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1. Introduction

Amorphous metal alloys (i.e., metallic glasses) are of great tech-
nological interest because they exhibit a variety of unique prop-
erties, including a very large elastic limit because of the lack of
dislocations that induce plastic deformation[1] and high resis-
tance to corrosion and wear because of the lack of grain bound-
aries,[2,3] among many other useful properties. Thus, a number
of reviews have been written on these materials, including some
early reviews that effectively describe foundational issues related
to the thermodynamics and kinetics of these types of alloys,[4–7]

applications in cutting tools and gears,[8,9] medical implants,[10–13]

space technologies,[14] structural components,[15] wastewater treat-
ment,[16] catalysis,[17,18] and countless others.[19] As new applica-
tions are recognized and explored, research efforts to improve
the processing and manufacturing of metallic glasses continue
to be of interest,[20–24] resulting in a myriad of patents and patent
activity.[25] Owing to their extraordinary properties, the application
of these alloys in extreme environments, for example in environ-
ments of higher temperature, is very relevant, but difficult because
most of these alloys crystallize at relatively low temperatures.
Thus, the development of metallic glasses with crystallization

temperatures higher than 700 °C[26] is desir-
able and is resulting in intense research
efforts. A search for metallic glasses that
function at cryogenic temperatures,[27,28]

that can be manufactured and can function
in space environments,[29] and that resist
radiation[30–35] and high pressures[36,37] is
also of great interest. This review covers
two areas of critical importance for the con-
tinued development of metallic glasses,
namely, 1) processing techniques that can
allow the manufacturing of new composi-

tions both in powder and bulk form; and 2) the use of emerging
artificial intelligence techniques for predicting new materials
compositions.

2. Manufacturing Approaches

There are two main approaches for manufacturing bulk metallic
glass (BMG) components: 1) production directly from melt, such
as melt casting into a mold; and 2) production from powders,
such as 3D printing and embossing methods. The powders
themselves can be produced using techniques such as gas atom-
ization, in which droplets of molten metal are rapidly cooled
using a high-pressure jet of gas, generally resulting in well-
dispersed powders, as illustrated in Figure 1 for two types of
amorphous alloys.[38,39] A general diagram listing the main
approaches for the manufacturing of these types of materials
is provided in Figure 2. In this review, we will broadly describe
manufacturing techniques from a melt, to provide completeness
to the discussion, but without progressing into details, because
the techniques are very well known and utilized.[40] We will pres-
ent a more thorough discussion of techniques that commence
with powders, which represent newer technologies and signifi-
cant challenges are still present. They include advanced
manufacturing (i.e., 3D printing) techniques and state-of-the-
art metallurgical approaches. Discussion of postprocessing tech-
niques, including welding and machining, will also be presented.

2.1. Manufacturing from a Melt

There are multiple ways of manufacturing BMGs from a melt.
The two primary methods are casting into a mold or melt spin-
ning. As input products, both require elemental precursors that
are typically arc melted,[41] usually in vacuum or argon-rich envi-
ronments, to create a master alloy, which is then remelted to
achieve homogeneous mixing. The melt is then either cast or
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spun to produce the final BMG product. Instrumentation that
combines the arc melting process with casting are described
in the literature and can result in specimens of many
compositions.[42]

A typical example of a mold casting process is described for
the manufacturing of rods, with a specific example illustrated in
Figure 3a for Fe60Cr10Mo9C10B6Er2Ni3.

[43] Here, industrial-grade
powders of Fe, Cr, Mo, C, B, Er, and Ni are first melted and
remelted in an arc furnace, and then cast into a water-cooled cop-
per mold, resulting in rods of 5–10mm in diameter and lengths
of approximately 5–6 cm. The amorphous character of the speci-
mens is evident from the X-ray diffraction patterns of Figure 3b
for alloys Fe60Cr10Mo9C10B6Er2Ni3, Fe65Cr9Mo8C10B6Er2, and
Fe60Cr10Mo9C13B6Er2.However, while rods and other simple shapes
can be produced, the technique has limitations. Complicated shapes
that are hollow or have sharp corners are not achievable because of
gradients in cooling rate that can result in sections of a specimen that
are amorphous and others that are crystalline. Modifications to the
casting process that can inhibit nucleation and the undesirable for-
mation of crystalline regions have been successfully explored. One
such techniquemakes use of a DC current applied between themol-
ten metal and the mold, which modifies the surface tension of the

melt and avoids inhomogeneous solidification.[44] Another issue is
that for most alloys the casting process must be executed in an inert
atmosphere to prevent oxygen contamination, although some com-
positions have been developed that resist oxidation and can be cast in
air. For example, Fe44Mn11Cr10Mo12C15B6Ho2

[45] can be produced
in the form of 6mm diameter rods in air using a copper mold
and commercial-grade elemental powders, with the oxidation resis-
tance imparted by the presence of holmium that forms a holmium
oxide surface coating and protects the inside of the rods.

Under some circumstances, the production of partially crystal-
line specimens is desired to improve toughness or other proper-
ties. The case of Cu43Zr43Al7Be7

[46] is one example among many
in the preparation of what are described as in situ bulk metallic
glass composites that contain nanocrystalline phases. These
specimens were prepared by first arc-melting high purity ele-
mental powders in a Ti-gettered argon atmosphere and subse-
quently casting the melt in a water-cooled copper mold of
3mm diameter. Variation in cooling rate was achieved by
increasing the mass of melt poured into the mold and by anneal-
ing sections of the as-cast rods at a temperature of 682 K for
3min. Cooling rate can also be varied by casting into wedge-
shaped copper molds, resulting in some regions that are crystal-
line and some that are amorphous, as illustrated in Figure 4 for
the case of a Mg84Ni10Gd6 alloy at various thicknesses (Z ) across
the wedge.[47]

Beyond the rods produced by casting, other shapes can also be
manufactured from a melt, such as the formation of wires or rib-
bons of a variety of dimensions and compositions. Several

Figure 1. Scanning electron micrographs of gas atomized powders
of a) Fe48Mo14Cr15Y2C15B6,

[38] b) Ni53Nb20Ti10Zr8Co6Cu3,
[39] and

c) Fe48Mo14Cr15Y2C15B6 after high-energy ball milling.[38] Reproduced with
permission.[38] Copyright 2018, Elsevier. Reproduced with permission.[39]

Copyright 2006, Taylor and Francis.

Figure 2. Typical processes for the manufacturing of amorphous metal
products.

www.advancedsciencenews.com www.aem-journal.com

Adv. Eng. Mater. 2023, 2201493 2201493 (2 of 28) © 2023 Wiley-VCH GmbH

 15272648, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adem

.202201493 by U
niversity O

f C
alifornia, W

iley O
nline Library on [08/02/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

http://www.advancedsciencenews.com
http://www.aem-journal.com


examples are provided in Figure 3c for Ni–Nb-based alloys.[48]

Here, the melt is quenched by pouring drops of the alloy into
a spinning copper wheel while the wheel is rotating at high
speed. This melt spinning process is an excellent way to produce
large amounts of thin ribbons such as Mg67Zn28Ca5
(thickness= 106 μm),[49] (Ni0.6Nb0.4)45Zr50Co5 (thickness= 50 μm;
width= 20 mm),[50] Fex(P10C9Si)5�0.05x (x= 76�82),[51]

Co65.5Si18B10Cr6.5, and Co65.5Si18B10Fe6.5,
[52] among many

others, as well as wires.[53–55] Melt spinning tends to have a
much higher cooling rate than mold casting, which allows
for continuous production that makes large-scale production
efficient and simple.

Finally, thermoplastic forming, also referred to as hot emboss-
ing, is a newer net-shaping technique used primarily for the
fabrication of small-scale components, although larger compo-
nents are also achievable. The technique is versatile for the
manufacturing of complex geometries and is described in detail
in the review by Ni et al.[56] A primary consideration for effective
implementation is the superplastic deformation capacity of
metallic glasses in the supercooled liquid state (between the glass
transition and crystallization temperatures). Thus, here the alloy
is not molten, but in a highly viscous state. This brings its own
challenges, namely, the risk of devitrification when the alloy is
held above the glass transition temperature, which increases

Figure 3. a) Fe60Cr10Mo9C10B6Er2Ni3 rods of 5 and 8mm in diameter and b) X-ray diffraction patterns of three Fe-based amorphous alloys of 8 mm in
diameter. Reproduced with permission.[43] Copyright 2006, Elsevier. c) Melt-extracted Ni60Nb20M20 alloy wires with M= Ti, Zr, Hf, V, Nb, Ta, Cr, Fe, Co,
Cu, Al, Si, and Sn. Reproduced with permission.[48] Copyright 2009, Elsevier.
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as processing time and temperature increase, as well as issues of
oxidation at higher temperatures. Also, the technique continues
to have limitations in fabricating highly complex structures, thus
advanced manufacturing processes (to be discussed later) are
receiving significant attention, as they are perhaps better
equipped to resolve this issue.

A specific example[57] of the hot embossing process for a gear of
Zr65Cu17.5Ni10Al7.5 involves the preparation of rods (diameter= 3
mm) by arc melting and casting, which are then subsequently
sliced into specimens of 0.6mmheight. These specimens are then
heated to the superplastic temperature and pressed into a silicon
mold (shown in Figure 5a). Wang et al.[57] found optimal condi-
tions of 683 K embossing temperature, 0.001 s�1 strain rate,
2776 s incubation time (time the sample is heated to the emboss-
ing temperature before applying load), and 880 s forming time
(time the sample is compressed into the mold), resulting in
the specimen shown in Figure 5b. The silicon mold was later
removed by dissolving in 40% KOH solution at a temperature
of 353 K. Examples of other shapes prepared by similar processes
are found for Zr41.2Ti13.8Cu12.5Ni10Be22.5,

[58] Mg58Cu31Y11,
[59]

Pt57.5Cu14.7Ni5.3P22.5,
[60] and Ni53Nb20Zr8Ti10Co6Cu3,

[61] among
many others. A variation of this technique is molding using pres-
surized gas, analogous to silica glass blowing,[62] which results in
remarkable curved shapes.[63]

2.2. Manufacturing from Powders

2.2.1. High-Energy Ball Milling

An initial step that may be necessary when manufacturing bulk
samples involves a milling procedure of the powders or rib-
bons,[64,65] which is used to reduce dimensions (i.e., particle size)
or to vitrify crystalline powders. Vitrification of powders is pos-
sible because of the continuous and, in some cases, very high
impact energies the powders experience during the process,

which can eventually cause atomic disorder. Figure 1c shows
milled powders of Fe48Mo14Cr15Y2C15B6, obtained by planetary
ball milling of the powders in Figure 1a.[38] Here, the experimen-
tal parameters include a speed of 400 rpm of the main disk, 2 h of
milling, and ball-to-powder ratio of 10:1. The reduction in parti-
cle size is evident from the micrographs. Weeber and Bakker[66]

describe in detail the case of vitrification of powders from crys-
talline precursors. Processing details and relevant parameters on
the ball milling technique can be found in the general reviews by
Koch,[67] Taha et al.,[68] Gilman and Benjamin,[69] Mucsi,[70] Murty
and Ranganathan,[71] Sundaresan and Froes,[72] Suryanarayana,[73]

Enayati and Mohamed,[74] and Seshan and Kaneko.[75] The litera-
ture on this technique is vast and the reader can findmany specific
details within each of the latter reviews.

2.2.2. Sintering

Initial attempts at producing bulk metallic glasses from amor-
phous powders involved the use of the hot-pressing technique.[76]

However, because of the higher temperatures necessary to obtain
fully dense specimens, the powders devitrified significantly or
completely. An early example of this is described by Inoue
et al.,[77] where powders of Fe58Cr16Mo8C18 were manufactured
by gas atomization and size-separated by sieving into powders
smaller than 24 μm, between 24 and 36 μm, between 36 and
44 μm, and above 44 μm. Only the powders smaller than

Figure 4. X-ray diffraction patterns obtained from cross sections of a
Mg84Ni10Gd6 wedge at thicknesses of 0.5, 1.1, and 2mm across the
wedge. Reproduced with permission.[47] Copyright 2013, The Minerals,
Metals & Materials Society and ASM International.

Figure 5. a) Optical micrograph of silicon mold and b) resulting microgear
of Zr65Cu17.5Ni10Al7.5. Reproduced with permission.[57] Copyright 2009,
Elsevier.
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24 μmwere determined to be amorphous and pressed into dense
cylindrical specimens of 10mm in diameter and 8mm in height.
With sintering time and pressure set at�26.7min and 62.4MPa,
respectively, and sintering temperatures ranging from 1053 to
1403 K, all specimens resulted in mixed crystalline phases con-
sisting mostly of α-Fe (ferrite) and metal carbide phases, even at
the lowest sintering temperature of 1053 K. Thus, hot-pressing is
not advantageous for obtaining dense metallic glass specimens.
There are some processes one can implement to reduce and/or
eliminate devitrification, namely, one can reduce the particle size
(i.e., increase the surface area) of the powders to reduce the sin-
tering temperature below the glass transition temperature of the
alloy. For a copper-based amorphous alloy of composition
Cu44Nb42Si14 obtained by mechanical alloying, particle sizes
in the range of 200–500 nm were obtained,[78] resulting in a
mostly amorphous specimen when sintering at 673 K.
Nonetheless, a (111) crystalline peak of copper was still present
in the X-ray diffraction pattern, showing that the hot-pressing
process was still not fully successful.

An essential parameter during hot-pressing is the pressure
itself.[79] The limitations of lower pressures are evident from
hot-pressing Al85Y8Ni5Co2 at pressures of 150–340MPa and
temperatures of 545–560 K, resulting in low relative densities
of 80%.[80] For Al85Ni9Nd4Co2 samples, a relative density of
94% was obtained at a sintering temperature and pressure of
513 K and 700MPa, respectively.[81] Contrast, the latter results
with those obtained for Co71Ti24B5 sintered at a higher pressure
of 780MPa and resulting in a relative density of 99.5%[82]; for
Ti60Al15Cu10W10Ni5 sintered at a pressure of 936MPa and result-
ing in a relative density of 99.8%[83]; and for Zr52Al6Ni8Cu14W20

sintered at a pressure of 936MPa and resulting in a relative den-
sity of 99.82%.[84] For a pressure of 1.5 GPa, X-ray amorphous
specimens of Si55Al20Fe10Ni5Cr5Zr5 (dimensions: 10mm diam-
eter and 4mm height) of 98.3% relative density were obtained at
a sintering temperature of 687 K.[85] A small increase in tempera-
ture to 708 K resulted in the presence of X-ray diffraction peaks,
showing the sensitivity to temperature when sintering close to the
698 K crystallization temperature of this alloy. Thus, manufactur-
ing outcomes can be improved when increasing pressure.

The selection of temperature is just as critical as pressure and
always connected to the glass transition and crystallization tem-
peratures of the alloy in question. Indeed, the ideal sintering tem-
perature is one in between these two defining temperatures,
known as the supercooled liquid region (ΔT= Tx�Tg),

[86] as this
is the region when the alloy is minimally viscous, and the pow-
ders can deform optimally to achieve the highest relative densi-
ties. Alloys with wide supercooled liquid regions, such as
Ni57Zr20Ti20Si3 (ΔT= 88 K),[87] are best when defining condi-
tions for sintering, as the large ΔT increases the temperature win-
dow for sintering that avoids crystallization. Alloys with narrower
regions, such as Mg49Y15Cu36 (ΔT= 46 K),[88] Mg45Y15Cu40
(ΔT= 35 K),[89] Mg49Y15Cu36 (ΔT= 42 K),[90] Ti50Cu28Ni15Sn7
(ΔT= 55 K),[91] and Al75Ni10Ti10Zr5 (ΔT= 49 K),[92] generally do
not result in fully amorphous compacts, but instead contain nano-
crystalline regions within the bulk.

A final consideration is time of sintering.[93] From the kinetics
of phase transformations, minimizing time is always desired to
avoid crystallization.[94] Indeed, a significant effort in defining
appropriate manufacturing conditions is connected to the

development of devitrification with respect to time and tempera-
ture. For example, Figure 6 illustrates a time–temperature dia-
gram with respect to the formation of crystalline regions, i.e.,
a time–temperature–crystallinity (TTC) diagram obtained from
X-ray diffraction, in amorphous alloys of Fe48Mo14Cr15Y2C15B6

(Figure 6a) and Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 (Figure 6b).[94]

These diagrams can serve as a roadmap for determining changes
in percent crystallinity with respect to time and temperature,
whereas differential scanning calorimetry (DSC) can serve for more
direct quantification of initial crystallinity, change of crystallinity,
and crystallinity percentage as a function of temperature.[95] DSC
can also be used to determine a variety of other thermodynamic
properties, including heats of transformation, specific heat
capacities,[96–98] and enthalpy–temperature–time (ETT) diagrams.[99]

Other techniques have also been used to determine phase sta-
bility diagrams. For example, Kim et al.[100] experimentally
defined a complete time–temperature–transformation (TTT)

Figure 6. TTC diagram for a) Fe48Mo14Cr15Y2C15B6 and
b) Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. In these diagrams, the num-
bers under the data points describe the crystallite sizes in nanometers
and the solid lines represent approximations to constant crystallite size.
Reproduced with permission.[94] Copyright 2013, Elsevier.
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diagram for the crystallization of a Zr41.2Ti13.8Cu12.5Ni10.0Be22.5
alloy for the entire range of the undercooled liquid, from the
melting point down to the glass transition temperature, using
a high-temperature high-vacuum electrostatic levitation tech-
nique. Figure 7a summarizes all the measured times for the
onset of crystallization at various isothermal temperatures. It
shows the typical “C” shape, with the nose of the TTT curve
at 51 s and 850 K. This nose is located at a significantly higher
temperature than expected based on traditional theories of solid-
ification, not surprising considering that the kinetic process of
crystallization for these materials is highly complex, such that
different phases form at different temperatures and times during
solidification. For the case of Fe48Mo14Cr15Y2C15B6,

[95]

crystallization was explored using in situ high-temperature X-
ray diffraction, resulting in the formation of Mo3Fe3O, Fe,
and either Cr2B, Cr21.30Fe1.70C6, or Fe23B2C4 (or mixtures of
these three phases) at different points during the heating process
(see Figure 8).

The TTT diagram for Pd40Cu30Ni10P20 (Figure 7b) was
obtained using differential scanning calorimetry[101] and fit to
a model based on steady-state nucleation rate and 3D growth
of the crystals, resulting in

t ¼ 3x
πIvðTÞ½uðTÞ�3

� �
1=4

(1)

where t represents the time to crystallize a detectable fraction x
during isothermal annealing, T is the temperature, and IvðTÞ and
uðTÞ are given by

Iv ¼
Av

ηðTÞ exp � 16πσ3

3kBT ½ΔgðTÞ�2
� �

(2)

Figure 7. a) TTT diagram for Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 reflecting the onset
of crystallization as a function of undercooling. Below 800 K two crystallization
events were observed. The open circles represent the primary crystallization
event and the closed circles represent the secondary crystallization event.
Reproduced with permission.[100] Copyright 1996, AIP Publishing. b) TTT dia-
gram of Pd40Cu30Ni10P20. Reproduced with permission.[101] Copyright 2000,
AIP Publishing. c) TTT diagram of Zr58.5Nb2.8Cu15.6Ni12.8Al10.3. Circles and
squares denote data collected on cooling from the liquid state to an isother-
mal temperature. Diamonds depict data collected on heating from the amor-
phous state. Reproduced with permission.[103] Copyright 2001, AIP
Publishing.

Figure 8. In situ X-ray diffraction patterns of Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4
powders in the temperature range from 823 to 1273 K. The temperatures at
which each pattern was obtained are a) 823 K, b) 848 K, c) 873 K, d) 898 K,
e) 923 K, f ) 973 K, g) 1023 K, h) 1073 K, i) 1123 K, j) 1173 K, k) 1223 K, and
l) 1273 K. Reproduced under the terms of the CC BY 4.0 license.[95]

Copyright 2020 The Authors. Published by PLOS.
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u ¼ kBT
3πl2ηðTÞ 1� exp � nΔgðTÞ

kBT

� �� �
(3)

Here, Av is a constant of the order of 10
32 Pam�3 for homoge-

neous nucleation, η is the viscosity, Δg is the difference in Gibbs
free energy (per unit volume), kB is Boltzmann’s constant, σ is the
interfacial energy between the liquid and the nuclei, n is the
atomic volume, and l is the average atomic diameter. This model
combines classical nucleation theory with a diffusion-controlled
growth rate of the nuclei and is not applicable under all conditions.
For example, materials such as Zr41.2Ti13.8Cu12.5Ni10Be22.5 follow
an Arrhenius-like effective diffusivity to describe crystallization
time. The difference lies in the temperature dependency of viscos-
ity,[102] with Pd40Cu30Ni10P20 having a larger viscosity at high tem-
peratures, which slows down the kinetics of crystallization
compared to Zr41.2Ti13.8Cu12.5Ni10Be22.5. Further, the TTT dia-
gram for alloy Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 is illustrated in
Figure 7c[103] for comparison to Figure 7a. The two diagrams
exhibit similarities in Tg and Tl because both correspond to
Zr-based alloys. The diagrams can be normalized with respect
to Tg and nose time to intensify the similarities further, as illus-
trated in Figure 9.[104]

The TTC diagrams described earlier (Figure 6) were
constructed from X-ray diffraction crystallite size results of sam-
ples obtained by spark plasma sintering (SPS).[105,106] This tech-
nique is now used for the consolidation of all families of
materials, including ceramics and ceramic composites,[107–112]

metal–ceramic composites,[113] and certainly metallic glasses.[114]

Powders are placed inside a die and pressed while concurrently
passing a very high current through the die and powders. The
high current results in extremely fast heating rates through
Joule heating and perhaps spark discharge[115] of the powders,
which, when combined with quick cooling, can prevent devitri-
fication of amorphous alloys. Typical pressures vary from �50 to
300MPa and sintering times are usually no more than a few
minutes. For example, Fe65Co10Ga5P12C4B4 powders of particle
sizes lower than 125 μmwere sintered using applied pressures of
80, 200, and 300MPa and sintering temperatures of 723, 743,
and 763 K,[116] resulting in specimens of varying densities. A sin-
tering temperature of 723 K, which corresponds to the glass tran-
sition temperature of this alloy, resulted in amorphous sintered
specimens. Higher temperatures resulted in some devitrification.
Specimens manufactured at pressures of 80 and 200MPa and
temperature of 723 K contained some porosity, while the sample
at a pressure of 300MPa and temperature of 723 K had a density of
99.7% (i.e., fully dense). For a Cu47Ti33Zr11Ni6Sn2Si alloy

[117] sin-
tered at a pressure of 80MPa and temperatures of 723–753 K, full
density was only achieved at the higher sintering temperature of
753 K, causing some devitrification of the alloy, because the glass
transition temperature in this material is 722 K. In fact, the sinter-
ing temperature is quite close to the crystallization temperature of
759 K. For the case of a Ni-based alloy (Ni52.5Nb10Zr15Ti15Pt7.5),

[118]

a temperature of 773 K and an unusually high pressure of 600MPa
resulted in fully dense amorphous bulk specimens, whereas a tem-
perature of 798 K caused devitrification. As the glass transition
temperature of this material is 821 K, it is clear that devitrification
can occur even when sintering at temperatures below the glass
transition. A variety of reasons can explain this effect, including
fluctuations in temperature inside the sintering die where internal
temperatures can be significantly higher[105] than what is mea-
sured outside the die, usually with a pyrometer, especially if there
is significant localized heating in the powders along contact sur-
faces. Thus, it is clear that temperature and pressure are important
parameters during SPS. Lower temperatures are desirable for
avoiding devitrification and higher pressures for achieving full
density. An additional degree of freedom in controlling tempera-
ture/time/pressure involves the application of steps during heat-
ing. For example, a two-step process was used to sinter
Zr55Cu30Ni5Al10,

[119] resulting in samples that had higher densi-
ties than those obtained using a one-step sintering cycle.

As with sintering processes in other materials, powder particle
size can have an influence on the capacity to achieve full density. For
example, Cu54Ni6Zr22Ti18 powders of particle sizes between 33 and
45 μm achieved a density of 7.28 g cm�3, whereas the alloy under
the same sintering conditions and particle sizes of 91–150 μm only
reached a density of 7.18 g cm�3.[120] Appropriate size distributions,
consisting of an optimized mixture of larger and smaller particles
that are effectively mixed, are also necessary to achieve efficient
packing.

Powders of Ni59Zr15Ti13Si3Sn2Nb7Al,
[121] Fe75Nb3Si13B9,

[122]

Cu46Zr42Al7Y5,
[123] Zr55Cu30Al10Ni5,

[124] Zr70Cu24Al4Nb2,
[125]

Ti45Zr10Cu31Pd10Sn4,
[126] Mg65Cu25Gd10,

[127] Hf55Cu28Ni5Al12,
[128]

and ZrCu39.85Y2.37Al1.8,
[129] amongmany others, have also been pre-

pared using the SPS technique with varying degrees of success,
always optimizing for a temperature between the glass transition
and crystallization temperatures, where the powders exhibit lower

Figure 9. a) TTT curves for Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105), Zr57Cu15.4Ni12.6Al10Nb5
(Vit106), and Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1). b) TTT curves for Vit1 and
Vit106 that are normalized with respect to their glass transition tempera-
tures and nose times. Reproduced with permission.[104] Copyright 2004,
AIP Publishing.
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viscosity. Indeed, the viscosity of the specimens is relevant at all
temperatures and impacts sample contraction during the beginning
stages of densification by[130]

ΔL
Lo

≅
3γRT2

4DcQηo
exp � Q

RT

� �
(4)

whereΔL=Lo is the change in axial length of the specimen based on
ram displacement, γ is the surface energy of the powders, R is the
gas constant, T is the temperature, D is the average particle diame-
ter, c is the heating rate, Q is the activation energy for viscous flow,
and ηo is the pre-exponential constant in

η ¼ ηoexp
Q
RT

� �
(5)

Equation (4) and (5) assume that γ, ηo, and Q are temperature-
independent, a reasonable approximation over small tempera-
ture intervals. The mechanisms of densification can also be
defined from the point of view of friction between particles.[131]

Some studies have also looked at the sintering behavior at tem-
peratures below the glass transition temperature, resulting in
samples of significant porosity[132] or that suffer from devitrifi-
cation because of the need for longer sintering times to achieve
higher densities.[133] However, under conditions of much higher
pressures (i.e., 400MPa), powders sintered at temperatures
below the glass transition can result in 97–98% relative densities
for Fe48Cr15Mo14C15B6Y2.

[134]

A typical methodology to determine extent of devitrification
after sintering is to examine the crystallization enthalpy of the
samples by DSC. Even when sintered specimens are X-ray amor-
phous, initial relaxation of the alloy can occur during sintering,
resulting in a reduction of the crystallization enthalpy. For exam-
ple, the crystallization enthalpy of Zr57Cu20Al10Ni8Ti5

[135]

reduces from a value of 61.9 J g�1 for the bulk powders to values
as low as 23.7 J g�1 for a sample highly devitrified. Specimens
that appear X-ray amorphous exhibit crystallization enthalpy val-
ues of 45.2 J g�1, after sintering at a temperature of 663 K, a hold
time of 10min, and a powder particle size of 63–125 μm.

Other optimization parameters during SPS are the heating
rate and hold time. For both parameters, the ideal scenario is
to heat as fast as possible to the sintering temperature and hold
for only a few minutes. Lower heating rates between 20 and
140 Kmin�1 do not seem to impact the final density signifi-
cantly,[136] thus the use of higher heating rates is practiced more
often to minimize time for the entire process. Typical hold times
at the sintering temperature are 5min or less,[137] because longer
times will result in devitrification, especially at higher tempera-
tures. A disadvantage of the process is the limitations on sample
shapes. The technique is predominantly used to obtain disks of
diameters between 1 and �5 cm (can be larger for systems that
can achieve higher loads and currents) and a few millimeters in
thickness.[138,139] Samples would then need to be machined to
obtain other shapes.

2.2.3. Additive Manufacturing

A significant advance in the production of amorphous alloys is
connected to the development and availability of 3D printing

technologies, which can effectively circumvent size and geometry
constraints that limit components produced by other techniques.
Although considerable progress has been made in producing
larger specimens by casting, there are definite limits that cannot
be exceeded because of the need to overcome the critical cooling
rate of the alloy through quenching. Spark plasma sintering is
also limited in that it only produces flat cylindrical specimens
of small sizes, although some attempts at producing some shape
complexities are being explored.[140–142] Thus, there is increasing
importance of 3D printing to fill this gap. As with all other
manufacturing techniques for metallic glasses, the issue of devitri-
fication is of critical importance and by necessity a main target of
study in this field.[143,144] Focused reviews on this powerful family
of techniques are available on the topics of 3Dmicrofabrication,[145]

laser powder bed fusion,[146,147] binder jetting,[148] selective laser
melting,[149] and inkjet 3D printing.[150] For the interested reader,
many general overviews are also available.[151–166]

In general, additive manufacturing involves the deposition of
layers and the joining of these layers to form a 3D design, pre-
cisely why complex geometries are possible. There are many var-
iations to 3D printing, with metal manufacturing currently based
mostly on the powder bed fusion technique. Here, thin layers of
powder are applied to a plate, after which a laser beam or an elec-
tron beam is used to fuse the powders at targeted locations. As
each layer is finished, a new layer of powder is applied, until the
desired component is complete. At each location where the beam
is focused, a volume of only a few cubic millimeters or less is
involved, which means that the heat can be applied and extracted
quickly, enabling the formation of metastable materials, including
metallic glasses. In laser beam systems, a flow of gas (usually inert
nitrogen or argon) is passed over the powder bed to protect themate-
rials from oxidation, whereas electron beam systems require a vac-
uum in the chamber to maintain focus of the beam. Comparisons
between specimens produced by casting and selective laser melting
have shown that alloys of Zr59.3Cu28.8Nb1.5Al10.4 prepared by the two
techniques result in significant differences in fracture toughness val-
ues of 138.0� 13.1 and 28.7� 3.7MPam1/2 for the cast and laser
melted specimens, respectively, a result of the greater dissolved oxy-
gen in the laser-processedmaterial, which decreases atomicmobility
and increases the activation energy required to initiate shear trans-
formations necessary for improved material toughness.[167] Oxygen
also modifies the path to crystallization, resulting in the formation of
intermediate oxygen-rich metastable cubic phases that are not pres-
ent in the specimens prepared by casting.[168]

Initial attempts at 3D printing of amorphous alloys focused on
the manufacturing of simple shapes (shells, solid cubes, and
coatings), such as those shown in Figure 10a.[169] Here, gas-
atomized powders of Fe58Cr15Mn2B16C4Mo2SiWZr (particle
size: 10–110 μm) were deposited into a stainless steel substrate
and spot-treated using a Nd:YAG laser operating at a maximum
power of 650W. The beam diameter at the focal point was
<0.5 mm and the energy density varied from 2� 104 to
1� 105W cm�2. The process generally requires that the powder
particles melt during laser heating and then resolidify. As crys-
tallizationmust be avoided, the initial layers that are closest to the
substrate undergo quenching and are predominantly amor-
phous. Unfortunately, as layers continue to be deposited,
quenching is not as effective and subsequent layers undergo
varying degrees of devitrification consisting of α-Fe, γ-Fe,
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tetragonal Fe2B, cubic Cr23C6, and some unidentified phases.
The process itself is defined by a complex thermal history con-
nected to the numerous reheating cycles as the laser is scanned
across each layer. In fact, this issue continues to be an area of
primary concern, with numerous studies describing computa-
tional and analytical models that describe heat distributions,
nucleation processes, and other relevant considerations.[170–181]

The two parameters that predominantly control both tempera-
ture and cooling rate within a specified region of each layer
are the laser output power and travel speed

El ¼ P
v ⋅ d

(6)

where El is the energy intensity of the laser beam, P is laser out-
put power in Watts, v is the laser travel speed in mm s�1, and d is
the laser beam spot diameter in mm. This equation ignores a

variety of complexities in the process, including gas flow during
deposition; nonetheless, it is useful as a first approximation. For a
fixed laser power, the energy intensity on the powder will increase
when d and v are decreased. As the energy intensity is increased,
so will the size of the heat-affected zone (HAZ), which will not just
affect the top layer, but lower layers as well. An analysis of scan
speed and laser power with respect to density (Table 1) shows that
higher laser powers and scan speeds will increase density, achiev-
ing values of 99.7% in Fe68.3C6.9Si2.5B6.7P8.7Cr2.3Mo2.5Al2.1
alloys.[182] Contour maps (Figure 11) of laser power and scan
speed can also be used to explore variations in density.[183]

From the point of view of characterization, microcomputed
tomography has been effectively used to determine pore distri-
butions within manufactured specimens.[184,185]

Clearly, laser power and scan speed, which define the temper-
ature that each layer achieves, can be optimized to achieve higher
densities while possibly adversely affecting the capacity of the
material to maintain its glassy structure.[186] Figure 10b,c shows
the formation of a typical HAZ between the substrate and the
first layer of a Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 alloy,[187] which still
devitrifies in spite of its excellent stability and glass-forming abil-
ity (GFA).[188] One solution is to delay the time of deposition of
the next layer, so that the newly formed layer has time to cool. For
the case of an alloy of approximate Fe35Cr25Mo15W10C3Mn5Si2B5

composition, a 5 s delay between layers aided in preventing devit-
rification.[189] In managing all these variables, it is noted that
there will always be temperature differences from one layer to
the next, with lower layers perhaps reaching all the way to room

Figure 10. a) Initial simple shapes (shells, solid cubes, and coatings) pro-
duced by 3D printing. Reproduced under the terms of the CC BY-NC 2.0
license.[169] Copyright 2009, The Authors. Published by Springer Nature. b,
c) Cross-sectional backscattered scanning electron micrographs of laser-
deposited layers on crystalline substrates processed at a laser power of
150W and travel speed of 21.2 mm s�1. A continuous melt zone is
observed in (b) above a thin crystalline HAZ and the substrate. The inter-
face between the melt zone and nanocrystalline HAZ is shown at higher
magnification in (c). Reproduced with permission.[187] Copyright 2010,
Springer Nature.

Table 1. Relative density map of Fe68.3C6.9Si2.5B6.7P8.7Cr2.3Mo2.5Al2.1
samples as a function of laser power (P) and scan speed (v).[182]

Scan speed, v [mm s�1]

Laser power, P [W] 4500 3500 2500 1500

280 No consolidation of powders 70.1% 81.6%

300 72.2% 99.1%

320 77.6% 99.3%

340 83.7% 99.7%

Figure 11. Contour map of laser power and scan speed describing varia-
tions in density for a Zr52.4Cu18Ni14.6Al10Ti5 alloy. Reproduced with per-
mission.[183] Copyright 2017, Elsevier.
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temperature (or the temperature of the substrate) while the top
layer maintains a temperature close to melting temperature,
albeit for only a short period of time. These temperature differ-
entials inevitably cause stresses between layers, which can be
controlled by rescanning to maintain a higher temperature
within the supercooled liquid region of the alloy. For an alloy
of Al85Ni5Y6Co2Fe2, the rescanning process resulted in the for-
mation of significant amounts of aluminum and other interme-
tallic crystalline regions,[190] thus rescanning can be detrimental
to maintaining the amorphous structure. Scanning strategies
have also been explored to improve the chemical homogeneity
within the melt region, resulting in significant improvement
of the amorphous character of Zr52.5Ti5Cu17.9Ni14.6Al10 speci-
mens.[191] Results show that multiple scans help in promoting
favorable mixing of the constituent elements within the melt,
thus preventing inhomogeneous distribution of the elements
that may become the source of nuclei and eventual crystalliza-
tion. Also, two-step melting consisting of preliminary laser melt-
ing, followed by short-pulse amorphization, has been introduced
to maximize the fraction of the glass phase.[192]

Geometric parameters during deposition also require optimi-
zation. In particular, the hatch spacing (i.e., the distance between
one full deposition line and the next) and the orientation of scan-
ning can be tuned to reduce porosity in the final samples. For an
AlSi10Mg alloy,[193] when hatch spacing was increased beyond
150 μm, gaps were observed between adjacent scan lines. By also
controlling the orientation of scanning—longitudinal and lateral
—specimens of densities greater than 99% were achieved.
Unfortunately, the samples were devitrified and, thus, did not
achieve the objective of an amorphous specimen. Indeed, hatch
spacing is recognized as important for devitrification; thus, it is
sometimes taken into consideration in Equation (6), resulting in
a modified equation of the following form

El ¼ Peff

v h t
(7)

where El is the energy density or energy input from the laser in
Jmm�3, Peff is the effective laser power inWatts, v is the laser scan
speed in mms�1, h is the hatch distance in mm, and t is the layer
thickness of the powder bed in mm. Even here, the equation is an
approximation that ignores hatch style, laser spot size, and mate-
rial properties such as thermal conductivity and reflectivity.[194] As
a summary and for guidance, a full list of processing parameters is
illustrated in Figure 12.[193] Particle size considerations have not
been discussed in detail in this review, as they have been examined
in other reviews.[143,195,196] Generally, smaller particles are of ben-
efit for 3D printing as they spread more readily and can melt more
easily compared to much larger particles.

2.2.4. Spraying Techniques/Coatings

Coatings can provide improved properties to components that
may not meet engineering requirements and are, thus, extremely
important for broadening options in a variety of applications. For
the case of metallic glasses in the form of coatings, corrosion and
wear protection is of particular interest and has been thoroughly
explored in the literature.[197–203] There are two principal techni-
ques for manufacturing amorphous metal coatings, laser-based

processes and thermal spraying. Laser-based techniques have sim-
ilar characteristics andmerits to those used during 3D printing[204]

and, indeed, the manufacturing of coatings preceded 3D printing
and informed the field. In the same way as 3D printing functions,
the fabrication of a coating initiates by depositing a powder layer
onto a substrate and then scanning a laser beam across the pow-
der. Issues associated with the heat-affected zone that melts, cools,
and then reheats are extremely relevant and devitrification of the
coating can easily occur if the heat input into the system is not
carefully optimized. Laser power, scan time, and type of substrate
that can transport heat away from the coating are just as relevant
here as they are for 3D printing.[205]

Thermal spray techniques are well known and a variety of top-
ical reviews are available that describe the relevant variables and
conditions for optimization,[206–218] including some on amor-
phous metals.[205,219,219,220] It is not surprising that manufactur-
ing of amorphous metal coatings can easily suffer from
devitrification, as is the case with the production of bulk samples.
Typical parameters for achieving positive outcomes are listed in
Table 2 for the case of Fe-based coatings,[220] which are general-
izable to other alloys. In its most general description, the process
consists of heating feedstock particles to a molten or semimolten
state and spraying into a substrate. As the droplets impinge on
the substrate, they flatten and solidify, forming stacked layers. Early
activities on the production of coatings are now several decades old,
consisting mostly of examples of partially devitrified coatings.[221–223]

As understanding of the technique improved, amorphous coatings
were then successfully manufactured. For the case of fully amor-
phous Ni57Ti18Zr20Si2Sn3 and Cu54Ni6Zr22Ti18,

[224] coatings were
achieved at a powder temperature close to room temperature, pos-
sible because of the application of a high kinetic energy to
the impacting particles (apparatus set travel speed= 0.01m s�1;
powder feed rate= 36 gmin�1; transport gas= helium; gas

Figure 12. Controlling parameters in selective laser melting. Reproduced
under the terms of the CC BY 3.0 license.[193] Copyright 2014, The Authors.
Published by Elsevier.
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temperature= 550 °C; particle size of powders=�45 μm). The
coatings appeared to contain some porosity after corrosion testing
over a period of 9 days. As micrographs before corrosion testing
were not presented, it is not possible to ascertain the extent
of porosity in the as-prepared coatings. For the case of a
Ni53Nb20Ti10Zr8Co6Cu3 alloy,[39] a helium gas temperature of
570 K was optimized for manufacturing coatings with porosity
that, unfortunately, was not quantified (approximating from a
scanning electron micrograph, there is about �5% porosity in
coatings of 400 μm thickness). Generally, lowering the tempera-
ture during the spraying process can result in fully amorphous
coatings at the detriment of density because lower temperatures
will prevent deformation of the powders to form splats for full cov-
erage. Recalling the TTT diagrams in Figure 7, which defines the
behavior of the powders during densification, at temperatures sig-
nificantly below the glass transition temperature, the powders do
not deform significantly and are not able to bond to the substrate,
whereas in the supercooled liquid region, significant deformation
is expected. Here again, the particle size of the starting powders is
relevant. Wu et al.[225] found that small particle size affects
the acceleration of the particles as they are being deposited.
Smaller particles of 10 μm sizes achieve higher velocities of
939m s�1 during flight, affecting the energy of deposition.
These smaller particles can also be fully molten during flight if
the travel distance is not excessive. For longer flight distances
(and times), the particles can begin to solidify before reaching
the deposition substrate because of their smaller thermal inertia.
Larger particles between 40 and 60 μm cannot achieve the veloci-
ties seen with the smaller particles and may also not reach the
melting temperature. Thus, they are not ideal for achieving coat-
ings that are highly dense. Generally, higher particle velocities
result in improved splat formation, as the particles will impact
at a higher kinetic energy. This must be combined with appropri-
ate melting of the particles because lower porosity is only achieved
if the particles are molten. However, if the temperature is too high
and the coating is prepared in air, then higher temperatures result
in detrimental oxidation.[226]

In addition to laser-based and pyrolysis techniques, there is
the opportunity to produce coatings using electrodeposition pro-
cesses. Electrodeposition is less common and makes use of salt
precursors, instead of metal elements. The process is controlled
by current density because it greatly influences both the rate
of crystal nuclei formation and the rate of crystal growth. For
higher current densities (i.e., higher than the rate of nuclei for-
mation), deposition will occur without formation of nuclei and
eventual growth of crystals. Thus, higher current densities can
result in amorphous coatings. For example, the preparation of
Ni100�xPx (x= 0, 5, 10, 15, and 25 at%) amorphous coatings[227]

made use of an electrolyte of phosphorous acid (H3PO3), nickel
sulfate (NiSO4•6H2O), nickel chloride (NiCl2•6H2O), boric acid
(H3BO3), and sodium dodecyl sulfate (NaCl2H25SO4), a cathode
of copper, and an anode of nickel. The electrodeposition process
was controlled by varying the peak current densities, using
20 A dm�2 for Ni95P5, 17 A dm�2 for Ni90P10, 12 A dm�2 for
Ni85P15, and 5 A dm�2 for Ni75P25. Not all compositions resulted
in amorphous coatings. Loss of amorphous character was evident
as the current density was decreased, corresponding to increases
in the amount of phosphorus in the systems studied, with com-
position Ni75P25 exhibiting very clear diffraction peaks in its
X-ray diffraction pattern. Beyond control of current density, bath
temperature (�40 °C) and pH must be tuned to avoid composi-
tional variations in the coatings, especially for those that take sev-
eral hours of deposition. For these Ni100�xPx compositions,
deposition times were varied from 0.5 to 4 h depending on
the desired thickness of the coatings, which was several micro-
meters to >2.5 mm. Thus, the process can be significantly pro-
tracted compared to thermal spray techniques. Long processing
times can be balanced by using moderate temperatures, which
can be an advantage from the point of view of energy efficiency.
Unfortunately, highly complex multicomponent coatings are
likely not achievable by this technique, as control over the simul-
taneous deposition of many types of elements is difficult. Despite
this limitation, the electrodeposition process offers flexibility in
the shape of the substrate compared to other techniques.

Table 2. Thermal spray methods for the preparation of Fe-based amorphous coatings.[220]

Parameter Arc spray Plasma spray High-velocity oxygen fuel spray

Feedstock materials Cored wires Amorphous powders Amorphous powders

Jet temperature [K] >25 000 >10 000 5500

Particle temperature [K] >3800 >3800 3300

Particle velocity [m s�1] 50–100 200–800 200–1000

Cooling rates [K s�1] �105 �106–107 �104

Coating hardness [HRC] 40 40 45

Coating thickness [mm] 0.4–0.5 0.05–0.5 0.1–1.2

Porosity [%] 3–10 2–5 <2

Density range [%] 80–95 90–95 >95

Oxygen content [%] 0.5–3 0.5–1 <0.2

Bonding form Micrometallurgical Mechanical Semimetallurgical

Bond strength [MPa] 10–40 <68 >68

Cost Low High Higher

www.advancedsciencenews.com www.aem-journal.com
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2.3. Postprocessing

Engineering components may require machining into specific
shapes, to modify the size of a specimen beyond the limits
obtained from the manufacturing techniques discussed previ-
ously and achieve high dimensional accuracy, or to provide fin-
ished surfaces with minimal surface roughness. Generally,
cutting and polishing are implemented to modify dimensions
and provide smoother surfaces. Welding can also be used to join
components into larger specimens.

2.3.1. Machining and Cutting Techniques

Machining techniques for metallic glass components vary
depending on size (i.e., micrometer to macrometer scales).[22,228]

Typical cutting processes to reduce dimensions in macroscopic
specimens have specific challenges associated with the low ther-
mal conductivity of most metallic glasses, which can result in
very significant and rapid heating of the part, to the point that
surface crystallization and oxidation (if cutting is in air) may
occur. As an example, significant thermal radiation was seen dur-
ing lathe turning of a Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 amorphous
alloy,[229] a sign of the higher temperatures of the sample result-
ing in surface oxidation. As the cutting speed was increased from
values of 0.38 to 1.52m s�1, light emission also increased, and
oxidation became more problematic. Removal of heat from the
system is one mechanism that allows temperatures to remain
lower. With samples that have lower conductivity, an option is
to select cutting tools made of materials of higher thermal con-
ductivities such as WC–Co[230] or diamond.[231] Bakkal et al.[229]

showed that a tool with thermal conductivity of 560Wm�1 K
minimized light emission and oxidation during cutting, com-
pared to a tool with thermal conductivity of 72Wm�1 K. The
removal of heat from the surface can also prevent welding
between the cutting piece and the tool, an issue that was also
described by Bakkal et al.,[229] and prevent other damage to
the tool in general.[232] On a similar alloy of composition
Zr52.5Ti5Cu17.9Ni14.6Al10,

[233,234] results show that above a thresh-
old cutting speed, the low thermal conductivity of the alloy leads
to chip oxidation of the zirconium (forming ZrO2) reaching tem-
peratures of �2700 K, causing crystallization and significant vis-
cous flow. Nanocrystalline phases of �10 nm in size were also
formed of compositions Zr2Cu, ZrAl2, and Zr2Ni.

[235]

The feed rate of the specimen is another important consider-
ation to avoid devitrification. For Zr52.5Ti5Cu17.9Ni14.6Al10 rods
cut in dry conditions without coolant,[236] a higher feed rate of
4000mmmin�1 resulted in specimens that did not crystallize,
even though the temperature that was reached during cutting
was greater than the glass transition temperature. This effect
can be attributed to the lower contact time between the specimen
and the cutting tool. Comparatively, feed rates of 1000 and
2000mmmin�1 resulted in cut specimens that were devitrified
because of the additional time allowed for the devitrification
transformation. Typically, removal of surface material in amor-
phous alloys results in continuous lamellar chips[237,238] contain-
ing shear bands (see Figure 13). Modeling of the process shows
that increasing cutting speed and depth of cut will result in these
lamellar chips. However, if the amorphous alloy has a higher

initial free volume and larger Poisson’s ratio (or shear modulus),
it will respond by forming decreasing volumes of lamellar chips.
These considerations are necessary when choosing the cutting
material. Softer alloys that form lamellar chips can be cut using
steel tools, whereas harder alloys that do not form lamellar chips
require tools such as diamond.

Beyond cutting techniques for larger specimens, machining of
micrometer specimens requires more refined techniques such as
laser pulsing,[20] which may be in the femtosecond, picosecond,
nanosecond, or microsecond time scales. Longer times may
result in crystallization, but are more effective in material
removal; thus, there is a compromise between longer laser pulse
times, which result in larger energy transfers to the speci-
men,[239] and shorter pulse times that are effective at impeding
crystallization. A single laser pulse results in a crater that usually
exhibits signs of substrate melting, as illustrated in Figure 14a,b
for Ni78B14Si8,

[240] although the deposited material can also be
attributed to sublimation and redeposition of the vapor on t
he substrate. If the laser beam is scanned across an entire sub-
strate surface, removal of a substrate layer can be achieved.
Repeated scanning can then be effective for removing significant
surface material. The laser can also be used for drilling holes

Figure 13. Chip morphology of a Zr-based alloy. a) Macroscopic view of a
typical continuous twist chip. b) Tool contact surface of chip marked by
“A” in (a). c) Details corresponding to area “C” in (b). d) Free surface of
chip marked by “B” in (a). e,f ) Lamellar structures at different magnifica-
tions in area “D” in (d). Reproduced with permission.[237] Copyright 2009,
Elsevier.
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(Figure 14c,d), which usually requires higher laser power and,
thus, significantly higher heat loads on the substrate. This
may result in devitrification if the temperatures reached by
the substrate exceed the glass transition temperature for
extended periods. The selection of laser type also has an impact
on crater size and heat to the system[241] because the irradiated
region (i.e., the spot size) is directly proportional to the wave-
length of the photons

Do ¼ 1.22� λ� F
n�Wd

� �
�M2 (8)

where λ is the laser wavelength, F is the focal length, n is the refrac-
tive index, Wd is the diameter of the incident laser, and M2 is the
laser quality factor. Under nonoptimized conditions, laser surface
treatment can result in thermal mismatch cracking that leads to
extrusion of the alloy out of the cracks. A specific example can be
found for the case of Zr41.2Ti13.8Cu12.5Ni10Be22.5 rods,

[242] which
were surface irradiated using a Nd:YAG laser in a nitrogen gas
environment. The presence of nitrogen resulted in the crystalliza-
tion of ZrN on the surface, causing thermal mismatch and then
cracking. Similarly, one can find the formation of networked
erbium oxides in Fe52Cr13Mo12C15B6Er22.

[243]

An additional option for machining small components, micro-
electrical discharge machining (micro-EDM), can be adapted from
conventional EDM.[244–253] In this case, the material removal pro-
cess occurs because of the combined melting and vaporization of
the specimen and the electrode, due to the intense heat generated
during electrical discharging between them. For micro-EDM to be
effective, the specimens must be electrically conductive, making
the technique amenable to the cutting of amorphous metals.
Micrographs of Zr57Nb5Cu15.4Ni12.6Al10

[254] in Figure 15 illustrate

the typical cratered topography of the process (input energy:
13.4 μJ). Smaller crater sizes (i.e., smoother surfaces) are achieved
when using lower discharge energies. Quantitatively, decreasing
the input energy from 13.4 to 0.9 μJ results in a 43–51% reduction
in surface roughness and a 63% reduction in burr width due to the
generation of smaller craters and smaller amounts of molten
material. Decreasing input energy, however, results in increasing
machining time for equal material removal, which may be eco-
nomically undesirable. The application of EDM for the case of

Figure 14. Scanning electron micrographs of single pulse craters produced by μs laser ablation of Ni-based amorphous alloys using average laser power
of a) 3W and b) 3.1 W. c,d) Scanning electron micrographs of holes machined by μs laser using average laser power of (c) 3.3W and (d) 4.7 W.
Reproduced with permission.[240] Copyright 2009, Elsevier.

Figure 15. Micro-EDM grooves produced using an input energy of 13.4 μJ.
Reproduced with permission.[254] Copyright 2009, Taylor & Francis.
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Zr38.5Ti16.5Cu15.25Ni9.75Be20
[255] showed that surface roughness

(Ra) could be empirically correlated to the discharge current (Ip)
and pulse duration (τp) through

Ra ¼ βðIp � τpÞα (9)

where β and α are fitting parameters to experimental data. Clearly,
lower discharge current and shorter pulse duration will result in a
smoother surface.

A final parameter to consider is the electrolyte in which the
specimen and electrode may be immersed. Many electrolytes
cause significant oxidation of amorphous alloys, as seen during
the electrochemical machining of Fe65.5Cr4Mo4Ga4P12C5B5.5 in
aqueous solutions of NaNO3, NaOH, and H2SO4, all three of
which appeared not to be suitable as electrolytes,[256] or in
Zr57Ni20Al15Cu5.5Nb2.5 in aqueous solutions of NaNO3.

[257]

There can be optimizations to the electrochemical machining
process which can reduce or eliminate oxidation, evidenced dur-
ing the machining of Fe65.5Cr4Mo4Ga4P12C5B5.5 on an aqueous
electrolyte of 0.1 M H2SO4 with up to 0.1 M Fe2(SO4)3.

[258] Here,
the application of very short voltage pulses results in a dissolu-
tion process of oxide layers that may be forming during the
cutting process. Micromachining of Zr59Ti3Cu20Al10Ni8 is
also possible using a methanolic HClO4 solution.[259] Another
option is to use nonaqueous electrolytes, as in the EDM of
Zr41.2Ti13.8Cu12.5Ni10Be22.5B using EDM oil (CASTY-LUBE
EDS).[260] When using oil, the sparking can result in breakdown
of the organic into hydrogen, carbon, and other by-products,
which is environmentally problematic, can deposit and contami-
nate the cut surfaces, and may also induce crystallization that
results in surface ZrC. Replacement of petroleum-based electro-
lytes with biofuels such as canola and sunflower biodiesel has
been attempted to realize more environmentally friendly
EDM.[261] For Ni-based alloys such as Ni72Cr19Si7B2, the use
of an aqueous NaNO3 electrolyte results in poor slit quality
and insoluble electrolysis products, whereas an aqueous 0.1M
H2SO4þ 1 M H2O2 electrolyte results in smooth and cleaner

surfaces, although there are still isolated islands and surface pits
because of the variation in dissolution rates of the surface ele-
ments.[262] A 0.1 M HCl electrolyte can be also optimized to
obtain a variety of structures of high fidelity;[263] nonetheless,
H2SO4 is still better at producing more uniform surfaces.[264]

Another highly refined process for machining surfaces and
microcomponents makes use of a focused ion beam (FIB).
The technique is now well studied and effective in producing sur-
face features in a variety of substrates.[265–269] A typical FIB uses
gallium ions that erode the surface in highly intricate patterns. A
variety of examples are shown in Figure 16 for a Zr55Al10Cu30Ni5
amorphous alloy.[270] Here, as in any other cutting process, sur-
face finish is important, and some studies have looked at the pol-
ishing of amorphous alloys by a variety of techniques such as
abrasive jet polishing.[271] Details of grinding and polishing tech-
niques can be explored in a variety of reviews.[272–280] Ultimately,
achieving the manufacturing of components that do not require
any machining is a goal in the form of new techniques such as
thermoplastic forming of additively manufactured alloys.[281]

2.3.2. Welding

Laser welding,[282–287] friction welding,[288–293] electron beam
welding,[294] and other variations are methods used to weld bulk
metallic glasses to overcome size and geometry limitations of raw
part manufacturing. During welding, maintaining the amor-
phous character at the weld bead is crucial to the success of
the technique, and a variety of articles, from early[295] to later
reports,[296–302] address this in depth. Techniques that produce
a melt, such as laser welding and electron beam welding, can
be successfully implemented only if the metallic glass has a high
GFA. Otherwise, crystallization will occur upon solidification of
the molten weld bead. In techniques where there is no molten
phase, the welding process requires significant viscous flow
between the components being joined.

A variety of parameters can be applied to improve the weld-
ability of amorphous alloys. Composition is one such variable.

Figure 16. a,c,e) correspond to scanning electron micrographs of FIB machined die surfaces of a Zr-based metallic glass. b) Corresponds to a die-forged
periodically nanostructured surface of a Pt-based metallic glass prepared using the die shown in (a). d) Corresponds to a surface prepared using die (c).
f ) Corresponds to a surface prepared using die (e). Reproduced with permission.[270] Copyright 2007, Trans Tech Publications Ltd.
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For example, the addition of 0.02 at% scandium to Zr55Cu30Ni5Al10
minimizes the formation of Zr2Ni and Zr2(Cu,Al) compounds[303]

because of the increase in Tx of the (Zr55Cu30Ni5Al10)99.98Sc0.02
alloy, which provides a higher resistance to devitrification. The effect
is enhanced further if the welding processmakes use of liquid nitro-
gen for accelerated cooling, freezing the amorphous character of the
weld zone. Beyond composition, modification of experimental
parameters can be exemplified by adjustments to laser pulse energy
and pulse width during laser welding,[302] both of which cause devit-
rification when increased. Additional details on welding techniques
are described by Kawamura.[304]

2.4. Challenges and Future Directions

As with many other materials classes, future directions and chal-
lenges in the processing of amorphous alloys are related to the
need to design multifunctionality in these materials, for example,
designing both higher strength and higher toughness, properties
that are generally mutually exclusive. Examples of composites
consisting of amorphous metal matrix and nanocrystalline dis-
persed phases were discussed earlier. These kind of materials
can result in combined properties that may not be achievable
from the individual components. Mixed amorphous metal com-
posites (i.e., composites made of two or more types of alloys) may
also provide options for properties control. Flexible processing
techniques with a variety of controlling parameters that can
quickly consolidate powders into larger bulk specimens are desir-
able to make these more complex composites in larger sizes. On
the other hand, the manufacturing of components of a great vari-
ety of sizes and shapes requires continued advances and oppor-
tunities in 3D printing, which is currently the only option for
making complex shapes. It is also the technique that can reduce
wasted material since components are made to almost the shape
in which they will be used.

3. Machine Learning Design Approaches

3.1. Preface

The computational design of amorphous alloys takes a variety
of forms, including atomistic[305–312] and molecular dynamics
approaches,[313–318] as well as newer artificial intelligence (AI)/
machine learning (ML) techniques.[319–325] In the latter approaches,
somewhat limited datasets for implementation are available,
although there have been continuous improvements in the avail-
ability of data. Nonetheless, there are enormous uncharted areas
of composition space in which metallic glasses with intriguing
properties might be discovered, with some estimates exceeding
3 million.[326] Indeed, AI techniques are now being used in a wide
variety of fields (i.e., multimedia,[327] among others) because of the
increased availability of robust platforms for AI algorithm develop-
ment, including TensorFlow,[328] Caffe,[329] and Keras.[330] Thus, the
development and use of AI in materials science are increasing in
importance and demonstrate great promise,[331–341] especially when
connecting theory and experimentation.

On the experimental side, the GFA of an amorphous alloy rep-
resents the capacity of a material to maintain a glassy state upon
quenching and is usually judged using parameters such as the

critical casting diameter, the critical cooling rate, or the reduced
glass transition temperature.[342] It represents a critical character-
istic of amorphous alloys that is regulated by the chemical com-
position of the material. Consequently, understanding the
relationship between GFA and composition is critical to the
design and discovery of novel amorphous alloys. However, as
stated earlier, the composition space is vast, resulting in chal-
lenges to explore the many opportunities available. To mitigate
this problem, a variety of empirical and physical models have been
proposed based on topology, thermodynamics, atomic size mis-
matches, valence electron distributions, atomic number fractions,
and near deep eutectic compositions, among others.[343] However,
a comprehensive model or approach with as many variables as
simultaneously possible remains highly desirable. In this sense,
AI can play a very important role in modeling the GFA by simul-
taneously considering many variables that can better predict new
compositions with desirable properties. From this, a general
scheme that addresses the relevant steps to accelerate amorphous
alloys design and discovery is presented in Figure 17.

3.2. Collecting and Validating Data

The quality and size of the datasets used for training an AI algo-
rithm are critical and require careful identification, gathering,
and possibly the creation of new data through ab initio and other
computational techniques. In terms of data quality, two criteria
are relevant: 1) the experimental technique used to manufacture
the alloys; and 2) the range and values of the alloy attributes.
Regarding the manufacturing of the alloys, some authors specify
that AI training should be only with data from alloys produced by
copper-mold casting, to avoid any possible impact from sample
manufacturing techniques.[342] Regarding alloy attributes, some
researchers propose excluding extreme values, such as a high
GFA, because the model accuracy may be affected due to the lim-
ited number of samples of such extremes.[344] Other authors have
chosen to use the maximum or mean value of an attribute if the
composition appears more than once in the dataset.[333]

Figure 17. Stages during the development and optimization of an artificial
intelligence/machine learning algorithm for amorphousmetal alloy predic-
tion and classification.
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Discrepancies in attribute values can also exist for a variety of
reasons, including human typing errors.[338] Thus, it is important
to validate the data, especially when creating a dataset that comes
from different sources. Examples of flaws include unrealistic or
missing values, outliers, corrupt values, or poorly formatted val-
ues, including text-encoding errors, numbers stored in a nonnu-
meric format, and nonmatching data formats. Table 3[323,326,345]

lists datasets of amorphous alloys that have taken some of these
details into consideration. The “156 839” database associated
with the Citrination site was created by Ward et al.[323] with
the goal of training machine learning models to predict GFA
as a function of composition. It contains 6656 alloys with details
such as the GFA, critical casting diameter, supercooled liquid
range, and glass transition temperature. Also, the information’s
structure is in the form of a Physical Information File (PIF)
scheme, which is a more flexible syntax than a rigid file format
such as a Crystallographic Information File (CIF). The “198 590”
Citrination site[345] incorporates two datasets. One dataset con-
tains 875 alloys with ten thermodynamic attributes, including
the GFA. The second dataset contains 9894 compounds that
are labeled as either metallic or nonmetallic glasses, as well as
information for eight thermodynamic attributes. The last data-
base[326] in Table 3 contains 177 metallic alloys presenting infor-
mation on X-ray characterization and electrochemical characteristics
for the study of glass formation in Ni–Ti–Al ternary alloys. The
information contained in the database is structured and readable
for use with some machine learning methods. There are, of
course, other databases not specific to amorphous alloys that
are very useful for applications in machine learning. For instance,
the OQMD database[325] has information on the electronic prop-
erties of known crystalline solids. This database is based on ther-
modynamic and structural properties that have been calculated
through density functional theory. The structure of the informa-
tion is in Structured Query Language format (SQL) and in a query
interface programmed in Python language. Among other contri-
butions to materials modeling infrastructure is the Automatic
Flow (AFLOW; http://aflowlib.org/) repository with information
for high-throughput calculation of crystal structure properties of
alloys, intermetallics, and inorganic compounds. The European
Union’s Novel Materials Discovery (NoMaD; https://nomad-
lab.eu/) laboratory is also a repository for sharingmaterials science
data. It is applicable tomaterials ranging from liquids, glasses, and
highly ordered crystalline materials.

Evidently, the size of the dataset is another key concern. One
of the challenges with amorphous alloys is the somewhat small
size of the datasets available (�6000 compositions in 60 years)
compared to their crystalline counterparts (�240 000 struc-
tures[331]). However, lately it has been demonstrated that with
suitable information, AI models can work well even with small
datasets.[346–348] Also, cloud environments have been created in

recent years to maintain repositories and make them available to
the research community,[349] which is undoubtedly of great help
in moving the field forward.

3.3. Data Description

Data description, also known as featurization, fingerprinting, or
feature engineering, involves the preparation of the input data in
a format that the AI model can process satisfactorily. As a first
step, the data must be converted into a set of variables to be engi-
neered by the AI algorithm, typically as a sequence of scalar or
vector variables for every dataset input. This step can involve the
reconversion of current data (i.e., rescaling, normalization, binar-
ization), such as physical properties, into a representation in
regions or value spaces that allow a better description of the data.
For instance, Lu et al.[321] used two features or data descriptions
that have evidently different scales, the temperature that falls in
the range of 800–>2000 K, and the average atomic radius differ-
ence (δ) that is less than 102. Therefore, it is essential to scale
these data using a suitable algorithm. There are many algorithms
to achieve such a goal, with most researchers utilizing min–max
rescaling as data standardization.[324,347,350,351]

As a second step, high-quality data descriptors must be
selected. At present, there are four main conventional points
of view for devising a descriptor for AIs in amorphous alloys.
The first concept is to manually create a new set of descriptors
that rely on the specific physical and chemical properties of the
experimental candidates. The second concept is to project the
attributes of the experimental candidates into numerical vectors
as descriptors by using related physical and mathematical theo-
ries based on statistics, probability, and other approaches. The
third concept is a combination of the latter two, while in the
fourth concept the descriptor is automatically created using con-
volutional deep learning. For example, Deng and Zhang[352]

mathematically computed four descriptors that were not avail-
able experimentally, total electronegativity (based on Pauling
electronegativities), atomic size difference (based on radii of
each constituent element), average atomic volume, and mixing
entropy. Chen et al.[347,351] based their descriptors on the funda-
mental characteristics of the elements such as atomic number,
metallic radius, and heat of fusion, as well as thermodynamic
and kinetic parameters such a mixing enthalpy, normalized mix-
ing entropy, normalized mismatch entropy, Gibbs free energy of
mixing, average atomic volume, and viscosity, according to linear
and reciprocal mixing rules. Liu et al.[353] initially selected 23
parameters as candidates for determining GFA, including
electronegativity difference, atomic size difference, theoretical
density, enthalpy of mixing, mismatch entropy, configurational
entropy, bulk modulus, and valence electron concentration, some
of which were physical properties and others which were calcu-
lated parameters. Xiong et al.[320] used a three-step feature-
selection method to screen the normalized feature candidates
in their GFA and maximum amorphous diameter dataset.
This involved the selection of first-generation features by corre-
lation-based feature selection from among the feature candi-
dates, followed by the selection of second-generation features
by comparison of the performance of the variance threshold
and the ReliefF algorithm,[354] and finally the determination of

Table 3. Currently available amorphous alloy databases.

Dataset Reference

https://citrination.com/datasets/156839/ [323]

https://citrination.com/datasets/198590/ [345]

https://github.com/usnistgov/HTE-NiTiAl [326]
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the final feature subset by using wrapper methods (greedy search
algorithms). Feng et al.[346] used three types of features or
descriptors: 1) statistical information of component properties
(i.e., the maximum/minimum/average atomic radius, Pauling
electronegativity, elemental bulk modulus, elemental work func-
tion, melting point); 2) composition vectors; and 3) parameters
derived from empirical criteria such as mixing entropy, mixing
enthalpy, atomic size difference, electronegativity difference, and
valence electron concentration. Cai et al.[355] used convolutional
deep learning algorithms to automatically build a set of descrip-
tors that are relevant to predict a required output.

It is important to mention that when you have too many differ-
ent features or descriptors, especially compared to the number of
training examples (data used to train a deep learning algorithm), it
may be desirable to reduce the dimensionality of the features to
avoid overfitting, a condition which occurs when a statistical
model fits exactly against its training data. When this happens,
the algorithm unfortunately cannot perform accurately against
unseen data, defeating its purpose. In this case, techniques such
as principal component analysis (PCA)[356] can be applied to
reduce the dimensionality of the feature vectors, possibly leading
to improved model performance.

3.4. Artificial Intelligence Algorithms

The choice of AI algorithm, either a machine learning or a deep
learning algorithm,[324,343,357] is a critical step that greatly affects
the prediction accuracy, and there is no single algorithm that is
appropriate for all tasks. Indeed, selecting an AI algorithm depends
on the type of data and the underlying problem to be solved. The
algorithm usually has two types of parameters to be configured.
First, the parameters for its own configuration specifying structure,
architecture, type of learning core function, types of data operations,
among others; and second, the parameters (so-called hyperpara-
meters) that can be adjusted during the learning process. The hyper-
parameters have different ranges and values. Depending on the
values of the hyperparameters, the algorithm presents different per-
formance values. Undertaking a performance analysis of the hyper-
parameters and their relation to the algorithm results is called a grid
search. This method performs an exhaustive search for the best
combination of hyperparameters for the AI algorithm.[358,359]

AI algorithms follow learned (i.e., preprogrammed) rules to
make decisions or generate their own rules through example-based
learning, which allows them to establish their own patterns of data
representation.[360,361] These patterns allow algorithms to perform
well, to some extent, in solving problems of material properties pre-
dictions,[362] classifying new sets of materials, or creating new types
of amorphous materials.[319] The “learning” stage can be done in
supervised, unsupervised, reinforcement, and hybrid formats.

Supervised learning aims to develop a pattern from the train-
ing dataset. Once the algorithm is trained, testing can be exe-
cuted by introducing new data (test data) to perform, for
example, a prediction task. For this learning, there is prior knowl-
edge of the desired output y from the input dataset. A function
f̂ ð•Þ is created that approximates the behavior of a desired func-
tion f ð•Þ, such that for the desired output y ¼ f ðxÞ, an estimated
output ŷ ¼ f̂ ðxÞ is obtained, thus ŷ ≅ y. The desired output
belongs to the set of classes of alloys that are defined before

learning starts, i.e., y ∈ f1, :::,Cg, where C equals the total num-
ber of existing classes of alloys. Readers can find more details in
the work of Muhammad and Yan.[363]

Unsupervised learning aims to develop patterns to create clas-
ses from the training dataset. Once the algorithm is trained, an
alloy class detection task (or other tasks) can be used for testing.
For this learning, there is no prior knowledge of the output. That
is, the input alloy data do not have a label or name of its expected
alloy class type in the output. In this learning, a function f̂ ð•Þ is
created that separates the inputs of the dataset x into C distinct
classes of alloys, based, for example, on the similarity of the
descriptors (i.e., the fundamental characteristics of the elements
of the alloy). More detailed information can be found in the work
of Chali et al.[364] and Jo et al.[365]

Reinforcement learning aims to develop patterns based on the
changes presented in the training dataset during the learning
process.[366,367] Once the algorithm has been trained, it can be
tested by introducing changes presented in the new data (test
data) to work, for example, on a classification task for amorphous
and nonamorphous alloys. In reinforcement learning, functions
f̂ kð•Þ are created that approximate the behavior of a desired func-
tion f ð•Þ, such that for the desired output y ¼ f ðxÞwe obtain a set
of estimated outputs ŷk ¼ f̂ kðxÞ with k= {1, 2,…, j}. From the set
of estimated outputs, a selection is made based on the changes
presented in the training dataset. For the alloy classes that make
up the data, more alloy information is added to these classes that
will help in the learning process. This selection of outputs
fŷ1, ŷ2, :::, ŷjg is realized by maximizing a reward function ĝ such
that fŷk1 , ŷk2 , :::, ŷkjg∀j ∈ maxi ĝ. Then, if the approximation is

successful, these selected outputs fŷk1 , ŷk2 , :::, ŷkjg∀j will gain

confidence through the reward function. In other words, rein-
forcement learning makes use of data exploration techniques
to analyze the changes presented in the dataset during the learn-
ing process, and the output is generated according to the maxi-
mum possible reward to the selected estimated outputs.

Table 4[319–326,342–347,350–352,357,362,368–378] lists AI efforts in
predicting properties, classifying new sets of materials, and cre-
ating new types of amorphous alloys. Each of the algorithms
described in this table is used with a training set formed by a
certain number of features (descriptors of alloy composition),
or input parameters, specified by each relevant publication.
For training the AI algorithm, the supervised technique is most
often used. Most of the studies use cross-validation techniques
with tenfold repetition to obtain the artificial intelligence model.
Also, most use libraries that already have the AI methods or algo-
rithms implemented in some programming language. The use
of these libraries is only required to configure the algorithms. For
example, Scikit-learn[379] is a library in Python language for use
in machine learning, data mining, and algorithms to process or
filter data. Scikit-learn is one of the most used libraries because it
has an easy-to-use programming interface and allows different
modules to be used in a Python-based project.

To be noted, the training model of most of the AI algorithms
uses the k-fold cross-validation technique,[380] which is a resam-
pling process.[381] With this cross-validation technique, an algo-
rithm can be evaluated even with limited data.[348] In this case, a
percentage of the training data set (i.e., the validation subset) is
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Table 4. Main artificial intelligence algorithms used for amorphous metals. Definitions: C, classification; P, prediction; MG, metallic glass; DT, decision
tree; RF, random forest; SVM, support vector machine; LR, logistic regression, KNN, k-nearest neighbor; GBDT, gradient boosted decision tree; XGBoost,
eXtreme gradient boosting; GFA, glass-forming ability; CV, cross-validation; AM, forming amorphous state; CR, forming crystalline state; VGG, visual
geometry group; CNN, convolutional neural network; MRF, materials recovery facility; MLR, multiple linear regression; CBNN, correlation-based neural
network; GKRR, Gaussian kernel ridge regression; GB, gradient boosting; PCA, principal component analysis; KNC, k-nearest neighbor classifier; DTR,
decision tree regressor; RFC, random forest classification; SVC-RBF, radial basis functions; XGBC, gradient boosted decision trees; MLCP, multi-label
classification and prediction; FA, firefly algorithm; SVR, support vector regression; RQGPR, ration quadratic kernel-based Gaussian process regression;
ExpGPR, exponential kernel Gaussian process regression; CFS, chronic fatigue syndrome; PCC, Pearson correlation coefficient; SBS, sequential backward
selection; GP, Gaussian process. ✓: the most frequently used AI algorithms in materials science.

PurposeReference Number of
elements in

alloy
composition

Number of alloys in
dataset

Target Database
input

parameters

AI algorithms Training model Training
technique

Library

C and P [357] Ternary 5706 MG and non-MG 30 DT, RF✓, SVM, LR, AdaBoost Grid-search
tenfold CV

Supervised Scikit-learn

P [324] Variety 660 Dmax Tg, Tx, Tl,
Dmax

KNN, RF, GBDT, XGBoost✓ Grid-search
tenfold CV

Supervised Scikit-learn

P [347] Ternary 7200 GFA, Trg 20 RF✓ Tenfold CV Supervised Weka

P [351] Ternary 7700 GFA, critical casting thickness
Tmax

16 RF✓ CV Supervised MATLAB
2020

C and P [346] Variety 16 250 AM, CR, GFA, critical cooling rate – VGG-like CNN✓ Tenfold CV Supervised –

P [322] 3–9 480 Dmax: thicknesses between 0.055
and 18mm

32 MRF, TreeBoost, MLR✓, tree
boosting, XGBoost✓ (for
nonlinear dependencies)

Tenfold CV Supervised Statistical
software R

P [368] Variety 810 GFA, Dmax 32 RF regression model Grid-search,
k-fold CV

Supervised Scikit-learn

P [369] Variety 667 K criterion, Dmax 37, 11 Neighborhood components
analysis (NCA)

Tenfold CV Supervised –

P [343] Quaternary 7950 GFA, Tg, Dmax – CBNN – Supervised –

P [370] Variety 747 GFA, Dmax – GKRR, RF✓, GB, PCA, PCA-
LASSO, PCA-GKRR,

log10(Dmax)

Grid-search,
fivefold CV

inner, fivefold
CV outer

Supervised Scikit-learn

C and P [342] Variety 695 GFA 25 KNC, DTR, RFC, SVC-RBF,
XGBC, XGBoost✓, MLCP

Tenfold CV Supervised Mlstend,
Scikit-learn

C and P [344] Variety 6732 C: MG and non-MG 8 C: FA, RF, SVM, KNN,
XGBoost✓

Grid-search,
fivefold CV

Supervised Scikit-learn

P: GFA, Dmax

P: FA, fused model
approximation (RF, SVM,

KNN, XGBoost)

P [371] 5,6,7 7200 P: GFA, critical casting thickness
(tmax)

25 Multilateral-based neural
network

– Supervised Weka

P [350] Ternary 6828 GFA, Trg, elastic modulus k 25 SVR – Supervised –

C and P [345] Ternary, 4, 5 5000 MG, 2000 NO-
MGþ 3000 Virtual

NO-MG

P: GFA, lnD 8 C: adaptive boosting Tenfold CV Supervised MATLAB
R2020C: MG and non-MG (AB)✓, SVM, KNN

P: ANN, SVR, RQGPR,
ExpGPR, RF✓

P [352] – 442 GFA, Dmax 4 RF Tenfold CV Supervised Scikit-learn

P [372] Variety and Fe-
based

667 GFA, Dmax 10 Linear regression – – –

P [320] – 6471, 5934 GFA, Dmax 20 RF✓, CFS-GFA, PCC, SFS,
SBS

100-fold CV – Weka

C and P [321] Fe-based 252 – 30 C: XGBoost Fivefold CV – Scikit

P: XGBoost

P [326] Alloy system
Ni–Ti–Al

177 GFA 23 RF✓ – Supervised Magpie
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separated from the training data set to be used in the test and vali-
dation of the algorithm, and the remaining percentage data (i.e., the
training subset) is used in the training of the algorithm. One of the
techniques of cross-validation is called k-fold, where the value of k
indicates the number of separate subsets of data, ensuring that the
data in each subset are well distributed and balanced. The value of k
is generally assigned between 5 and 10. It has been observed that for
large values of k, the algorithm has smaller biases, but overfitting
can occur due to large variance values.[382] The process consists of
repeating the training and validation of the algorithm in such a way
that each k-fold subset of data is used in the training subset. The
metric of this technique is the average of the recorded error scores
at each repetition. As can be noted in Table 4, the most frequently
used AI algorithms in materials science are random forest and
eXtreme Gradient Boosting (XGBoost). A discussion of these algo-
rithms and why they are frequently used is presented below.

3.4.1. Random Forest

Random forest is a supervised machine learning algorithm based
on a set of independent decision tree algorithms that are trained

with random sets of training data and their results combined to
obtain the best performance. The algorithm follows what is
known as a bagging structure,[383–385] which is organized so that
each decision tree is trained with a random subset of data xi from
the training set X. Thus, errors between decision trees are com-
pensated to reduce variance. The global result for the solution of
the problem, whether it is prediction or classification of materi-
als, is obtained by assembling the results of each of these deci-
sion trees, resulting in high performance. Generally, the random
forest algorithmmodels the training set well and can obtain good
results for new data by setting an optimal configuration for the
algorithm through configuring and establishing the best hyper-
parameters of the model, including setting the depth of the tree,
establishing the minimum number of samples that a final node
must have, and establishing the maximum number of final
nodes, among others. However, care must be taken with the
results in high-dimension trees, as the overall result may be
biased. This can come about because the algorithm may not
be able to fit the training data properly when the depth level
is too low. The algorithm may have a low variance and a low
error, but certain patterns may not be characterized because

Table 4. Continued.

PurposeReference Number of
elements in

alloy
composition

Number of alloys in
dataset

Target Database
input

parameters

AI algorithms Training model Training
technique

Library

C [373] Binary alloy 720 phase region
contours and about
7100 text region

contours

Classify between phase contours
and text contours

GBT, PCA, Pearson
correlation coefficient

– – –

P [374] Variety 219 elastic moduli,
442 Dmax

Elastic moduli, Dmax – SVR, GP CV Supervised Weka

P [362] Al–Co–Cr–
Cu–Fe–Ni
system

155 Estimate the hardness – LRM, PRM, SVR-LK, SVR-PK,
SVR-RBFK, RTM, BPNN, knn

CV – –

C [323] Variety 6315: GFA, 5916:
Dmax, 621: ΔTx

GFA, Dmax, ΔTx, three labels: can
form (1) BMG, (2) ribbon, or (3)

no glass-forming ability

– RF✓, REPTrees, and several
ensembling techniques

Tenfold CV Supervised Weka

– [319] Co–V–Zr
ternary

6780 GFA metal–metal and metal–
metalloid glasses

– RF Tenfold CV – Weka

– [375] Variety 118 Phase selection, Multiprincipal
element alloys

5 RNA Fourfold CV Supervised Panda

Tensorflow

C [376] 2 3 Identify the fractal structure at the
atomic level, relationship between

dynamical properties and Tg

– Hierarchical cluster analysis,
also called segmentation

analysis or taxonomy analysis

– Unsupervised
machine
learning

Statistic
and

Machine
Toolbox

P and C [325] Ternary 25 085 crystalline,
5369 metallic glass

P: bandgap energy, volume,
formation energy.

145 Decision trees, Rotation
forest, RF✓, 10 ML

algorithms

Tenfold CV Supervised Weka

Magpie
P: GFA.

C: can and cannot form a metallic
glass

– [377] Variety 410 GFA, Dmax – Genetic programming – – Fortran
90/95

C [378] Variety 594 GFA 11 PCA – Supervised MATLAB
R2010a
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of the low depth level, which means that a global optimum may
not be reached.

This algorithm is used to solve classification and prediction
problems. In the case of classification, the results of each of
the decision trees are combined using a soft-voting technique.
This means that the results with the highest value in each deci-
sion tree are given the highest weight. In the case of prediction or
regression, the results of each of the decision trees are combined
through the mathematical operation of the arithmetic mean. For
best performance, some combinations of hyperparameter values
can be followed, so-called regularization proposals found in the
literature, but it is also possible to create unique hyperparameter
regularizations by combining the results and decisions of each
set of decision trees. Finally, this algorithm is robust when there
are a large number of decision trees because their results are
combined to obtain the best performance.[386]

3.4.2. XGBoost

XGBoost is a supervised machine learning algorithm consisting
of an optimized gradient boosting decision tree structure.[387]

The algorithm uses a training dataset xi to obtain a target variable
yi as an output using a sequential set of decision trees, with each
tree designed to fit the residual of previous trees, allowing reduc-
tions in variance and bias. That is, each tree corrects the errors
made by the preceding trees and learns from them to output a
better result. To minimize errors when adding new trees, the gra-
dient descent algorithm is used. Trees are added until no further
improvement can bemade and XGBoost processes the data in sev-
eral blocks in parallel. The algorithm is used in both classification
and prediction problems. For a classification problem, a working
decision tree assigns more weight to the misclassified samples
and less weight to the well classified ones of the previous decision
tree. For a prediction problem, a decision tree assignsmore weight
to the predictions having the largest mean square error of the pre-
vious decision tree.[388,389] XGBoost is also being used to predict
processing outcomes, thus connecting manufacturing to compu-
tational predictions.

3.5. Applications

Some applications using the most widely used AI algorithms
(random forest and XGBoost) are described in this section.
Chen et al.[347] used the random forest algorithm to improve
the GFA through the prediction of the reduced glass transition
temperature, Trg, using a group of ternary Mg–Cu–Y alloys. To
evaluate glass formation in this group of alloys, they indicated
that the Trg prediction value should be greater than 0.4 and
obtained an average Trg prediction of 0.635. The authors high-
light that through the random forest algorithm they have been
able to explore good glass formers without the need to perform
numerous trial and error experiments. Similarly, Chen et al.[351]

applied the random forest algorithm to obtain the GFA through
the prediction of the Trg and the critical casting thickness using a
group of ternary Fe–B–Co alloys, as well as the design of new
glassy alloys. Zhuang et al.[357] describe five machine learning
models to predict the glass formation of metallic glasses using
the Scikit-learn library, focusing on optimizing the data

description using Pearson’s correlation coefficient (Rx1,x2) and
the coefficient of variation (Cv). The study focuses on twelve ele-
mental, thermodynamic, physical, and chemical parameters and
shows that the random forest classifier algorithm with tuned
hyperparameters presents the best overall performance of
90.02% for classification of metallic and nonmetallic glasses.
Figure 18 details a comparison of predicted glass formation
by this random forest optimal model and the measured glass for-
mation reported on the ternary system Cu–Mg–Nd. Ward
et al.[323] explored three machine learning methods from the
Weka library, including the random forest method, to predict
the GFA, Dmax, and ΔTx, utilizing a database of 8315 metallic
glasses and defining attributes based on statistics of elemental
properties of the alloys. Figure 19a shows the performance of
the random forest classification model for obtaining the GFA
with an accuracy of 89% using a receiver operating characteristic
curve. Figure 19b,c shows the values of Dmax and ΔTx measured
experimentally and compared to the values predicted by the random
forest method. A correlation coefficient of R= 0.89 is indicated for
Dmax and a mean absolute error of 8.8 is indicated for ΔTx. On the
other hand, Mastropietro et al.[322] used the XGBoost algorithm to
make a prediction of the maximum critical casting sizes of Fe-based
BMGs. The model was characterized by a predicted R2 of 0.71 and
can be used for a priori predictions of critical casting sizes based
solely on the atomic composition of the alloy.

While not focusing on metallic glasses, there are other studies
that are looking at XGBoost to predict melt pool temperature (see
Section 2.2.3), which certainly has applicability in the 3D printing

Figure 18. Comparison of a) predicted glass formation and b) measured
glass formation for a Cu–Mg–Nd system. Reproduced with permis-
sion.[357] Copyright 2021, Elsevier.
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of metallic glasses. For example, Zhang et al.[390] performed a
comparative analysis between experimental measurements of
melt pool temperature with respect to those predicted by
XGBoost and a long short-term memory (LSTM) algorithm on
a nickel-based CarTech 718 superalloy. Figure 20 illustrates
the melt pool temperature with respect to time in a specimen
heated using a 350W laser. It is noted that XGBoost exhibited
reasonable predictive capabilities, although the performance of
LSTM (not shown) was found to be higher. Nonetheless, the

computational efficiency of XGBoost was approximately 400
times faster compared to LSTM. Thus, performance and effi-
ciency are competing considerations in any AI algorithm. In
the work of Xiaowei et al.[324] the XGBoost algorithm presents
the highest GFA prediction performance from a database of
660 amorphous alloys, using Tg, Tx, Tl, and Dmax as attributes.
For the three temperatures, the authors specify a high Pearson
correlation coefficient (>0.97) between them, whereas they
describe a low Pearson correlation coefficient (<0.11) between
the temperatures and Dmax. Figure 21 illustrates the predicted
andmeasuredDmax. Here, the closer the points are to the diagonal
dashed line, the better the predictions. The XGBoost algorithm
has the highest value of the correlation coefficient (R= 0.755)
and the smallest root mean square error (RMSE= 3.277) for
the test set, which means that it has the highest level of accuracy
among all the models considered in this work.

Finally, options to merge some machine learning methods
have also been proposed, as described by Zhang et al.[344] who
evaluate five machine learning methods of the Scikit-learn
library. The XGBoost and Fusion methods obtain the highest
accuracy values for the prediction of good glass formers and
Dmax, resulting in a coefficient of determination>0.77. The data-
base has 6732 alloys with information on eight physical and
chemical attributes. Figure 22a presents the experimental results
of glass formers in the Al–La–Ni ternary alloy group, and

Figure 19. Performance of the Random Forest model for predicting a) the
glass forming ability, b) critical casting diameter, and c) supercooled liquid
range, using a 10-fold cross-validation test. Reproduced with permis-
sion.[323] Copyright 2018, Elsevier.

Figure 20. Predicted and observed melt pool temperature in a nickel-
based CarTech 718 superalloy during laser engineered net shaping using
350W laser power and 11mm s�1 scan speed. Reproduced with permis-
sion.[390] Copyright 2021, Elsevier.

Figure 21. Comparisons of predicted and measured Dmax obtained using
an XGBoost algorithm. Reproduced with permission.[324] Copyright 2021,
Elsevier.
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Figure 22b,c illustrates the predictions from XGBoost and ran-
dom forest.

3.6. Artificial Intelligence Model Evaluation

The most frequently used metrics for model evaluation are the
mean square error and the R-squared (coefficient of determina-
tion). The mean square error represents the average of the square
of the difference between the actual value and the predicted
value. This can be interpreted as the fit of the AI algorithm to
the data, meaning how close the values given (predicted) by
the algorithm are to the actual values. The value of this metric
will always be positive, and the value of the perfect error is 0.
This metric is a derivable function, which makes it applicable
to efficient optimization algorithms.[391–393] The criterion of

R-squared is often used for descriptive purposes and it shows
the variance of the response of the algorithm relative to the input
values of the algorithm. A value close to 1 indicates that the AI
algorithm is a better fit to the data being represented.[394,395]

4. Final Remarks and Outlook

Amorphous alloys are now becoming commercially relevant,[396]

after several decades of basic research, despite their generally
higher cost compared to crystalline alloys. As production
increases and their use becomes more widespread, one would
expect their cost to decrease and new markets to open. As, gen-
erally, their hardness is very high compared to the requirements
for commercial products, postprocessing (i.e., cutting, drilling,
polishing, etc.) is time-intensive and difficult. A goal for some
application would then be to reduce hardness in these alloys
to improve processability. In this regard, artificial intelligence
is having significant impact in the field. Reflecting this trend
is the growing number of repositories of amorphous alloys that
will allow reproduction of experiments with AI models and the
prediction of new compositions. However, there are still current
challenges to overcome in the field, such as improving prediction
accuracy, reducing dependence on a large amount of data,
improving parameter optimization, and finding reliable descrip-
tors that are related closely to the target properties. On the issue
of data descriptors, Zhou et al.[345] mention that data descriptor
values can also offer important hints about hidden (unknown)
structural features of designed alloys, which are also validated
by experiments. These findings are important, as they can pave
the way toward the computational discovery of chemically com-
plex metallic glasses.
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[308] A. Păduraru, A. Kenoufi, N. P. Bailey, J. Schiøtz, Adv. Eng. Mater.

2007, 9, 505.
[309] J. A. Reyes-Retana, G. G. Naumis, J. Non-Cryst. Solids 2015, 409, 49.
[310] X. Hui, H. Z. Fang, G. L. Chen, S. L. Shang, Y. Wang, J. Y. Qin,

Z. K. Liu, Acta Mater. 2009, 57, 376.
[311] S.-P. Ju, H.-H. Huang, J. C.-C. Huang, J. Non-Cryst. Solids 2014,

388, 23.
[312] R. Atta-Fynn, D. A. Drabold, P. Biswas, J. Non-Cryst. Solids X 2019, 1,

100004.
[313] T. A. Weber, F. H. Stillinger, Phys. Rev. B 1985, 31, 1954.
[314] R. Tarumi, A. Ogura, M. Shimojo, K. Takashima, Y. Higo, Jpn. J. Appl.

Phys., Part 2 2000, 39, L611.
[315] P. Ballone, S. Rubini, Phys. Rev. Lett. 1996, 77, 3169.
[316] O. Rodríguez de la Fuente, J. M. Soler, Phys. Rev. Lett. 1998,

81, 3159.
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