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Understanding the mechanisms by which information and misinfor-
mation spread through groups of individual actors is essential to the
prediction of phenomena ranging from coordinated group behaviors
to misinformation epidemics. Transmission of information through
groups depends on the rules that individuals use to transform the per-
ceived actions of others into their own behaviors. Because it is often
not possible to directly infer decision-making strategies in sifu, most
studies of behavioral spread assume individuals make decisions by
pooling or averaging the actions or states of neighbors. However,
whether individuals may instead adopt more sophisticaled strale-
gies that exploit socially-transmitted information, while remaining
robust to misinformation, is unknown. Here, we study the relationship
between individual decision-making and misinformation spread in
groups of wild coral meef fish, where misinformation occcurs in the
form of false alarms that can spread contagiously through groups.
Using automated visual field mconstruction of wild animals, we infer
the precise sequences of socially-transmitted visual stimuli perceived
by individuals during decision-making. Our analysis reveals a novel
feature of decision-making essential for controlling misinformation
spread: dynamic adjustments in sensitivity to socially-transmitted
cues. This form of dynamic gain control can be achieved by a simple
and biologically widespread decision-making circuit, and it enders
individual bahavior rebust to natural fluctuations in misinformation
X posun.

Misinformation | Declsion-making | Social netwrorks | Higher-order in-
teractions | Behavioral control

For social organisms, the actions of others provide constant
sources of sensory stimulation that help guide effective
decision-making (1-3). Cues generated by others can encode
valuable information about the environment, for example by
providing access to stimuli beyond an individual's own sensory
limits (2, 4), or early warning of impending events (4, §).
But, socially transmitted cues also convey misinformation
— erroneous, outdated, or easily misinterpreted content that
impedes effective decision-making (6-9).

Among the most widespread forms of misinformation in
natural ecosystems occurs as a result of false alarms, wherein
an individual animal in a group makes a decision to produce
an alarm signal or initiate an escape maneuver in the absence
of a true threat (7, %-12). This initial action produces sensory
stimuli that can be perceived by others in the group as an
indication of danger (8), resulting in a cascade of erroneous
escape responses that can propagate contagiously (13, 14).
Basing decisions on this form of misinformation can be costly
(9, 153), suggesting that selection may favor decision-making
strategies that are robust to misinformation exposure.

In stable, long-term groups, animals may be able to infer
the reliability of a signal using knowledge about the sender (1).
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However, in many situations such as in crowds (16), automobile
traffic (17), bird flocks (8, 18), and feeding aggregations (3, 19),
decisions must be made rapidly (7, 17) in large or ephemeral
collectives (20), where using foreknowledge of the reliability of
all senders is impossible. Behavioral and neurophysiological
studies suggest that relatively simple behavioral strategies
control decision-making in many such settings (16, 17, 19, 21—
23). But, it is not know whether these strategies somehow
account for the possibility of exposure to misinformation.

Results. To address this question, we deployed camera ob-
servatories in a coral reef to continuously record behavioral
decision-making of wild, mixed-species groups of foraging fish
(Fig. 1; Methods; Supporting Information, ST). Like other
social animals (5, 8, 13), reef fish exhibit collective escape re-
sponses, wherein individuals within a group cease feeding and
flee in rapid succession (19, 20). Misinformation is produced
in the form of escape responses in the absence of true shared
threats (i.e. predators), which can spread through groups as
false alarm cascades.

In natural foraging collectives, escape events in the absence
of true predator threats occur regularly, at a mean rate of
one event per 7.7 minutes (Fig. 1A). During these events,
one individual in the group (the first responder) exhibits an
escape maneuver (24) involving a deep body bend followed by
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Despite the benefits of leamning about the world through social
ties, social connections also provide a conduit for misinforma-
tion. Using underwater camera observatories to record be-
havior of foraging coral reef fishes, we find that these animals
produce and perceive visual motion cues produced by oth-
ers, thereby forming dynamic information exchange networks.
These networks are surprisingly robust to false alarms that
occur when one individual flees in the absence of a true shared
threat. By reconstructing visual sensory inputs to each animal,
we show that this robusiness to misinformation about threats
inherits from a specific property of their decision-making strat-
egy: dynamic adjustments in sensitivity to socially-acquired
information. This property can be achieved through a simple
and biologically widespread decision-making circuit.

A pariormed reseasch, contributed enalytical iols, analyzed date, and wrods the paper. MA G,
perionmed ressarch, and wioke the peper. M.ALC. analyzad data, and wioe the paper. GUREH.
contribulad enalytical tooks, end wroba the papar. B.T.M. parformed rmsaarch, and wiale the pepar.
AM_H. parformed rasarch, confribuied enalylical tools, enalyzed data, and winds the papar.

The suthars decies no compeling inlenests.

“mmmmq:mmmaﬂ:md. E-mail: afshimipour@ifausdy or an-
drew hein@comell adu

PMAS | February 17,2023 | vol XXX | no.XX | 1-8

9 OB oM OB W OB MNEH

E B B W OB R E B R

-

iAok E &


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

5 & & %

T B 0B WR R Y HE B

X 4 8 8B 9 R BT LA

A Eg "u‘ I-;II-I."-.- ‘ ) } J B c
E . . “.-,I".' _I :.. : . ':'I :'._ .'.- ) ,- .
=) DI L T L ST TN :.‘E s
= li] 10 20 30 !
2 Time (minutas) g
L ==
g 37
w a
w
. . . . , @ . . — — .
0.032 0.32 3.2 32 00 02 04 046 08 1.0
D Inter-event time (minutes) Time (ms) Fraction participating in cascade

Fig. 1. Natural escape cascades. A. 42 empirical ime sarias of escape event initiation times (red rasier) from cbservations of unperturbad groups of
wild coral reef fish. Histogram shows distribution of inter-event time intervals. B. Swimming speed profiles for all msponding fish in an example escape
cascade (first rmsponder in orange). C. Fraction of individuals responding in natural escape events shown in (A). D. Example escape event. Aggressor
(blue) rapidly approaches anothar individual (first responder, dark red), which exhibits an escape response. Sacondary responses by other individuals
(pink) follow. Others presant do not exhibit escape responses (green). Insat shows time saquence of aggressor and first responder positions.

large acceleration and rapid turning (Fig. 1B; Fig. 51). This
initial response may be followed by a cascade of subsequent
responses by other individuals (Fig. 1B). Escape behavior of
first responders often coincides with the rapid approach of
another fish in the group, indicating an aggressive interaction
(Fig. 1D, Fig. 52), to which an escape maneuver is an appro-
priate reaction. However, aggressive interactions are seldom
directed at secondary responders (Fig. 52), suggesting that
secondary responses are erronecus reactions to a simple form
of misinformation: stimuli produced during the interaction
between aggressor and first responder.

While some escape events involve large response cascades
(Fig. 1B-C), most involve only the first responder. The rarity
of large false alarm cascades suggests that individuals may em-
ploy a decision strategy that is responsive to true threats, like
an approaching aggressor, while being robust to the misinfor-
mation produced during interactions between other individuals
in the group.

In fish, escape responses are controlled by specialized neural
circuits that process incoming sensory stimuli, including visual
motion stimuli (19), and route signals to pre-motor neurons
in the hindbrain (25-27). Experimentally presented visual
motion stimuli are sufficient to trigger escape maneuvers of
coral reef fish in a manner consistent with known features of
these circuits (19). We therefore hypothesized that natural
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escape events (Fig 1A-D) are initiated and spread through
visual stimuli produced when individuals in the group move.
To test this, we reconstructed the visual sensory information
available to each animal prior to and during escape events
(Fig. 2A; S7). As they moved, fish produced strong motion
stimuli visible to others(looming motion, i.e., apparent rate of
expansion of an approaching object; translation, i.e., apparent
rate of lateral motion of ohject; ST). These stimuli routinely
exceed magnitudes shown in past laboratory experiments to
trigger escape behavior (Fig. 53, (24-27)). Escape responses
in our data were preceded by periods of strong looming and
translation stimuli from neighbors (Fig. 54); and during es-
capes, responders turned away from the neighbor producing
the strongest stimulus (Fig. 2B) — a pattern previously shown
using experimentally evoked escape responses (28). Impor-
tantly, individuals that responded also produced strong motion
stimuli visible to others (Fig. 2C-D), providing a potential
mechanism by which the response of one individual could
trigger others to respond, thereby propagating a response cas-
cade. To further test this possibility, we developed a sensory
decision-making model that related incoming sensory input to
the decision to respond or not to respond.

Prevailing models do not describe responses to visual misinforma-
tion. Two prevailing hypotheses describe how a decision-maker
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Fig. 2. Visual field reconstruction and stimuli during escape events. A. All animals wane frackad in videos (single frame shown) using an automated
tracking pipaline (S0). A raycasting algorithm {19) and pinhole camera model (22) were used to estimate the projection of each neighbor on retina of focal
individual {black outlined individual). B. Mean turning rate toward dominant neighbor (neighbor producing strongest loom) for responding fish within 200
ms of escape initiation time, “responders (during)”; the same fish during periods prior to event, “responders (before)”; and fish present during the escape
event that did not respond. Negative values indicate turning away from neighbor. C. Median loom rate, and median translation rate (D) produced by first
responder as parceived by other individuals present. Red line in (C) shows madian of putafive loom thresholds reporied in previous stedies (24). Bars in

all panals indicate 25th and 75th parcentiles.

might operate on sensory information from its neighbors when
making behavioral decisions (51, Table S1). Under the first
hypothesis, which we refer to as pooling, individuals sum sen-
sory input over neighbors (29), respond independently to input
from each neighbor (30), or base responses on the strongest
input produced by a set of neighbors via selective attention
(28). Under the second hypothesis, which we refer to as averag-
ing, individuals average sensory input from different neighbors
(21), or average the responses to input from multiple neigh-
bors (response averaging, (22)). To determine whether one of
these strategies is consistent with observed escape decision-
making, we compared a diverse set of pooling and averaging
strategies (Methods; Table 51). Our analysis revealed that
none of these strategies accurately predicted which individu-
als would respond during escape events and which would not
(Fig. 3A, models pl-pf and al-af). These strategies were par-
ticularly bad at describing behavior of secondary responders
and non-responders (Fig. 3A middle panel).

Decision-making is robust to large changes in visual sensory input.
To understand why previously proposed models of decision-
making poorly described escape decisions of reef fish, we an-
alyzed empirical patterns of sensory input perceived by fish
during escape events. In reef fish foraging ageregations, the lo-
cal density of individuals continually fluctuates as individuals
enter and leave foraging areas (20). A curious feature of escape
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events in our data (Fig. 1A, C) is that, although the total and
maximum strength of visual motion stimuli vary by more than
10-fold as local density changes (Fig. 3B-C), escape cascades
are typically small (median size = 1 responder; Fig. 1C) and
cascade size is uncorrelated with the density of the group
during the event (Spearman rank correlation between cascade
size and density: p = 0.093; linear regression, P = 0.26 and
R? = 8.6 » 107%). This suggests that the strategy individuals
use to control escape decision-making may involve somehow
adjusting sensitivity, or gain, applied to sensory input as the
overall level of input changes.

A model of decision-making with dynamic gain contrel. Dynamic
rescaling of sensitivity is common within sensory organs such as
the vertebrate retina (35) that operate across a wide dynamic
range of inputs. We asked whether individuals might use a
behavioral analogue of this process, response rescaling (36),
to dynamically adjust behavioral responsivity as the intensity
and frequency of stimuli from neighbors change.

Omne mechanism by which a decision-maker can achieve
dynamic changes in sensitivity to incoming stimuli involves

the accumulation of past sensory evidence over time (37-39).

By remembering recently-experienced sensory stimulus values,
sensitivity to new incoming stimuli can be tuned up or down
based on the stimuli an individual has experienced in the recent
past (40). In Methods, we derive a simple decision rule with
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Fig. 3. Decision-making models and density scaling of sensory input. A. Periormance of averaging (*a"), pooling {*p”), and response rescaling (")
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Akaike information criterion value ({31), AIC) of each model and that of the modal with the lowest AIC in the model et (rr). B. Density-scaling of total
vizual motion input from neighbors, and (C) looming from single neighbor producing strongest loom signal. D. Diagram of response rescaling model
structure (see taxt, Methods for description of symbols and model derivation). E. Observed responsas (colored points, colors as in (A) canier; points
vertically jittared), empirical fraction responding (black points) and predicied (black line) response probability from response rescaling model. Mot on (A):
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both models, probability to respond when no neighbor has yet responded is zero; thus thesa models cannct predict onsaet of ascape avents. Nevarthelass,
we analyze predicted spreading properties of these modals affer cascade onset in Fig 4.

this property (Fig. 3D), which can be written D(t) = D* +
Mt )yw [y+m(t)] !, where M(t) = {3, Sit), 3, Tu(t)} is the
vector of perceived looming and translational motion summed
over all neighbors, w is a vector of constant weights applied
to these motion stimuli, " and - are constants, and m(t) =
w J‘_‘m £~ M(s)wds is an exponentially-weighted integral of
the past history of sensory input from neighbors with constant,
w, and decay timescale, 7. The probability to respond to
visual stimuli in a small time increment is given by p(t) =
(1+e~ P =1, In this model, increasing sensory input increases
the probability to respond, but simultanecusly lowers the
gain applied to future input, creating an opponency between
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excitatory and inhibitory effects of visual motion stimuli. In
Methods, we show that the dynamic gain control inherent in
this model can be achieved by a neural circuit containing just
three interlinked populations of neurons. Unlike previously
proposed pooling and averaging strategies (Fig. 3A), this
response rescaling strategy accurately predicts behavior of
first, secondary and non-responders (Fig. 3A, model rr; Fig.
3E).

Individual decision-making sirategies defermine pafterns of misin-
formation spread through populations. To understand how this
decision-making strategy may impact the spread of misinforma-
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per-capita response probability (points and error bars) as a function of density, and relationships predicted by response

Edges are drawn batween individuals that are within visual

rescaling (blue), simple {md} and fractional contagion (yellow) models (&) C. One minus the cumulative distribution function of cascade sizes produced

by responsa rescaling, simple ion, and fractional contagion. D.

fl.l'lc‘tlﬂl'l of an individual's waighted raa in the social natw

contagion varsus low response probability for response rescali
rate (i.e. probability of each agent to mlllglu a false alarm ina

tion, we developed a spatially explicit, empirically-calibrated
computational model that simulates populations of individual
agents, each of which perceives visual stimuli from others and
makes decisions to flee or not to flee based on these stimuli
(Methods; ST). In each simulation, we modeled an aggressive
interaction between a random pair of nearest neighbors in the
population (Fig. 4), and ask how misinformation generated
through the interaction travels through the network defined
by exchanges of visual information among neighbors.

In the past, many studies of behavioral contagion in so-
cial groups have assumed one of two models for behavioral
spread among agents: simple contagion (13, 21, 30, 33), under
which an individual’s probability to respond is independently
influenced by each of its responding neighbors, and fractional
contagion (13, 14, 21, 32, 34), under which an individual's
probability to respond depends on the fraction of its neighbors
currently responding (57). To understand whether either of
these phenomenological models accurately approximates the
dynamics of behavioral spread generated under the response
rescaling strategy inferred from our data, we compared pat-
terns of misinformation spread in simulated populations of
individuals that use response rescaling to patterns observed in
simulated populations that use simple or fractional contagion.

The response rescaling population exhibited a decreasing
per capita response probability with increasing density consis-
tent with data (Fig. 4B). This led to mean cascade sizes that
were invariant to density (Fig. S6A). Simulations assuming
behavioral spread via simple contagion could not reproduce
this pattern, whereas those that assumed fractional conta-
gion produced predictions similar to those of response scaling.
The population following fractional contagion also exhibited a
similar distribution of cascade sizes to the response rescaling
population (Fig. 4C).

Fractional contagion shares several spreading properties
with response rescaling, in part, because it captures a qual-
itative property of decision-making in our data: on average,
as an individual acquires more neighbors, they require more

Fahimipour ef al.

probability conditional on exposure to a misinformation cascade as a

MNote mlalivaly high responsa probability of low dagree nodes for simple and fractional
E. Probability to m;pnru:l to miginformafion as a function of the per-capita false alarm
timastep, saa also

I} of other individuals in the population.

sensory input in order to respond (Fig. 55). Thus, rather
than acting as superspreaders (Fig. 4D, red curve), highly
connected individuals are relatively unlikely to respond to
misinformation when they are exposed to it (Fig. 4D, blue
and orange curves). This property makes individual decision-
making robust to changes in misinformation exposure that
occur as density, and as a consequence, local connectivity,
increases (Fig. S6B). However, in contrast to response rescal-
ing, the fractional contagion model overestimates response
probabilities for individuals with very few neighbors (Fig. 4D).

Density fluctuations are one source of variation in natural
groups (20) that impact exposure to misinformation. Another
source is cansed by continuous fluctuations in the phenotypic
(i.e. species) composition of groups as individuals enter and
exit foraging areas. These fluctuations in phenotypic compo-
gition lead to variation in the rate at which misinformation
is produced due to behavioral differences among species (Fig.
87); some species frequently trigger escape events by fleeing
in the absence of predators, whereas others do so infrequently.
To understand how individual decision-making is influenced by
changes in the rate at which misinformation is produced, we
performed simulations in which a focal individual in the popu-
lation made decisions to escape using either response rescaling,
simple contagion, or fractional contagion; we then varied the
rate at which all other individuals in the population generate
misinformation by spontaneously fleeing (51, Fig. 4E).

The probability that an individual using simple or fractional
contagion will respond to misinformation increases rapidly to
near one as the origination rate of misinformation increases.
In contrast, individuals that use response rescaling maintain a
low probability of responding to misinformation that is nearly
invariant to the rate at which misinformation is produced
(Fig. 4E, blue line). This difference in robustness of decision-
making inherits from the dynamic nature of gain control under
response rescaling (S7): as individuals perceive more frequent
bursts of strong sensory input from neighbors, inhibition lowers
the gain applied to future visual stimuli from those neighbors,
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thereby lowering responsivity. In this sense, it is motion that
is surprising, not motion per se, that drives escape responses.
Simple and fractional contagion lack this property of temporal
adaptation, and decision-making in those models is fragile
under changes in the rate of production of misinformation.

Discussion. Using socially-transmitted information while at
the same time avoiding basing decisions on misinformation
poses a fundamental conflict for the animal brain. Our re-
sults suggest that animals may at least partially resolve this
conflict by dynamically adjusting their sensitivity to stimuli
through simultaneous excitation and inhibition within decision-
making circuits. From the perspective of an individual making
decisions across changing sensory conditions, this decision-
making strategy allows the individual to adjust sensitivity to
socially-transmitted information as the overall magnitude and
frequency of stimuli change. At the scale of groups and popula-
tions, this form of social decision-making suppresses large-scale
misinformation cascades, resulting instead in shorter sequences
of behavioral responses that are localized in space and brief
in duration.

Many species learn about events in the world around them
using sensory systems that exhibit temporal adaptation to
incoming stimmuli (35, 36, 40-43). This adaptation can ef-
fectively rescale measurements or internal representations of
sensory cues based on the recent history of past inputs, confer-
ring a mechanism for dynamic control of behavioral responses
(36, 43, 44). Moreover, recent models of opinion formation in
social networks have suggested that temporal integration and
rescaling (45) are crucial for accurately representing processes
such as polarization in human political systems (46). Our
results add to this picture, by demonstrating that dynamic
gain control can determine the susceptibility of individuals to
socially-transmitted misinformation and the degree to which
misinformation spreads through populations. It will be inter-
esting to investigate whether the mechanisms revealed here
are also important in driving individual decision-making and
misinformation spread in other biological and social systems.

Materials and Methods

Data collection. Data were collected in lagoon reefs of Mo'orea French
Polynesia. Polyvinyl carbonate (PVC) camera frames (2 m width x
fi m length » 2 m depth) were deployed in lagoon sites on the north
shore of the island. Deployment locations were typical of lagoon
habitat, and were characterized by a shallow (2.5 m depth) reef flat,
comprising primarily pavement and coral rubble adjacent to live
and dead colonies of massive and submassive Forites corals of 0.5 to
2 m height. Reef fish use these types of open reef flats between coral
structure as foraging areas (20). In each foraging area, a camera
frame was mounted using concrete substrate mounts. Foraging
areas were filmed continuously from above using downward-facing
cameras shooting at either 20 or 60 frames per second [(GoPro
Hero 3 or Hero 4). Footage used in analyses was collected under
unperturbed conditions (i.e., no experimental perturbations were
applied), a minimum of 30 minutes after cameras were deployed
and researchers had vacated the area. Details on automated animal
tracking and visual field reconstruction are described in Supporting
Information.

Comparing models of individual decision-making. T he set of plausible
models describing how an individual decision-maker might integrate
and operate on sensory data from multiple neighbors is vast. We
therefore focused on a set of models based on features of decision-
making previously described in the perceptual decision-making
literature on the basis of behavioral or neurophysiological evidence
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(Table 51). Multi-source perceptual decision-making models can be
organized broadly into two classes on the basis of their assumptions
about how stimuli from neighbors are integrated during decision-
making: pooling models (28-30), and averaging models (13-15, 21,
47). Moreover, we consider variants of common decision-making
models for each candidate class, including models in which raw
visual stimuli are linearly combined to form visual features (29, 30),
as well as models in which driving sensory features are nonlinear
combinations of raw inputs (19, 48). Details on models and model-
fitting are provided in SI; Defining the model set and Estimating
model parameters.

Derivation of response rescaling model. We tested a suite of previ-
ously proposed decision-making models and found that none accu-
rately predicted individuals’ responses to incoming visual stimuli
(Fig. 3). Based on this result and physiological evidence from other
systems (35, 36), we hypothesized that individuals may control
escape decisions using a rule that dynamically adjusts the gain
applied to incoming sensory input based on the recent history of
visual input, thereby rescaling their responsivity. This type of
dynamic gain control is a hallmark of many sensory systems inchad-
ing the vertebrate visual (35) and auditory systems (40), and the
chemosensory and internal signalling systems of bacteria and other
cells (36, 41, 43, 44), all of which operate over a wide dynamic range
of input magnitudes.

Chur work considers a distinet but related problem: controlling
responsivity to socially-transmitted stimuli amid continual changes
in the overall magnitude and frequency of those stimuli. We postu-
lated that robust escape decision-making requires two properties:
(i) the strength of stimulus necessary to trigger an escape response
must vary as the overall magnitude of sensory input changes to
allow individuals to maintain sensitivity to changes in visual stimuli
when overall visual motion is low, and to avoid becoming overly
responsive when the overall level of visual motion stimuli increases
(Fig. 55); and (ii) the sensitivity of the system should vary as the
temporal frequency of events that produce strong sensory stimuli
but are not indicative of true threats (i.e., visual misinformation)
changes. This latter property requires that individuals maintain
some memory of stimuli perceived in the recent past and adjust
their sensitivity to future stimuli accordingly.

A biologically widespread circuit motif that enables these prop-
erties involves fast-timescale excitation by incoming sensory input
along with simultaneous inhibition by the same input on a slower
timescale (36, 40, 41, 43, 44). We hypothesize that escape decision-
making by coral reef fish is driven by a neural circuit with these
properties. In particular we postulate that looming, S'(t), and
translational stimuli, T(t), are summed over a focal individual's
visual field, such that the driving input for downstream computa-
tions is summed visual motion input, Mit) = {3, Sj(t), 3 Tu(t)}.
Pooled looming and translation stimuli are then scaled and summed
to yield an internal variable, u(t) = M(t)w, where w = {wg, wr}
is a vector of constant weights.

The quantity u(t) could be encoded, for example, in the firing
rate of a population of neurons that provides the input to the
rescaling circuit. The rescaling circuit imvolves the firing rate of the
input population w, the firing rate of & memory (40) population, m,
and firing rate of a readout population, y, with leakage rate 1/p.
The memory population is excited by u, and returns to its baseline
activity with rate, 1/7 in the absence of input from u. We take the
dynamics of m, and y to be given hy:

dm/dt = du—Zm  dyfdt = X~ 2y, 1]

where 1 and o are constants. Assuming the dynamics of y are fast
relative to those of m, we obtain an expression for the firing rate of
the readout population

y(t) = Qp%, [2]

which is proportional to the input, rescaled by the activity of the
memory population, m.

The system specified by Eq. (1) and can be viewed as a determin-
istic system of leaky evidence accumulators (49, 50). Fitting such
systems directly to behavioral data can result in model parameters
being unidentifiable (50, 51). However, because we are primarily
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interested the timescale over which behavioral decisions are made,
which is significantly longer than the fastest timescale of neural
dynamics, we exploit this separation of timescales to simplify the
model. In particular, assuming ¢ > (), yields an expression for the
memory population’s activity:

m(t}:uf

where w = aymp. In practice, for very low activity of the memory
population (ie., m — 0), the output of Eq. (2} can become ex-
tremely sensitive to fluctuations in input. We therefore introduce a
constant, 7y (note that an alternative model could apply a filter or
gating term to control sensitivity at very low input values). This
gives y(t) = up# Combining this expression for the activity
of the readout population with Eq. (3), and re-writing y as the
“sensory feature” that drives decision-making (i.e. F(t) = y(t)) gives

e ‘:_'u(s]da, (3]

Mit)w
Mtjw 4]
7+ mit)

This gquantity is assumed to drive decision-making through the
function DNt) = D + F(t).

Omne candidate module within the fish visual escape circuit (52)
that may be capable of performing the computations implied by
Eq. (1) involves populations of glycinergic (53) and dopaminergic
(54) interneurons, and tectal projection neurons in the fish hindbrain
that receive input from the optic tectum. Although the precise
computational properties and connectivity of these populations is
still unclear, they have been implicated in a feedforward inhibitory
circuit believed to gate escape responses to different types of visual
stimuli (34). For this reason, we formulated Eq. (1) as a feed-forsard
inhibitory circuit. However, we also note that other circuit motifs
including circuits with integral feedback and logarithmic feedback
(43, 44) are capable of producing similar rescaling properties to
those of Eq. (4).

F(t) =

Agent-based model. We studied the spread of misinformation in
simulated networks of agents who move and sense each other on a
featureless 2-dimensional plane. In these social networks, agents can
be either in the foraging or the fleeing state based on their current
and past perceived motion of neighbors. Model parameters, includ-
ing those that control agent movement, sensing, and decision-making
were set to their corresponding empirical estimates (Table 53). Full
details on the individual-based model formulation can be found in
51, and an implementation for the Julia 1.7.1 programming language
is provided at https://github.com /AshkaanF fscaredyfish.

Two primary simulation-based experiments were performed to
understand and compare the dynamics of populations comprising
individuals following the response rescaling rule (Eq. 4), to phe-
nomenological approximations of social contagion defined by widely-
studied simple and fractional contagion rules (13-15, 21, 30, 32-34)
(see SI for model formulations). In the first set of simulations,
we sought to understand how group density, agent connectivity,
and decision-making rules interact to influence the likelihood of
responding to a unit of misinformation, which originated from a
simulated aggressive encounter between a randomly-chosen pair of
nearest neighbors in the population (SI, Numerical experiments
for misinformation spread). In these simulations, misinformation
spreads through the group as agents respond to the initial burst of
motion from the aggression event, as well as subsequent responses.

To understand how variation in the frequency of misinformation
origination events would impact decision-making in individuals, we
performed a second set utfngmputatiunal simulations holding density
at its empirical average, N ~ 0.8 individuals m~ 2. Here, a focal
individual is granted decision-making capabilities (i.e. the response
rescaling, simple, or fractional contagion rules), and embedded in a
population of spontanecusly-startling individuals who switch to the
flee state with a constant probability p in each time step. Additional
details on model formulation and simulations are provided in SI.
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