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Discrete outcome quantum sensor networks

Mark Hillery ,1,2 Himanshu Gupta,3 and Caitao Zhan 3

1Department of Physics and Astronomy, Hunter College of the City University of New York,
695 Park Avenue, New York, New York 10065, USA

2Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
3Department of Computer Science, Stony Brook University, Stony Brook, New York 11794, USA

(Received 21 October 2022; accepted 17 January 2023; published 30 January 2023)

We model a quantum sensor network using techniques from quantum state discrimination. The interaction
between a qubit detector and the environment is described by a unitary operator, and we will assume that at
most one detector does interact. The task is to determine which one does or if none do. This involves choosing
an initial state of the detectors and a measurement. We consider global measurements in which all detectors are
measured simultaneously. We find that an entangled initial state can improve the detection probability, but this
advantage decreases as the number of detectors increases.
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I. INTRODUCTION

The question of whether quantum mechanics can improve
the behavior of sensor networks is one that is attracting
considerable attention. It is known that it can be used to
improve the performance of individual detectors, perhaps
the most spectacular example being the use of squeezed
states to improve the sensitivity of the Laser Interferometer
Gravitational-Wave Observatory (LIGO) gravitational wave
detector. When there is a network of detectors, new questions
arise, in particular whether entanglement between the detec-
tors can enhance the performance of the network. The answers
so far are mixed.

Previous work on quantum sensor networks has studied
the following problem. As a result of their interaction with
the environment, the detectors, which are quantum systems,
have parameters encoded in their state. In all cases, these
parameters have been taken to be continuous variables. For
example, these parameters could be the strength of a magnetic
field at different locations. We would like to estimate these
parameters or some function of them. The detectors can be
qubits [1,2], continuous variable systems [3], or general quan-
tum systems [4]. It has been found that for finite-dimensional
systems, entanglement of the quantum systems does not pro-
vide an advantage in estimating the individual parameters,
but does provide an advantage in estimating a function of
them [1,2,4,5]. It has been shown that entangled states in
optical networks can provide an advantage for distributed
sensing [3,6]. Further studies have investigated whether linear
optical networks with unentangled inputs can give a quan-
tum advantage in distributed metrology [7], and whether
continuous-variable error correction can be useful in protect-
ing a network of continuous-variable sensors from the effects
of noise [8].

Suppose that instead of determining a parameter, one is
interested in whether a detector has detected something or

which detector has detected something. This kind of prob-
lem is described by discrete rather than continuous variables,
and is a problem in channel discrimination [9–15]. Each de-
tector in a network can receive an input or no input. For
example, the detectors could be designed to detect magnetic
fields, and if a field is present at the location of a detector,
its state would be altered. Another possibility is that weak
coherent states of light could be sent out and reflected back,
and if a transparent medium were present in the path, the
coherent state received back would be different than if no
medium were present. Now suppose the unitary operator U
describes the interaction between an input and a detector, and
that only one detector in the network has received an input, but
we do not know which one. For example,U could describe the
rotation of a spin caused by a magnetic field, or a phase shift
induced in a state of light by a transparent object. The different
output states of the detectors will be produced byU for one of
the detectors and the identity for the rest acting on the initial
state of the detectors. We then want to measure the output state
in order to determine which detector received an input. This
means that we have to optimize over both the initial state of
the detectors and the final measurement. The related problem
of picking out a target quantum channel from a background
of identical channels has been analyzed by Zhuang and Piran-
dola, and useful bounds on channel discrimination have been
derived [16–18].

We will begin by analyzing a two-detector network. We
will look at two measurement schemes for the final state
of the detectors, minimum error and unambiguous. Min-
imum error discrimination always returns an answer, but
the answer can be wrong. The probability of making a
mistake is, however, minimized. In unambiguous discrimina-
tion, there are no errors, but measurements can fail. Which
scheme is used depends on the relative cost of making
a mistake versus receiving no answer. The case in which
one detector has interacted and the measurement is of the
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minimum-error type can be solved by using a method devel-
oped in Ref. [11]. We will also examine the case in which
either no detectors have interacted or only one has, and our
task is to decide which of these two alternatives has occurred.
We next look at N detectors.

II. TWO DETECTORS

A. Finding which detector interacted

We have two detectors, each of which is a qubit, initially
in the two-qubit state |ψ〉. One of the detectors has its state
altered by an interaction with the environment, and we would
like to know which. That means we wish to discriminate be-
tween the states |φ1〉 = (U ⊗ I )|ψ〉 and |φ2〉 = (I ⊗U )|ψ〉,
where the unitary operator U describes the interaction. This
leads to two questions: How should we choose |ψ〉, and how
should we choose a measurement to accomplish this opti-
mally? This leads us to a channel discrimination problem,
where we wish to discriminate betweenU ⊗ I and I ⊗U .

There are two possible ways to approach this problem. In
general, the states (U ⊗ I )|ψ〉 and (I ⊗U )|ψ〉 will not be
orthogonal, which means they cannot be distinguished per-
fectly. One possibility, minimum-error discrimination, is to
have the possibility of making a mistake, but to minimize the
probability that this occurs. The probability of succeeding in
that case is [19]

P(min)
s = 1

2 (1 +
√
1 − |〈ψ |(U ⊗U−1)|ψ〉|2). (1)

Another, unambiguous discrimination is to never make a mis-
take, but to allow the measurement to sometimes fail, that
is, give no answer. In this case, one minimizes the failure
probability. The optimal state |ψ〉 for both strategies is the
one that minimizes |〈ψ |(U ⊗U−1)|ψ〉| [20].

Our two-detector problem is easy to solve, but its so-
lution illustrates some of the features we expect to see in
more elaborate situations [11]. Without loss of generality we
can suppose that the eigenvalues and eigenvectors of U are
U |u±〉 = e±iθ |u±〉. The eigenvalues ofU ⊗U−1 are then e2iθ ,
e−2iθ , and 1 (twice), and throughout this paper we will take θ

to be in the range −π/4 � θ � π/4. We can express |ψ〉 as
|ψ〉 = c++|u+〉|u+〉 + c+−|u+〉|u−〉 + c−+|u−〉|u+〉

+ c−−|u−〉|u−〉, (2)

and let

z = 〈ψ |(U ⊗U−1)|ψ〉
= |c+−|2e2iθ + (|c++|2 + |c−−|2) + |c−+|2e−2iθ . (3)

The possible values of z lie in the triangle inC whose vertices
are e±2iθ and 1. The states that minimize |〈ψ |(U ⊗U−1)|ψ〉|
correspond to the value of z that is closest to the origin [11].
For 0 � θ � π/4, this implies that z is on the line connecting
e2iθ and e−2iθ on the real axis. Therefore, c++ = c−− = 0, and
|c+−| = |c−+|, so we can choose as the optimal |ψ〉, for both
strategies, the entangled state

|ψ〉 = 1√
2
(|u+〉|u−〉 + |u−〉|u+〉). (4)

The optimal measurements are global ones, that is, both qubits
are measured together, not individually, and the operators

describing the measurements are proportional to projections
onto entangled states. This is true for both the minimum-error
and unambiguous strategies, though the measurement opera-
tors are different in the two cases. In the minimum-error case,
the measurement operators are orthogonal projections and are
given by [20]

�1 = |v1〉〈v1|
�2 = |v2〉〈v2|, (5)

where

|v1〉 = 1√
2
(|u+〉|u−〉 − i|u−〉|u+〉)

|v2〉 = 1√
2
(|u+〉|u−〉 + i|u−〉|u+〉). (6)

The success probability, that is, the probability of getting the
right answer, is

P(min)
s =

2∑
j=1

1

2
〈φ j |� j |φ j〉 = 1

2
[1 + sin(2θ )], (7)

where we have assumed that the two states are equally likely.
Note that in this case the measurement operators project onto
entangled states and are independent of θ . This latter property
means that the same initial state and measurement can be used
to determine which detector has interacted with the environ-
ment for a range of interaction strengths or times.

For unambiguous discrimination we are also discriminat-
ing between the states |φ1〉 = (U ⊗ I )|ψ〉 and |φ2〉 = (I ⊗
U )|ψ〉, with |ψ〉 given by Eq. (4). In order to construct the
measurement operators for unambiguous discrimination in the
case 0 � θ � π/4, we need to define the states

|φ⊥
1 〉 = 1√

2
(eiθ |u+〉|u−〉 − e−iθ |u−〉|u+〉)

|φ⊥
2 〉 = 1√

2
(e−iθ |u+〉|u−〉 − eiθ |u−〉|u+〉). (8)

Note that 〈φ⊥
1 |φ1〉 = 0 and 〈φ⊥

2 |φ2〉 = 0. The operator �1,
which corresponds to detecting |φ1〉, is �1 = d|φ⊥

2 〉〈φ⊥
2 | for

some constant d , and�2, which corresponds to detecting |φ2〉,
is �2 = d|φ⊥

1 〉〈φ⊥
1 |, where we are assuming the states have

the same failure probability. The operator corresponding to
the measurement failing is given by

� f = I − �1 − �2, (9)

and the constant d is determined by the requirement that it be
the largest value for which this operator is positive. The oper-
ator |φ⊥

1 〉〈φ⊥
1 | + |φ⊥

2 〉〈φ⊥
2 | has eigenvalues λ = 1 ± cos(2θ ),

which implies that

d = 1

1 + cos(2θ )
. (10)

Consequently, we have

�1 = 1

1 + cos(2θ )
|φ⊥

2 〉〈φ⊥
2 |

�2 = 1

1 + cos(2θ )
|φ⊥

1 〉〈φ⊥
1 |. (11)
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The probability of the measurement succeeding is

P(un)
s = 1 − | cos(2θ )|. (12)

B. One or none

The measurements made and the initial state of the detec-
tors depend on the question asked. As an illustration, let us
continue to look at two detectors but ask a different question.
Suppose we are only interested in whether one of the detectors
has fired or neither has. We will assume that the probability of
neither firing is p0, that each detector has an equal probability
of firing, that the probability of both firing is sufficiently small
that it can be neglected, and that the probability that one or the
other detector fires is p1 = 1 − p0. This can be summarized
by saying that we want to discriminate between the density
matrices

ρ0 = |ψ〉〈ψ |
ρ1 = 1

2 [(U ⊗ I )|ψ〉〈ψ |(U † ⊗ I )

+ (I ⊗U )|ψ〉〈ψ |(I ⊗U †)], (13)

where |ψ〉 is the initial state of the detectors, and ρ0 occurs
with probability p0 and ρ1 occurs with probability p1. The op-
timal success probability for the minimum error measurement
in this more general case is given by

P(min)
s = 1

2 (1 + ‖	‖1), (14)

where 	 = p0ρ0 − p1ρ1 and the norm is the trace norm [19].
We are now faced with the problem of choosing |ψ〉. Our

strategy will be to choose it so that the overlap between |ψ〉
and either of the states (U ⊗ I )|ψ〉 or (I ⊗U )|ψ〉 is as small
as possible. This makes the states where one detector has
interacted and the state in which none have as distinguishable
as possible. Setting |ψ〉 = ∑

j,k=± c jk|u j〉|uk〉, we have
〈ψ |(U ⊗ I )|ψ〉 = (|c++|2 + |c+−|2)eiθ

+ (|c−+|2 + |c−−|2)e−iθ

〈ψ |(I ⊗U )|ψ〉 = (|c++|2 + |c−+|2)eiθ
+ (|c+−|2 + |c−−|2)e−iθ . (15)

For a fixed θ , the magnitudes of both of these expressions are
minimized when all of the c jk are the same, so that for |ψ〉 we
choose the product state

|ψ〉 = 1
2 (|u+〉 + |u−〉)(|u+〉 + |u−〉). (16)

We now have to compute the trace norm of 	,
which means we have to diagonalize it. Defining |v±〉 =
(1/

√
2)(|u+〉 ± |u−〉), we can express 	 in the basis

{|v+〉|v+〉, |v+〉|v−〉, |v−〉|v+〉},

	 =

⎛
⎜⎝
p0 − p1c2 iscp1/2 iscp1/2

−iscp1/2 −p1s2/2 0

−iscp1/2 0 −p1s2/2

⎞
⎟⎠, (17)

where c = cos θ and s = sin θ . From this we can find the
eigenvalues, and from them we find that the trace norm is

‖	‖1 = 1

2

[
p21(1 + c2)2 + 4p20 + 4p0p1(1 − 3c2)

]1/2 + p1s2

2
.

(18)

For small values of θ , the success probability is most sensitive
to θ at p0 = p1 = 1/2. There we find that Ps ∼= (1/2)[1 +
(θ/

√
2)]. Once we get away from equality for the probabil-

ities, the leading term in θ is quadratic rather than linear. Note
that this implies that the measurement gives us the most infor-
mation in the case in which the classical information is least;
if p0 = p1 = 1/2, then a priori we have no information about
which alternative occurred, and this is where the measurement
helps the most.

Note that this means that a given detector array can be
flexible. The physical array can remain the same, but the best
measurement and initial state depend on the desired question
being asked.

III. N DETECTORS

A. Finding which detector interacted

Now let us look at the case of N detectors, and initially we
will assume that only one has registered something, and we
want to find out which one. We are going to assume that the
state to which the detectors will be applied is a symmetric
state. A symmetric multiqubit state is one that is invariant
under permutations of the qubits. Our Hilbert space has a basis
consisting of products of N qubit states, where each qubit
is in the state |u+〉 or |u−〉. Now let |k;N〉 be a normalized
state of N qubits that is an equal superposition of all the basis
elements with k |u+〉 states. If our initial state is |k;N〉, the
detector states are given by the application of the operators
Fn = I⊗(n−1) ⊗U ⊗ I⊗(N−n) to |k;N〉. The inner product be-
tween two different detector states is

〈k;N |F †
n Fm|k;N〉 = 1 − 1

N (N − 1)
(2k)(N − k)(1 − cos 2θ ).

(19)

Note that this does not depend on m and n. As a function of
k this is a minimum when k = N/2 for N even and k = (N −
1)/2 (or (N + 1)/2) for N odd. This suggests that among the
states |k;N〉, this choice for k is the best, because the resulting
detector states are the most distinguishable.

It is useful to compare this choice of |ψ〉 to one that is
simply a product state,

|ψsep〉 = (
1
2

)N/2
(|u+〉 + |u−〉)⊗N . (20)

In that case, we find that

〈ψsep|F †
n Fm|ψsep〉 = 1 − 1

2 (1 − cos 2θ ). (21)

Comparing this to Eq. (19) with N even and k = N/2 [see
Eq. (22) below], we see that the inner product is smaller
for the entangled state, but this difference goes to zero as
N increases. That means the states resulting from an initial
entangled state are more distinguishable, but it also suggests
that the advantage of using entangled states is greatest for a
small number of detectors.

We are then reduced to the problem of discriminating a set
of states any two of which have the same inner product. Using
the pretty-good measurement, this problem has been solved in
Ref. [21]. Adopting the notation in that paper, and assuming
for simplicity that N is even, let |Ej〉 = Fj |(N/2);N〉 for
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j = 1, 2, . . .N and |H〉 = (1/N )
∑N

j=1 |Ej〉. Note that for
j 	= k,

〈Ej |Ek〉 = 1 − N

2(N − 1)
(1 − cos 2θ ). (22)

Define

r0 = 〈Ej |H〉 = 〈H |H〉 = 1

2
(1 + cos 2θ )

r1 = r0 − 〈Ej |Ek〉 for j 	= k

= 1

2(N − 1)
(1 − cos 2θ ), (23)

which allows us to write

〈Ej |Ek〉 = r0 − r1 + δ jkNr1. (24)

In addition, we will need the orthonormal set of N vectors

|e j〉 = 1√
Nr1

(|Ej〉 − |H〉) + 1√
Nr0

|H〉. (25)

The results in Ref. [21] yield the POVM (Positive Operator
Valued Measure) operators � j = |e j〉〈e j | and the success
probability

Ps = 1

N
(
√
r0 + (N − 1)

√
r1)

2

= 1

N

[
1 + 1

2
(N − 2)(1 − cos 2θ ) + √

N − 1| sin 2θ |
]
.

(26)

In the large N limit, this goes to (1/2)(1 − cos 2θ ). If we
instead use the separable state, |ψsep〉, we find

r0 = 1

N
+ N − 1

2N
(1 + cos 2θ )

r1 = 1

2N
(1 − cos 2θ ), (27)

and the success probability for the separable state is

P(sep)
s = 1

N

{
1 + (N − 1)(N − 2)

2N
(1 − cos 2θ )

= N − 1√
N

[sin2 2θ + (1/N )(1 − cos 2θ )2]1/2
}
. (28)

We can compare the results of entangled and separable states
by looking first at a small N case, in particular N = 2. We find

Ps = 1

2
(1 + | sin 2θ |)

P(sep)
s = 1

2

{
1 + 1√

2
[sin2 2θ + (1/2)(1 − cos 2θ )2]1/2

}

(29)

(the success probability without the superscript is the one
from the entangled state), and we can verify that Ps � P(sep)

s .
In the large N limit, the difference between the two goes to
zero, in particular,

Ps → 1

2
(1 − cos 2θ ) + 1√

N
| sin 2θ |

+ 1

N
− 1

N
(1 − cos 2θ )

P(sep)
s → 1

2
(1 − cos 2θ ) + 1√

N
| sin 2θ |

+ 1

N
− 3

2N
(1 − cos 2θ ), (30)

where both expressions contain terms up to order 1/N .
Returning to the entangled state case, for unambiguous

discrimination, we define the vectors

|ē j〉 = |e j〉 + t − 1√
Nr0

|H〉, (31)

where 1 � r0 > (1/N ) > r1 and t = √
r1/r0. The POVM ele-

ments are � j = |ē j〉〈ē j |, and the failure probability is

Pf = Nr0 − 1

N − 1
= 1 − N (1 − cos 2θ )

2(N − 1)
, (32)

which goes to (1/2)(1 + cos 2θ ) for N large.

B. Adding the no-interaction state

It is possible to add an additional state in the case where
the measurement can make errors. In particular, we will add
the state in which no detectors fire, |E0〉 = |(N/2);N〉. This
cannot be done in the case of unambiguous discrimination,
because for that to be possible, the states must be linearly
independent. The state |E0〉 is in the space HE spanned by
the states |Ej〉 = Fj |(N/2);N〉, j = 1, 2, . . .N . A short calcu-
lation shows that

∑N
j=1 |〈e j |E0〉|2 = 1 and that

|E0〉 = 1 + e−iθ

2
√
r0

|H̃〉, (33)

where |H̃〉 = (1/
√
r0)|H〉 is a normalized version of |H〉 [note

that here r0 and r1 are given by Eq. (23)]. We will assume that
the probability of no detectors firing is p and that the prob-
ability of each of the detectors firing is (1 − p)/N . We will
exclude the case of more than one detector firing.

In order to find the POVM and success probability, we
will make use of the pretty-good measurement [22]. This
does not necessarily give an optimal measurement to discrim-
inate states, but it does give, as its name implies, a pretty
good measurement. If the states to be discriminated are |φ j〉,
j = 1, 2, . . .M, where |φ j〉 occurs with probability p j , then
the POVM elements are

� j = p jρ
−1/2|φ j〉〈φ j |ρ−1/2, (34)

where ρ = ∑M
j=1 p j |φ j〉〈φ j |. In our case

ρ = p|H̃〉〈H̃ | + 1 − p

N

N∑
j=1

|Ej〉〈Ej |

= [p+ (1 − p)r0]|H̃〉〈H̃ | + (1 − p)r1P,

where P is the projection onto the subspace inHE orthogonal
to |H̃〉. Defining

D0 = 1

[p+ (1 − p)r0]1/2

D1 = 1

[(1 − p)r1]1/2
, (35)
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we have that

ρ−1/2 = D0|H̃〉〈H̃ | + D1P

ρ−1/2|H̃〉 = D0|H̃〉
ρ−1/2|Ej〉 = √

r0(D0 − D1)|H̃〉 + D1|Ej〉. (36)

From these, we can construct the POVM

�0 = pρ−1/2|H̃〉〈H̃ |ρ−1/2

� j = 1 − p

N
ρ−1/2|Ej〉〈Ej |ρ−1/2, (37)

and the success probability

Ps = p〈E0|�0|E0〉 + 1 − p

N

N∑
j=1

〈Ej |� j |Ej〉

= p2D2
0 + (1 − p)2

N
(r0D0 + (1 − r0)D1)

2. (38)

In the large N limit this becomes

Ps → 1

2
(1 − p)(1 − cos 2θ )

+ p2

p+ (1/2)(1 − p)(1 + cos 2θ )
. (39)

IV. CONCLUSION

Two key issues in the study of quantum detector networks
are the nature of the best measurements to gain information
about the question at hand and the nature of the best initial
state of the detectors. In particular, when is an entangled state
best? As noted in the introduction, in the case of parameter
estimation, entanglement did not provide an advantage when
estimating parameters associated with individual detectors,
but did when estimating parameters associated with several
detectors, for example, the sum of parameters for individual
detectors. We studied a different problem, and we have pre-
sented a model of a detector network as a set of detectors that
either do or do not interact with the environment. Assuming at
most one detector does interact, we wish to determine which
detector has interacted. As noted, there are two aspects to

this problem. The first is choosing the initial state of the
detectors. In the case of two detectors, the problem can be
solved completely, and an entangled initial state is optimal.
For more than two detectors, some assumptions are in order,
because exact solutions are not known. We looked at the case
of separable and entangled initial states and found that the en-
tangled state gave an advantage, but its advantage decreased as
the number of detectors increased. Since entangled states are
harder to produce than separable ones, this suggests that for
small numbers of detectors the use of an entangled initial state
is worth the cost, but for larger numbers it is not. The second
aspect is choosing the measurement. We considered global
measurements in which all of the detectors are measured at
once, and we made use of the pretty-good measurement to
find a POVM and the success probability. We found that the
success probability went to a finite limit as the number of
detectors becomes large. If we simply guessed which detector
interacted, our probability of success would be 1/N , which
goes to zero in the largeN limit, so the measurement is a major
improvement over the guessing result. In the case in which
the no-interaction state is included, for p > 1/(N + 1) the
guess probability is just p (just guess the most probable state),
and the success probability of the measurement is greater.
If p < 1/(N + 1), the guess probability is between 1/N and
1/(N + 1), which goes to zero in the large N limit, while the
success probability of the measurement goes to a constant.

In regards to the role of entanglement, we find that whether
it gives an advantage depends on the question being asked and
on the circumstances. In the case of determining whether one
of two detectors has interacted or neither has, entanglement
does not seem to help, whereas if one is trying to determine
which of two detectors has interacted it does. For more than
two detectors, there is an advantage, but it decreases as the
number of detectors increases. This suggests that it would be
worthwhile to study other situations—for example, dividing
the detectors into sets and trying to determine in which set an
interacting detector is located. Does entanglement help here?
This is reserved for future work.
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