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1 Intro duction

This paper is part of a line of research on the computability-theoretic and
reverse-mathematical strength of versions of Hindman’s Theorem [6] that be-
gan with the work of Blass, Hirst, and Simpson [1], and has seen considerable
interest recently. We assume basic familiarity with computability theory and
reverse mathematics, at the level of the background material in [8], for in-
stance. On the reverse mathematics side, the two major systems with which
we will be concerned are RCA 0 ,  the usual weak base system for reverse math-
ematics, which corresponds roughly to computable mathematics; and ACA 0 ,
which corresponds roughly to arithmetic mathematics. For principles P  of
the form (8X ) [ (X )  !  (9Y ) (X ; Y )], we call any X  such that ( X )  holds an
instance of P , and any Y such that (X ; Y ) holds a solution to X .

We begin by introducing some related combinatorial principles. For a set
S , let [S ]n be the set of n-element subsets of S . Ramsey’s Theorem ( RT )  is
the statement that for every n and every coloring of [N]n with nitely many
colors, there is an innite set H  that is homogeneous for c, which means that
all elements of [H ]n have the same color. There has been a great deal of work
on computability-theoretic and reverse-mathematical aspects of versions of
Ramsey’s Theorem, such as RT n ,  which is R T  restricted to colorings of [N]n

with k many colors. (See e.g. [8].)
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support by NSF grant DMS-1600543, and Reitzes by NSF grant DGE-1746045.

1



2

3

k

+

The Thin Set Theorem is another variant of Ramsey’s Theorem that has
been studied from this perspective. It follows easily from Ramsey’s Theorem
itself.

Denition 1.1. Thin Set Theorem (TS): For every n and every coloring c
: [N]n !  N, there is an innite set T  N and an i  such that c(s) =  i  for all s
2  [T ]n. We call such a set T a thin set for c. TSn  is the restriction of TS  to
colorings of [N]n.

Jockusch [9] showed that there is a computable instance of RT 3  such that
any solution computes the halting problem ;0. As shown by Simpson [18],
Jockusch’s construction can also be used to prove that RT 2  (and hence RT )
implies AC A 0  over RCA 0 .  Wang [19] showed that TS, on the other hand, does
not have this much power. Indeed, it has a property known as strong cone
avoidance, which implies in particular that for every coloring c : [N]n !  N
and every noncomputable X ,  there is an innite thin set for c that does not
compute X .  It also follows from strong cone avoidance that TS  does not
imply AC A 0  over RCA 0 .

As shown by Seetapun [17], RT 2  also fails to imply ACA 0 .  Indeed, Liu [11,
12] showed that it does not imply the weaker system WKL0 , which consists of
RC A 0  together with Weak Ko•nig’s Lemma, or the even weaker system
WWKL0  consisting of RC A 0  together with Weak Weak K•onig’s Lemma.
Patey [14] showed that the same is true of TS.

We now turn to Hindman’s Theorem. For a set S   N, let fs(S ) be the
set of sums of nonempty nite sets of distinct elements of S .

Denition 1.2. Hindman’s Theorem (HT): For every coloring of N with
nitely many colors, there is an innite set S   N such that all elements of fs(S )
have the same color.

Blass, Hirst, and Simpson [1] showed that such an S  can always be com-
puted in the ( !  +  1)st jump of the coloring, and that there is a computable
coloring such that every such S  computes ;0. By analyzing these proofs
they showed that HT is provable in AC A 0  (the system consisting of RC A 0

together with the statement that ! th jumps exist) and implies AC A 0  over
RCA 0 .  The exact computability-theoretic and reverse-mathematical strength
of HT remains open.

There has recently been interest in studying restricted versions of HT
such as the following. (See e.g. [2].)
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Denition 1.3. HT 6 n  is HT restricted to sums of at most n many elements, and
H T = n  is HT restricted to sums of exactly n many elements. HT 6 n  and H T = n

are the corresponding restrictions to colorings with k many colors.

Dzhafarov, Jockusch, Solomon, and Westrick [5] showed that HT 6 3  im-
plies A C A  over R C A  . Carlucci, Kolodzieczyk, Lepore, and Zdanowski [3]
did the same for HT6 2 .  These principles are also complex in a more heuris-tic
sense: There is no known way to prove even HT 6 2  other than to give a
proof of the full HT, which has led Hindman, Leader, and Strauss [7] to ask
whether every proof of HT 6 2  is also a proof of HT. This question can be
formalized by asking whether HT 6 2  (or HT 6 2 )  implies HT, say over R C A  .
A  related open question is whether HT 6 2  is provable in ACA 0 .

The principle HT = 2  is quite dierent, as HT = 2  follows easily from RT 2 .
Indeed, it was not clear even whether this principle is computably true
until the work of Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and
Westrick [4], who showed that it is not, and that indeed there is a com-
putable instance of HT = 2  with no 2 solutions. (The same had been shown for
R T  by Jockusch [9], who also showed that every computable instance of
RT 2  has a 0 solution, which implies that the same is true of HT= 2 .)  They
also showed that there is a computable instance of HT = 2  such that every
solution has DNC degree relative to ;0, and adapted this proof to show that
HT = 2  implies the principle RRT 2 ,  a version of the Rainbow Ramsey
Theorem, over RCA 0 .  (See Section 3 for denitions.)

In this paper, we study further versions of Hindman’s Theorem, obtained
by combining HT and its variants with the Thin Set Theorem.

Denition 1.4. thin-HT: For every coloring c : N !  N, there is an innite set S
N such that fs(S ) is thin for c. We denite restrictions such as thin-HT6n

analogously.

In Section 2, we give similar lower bounds on the complexity of thin-HT
as Blass, Hirst, and Simpson [1] gave for HT, which suggests that thin-HT
behaves like HT at least to some extent. Indeed, it seems possible that thin-
HT is equivalent to HT over RCA 0 .  The situation for restricted versions is
dierent, however. Clearly, thin-HT=n follows from TSn , but in fact so does
thin-HT6n, due to the following fact.

Lemma 1.5. For each n and k, the following holds in RC A 0  +  TSn : Given
ci : [N]mi !  N for i  6  k, with mi 6  n for all i  6  k, there is a single innite set T
and a j  such that ci (s) =  j  for each ci and each s 2  [T ]mi with i  6  k.
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Proof. We use the fact that TSn  implies TSm for each m <  n, and proceed
by external induction to prove the stronger assertion that for each j  6  k,
RC A 0  +  TSn  proves that there is an innite set T and an innite set C  such that
ci(s) 2= C  for each ci and each s 2  [T ]mi with i  6  j .

We do the base and inductive cases simultaneously. For j + 1  >  0, assume
that that the assertion holds for j  and let T and C  be as above. For j + 1  =  0,
let T =  C  =  N. Dene d : [T ]mj + 1       !  N as follows. Partition C  into
innitely many innite sets A0; A1; : : : . Let d(s) =  0 if either cj +1 (s) 2  A0  or
cj +1 (s) 2= C , and for i  >  0, let d(s) =  i  if cj +1 (s) 2  Ai .  By TSm j + 1 ,  there is
an innite U  T that is thin for d. Let i  2= d([U ]mj + 1 ) and let D  =  Ai .  Then U and
D  are innite sets such that ci (s) 2= D  for each ci and each s 2  [U ]mi with i  6
j  +  1.

This lemma allows us to get thin-HT6n from TSn  by taking a coloring c :
N !  N and considering the colorings that map fa0; : : : ; aj g to c(a0 + + a j )  for
each j  <  n.

There are also dierences that have nothing to do with computability
theory and reverse mathematics between thin-HT6n on the one hand, and
thin-HT and HT 6 n  on the other. The former remains true if we allow sums
of non-distinct elements, but it is not dicult to show that the latter two do not.
Similarly, the former remains true for colorings S  !  N, where S   N is any
innite set, while the latter two again do not.

Nevertheless, even thin-HT=2 still has a signicant level of complexity. In
Section 3, we show that all of the lower bounds mentioned above obtained
in [4] for HT = 2  still hold for thin-HT=2.

In Section 4 we mention some open questions arising from our results, and
briey discuss version of HT obtained by combining it with thin set theorems for
colorings with nitely many colors.

2 Enco ding ;0 into t h i n - H T

In this section, we show how to build on the proof of Theorem 2.2 of Blass,
Hirst, and Simpson [1], which shows that there is a computable instance of
HT such that every solution computes ;0, to show that the same is true of
thin-HT. We then derive a reverse-mathematical consequence of our proof.

Theorem 2.1. There is a computable instance of thin-HT such that every
solution computes ;0.
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Proof. As in the proof of Theorem 2.2 of [1], we write each number x  >  0 as
2n0 +   +  2nk  with n0 <   <  nk, and dene (x)  =  n0 and (x)  =  nk. A  set S  has
2-apartness if for every x; y 2  S  with x  <  y, we have (x)  <  (y). Lemma 4.1 of
[1] shows that from any innite S  we can compute an innite set T with 2-
apartness such that fs(T )  fs(S ) (and hence if fs(S ) is thin for a coloring, so is
fs(T )).

Let x  =  2n0 +   +  2nk  with n0 <   <  nk. Say that (ni ; ni+1 ) is a short gap in x
if there is an m <  ni such that m 2= ;0 [ni+1] but m 2  ;0. Say that (ni ; ni+1 )
is a very short gap in x  if there is an m <  ni such that m 2= ;0 [ni+1] but m 2
;0[nk]. Let sg(x) and vsg(x) be the numbers of short gaps and very short gaps
in x, respectively. Note that sg is not a computable function, but vsg is.

Fix a bijection between N and the set of pairs (p; i) where p is prime and
1 6  i  <  p, and identify N with this set via this bijection. Dene the coloring c
by letting c(x) =  (p; i) where p is the least prime that does not divide
vsg(x) and vsg(x) =  i  mod p. We say that x  has color (p; i) if c(x) =  (p; i),
and we also say that x  has color (p; 0) or (p; p) if it has color (q; i) for some
q >  p, i.e., if every prime less than or equal to p divides vsg(x).

Let Y be such that fs(Y ) is an innite thin set for c. We can assume that Y
has 2-apartness, by Lemma 4.1 of [1], as mentioned above. This condition
ensures that if x; y 2  fs(Y ) and (x)  <  (y), and we express x  and y as sums of
sets F  and G  of distinct elements of Y , respectively, then F  and G  are
disjoint, and hence x  +  y 2  fs(Y ). Say that S   fs(Y ) is -bounded if there is
a bound on the values of (x)  for x  2  S  (which includes the case S  =  ; ) .
Note that fs(Y ) itself is not -bounded. Note also that the union of nitely
many -bounded sets is -bounded. Say that a color j  is almost absent from
fs(Y ) if the set of x  2  fs(Y ) that have color j  is -bounded. (This denition
includes the case j  =  (p; 0), or equivalently j  =  (p; p).)

Lemma 2.2. There are p and 0 6  i  <  p such that (p; i + 1) is almost absent
from fs(Y ) but (p; i) is not.

Proof. Let p be least such that there is a j  for which (p; j ) is almost absent
from fs(Y ), which exists since fs(Y ) is thin. If p =  2 then (p; j + 1 )  cannot be
almost absent, since every number has color (p; j ) or (p; j + 1).  Now suppose
that p >  2 and q is the preceding prime. Since (q; 0) is not almost absent
from fs(Y ) and every number that has color (q; 0) has color (p; j ) for some
j , there is some k such that (p; k) is not almost absent. In either case, since
having color (p; 0) is the same as having color (p; p), the lemma follows.
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Fix p and i  as in the above lemma.

Lemma 2.3. Let 1 6  j  <  p. Then S  =  f x  2  fs(Y ) : sg(x) =  j  mod pg is
-bounded.

Proof. Suppose S  is not -bounded. Let q0 <   <  qm 1 be the primes less
than p. Since there are only nitely many sequences (k0; : : : ; km 1) with ki <  qi,
there is such a sequence for which T =  f x  2  S  : (8 ‘  <  m) sg(x) =  k ‘  mod q‘g
is not -bounded.

Since j  =  0 mod p, and hence q0 qm 1 j  =  0 mod p, there is a multiple n
of q0 qm 1 such that nj =  1 mod p (where q0 qm 1 =  1 if p =  2). Since T
is not -bounded, there are x0 <   <  x n  1 2  T such that each (xk + 1 )  is
suciently large relative to (xk )  to ensure that ((xk ); (xk + 1 )) is not a short
gap. Then the short gaps in x0 +   +  x n  1 are exactly the short gaps in
x0; : : : ; xn 1, so sg(x0 +   +  x n  1) =  sg(x0) +   +  sg(xn 1). The latter is equal
to nj mod p =  1 mod p, since each x ‘  is in S , and is also equal to nk‘ mod
q ‘  for each ‘  <  m, and hence equal to 0 mod q ‘  for each ‘  <  m, since n =
0 mod q‘ .

Since (p; i) is not almost absent from fs(Y ), there is a y 2  fs(Y ) that has
color (p; i) such that (y) >  (xn  1), and every number less than (xn  1) that is
in ;0 is already in ;0[(y)]. Note that vsg(y) =  0 mod q ‘  for each ‘  <  m, as
otherwise c(y) would be of the form (q‘ ; k) for some 1 6  k <  q‘ . Now vsg(x0

+ + x n  1 + y )  =  vsg(y) + sg(x0 + + x n  1), which is equal to i  +  1 mod p, and to
0 mod q ‘  for all ‘  <  m. So x0 +   +  x n  1 +  y has color (p; i +  1). As we can
choose x0 so that (x0 ) is arbitrarily large, (p; i +  1) is not almost absent from
fs(Y ), contradicting the choice of i.

So by removing nitely many elements from Y if needed, we can assume
that p divides sg(x) for all x  2  fs(Y ). We can now argue as in the proof of
Claim 2 in the proof Theorem 2.2 of [1] to compute ;0 from Y : Given n, nd x; y
2  Y such that x  <  y and n <  (x). The short gaps in x  +  y are the ones in x,
the ones in y, and possibly ((x); (y)). But if the latter is a short gap, then sg(x
+  y) =  sg(x) +  sg(y) +  1, which is impossible since p divides all three
numbers. Thus n 2  ;0 iff n 2  ;0[(y)].

The above proof can be carried out in relativized form in RC A 0  except
for two issues: One is that in RC A 0  we cannot show that the union of
nitely many -bounded sets is -bounded, which in general requires the 1-
bounding principle. Another is that being almost absent is a 2 condi-tion,
so we cannot conclude in RC A 0  that there is a least p such that there is
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a j  for which (p; j ) is almost absent from fs(Y ). Since 1-bounding follows
from 2-induction over RCA 0 ,  adding the latter to RC A 0  is sucient to get
around these issues, so we have the following.

Theorem 2.4. thin-HT implies AC A 0  over RC A 0  +  I2.

We do not know whether the use of I2 in this theorem can be removed.

3 Ha r d  Instances of t h i n - H T = 2

In this section, we show that all the lower bounds on the complexity of
HT = 2  obtained by Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and
Westrick [4] still hold for thin-HT=2. (Of course, all upper bounds on the
complexity of HT = 2  automatically hold for thin-HT=2, as the latter follows
easily from the former.) As in that paper, we use the computable version
of the Lovasz Local Lemma due to Rumyantsev and Shen [15, 16]. In par-
ticular, we use the following consequence of Corollary 7.2 in [16] given in
[4], with an addendum on uniformity as noted at the end of Section 4 of
[4]. This uniformity, which in [4] is used only to obtain results on Weihrauch
reducibility, will be essential in all our results, as their proofs will require
applying Theorem 3.1 innitely often.

Theorem 3.1 (essentially Rumyantsev and Shen [16]). For each q 2  (0; 1)
there is an M such that the following holds. Let F0; F1; : : : be a computable
sequence of nite sets, each of size at least M. Suppose that for each m >  M and
n, there are at most 2qm many j  such that jFj j =  m and n 2  F j ,  and that
there is a computable procedure P  for determining the set of all such j  given m
and n. Then there is a computable c : N !  2 such that for each j  the set F j  is
not homogeneous for c. Furthermore, c can be obtained uniformly computably
from F0; F1; : : : and P  (for a xed q).

We will also rely in this section on arguments in [4] when they carry
through in this case in an entirely analogous way.

We now introduce a notion of largeness that will be key to our iterated
applications of Theorem 3.1. As in [4], we will be diagonalizing against 2 sets,
so this notion will be dened in terms of sets that are c.e. relative to ;0. For a
set A  and a number s, we write s +  A  for the set fs  +  a : a 2  Ag. We write
W for the eth enumeration operator. Given e and s, for each x  2  We 

0[s],
let tx be the least t such that x  2  We 

0[u] for all u 2  [t; s]. (I.e.,
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tx measures how long x  has been in We 
0 .) Order the elements of We 

0[s] by
letting x   y if either tx <  ty or both tx =  ty and x  <  y. Let E e  [s] be the set
consisting of the least n many elements of W [s] under this ordering, or E n [s]
=  [0; n) if W ;0 [s] has fewer than n many elements. If there is an s such that E e
[t] =  E e  [s] for all t >  s then let E e  =  E e  [s].

Denition 3.2. For a binary function f ,  say that a set D  is f -large if for
all e and k such that E f ( e ; k )  is dened, we have jD \ (s + E f ( e ; k ) ) j  >  k for all
suciently large s.

Note that N is g-large for the function g(e; k) =  k, and that f -largeness
is preserved under nite dierence. The following lemma captures the key
property of this notion of largeness.

Lemma 3.3. From a binary function f  and an f -large set D ,  we can uni-
formly compute a binary function f  and a splitting D  =  D 0  t  D 1  such that
each D i  is f -large.

Before proving this lemma, let us derive some of its consequences, begin-
ning with computability-theoretic lower bounds on the complexity of thin-
HT=2. A  function f  is diagonally noncomputable (DNC ) relative to an oracle X
if f (e) =  e (e) for all e such that e (e) is dened, where e is the eth Turing
functional. A  degree is DNC relative to X  if it computes a function that is
DNC relative to X .  An innite set A  is eectively immune relative to X  if
there is an X-computable function f  such that if We  A  then
jWe j <  f (e).

Theorem 3.4 (Jockusch [10]). A  degree is DNC relative to X  if and only if
it computes a set that is eectively immune relative to X .

The proof of the following theorem shows how to obtain a hard com-
putable instance of thin-HT=2 from Lemma 3.3.

Theorem 3.5. There is a computable instance of thin-HT=2 such that any
solution is eectively immune relative to ;0 , and hence has DNC degree rel-
ative to ;0.

Proof. Let D 0  =  N and f0(e; k) =  k. Given D n  and fn ,  let f n  and D n  be
as in Lemma 3.3, let f n + 1  =  fn ,  and let D n + 1  =  Dn .  Note that the D n  are
uniformly computable. Let c(x) be the largest n 6  x  such that x  2  Dn .  Then
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c is a computable coloring of N. If c(x) =  n and x  >  n then x  2  D n  but
x  2= Dm  for m >  n, so x  2  D0 . Thus for each n, we have that the dierence
between c 1(n) and D 0  is nite, and hence c 1(n) is fn-large.

Let S  be a solution to c as an instance of thin-HT=2, and let n be such
that c(x +  y) =  n for all distinct x; y 2  S . For any e, if jW ;0 j >  fn (e; 1)
then E f n ( e ;1 )   W ;0 is dened, and hence c 1(n) \  (s +  E f n ( e ;1 ) )  =  ;  for all
suciently large s. In other words, if s is suciently large then there is an
x  2  E f n ( e ;1 )  such that c(x +  s) =  n. It follows that E f n ( e ;1 )  *  S , and hence
We 

0     *  S , since E f n ( e ;1 )   We 
0. Thus we conclude that if We 

0      S  then jW
j <  fn (e; 1). Since fn (e; 1) is computable as a function of e, it follows that
S  is eectively immune relative to ;0, and hence has DNC degree relative to ;0.

No innite 2 set can be eectively immune relative to ;0, so we have the
following.

Corollary 3.6. There is a computable instance of thin-HT=2 with no 0

solution.

It follows that thin-HT is not provable in WKL0 ,  since the latter has !-
models consisting entirely of 0 sets. It was noted in [4] that HT = 2  does not
imply WKL0 , and hence neither does thin-HT=2. Thus thin-HT=2 and WKL 0

are incomparable over RCA 0 .  In fact, as mentioned in the introduction,
Patey [14] showed that TS  does not imply WKL0 , or even WWKL0 , and we
can easily adapt the proof of Theorem 3.5 to thin-HT=n for any n >  2, so
we have the following.

Corollary 3.7. For each n >  1, both thin-HT=n and thin-HT6n are incom-
parable with (W)WKL0  over RCA 0 .

Arguing as in the proof of Corollary 3.6 of [4], we have the following.

Corollary 3.8. There is a computable instance of thin-HT=2 such that all
solutions are hyperimmune.

The reverse-mathematical analog of the existence of degrees that are DNC
over the jump is the principle 2-DNC, dened e.g. in Section 4 of [4]. Miller
[unpublished] showed that 2-DNC is equivalent, both over RC A 0  and in the
sense of Weihrauch reducibility, to the following version of the Rainbow Ram-
sey Theorem, which was shown by Patey [13] to be strictly weaker than TS2.
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Denition 3.9. RRT 2 :  Let c : [N]2 !  N be such that jc 1(i)j 6  2 for all i.
Then there is an innite set R  such that c is injective on [R]2.

As discussed in [4], the proof of Theorem 3.1 carries through in RCA 0 ,
from which it will follow that so does the proof of Lemma 3.3 that we will
give below. Thus the proof of Theorem 3.5 also carries through in R C A  ,
except for one issue: Having jWe 

0j >  m does not necessarily imply in RC A 0

that E e      is dened. (The issue is that RC A 0  does not imply the 1-bounding
principle.) However, we can get around this problem exactly as in Section 4
of [4], by using the principle 2-EI dened there, thus obtaining the following.

Theorem 3.10. thin-HT=2 implies R RT 2  over RCA 0 .

We can also obtain a Weihrauch reduction from R RT 2  to a version of
thin-HT=2 as in the nal paragraph of Section 4 of [4], but we have to be a
bit careful because in the proof of Theorem 3.5, the function witnessing that
S  is eectively immune relative to ;0 is obtained uniformly not from S , but
from an n such that c(x +  y) =  n for all distinct x; y 2  S . Let strong thin-
HT=2 be the version of thin-HT=2 where a solution to an instance c consists
of both a solution S  to c as an instance of thin-HT=2 and an n as above.
Then we have the following.

Theorem 3.11. R RT 2  is Weihrauch-reducible to strong thin-HT=2.

We do not know, however, whether this theorem remains true if we replace
strong thin-HT=2 by thin-HT=2.

None of the above results depend on the addition function in particular,
and can be adapted as in [4] to any function f  : [N]2 !  N that is addition-like,
which means that

1. f  is computable,

2. there is a computable function g such that f (fx; y g) >  n for all y >
g(x; n), and

3. there is a b such that for all x  =  y, there are at most b many z’s for
which f (fx; zg) =  f (fx; yg).

We nish this section by proving Lemma 3.3.
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Proof of Lemma 3.3. Let f  be a binary function and D  an f -large set. We
will apply Theorem 3.1 to obtain a computable c : N !  2. We then dene D i

=  fn 2  D  : c(n) =  ig. The value of q will not matter here, so let us x q =  1 .
Let M be as in Theorem 3.1.

Let g be a computable injective binary function with computable image
such that kg(e; k) 6  2

g (e; k )      
and g(e; k) >  M for all e and k.

Say that s is acceptable for e; k if jD \ (s + E f (e;k g (e;k ) ) [s])j >  kg(e; k) and
for every t <  s such that (s +  E f (e;kg(e;k)) [s]) \  (t +  E f (e;kg(e;k)) [t]) =  ; ,  we
have E f (e;kg(e;k)) [s] =  E f (e;kg(e;k)) [t]. If s is acceptable for e; k then let Fe;k;s;0

be the rst g(e; k) many elements of s + E f (e;kg(e;k)) [s], let Fe;k;s;1 be the next
g(e; k) many elements of s +  E f (e;kg(e;k)) [s], and so on, until Fe;k;s;k 1.

Let F  consist of all Fe;k;s;j  for all e; k, all s acceptable for e; k, and all
j  <  k. Then we can arrange the elements of F  into a computable sequence
of nite sets, each of size at least M. Fix x  and m. If m is not in the image
of g then there are no elements of F  of size m. Otherwise, there is a unique
pair e; k such that m =  g(e; k), and all elements of F  of size m that contain
x  are of the form Fe;k;s;j  for some s 6  x. We can computably determine all
such sets from m and x, and the denition of acceptability means that there
are at most kg(e; k) 6  2 2      many such sets.

Thus the hypotheses of Theorem 3.1 hold, and hence there is a c, obtained
uniformly computably from f  and D ,  such that none of the sets in F  are
homogeneous for c. Let f (e; k) =  f (e; kg(e; k)) and let D i  =  fn 2  D  : c(n) =
ig. Fix e and k such that E f ( e ; k )  is dened. If s is suciently large then s is
acceptable for e; k, and Fe;k;s;j   s + E f ( e ; k )  for all j  <  k. For each j  <  k and i  <
2, there is at least one x  2  Fe;k;s;j such that c(x) =  i. Since the Fe;k;s;j  are
disjoint, jD i  \  (s +  E f ( e;k ) )j >  k. Thus D i  is f -large.

4 Op en Questions

In this section, we collect a few open questions and possible directions for
further work arising from the above results.

Question 4.1. Does thin-HT imply AC A 0  over RC A 0  (i.e., without assuming
I2)?

Of course, one way to give a positive answer to this question would be to
show that thin-HT implies I2 over RCA 0 .  If that is not the case, then it
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could be interesting to try to determine the rst-order part of thin-HT.

Question 4.2. Is thin-HT provable in ACA 0 ?

Question 4.3. Does thin-HT imply HT, say over RCA 0 ?

In the spirit of Hindman, Leader, and Strauss [7], we can also ask the less
formal question of whether there is a proof of thin-HT that is not already a
proof of HT.

Question 4.4. Is R RT 2  Weihrauch-reducible to thin-HT=2 (as opposed to
strong thin-HT=2)?

Question 4.5. What is the exact relationship between thin-HT=2 and each
of TS2, RRT 2 ,  and HT= 2 ?

There are also versions of the Thin Set Theorem for colorings with nitely
many colors. For example, an instance of TSn  is a coloring c of [N]n with k
many colors, and a solution to this instance is an innite set T such that
jc([T ]n)j <  k. This principle and RT n  form the two ends of a spectrum of
principles RT n for 1 6  j  <  k, where an instance is a coloring c of [N]n with
k many colors, and a solution to this instance is an innite set T such that
jc([T ]n)j 6  j .  It would be interesting to pursue versions of HT based on these
principles. One might hope to show, for instance, that there is a boundary
between principles that \behave like HT", e.g. HT6 2 ,  which as mentioned in
the introduction was shown to imply A C A  in [3]; and those that \behave
like versions of TS  /  RT " ,  e.g. the thin version of HT6 2 ,  which can easily be
shown to follow from RT4;2 .
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