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Abstract

In Machine learning (ML) and deep learning (DL), hyperparameter tuning is the process of selecting the combination of optimal hyperparameters
that give the best performance. Thus, the behavior of some machine learning (ML) and deep learning (DL) algorithms largely depend on their
hyperparameters. While there has been a rapid growth in the application of machine learning (ML) and deep learning (DL) algorithms to Additive
manufacturing (AM) techniques, little to no attention has been paid to carefully selecting and optimizing the hyperparameters of these algorithms
in order to investigate their influence and achieve the best possible model performance. In this work, we demonstrate the effect of a grid search
hyperparameter tuning technique on a Multilayer perceptron (MLP) model using datasets obtained from a Fused Filament Fabrication (FFF) AM
process. The FFF dataset was extracted from the MakerBot MethodX 3D printer using internet of things (IoT) sensors. Three (3) hyperparameters
were considered — the number of neurons in the hidden layer, learning rate, and the number of epochs. In addition, two different train-to-test
ratios were considered to investigate their effects on the AM process data. The dataset consisted of five (5) dominant input parameters which
include layer thickness, build orientation, extrusion temperature, building temperature, and print speed and three (3) output parameters: dimension
accuracy, porosity, and tensile strength. RMSE, and the computational time, CT, were both selected as the hyperparameter performance metrics.
The experimental results reveal the optimal configuration of hyperparameters that contributed to the best performance of the MLP model.
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1. Introduction

Additive manufacturing (AM), which is also known as
three-dimensional (3D) printing, is a technique rapidly
gaining ground in numerous fields including engineering,
healthcare, manufacturing, aerospace, and medicine [1], [2].
The global market for AM grew by 7.5% to $12.8 billion in
2020 in spite of the current global Covid-19 pandemic [3]. As
its name implies, AM consists of adding materials layer by
layer to build a part or product. AM facilitates the production
of components, parts, or products with complex geometries
with the aid of computer aided design (CAD). Such parts can
be manufactured using various materials including polymers

[4], biomaterials [5] and metals [6]. In recent times, textiles
[7], ceramics [8], biomaterials [9], glass [10], and batteries
[11], [12] have been successfully printed using various AM
techniques [13]. In additive manufacturing, the relationships
between part design, manufacturing parameters, dimensional
accuracy, part quality and reliability are not fully understood.
However, part quality and reliability are extremely crucial to
sustaining the structural integrity required for AM parts.
Defects in AM parts could diminish the public’s trust in the
technology. Subsequently, it is necessary to detect any
defects that may occur in the AM process which may cause a
discrepancy between the target designs and printed parts.
However, identifying the imperfections within complex
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printed features accurately and efficiently is a difficult and
challenging task. Machine and Deep learning
models/algorithms offer a distinctive and intriguing approach
to addressing this challenge. Recent advances have witnessed
the application of ML/DL to AM techniques such as fused
filament fabrication (FFF) [14], [15]. FFF is a prominent AM
technique that constructs parts by extruding a semi-molten
metal or polymer filament through a heated nozzle in a
specified pattern onto a build bed [16]. FFF is the primary
AM technique under focus in this paper.

1.1. Machine and Deep learning Techniques

ML/DL models rely on training and test datasets to deduce
knowledge and vital relationships between various AM
features or attributes and make predictions based on the
acquired knowledge. ML/DL algorithms are also extremely
beneficial because they can be used to determine optimal AM
processing parameters, thus, making them useful for
applications such as real time in-situ AM defect detection
[17], [18]. Based on the foregoing, it is imminent that ML is
a vital aspect of Industry 4.0 [19]-[21]. In this paper, the
multilayer perceptron (MLP) ML was considered for our
analysis. This is because MLP can deal with highly complex
systems and has seen wide adoption in multiple input
multiple output (MIMO) systems [22]. An MLP network
comprises an input layer, single or multiple hidden layers,
and an output layer. The proficiency of a neural network is
contingent on appropriately choosing the number of hidden
layers, the number of neurons in each hidden layer, activation
functions at each layer, and optimizers. The MLP algorithm
works on the feed-forward back propagation approach.

While there has been a rapid growth in the application of
machine learning (ML) and deep learning (DL) algorithms to
generic application. However, in the context of Additive
manufacturing (AM), little to no attention has been paid to
carefully selecting and optimizing the hyperparameters of
these algorithms to investigate their influence and achieve the
best possible model performance. Based on an exhaustive
literature search, our findings indicate the dearth of
hyperparameter tuning of machine learning algorithms to
improve the performance of predictive additive
manufacturing models. Thus, the current research of
hyperparameter tuning in additive manufacturing addresses
shortcoming mentioned above.

1.2. Hyperparameter Tuning/Optimization

In machine learning, two main parameters are considered:
the model parameters and the hyperparameters [23]. Model
parameters are the parameters that are internal, configurable,
and can be estimated based on the given data set. These
parameters are learned and estimated after the training phase
of machine or deep learning models. For example, the
weights and biases in deep learning models are often
initialized to zeros and the task in the training phase of the
deep learning model is to optimize both the weights and
biases to give the least loss in a regression problem or the
highest accuracy in a classification process without

underfitting or overfitting. In summary, model parameters are
obtained after training the model. On the other hand,
hyperparameters are external parameters of the model. They
are parameters that are required to be set before training the
chosen machine or deep learning model. They are
predetermined before the training commences and used to
control the learning process. If the hyperparameters are
carefully chosen, then the training phase can guarantee better
learning. Thus, leading to better performance of the chosen
machine learning algorithm.

Grid search hyperparameter tuning algorithm was used in
this work because of the following advantages: 1)
Exhaustive: Grid search considers every feasible
combination of hyperparameters, and this will always
guarantee an optimal solution. 2) Simple and straightforward:
Grid search employs a simple and straightforward method
that can be easily executed.

The grid search approach is an exploratory algorithm that
evaluates hyperparameter performance at all possible settings
thus, is an exhaustive search approach. It is an independent
search algorithm which entails testing every unique
combination of hyperparameters in the search space to
determine the combination that yields the best performance.
On the contrary, the Bayesian optimization is an informed
search approach, which augments the learning behavior from
previous iterations. In addition, more time is required to
determine the next hyperparameters to evaluate based on the
results of the previous iterations. At the expense of
minimizing the number of trials, Bayesian optimization
requires more time for each iteration. Thus, to ensure an
exhaustive yet timely solution a grid search approach was
implemented in this research.

One of the main contributions of this work is to
demonstrate how hyperparameter tuning can be used to
explore the hyperparameter configuration/search space.
Furthermore, how these steps when incorporated effectively
into any ML/DL algorithms would help to obtain an optimal
ML/DL model. This would help researchers and practitioners
to always consider hyperparameter optimization as one of the
core steps for fully exploiting the potential of their chosen
ML/DL model in order to unravel the complexity and
nonlinearity in their data.

The remainder of this work consists of the system
overview in Section 2, the chosen ML/DL learning model and
the grid search hyperparameter tuning technique were fully
explained in Section 3, Section 4 shows the results and
discussion on the findings, Section 5 concludes the work and
further directions are provided as well.

2. System Overview

For this work, additive manufacturing process data were
obtained for the most widely used fused filament fabrication
(FFF) which is classified as a material extrusion AM process
by the American Society for Testing and Materials (ASTM)
International D638 for tensile stress testing.
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2.1. Printer descriptions

The Makerbot MethodX 3D printer shown in Fig.1a and
Fig.1b was used to print the tensile strength specimen as
given by ASTM International D638 for tensile strength
testing [24] (Fig. 2a). The MethodX was used because it has
a closed chamber for controlling the build temperature. Fig.
2b shows a sample printed at a given set of input parameters.
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Fig. 1a. The MakerBot MethodX mounted with IOT sensors for capturing
fused filament fabrication data
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Fig. 2. a. ASTM specimen for AM tensile strength b. A printed sample of
the ASTM standard at candidate input parameters

3. Methodology

This section introduces the selected deep learning model’s
description, the model’s architecture, types of activation
functions, and the chosen rectified linear unit. Second, the
hyperparameter tuning problem which was the major
contribution in this paper was defined mathematically. Third,
the grid search technique, which was the chosen
hyperparameter tuning technique for this work was
introduced and the steps used were itemized. Fourth, the
fused deposition modeling additive manufacturing process
dataset and the evaluation metric for the model at a given
hyperparameter vector, A, were explained. Last, the Python
scripting detail was fully explained.
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3.1. The multilayer perceptron deep learning model

Multilayer perceptron (MLP) was used in this work to
study the interplay between the considered input and output
parameters. Multilayer perceptron is a type of feedforward
artificial neural network that is fully connected [25]. For an
MLP, there must be at least three layers — an input layer, a
hidden layer, and an output layer. This can also be referred
to as a “vanilla” neural network. MLP is a type of supervised
learning, and this learning is done via the backpropagation
during the training phase [26], [27]. MLP perceptron was
chosen over other ML/DL algorithms for this work because
of its appropriateness for the FFF dataset. Deep learning
(DL) models such as Recurrent neural networks (RNN) and
long short-term memory networks (LSTM) are best suited
for sequential and time-series data [28]. Another widely used
DL algorithm is convolutional neural networks (CNN),
however it is best used for image classification [29]. Other
machine learning (ML) algorithms such as support vector
machines (SVM), Random Forest, K-Nearest Neighbor
(KNN), and Stochastic Gradient Boosting (SGB) can be used
for the FFF hyperparameter study. However, MLP has a
higher ability of unraveling complex non-linearity that exist
in systems such as additive manufacturing process [22], [30],
[31]. Also, it works well with smaller data set as it does with
large input data. Also, it has multiple hyperparameters, for
example, number of hidden layers, number of neurons in
each hidden layers, activation function, learning rate, number
of epochs, etc. that can be tuned to obtain a model with
optimal hyperparameter vectors for the given dataset. These
hyperparameters help to explicitly demonstrate our work for
an FFF additive manufacturing processes.
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Fig. 3. A multilayer perceptron (MLP) architecture with one input layer,
one hidden layer, and output layer

Fig. 3 shows the MLP model architecture — the input
layer, hidden layers, and output layer used in this work as
similar to [27] and definition on each layer is given by [32].
The input layer serves as the layer that contains the neurons;
each neuron represents an input parameter. The output is the
layer containing the node that measures the output parameter.
In this work, the three outputs were considered at a time.
Lastly, the hidden layer, which is the layer between the input
and output layers. The hidden layer can be as many as one or
more depending on how dense the MLP would be. It helps
the model to learn some complexity in the given data set. For

an illustrative case, one dense layer was considered in this
work.

3.2. Activation function

It is a type of function used in deep learning to unravel the
nonlinearity or complexity in any given data. It goes further
than that by removing linearity from the neural network.
There are various types of activation functions as explicitly
defined in the work of [33] such as sigmoid function, tanh
function, rectified linear unit (ReLU), exponential linear unit
(ELU), exponential function, scaled exponential linear unit
(SELU), etc. Rectified linear unit (ReLU) function was used
as the activation function in this work.

3.2.1. Rectified linear unit (ReLU)

A rectified linear unit, ReLU, is an activation function,
f(x) that returns the value of the independent variable if
positive, and zero, otherwise. Mathematically, a ReLU
function is given in Equation 1:

f () = max (0,x) (1)
3.3. Mathematical definition of hyperparameter tuning

The formal mathematical hyperparameter tuning
definition given by [34] was adapted to this work. Given a
machine learning algorithm, A4 , with N number of
hyperparameters, d, is the domain of the n -th
hyperparameter, such that the hyperparameter configuration
space, d = d; X d, X ..X dy , A€d is a vector of
hyperparameters, A, denoted a machine learning A having
its hyperparameters instantiated to A. The problem at hand is
to find the optimal vector of hyperparameters, A%, that has the
least loss, L, of a model generated by the machine learning
algorithm, 4, instantiated at a vector of hyperparameters, 4,
on training data, Dy, and evaluated on test data, D;,¢ as
given in Equation 2 :

A= ar/lgercrllin f(L' dqllﬂ Dtrain' Dtest) (2)

3.4. Hyperparameter tuning techniques

Many works exist in hyperparameter tuning or
optimization. Hyperparameter tuning is often referred to as a
black box problem [35], and many techniques are found in
the literature. Some of these techniques are manual tuning
[36], [37], grid search [36], [38], [39], random search [36],
[40], Bayesian optimization [35], [41], genetic algorithm
[33], particle swarm optimizations [42], etc. Some of the
techniques have variants as explored by different researchers
in the field, especially for Bayesian optimization.

The grid search is considered in this work for exploration
purposes and for a deep illustrative case of the additive
manufacturing process. As seen in many recent times, much
attention has been on developing new machine learning
models, whereas there is a need to explore the effects of
hyperparameter tuning of the chosen model on the data.
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3.5. Grid search algorithm

Grid search hyperparameter tuning is a systematic way of
creating a grid from the considered hyperparameters in
which each possible combination is used to tune the chosen
model [15]. It is an exhaustive search method, as each
combination is observed one at a time [20]. In addition, the
search range for each hyperparameter is many folds. Also, in
grid search, all hyperparameters are assumed to have equal
weights irrespective of their effect on the machine learning
training phase. Grid search was used because it is an
exhaustive method as it considers all feasible hyperparameter
combinations which supports the objective of this work.
Also, it is simple and straightforward as it can be applied
without much mathematical expertise.

3.5.1. Grid search hyperparameter tuning procedure

To fully see the workings of hyperparameter tuning, the
grid search technique is chosen for full hyperparameter
exploration, and the following steps were carried out:

1. Select the hyperparameters to be tuned.

2. For each hyperparameter, determine the search

range.
Systematically, obtain all possible combinations.

4. In turn, each combination during the training of the
model obtains the RMSE values and computational
time based on the stopping condition. In this case,
the number of epochs.

5. Rank your hyperparameter combination from the
least RMSE values, then the computational time.
Break tie arbitrarily.

For the chosen deep learning model, that is, the multilayer
perceptron, three hyperparameters were considered — the
number of neurons in the hidden layer, learning rate, and the
number of epochs. The hyperparameter list and search ranges
for the considered hyperparameters are given as:

1. Number of neurons in each hidden layer = [3, 6, 9]

2. Learning rate = [0.001, 0.0001, 0.00001]

3. Epoch = [5000, 10000, 20000]

From the hyperparameter sets above, there are 3 X 3 X
3 = 27 different hyperparameter combinations. In addition
to these, two different train-to-test ratios were considered to
investigate their effects on the AM process data. The
considered train-to-test ratios in this work are 70/30 and
80/20.

The framework in this section is extensible to other
chosen machine learning models. The hyperparameters and
hyperparameter ranges can be chosen accordingly for the
considered model to give the hyperparameter
combinations/vectors.

et

3.6. Dataset and evaluation metrics
3.6.1. Dataset

From the hyperparameter tuning framework in Section
3.5.1, a combination of AM input and output data can be
used. The AM input and output parameters of interest need
to be measured, and the appropriate design of experiment can
be performed. The obtained data serves as the dataset.

For this work, the AM dataset was obtained using the
MakerBot MethodX 3D printer using internet of things (IoT)
sensors. Five of the dominant input parameters were
considered [43] and three print outputs [44] were measured.
The input parameters include layer thickness, build
orientation, extrusion temperature, building temperature, and
print speed while the measured outputs were dimension
accuracy, porosity, and tensile strength. The feed rate of the
filament was held constant as is typically done for FFF
systems. For each input parameter, three different levels
were considered, which led to a full factorial experimental
design There were a total of 35 = 243 data points which
were split based on the two train-to-test split ratios. See Table
1, for a snapshot of the 243 data points.

3.6.1.1. Output parameters

Dimension accuracy was measured in this work by
measuring how closely the 3D printed structure match the
tensile strength specimen as given by ASTM International
D638 computer-aided design (CAD). The deviation was
calculated following the guide in [43] as given below. Nine
different measurements were measured for individual printed
specimen. The overall length (OL) of the 3D printed part was
measured with a vernier caliper. Other measurements such as
the total width (OW), the thickness and the inner width were
measured at three different points which resulted into three
measurements. The three measurements for the thickness and
width were averaged to a single value thickness (T) and
width (W). Individual dimensional error was computed using
equation 3 while equation 4 was used to compute the overall
dimensional accuracy.

Error, € = Measured value — CAD value (3)

. . &L+ & + & + &
Dimensional Accuracy (%) = %

100 4)

X

€, = error in overall length,
Eow = error in overall width
gy = error in inner width
€r = error in overall thickness
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Table 1: Snapshot of FFF Dataset

Color key: good level — green, medium level — yellow, and low level - red

Although, porosity of FFF AM printed parts can be
measured using different methods, such as, microscopy of a
polished cross-section, Archimedes’ principle, X-Ray
computed tomography [45], and simple ratio of mass to
volume approach [46]. This work used the latter method to
measure the FFF AM printed parts as explicitly explained in
the works of [47] Equation 3 shows the formula for
computing the porosity.

2 % 100 (5)

b

Porosity %

where V, = the volume of bulk specimen,

V., = the volume of the specimen

Each 3D printed was tested for tensile strength for a given
set of input parameters. Tensile strength testing was
performed using the universal testing machine - Instron 5542
(Canton, MA, USA) with a 500N load cell and a
displacement rate as detailed for the ASTM D628. We
adopted the specific details on tensile strength testing of FFF-
printed parts using the work of [48].

3.6.2. Evaluation metrics

For each vector of hyperparameters or hyperparameter
combination, A, performed by the grid search technique, both
the root-mean-squared error, RMSE, and the computational
time, CT, were computed and they both served as the
hyperparameter performance metrics. RMSE serves the first
performance metric in this work, then the computational time
in this work. Computational time would serve as a tiebreaker
when two or more hyperparameter combinations have the
same or close RMSE values. In some other applications,
especially where time cannot be compromise, computational
time might take the lead.

3.6.2.1. Root-mean squared error (RMSE)

The root-mean-squared error is the square root of the
mean of the squared prediction errors across all the output

Input/process parameters Mean Output
Layer Build Extrusion Tensile
thickness Build temperature temperature | Print speed | Dimensional Porosity Strength
(mm) orientation(degree) (°C) (mm/s) Accuracy (%) (%) (MPa)
1 0.2 25 7 13 29
2 0.2 4.5 9.5 335
3 0.2 6.5 11 30.5
4 0.2 75 13 29.5
5 0.2 4 8.5 325

test data sets as given in Equation 6. The root-mean-squared
error had the same unit as the measured output parameter.

Ntest
Zizfs itest—Yi, pred)z

Ntest

RMSE = J (6)

where,

Yitese 18 the ith actual output test data

Vi, prea 18 the ith predicted output test data
Nies: 18 the total number of the output test data

3.6.2.2. Computational time (CT)

In this work, computation time was measured as the time
taken from the training of the MLP model at the given
hyperparameter combination to the plotting of the visuals
and computing the errors.

3.6.3. Model training status

After obtaining both the RMSE values and computational
time, before the results can be used, the status of the MLP
model during the training phase must be checked. There are
two possible scenarios — “Learning” or “No-Learning".

3.6.4. Learning status

Learning occurs when the MLP model can be trained
using the backpropagation technique. The ability of the MLP
to be trained at the given hyperparameter combination is
observed from the MLP prediction on the input test data set.
It is easily noticeable from the plotted visuals as illustrated
in Fig. 4.
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Graph of Expected and Predicted Dimension Accuracy, HL: 3, data_split 8020, Ir. 0.0001, epoch: 5000, error_RMSE: 1.78, code.runtime, 1 6255 seconds LIST SET OfMLP hyperparameters with their range
Predicied
-+ Empected

LIST dataset test size
FOR each test size
g Split dataset into train and test datasets
Split train dataset into input and outputs
: Split test dataset into input and outputs
0 u » s il ® INITIALIZE random weights and biases
Fig. 4. A plot of actual/expected vs predicted dimension accuracy from the FOR each output parameter
test data set showing learning status
FOR each hyperparameter vector
3.6.5. No-learning status

OPEN a file to save desired results
No learning occurs if the prediction from the MLP model

on the input test data set is either all zeros or it has the same SET test size iteration COUNTER, n =0
values all through the prediction as shown in Fig. 5. This
could be a result of being trapped in a local optimal during WHILE n <2
the training phase using the backpropagation technique. It
further means that at the considered hyperparameter START timer == initial time
combination, the complexity and nonlinearity of the data set
cannot be learned. Interestingly, this is one of the benefits of FOR the range of the epoch
hyperparameter tuning in machine learning and deep
learning domains. DO forward propagation
Graph of Expected and Predicted Dimension Accuracy, H1 3, data_spit80_20, Ir 0.001, epoch 5000, error_RMSE: 6.36, code_runtime: 0.7155 seconds DO backward pr opagation
Predicted
-+ Expected

UPDATE both weights and biases

GET weights and biases
§
# PREDICT on the trained model with test
& data
; COMPUTE root-mean-squared value
STOP timer == final time
0
r ’ ! ! ’ COMPUTE CT = final time - initial time
Fig. 5. A plot of actual/expected vs predicted dimension accuracy from the
test data set showing no-learning status SAVE all results
3.7. Python scripting procedure n=n+l
The pseudocode for the implementation of this work is COMPUTE means of RMSE and CT
given as:
PLOT all needed visuals
START PROGRAM
END PROGRAM

IMPORT necessary libraries or modules
LOAD dataset

BUILD the multi-layer perceptron deep learning
model
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4. Results and Discussions

Table 2: Mean RMSE values and computational times for dimension accuracy, porosity, and strength for the 18 hyperparameter vectors with “Learning” status

Dimension Accuracy Porosity Strength
Hyperparameter Mean Mean Mean Mean Mean Mean
H1 LR Epoch Vector RMSE CT RMSE CT RMSE CT Status
1 3 0.0001 5000 3,0.0001,5000 1.74 1.91 3.60 1.98 6.03 2.01 Learning
2 3 1.00E-05 5000 3,0.00001,5000 1.7 2.92 3.51 3.09 6.07 3.09 Learning
3 3 0.0001 10000 3,0.0001,10000 1.75 6.31 3.60 6.49 6.03 6.53 Learning
4 3 1.00E-05 10000 3,0.00001,10000 1.7 8.00 3.51 8.23 6.04 8.30 Learning
5 3 0.0001 20000 3,0.0001,20000 1.75 13.92 3.60 14.20 6.03 14.44 Learning
6 3 1.00E-05 20000 3,0.00001,20000 1.7 16.87 3.56 17.21 6.03 18.54 Learning
7 6 0.0001 5000 6,0.0001,5000 1.73 1.98 3.60 1.98 6.03 2.37 Learning
8 6 1.00E-05 5000 6,0.00001,5000 1.715 3.07 3.51 3.13 6.08 3.58 Learning
9 6 0.0001 10000 6,0.0001,10000 1.75 6.66 3.60 6.81 6.03 7.30 Learning
10 6 1.00E-05 10000 6,0.00001,10000 1.705 8.47 3.51 8.66 6.05 9.20 Learning
11 6 0.0001 20000 6,0.0001,20000 1.75 14.96 3.60 15.51 6.03 15.74 Learning
12 6 1.00E-05 20000 6,0.00001,20000 1.7 18.16 3.54 19.52 6.03 19.01 Learning
13 9 0.0001 5000 9,0.0001,5000 1.74 2.14 3.60 2.17 6.03 221 Learning
14 9 1.00E-05 5000 9,0.00001,5000 1.7 3.34 3.51 3.39 6.08 343 Learning
15 9 0.0001 10000 9,0.0001,10000 1.75 7.82 3.60 7.40 6.03 7.44 Learning
16 9 1.00E-05 10000 9,0.00001,10000 1.7 10.27 3.51 9.40 6.05 9.48 Learning
17 9 0.0001 20000 9,0.0001,20000 1.75 17.28 3.60 16.49 6.03 17.73 Learning
18 9 1.00E-05 20000 9,0.00001,20000 1.7 20.78 3.55 20.09 6.03 21.35 Learning

As stated in Section 3.6.3, the training status of the MLP
model must first be ascertained before the model’s RMSE
values and computational time are considered.

Table 2 shows the mean RMSE values and mean
computational times (CTs), at 70:30 and 80:20 train-to-test
ratios each ran for two iterations, where training status was
“Learning”. Learning occurred in 18 hyperparameter vectors
out of the possible 27.

For further analysis, all hyperparameter vectors, A, that
have “No-Learning” status are not considered. Only 18 out
of the 27 hyperparameter vectors have “Learning” as their
training status for dimension accuracy, porosity, and
strength. Therefore, the remaining 9 hyperparameter vectors
were not further considered.

4.1. Dimension Accuracy

For the MLP, predictions were made at 18 different
hyperparameter vectors. The values of the mean RMSE
values for the two different train-to-test ratios of 70:30 and
80:20 for two iterations each range from 1.70 to 1.75 and at
various computational times. Fig. 6 illustrates sorted
hyperparameter vectors first on the least RMSE value then
on the computational time. The optimal hyperparameter
vector rate was 0.00001. No learning occurs at a learning rate
0f 0.001 which implies, learning rate is key to learning of the
complexity and nonlinearity of the dimensional accuracy

data. Some of the highest computational times are observed
when the hidden layer has 9 neurons which translates to the
need for more computations as the neurons increase. Thus,
computational time increased with an increase in the number
of epochs and also increased as the learning rate was reduced.
Based on the evaluation metric selection given in Section
3.6.2, the optimal hyperparameter vector for the given MLP
is 3 neurons in the hidden layer, learning rate of 0.00001, and
epoch of 5000 for the given dataset. On the other hand, if CT
is given more weight, then an optimal hyperparameter vector
is 3 neurons in the hidden layer, learning rate of 0.0001 and
epoch of 5000 for the MLP which is applicable in a process
where computational time cannot be compromised.
Interestingly, a compromise on the RMSE value by 0.03
gives about 35% reduction in CT. This is achieved by using
a learning rate of 0.0001 in place of 0.00001. Thus, an
application determines if this compromise can be made.

Fig. 7 shows the comparison of the RMSE values for the
dimensional accuracy at train-to-test of 70:30 and 80:20. The
curves shows that increasing the training data set from 70%
to 80% of the data set improved RMSE values except when
the hyperparameter vectors has its learning rate to be
0.00001. So, all improved RMSE values occurred at learning
rate of 0.0001 irrespective of other hyperparameters.
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Mean RMSE Values and Mean Computational Time for
Dimensional Accuracy
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dimensional accuracy.
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4.2. Porosity

Porosity has its optimal hyperparameter vector when the
hidden layer has 3 neurons, learning rate of 0.00001, and
5000 epochs. This corresponds to a mean RMSE value of
3.51 and occurred at computational time of 3.09s. For the
porosity as shown in Fig.8, the least RMSE value occurred
at 3.51 and the worst at 3.60. Most of the highest
computational time occurred when the learning rate was
0.00001. In this case, the optimal hyperparameter vector
occurs with the hidden layer having 3 neurons, 0.00001
learning rate, and 5000 epochs. On the other hand, if CT has
a higher weight compared to RMSE, then an optimal
hyperparameter vector occurs when the number of neurons
in the hidden layer is 3, learning rate is 0.00001, and epochs
of 5000. Similarly, to Section 4.1, if RMSE can be

compromised a bit, from 3.51 to 3.60, the computational time
can be dropped by about 37% by using a learning rate of
0.0001 instead of 0.00001 From Fig. 9, increasing the
training data set from 70% to 80% of the entire dataset
improved the RMSE values at all hyperparameter vectors.
This guarantees that having more porosity data would help
reduce improve the MLP model.

Mean RMSE Values and Mean Computational Time for
Porosity
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Fig. 9. Comparison of the RMSE values for porosity on the test data set at
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4.3. Strength

The RMSE values for strength vary from 6.03 to 6.08, and
the least and highest computational time are at 2.01 s and
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21.35 s respectively as shown in Fig.10. Although, the best
optimal hyperparameter vectors occurred when the hidden
layer has 3 neurons, learning rate of 0.0001, and 5000 epochs
at an RMSE value of 6.03 with a computational time of 2.01,
but other hyperparameter vectors within a closed
computational time occurred at the same learning rate of
0.0001 and 5000 epochs but at 6 and 9 neurons in the hidden
layer. Other lower computation times were observed at
epochs of 5000 in which the highest was at 3.58 s. Either a
learning rate of 0.00001, 20000 epochs, or both contributed
to higher computational time although some of the
hyperparameter vectors gave RMSE values of 6.03.

Fig. 11 shows that increasing the training data from 70%
to 80% improved the RMSE values by about 8%
corresponding to all hyperparameter vectors. This implies
that the more data available for training, the RMSE values
can be improved for the chosen hyperparameter vector.
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5. Conclusion and Future Works

Hyperparameter tuning is a crucial aspect of controlling
the performance of a machine learning model. Improper
tuning of an ML/DL model’s hyperparameters may lead to
suboptimal results and affect the model’s loss function. In
this paper, we shine the spotlight on the importance and
influence of hyperparameters on the performance of machine
and deep learning algorithms when applied to an FFF AM
process. The grid search technique along with a Multilayer
perceptron (MLP) network were used in this work to
illustrate the effectiveness of hyperparameter tuning on
ML/DL algorithms. Three (3) hyperparameters were
considered — the number of neurons in the hidden layer,
learning rate, and the number of epochs. In addition, two
different train-to-test ratios were considered to investigate
their effects on the AM process data. The FFF dataset was
extracted from the MakerBot MethodX 3D printer using
internet of things (IoT) sensors. The dataset consisted of five
(5) dominant input parameters and three (3) outputs
parameters. The input parameters include layer thickness,
build orientation, extrusion temperature, building
temperature, and print speed while the measured outputs
were dimension accuracy, porosity, and tensile strength. The
total dataset was made up of 243 data points which were split
based on the above-mentioned train-to-test split ratios.
RMSE, and the computational time, CT, were both selected
as the hyperparameter performance metrics. The results
show that for dimensional accuracy and porosity, the optimal
hyperparameter vector was obtained when the hidden layer
has 3 neurons, learning rate of 0.00001, and an epoch of
5000. An RMSE of 1.7 and a computational time of 2.92
along with an RMSE value of 3.51 and computational time
of 3.09s were obtained for dimensional accuracy and
porosity respectively. Tensile strength has its optimal
hyperparameter vector when the hidden layer has 3 neurons,
a learning rate of 0.0001, and 5000 epochs, and at an RMSE
value of 6.03 with a computational time of 2.01s.

One of the major findings of this work is that if a single
hyperparameter vector is to be used with little tradeoffs, then,
the hyperparameter vector for the MLP model can be set at 3
neurons in the hidden layer, learning rate of 0.00001, and
5000 epochs. At this hyperparameter vector, although the
computational times were not the optimal but not far off.
Both dimensional accuracy and porosity gave optimal RMSE
values but 1% off the optimal RMSE value for the strength.

Although we only study an MLP model using a grid
search hyperparameter tuning technique. Future research can
address the use of other tuning approaches such as random
search, Bayesian optimization, genetic algorithm, and
particle swarm optimizations, alongside alternative DL
algorithms such as recurrent neural networks (RNN).
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