ZIA=1) - 7(1 + BF})E(Z|A =0).

In the matched sample, we have the following inequality for nonnegative outcomes and ACEfj‘bg <0:

1 1 1
ACEYYe < Z(1+ BF}, EZA_l——l

) (Z|A=0).

Proof. In the matched sample, we have f = P(A = 1|e(X) = e(z)) = 0.5. For nonnegative outcomes and

ACER; 2 0, we have LHS = ACE([y* = 32 ACEJ}, ).y P(6(X) = ela)) and
RHS =3 (m1 — moBFg)(f + L) P(e(x) = e(@)
~ 1 0 U BF(»}
) 1
:(5 - 7BFU ZmlP (X) =e(x)) + BEy ZmlP(e(X) = e(x))
e(x) e(x)
4 (7 *BFU > MoP(e(X ) =Y moP(e(X) = e(x))
e(x) e(z)
Loy L pza=1-tasBrEEZIA=0)
2V " BFy, T2 v e

Thus, we have ACEY%¢ > (1 + B}wé JE(Z|A=1)— +(1+ BF})E(Z|A=0).
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For ACEYY% < 0, we have LHS = ACEYY® = " ACEZ;lee(X):e(x)P(e(X) = e(x)) and
e(x)

1—
RS =3 (B =)+ B P(e(X) = c(x)
1 1
—E(j)mBFU mo)(5 + g ) P(E(X) = elo))
1
,(1+ BF: BFU;mlp ;mop = e(z))]
! 1+ BF)E(Z|A=1 ! 1 ! E(Z|A=0
=31+ BEYE(Z14 = 1) — 5(1+ 57e) B(Z14=0).
Thus, we have ACEY % < L(1+ BF5)E(Z|A=1)— 11+ %%)E(Z|A =0). O

Appendix C: Estimation of G;;(u,v) in Section 2

To compute the variance of RMSTs, one difficulty is to estimate the function G;(u, v) based on data. Follow
the notations in Murray and Cole [34], we need to transform the function G;;(u, v) into the counting process
notation system. Suppose we have n matched pairs, then let 7, j denote the groups and k = 1, - - , n denotes
the kth pair. Let U;x be the censoring random variable corresponding to survival time T, and the censored
survival time is X;; = min(T;g, Ui ) with censoring status A = I(T;r < Uig). Then we have the following

definitions: . .
1. Yi(u) = > I(zi, > w) and Yj(v) = > Iz, > v);
k=1 k=1
n
2. Yij(u,v) = > I(xik > u, x5 > 0);
k=1
n
3. dNi(u) = Y I(u <z, < u+ Au, Ay, = 1), where Au — 0;
k=1
n
4. dNjw) = > I(v <z < v+ Av, Ay, = 1), where Av — 0;
k=1
n
5. dNjj(u,v) = Y I(u <z < u+ Au,v < zjp, < v+ Av, Ay, = 1,A5, = 1), where Au — 0 and
k=1
Av — 0;
n
6. dN;j(ulv) = Z (u < @i, <u+ Au,zj, > v, Ay, = 1), where Au — 0;
M
7. dNy; Z v <z < v+ Av, x> u, Aj, = 1), where Av — 0;

8. The Gu(u,v) could be estimated by the formula below, and we set Au = 0 and Av = 0 in real
computation. The corresponding R code could be found in our supplementary materials.
A Yij(u,v) | dNij(u,v)  dNgj(ulv)dN;(v) — dNjji(vlu)dNi(u) — dN;(u)dN;(v)

Calt ) Y0 | Vo) | Ya@oy,w) | Yoo | Y@y
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