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Abstract 

In Machine learning (ML) and deep learning (DL), hyperparameter tuning is the process of selecting the combination of optimal hyperparameters 

that give the best performance. Thus, the behavior of some machine learning (ML) and deep learning (DL) algorithms largely depend on their 

hyperparameters. While there has been a rapid growth in the application of machine learning (ML) and deep learning (DL) algorithms to Additive 

manufacturing (AM) techniques, little to no attention has been paid to carefully selecting and optimizing the hyperparameters of these algorithms 

in order to investigate their influence and achieve the best possible model performance. In this work, we demonstrate the effect of a grid search 

hyperparameter tuning technique on a Multilayer perceptron (MLP) model using datasets obtained from a Fused Filament Fabrication (FFF) AM 

process. The FFF dataset was extracted from the MakerBot MethodX 3D printer using internet of things (IoT) sensors. Three (3) hyperparameters 

were considered – the number of neurons in the hidden layer, learning rate, and the number of epochs. In addition, two different train-to-test 

ratios were considered to investigate their effects on the AM process data.  The dataset consisted of five (5) dominant input parameters which 

include layer thickness, build orientation, extrusion temperature, building temperature, and print speed and three (3) output parameters: dimension 

accuracy, porosity, and tensile strength.  RMSE, and the computational time, CT, were both selected as the hyperparameter performance metrics. 

The experimental results reveal the optimal configuration of hyperparameters that contributed to the best performance of the MLP model. 
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1. Introduction 

Additive manufacturing (AM), which is also known as 

three-dimensional (3D) printing, is a technique rapidly 

gaining ground in numerous fields including engineering, 

healthcare, manufacturing, aerospace, and medicine [1], [2]. 

The global market for AM grew by 7.5% to $12.8 billion in 

2020 in spite of the current global Covid-19 pandemic [3]. As 

its name implies, AM consists of adding materials layer by 

layer to build a part or product. AM facilitates the production 

of components, parts, or products with complex geometries 

with the aid of computer aided design (CAD). Such parts can 

be manufactured using various materials including polymers 

[4], biomaterials [5] and metals [6]. In recent times, textiles 

[7], ceramics [8], biomaterials [9], glass [10], and batteries 

[11], [12] have been successfully printed using various AM 

techniques [13]. In additive manufacturing, the relationships 

between part design, manufacturing parameters, dimensional 

accuracy, part quality and reliability are not fully understood. 

However, part quality and reliability are extremely crucial to 

sustaining the structural integrity required for AM parts. 

Defects in AM parts could diminish the public’s trust in the 

technology. Subsequently, it is necessary to detect any 

defects that may occur in the AM process which may cause a 

discrepancy between the target designs and printed parts. 

However, identifying the imperfections within complex 
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printed features accurately and efficiently is a difficult and 

challenging task.  Machine and Deep learning 

models/algorithms offer a distinctive and intriguing approach 

to addressing this challenge. Recent advances have witnessed 

the application of ML/DL to AM techniques such as fused 

filament fabrication (FFF) [14], [15]. FFF is a prominent AM 

technique that constructs parts by extruding a semi-molten 

metal or polymer filament through a heated nozzle in a 

specified pattern onto a build bed [16]. FFF is the primary 

AM technique under focus in this paper.  

1.1. Machine and Deep learning Techniques 

ML/DL models rely on training and test datasets to deduce 

knowledge and vital relationships between various AM 

features or attributes and make predictions based on the 

acquired knowledge. ML/DL algorithms are also extremely 

beneficial because they can be used to determine optimal AM 

processing parameters, thus, making them useful for 

applications such as real time in-situ AM defect detection 

[17], [18]. Based on the foregoing, it is imminent that ML is 

a vital aspect of Industry 4.0 [19]–[21]. In this paper, the 

multilayer perceptron (MLP) ML was considered for our 

analysis. This is because MLP can deal with highly complex 

systems and has seen wide adoption in multiple input 

multiple output (MIMO) systems [22]. An MLP network 

comprises an input layer, single or multiple hidden layers, 

and an output layer. The proficiency of a neural network is 

contingent on appropriately choosing the number of hidden 

layers, the number of neurons in each hidden layer, activation 

functions at each layer, and optimizers. The MLP algorithm 

works on the feed-forward back propagation approach.  

While there has been a rapid growth in the application of 

machine learning (ML) and deep learning (DL) algorithms to 

generic application. However, in the context of Additive 

manufacturing (AM), little to no attention has been paid to 

carefully selecting and optimizing the hyperparameters of 

these algorithms to investigate their influence and achieve the 

best possible model performance. Based on an exhaustive 

literature search, our findings indicate the dearth of 

hyperparameter tuning of machine learning algorithms to 

improve the performance of predictive additive 

manufacturing models. Thus, the current research of 

hyperparameter tuning in additive manufacturing addresses 

shortcoming mentioned above.  

1.2. Hyperparameter Tuning/Optimization 

In machine learning, two main parameters are considered: 

the model parameters and the hyperparameters [23]. Model 

parameters are the parameters that are internal, configurable, 

and can be estimated based on the given data set. These 

parameters are learned and estimated after the training phase 

of machine or deep learning models. For example, the 

weights and biases in deep learning models are often 

initialized to zeros and the task in the training phase of the 

deep learning model is to optimize both the weights and 

biases to give the least loss in a regression problem or the 

highest accuracy in a classification process without 

underfitting or overfitting. In summary, model parameters are 

obtained after training the model. On the other hand, 

hyperparameters are external parameters of the model. They 

are parameters that are required to be set before training the 

chosen machine or deep learning model. They are 

predetermined before the training commences and used to 

control the learning process. If the hyperparameters are 

carefully chosen, then the training phase can guarantee better 

learning. Thus, leading to better performance of the chosen 

machine learning algorithm.  

Grid search hyperparameter tuning algorithm was used in 

this work because of the following advantages: 1) 

Exhaustive: Grid search considers every feasible 

combination of hyperparameters, and this will always 

guarantee an optimal solution. 2) Simple and straightforward: 

Grid search employs a simple and straightforward method 

that can be easily executed. 

The grid search approach is an exploratory algorithm that 

evaluates hyperparameter performance at all possible settings 

thus, is an exhaustive search approach. It is an independent 

search algorithm which entails testing every unique 

combination of hyperparameters in the search space to 

determine the combination that yields the best performance. 

On the contrary, the Bayesian optimization is an informed 

search approach, which augments the learning behavior from 

previous iterations. In addition, more time is required to 

determine the next hyperparameters to evaluate based on the 

results of the previous iterations. At the expense of 

minimizing the number of trials, Bayesian optimization 

requires more time for each iteration. Thus, to ensure an 

exhaustive yet timely solution a grid search approach was 

implemented in this research.  

One of the main contributions of this work is to 

demonstrate how hyperparameter tuning can be used to 

explore the hyperparameter configuration/search space. 

Furthermore, how these steps when incorporated effectively 

into any ML/DL algorithms would help to obtain an optimal 

ML/DL model. This would help researchers and practitioners 

to always consider hyperparameter optimization as one of the 

core steps for fully exploiting the potential of their chosen 

ML/DL model in order to unravel the complexity and 

nonlinearity in their data. 

The remainder of this work consists of the system 

overview in Section 2, the chosen ML/DL learning model and 

the grid search hyperparameter tuning technique were fully 

explained in Section 3, Section 4 shows the results and 

discussion on the findings, Section 5 concludes the work and 

further directions are provided as well. 

2. System Overview 

For this work, additive manufacturing process data were 

obtained for the most widely used fused filament fabrication 

(FFF) which is classified as a material extrusion AM process 

by the American Society for Testing and Materials (ASTM) 

International D638 for tensile stress testing.  
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2.1. Printer descriptions 

The Makerbot MethodX 3D printer shown in Fig.1a and 

Fig.1b was used to print the tensile strength specimen as 

given by ASTM International D638 for tensile strength 

testing [24] (Fig. 2a). The MethodX was used because it has 

a closed chamber for controlling the build temperature. Fig. 

2b shows a sample printed at a given set of input parameters. 

 

 

Fig. 1a. The MakerBot MethodX mounted with IOT sensors for capturing 

fused filament fabrication data 

 

Fig. 1b. The MakerBot MethodX camera feed showing printing in action. 

 

 

Fig. 2. a. ASTM specimen for AM tensile strength b. A printed sample of 

the ASTM standard at candidate input parameters 

3. Methodology 

This section introduces the selected deep learning model’s 

description, the model’s architecture, types of activation 

functions, and the chosen rectified linear unit. Second, the 

hyperparameter tuning problem which was the major 

contribution in this paper was defined mathematically. Third, 

the grid search technique, which was the chosen 

hyperparameter tuning technique for this work was 

introduced and the steps used were itemized. Fourth, the 

fused deposition modeling additive manufacturing process 

dataset and the evaluation metric for the model at a given 

hyperparameter vector, 𝜆𝜆, were explained. Last, the Python 

scripting detail was fully explained. 

a 

b 
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3.1. The multilayer perceptron deep learning model 

Multilayer perceptron (MLP) was used in this work to 

study the interplay between the considered input and output 

parameters. Multilayer perceptron is a type of feedforward 

artificial neural network that is fully connected [25]. For an 

MLP, there must be at least three layers – an input layer, a 

hidden layer, and an output layer. This can also be referred 

to as a “vanilla” neural network. MLP is a type of supervised 

learning, and this learning is done via the backpropagation 

during the training phase [26], [27]. MLP perceptron was 

chosen over other ML/DL algorithms for this work because 

of its appropriateness for the FFF dataset. Deep learning 

(DL) models such as Recurrent neural networks (RNN) and 

long short-term memory networks (LSTM) are best suited 

for sequential and time-series data [28]. Another widely used 

DL algorithm is convolutional neural networks (CNN), 

however it is best used for image classification [29]. Other 

machine learning (ML) algorithms such as support vector 

machines (SVM), Random Forest, K-Nearest Neighbor 

(KNN), and Stochastic Gradient Boosting (SGB) can be used 

for the FFF hyperparameter study. However, MLP has a 

higher ability of unraveling complex non-linearity that exist 

in systems such as additive manufacturing process [22], [30], 

[31]. Also, it works well with smaller data set as it does with 

large input data. Also, it has multiple hyperparameters, for 

example, number of hidden layers, number of neurons in 

each hidden layers, activation function, learning rate, number 

of epochs, etc. that can be tuned to obtain a model with 

optimal hyperparameter vectors for the given dataset. These 

hyperparameters help to explicitly demonstrate our work for 

an FFF additive manufacturing processes. 

 

 

Fig. 3. A multilayer perceptron (MLP) architecture with one input layer, 

one hidden layer, and output layer 

Fig. 3 shows the MLP model architecture – the input 

layer, hidden layers, and output layer used in this work as 

similar to [27] and definition on each layer is given by [32]. 

The input layer serves as the layer that contains the neurons; 

each neuron represents an input parameter. The output is the 

layer containing the node that measures the output parameter. 

In this work, the three outputs were considered at a time. 

Lastly, the hidden layer, which is the layer between the input 

and output layers. The hidden layer can be as many as one or 

more depending on how dense the MLP would be. It helps 

the model to learn some complexity in the given data set. For 

an illustrative case, one dense layer was considered in this 

work. 

3.2. Activation function  

It is a type of function used in deep learning to unravel the 

nonlinearity or complexity in any given data. It goes further 

than that by removing linearity from the neural network. 

There are various types of activation functions as explicitly 

defined in the work of [33] such as sigmoid function, tanh 

function, rectified linear unit (ReLU), exponential linear unit 

(ELU), exponential function, scaled exponential linear unit 

(SELU), etc. Rectified linear unit (ReLU) function was used 

as the activation function in this work. 

3.2.1. Rectified linear unit (ReLU)  

 

A rectified linear unit, ReLU, is an activation function, 

f(x) that returns the value of the independent variable if 

positive, and zero, otherwise. Mathematically, a ReLU 

function is given in Equation 1: 𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥 (0,𝑥𝑥) (1) 

3.3. Mathematical definition of hyperparameter tuning 

The formal mathematical hyperparameter tuning 

definition given by [34] was adapted to this work. Given a 

machine learning algorithm, 𝒜𝒜 , with 𝑁𝑁  number of 

hyperparameters, 𝑑𝑑𝑛𝑛 is the domain of the 𝑛𝑛 -th 

hyperparameter, such that the hyperparameter configuration 

space, 𝑑𝑑 =  𝑑𝑑1 × 𝑑𝑑2 × … ×  𝑑𝑑𝑁𝑁 , 𝜆𝜆 ∈ 𝑑𝑑  is a vector of 

hyperparameters, 𝒜𝒜𝜆𝜆 denoted a machine learning 𝒜𝒜 having 

its hyperparameters instantiated to 𝜆𝜆. The problem at hand is 

to find the optimal vector of hyperparameters, 𝜆𝜆∗, that has the 

least loss, 𝐿𝐿, of a model generated by the machine learning 

algorithm, 𝐴𝐴, instantiated at a vector of hyperparameters, 𝜆𝜆, 

on training data, 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 , and evaluated on test data, 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 as 

given in Equation 2 :  𝜆𝜆∗ =  𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑛𝑛𝜆𝜆∈𝑑𝑑 𝑓𝑓(𝐿𝐿,𝒜𝒜𝜆𝜆 ,𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 ,𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2) 

3.4. Hyperparameter tuning techniques 

Many works exist in hyperparameter tuning or 

optimization. Hyperparameter tuning is often referred to as a 

black box problem [35], and many techniques are found in 

the literature. Some of these techniques are manual tuning 

[36], [37], grid search [36], [38], [39], random search [36], 

[40], Bayesian optimization [35], [41], genetic algorithm 

[33], particle swarm optimizations [42], etc. Some of the 

techniques have variants as explored by different researchers 

in the field, especially for Bayesian optimization.  

The grid search is considered in this work for exploration 

purposes and for a deep illustrative case of the additive 

manufacturing process. As seen in many recent times, much 

attention has been on developing new machine learning 

models, whereas there is a need to explore the effects of 

hyperparameter tuning of the chosen model on the data. 
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3.5. Grid search algorithm 

Grid search hyperparameter tuning is a systematic way of 

creating a grid from the considered hyperparameters in 

which each possible combination is used to tune the chosen 

model [15]. It is an exhaustive search method, as each 

combination is observed one at a time [20]. In addition, the 

search range for each hyperparameter is many folds. Also, in 

grid search, all hyperparameters are assumed to have equal 

weights irrespective of their effect on the machine learning 

training phase. Grid search was used because it is an 

exhaustive method as it considers all feasible hyperparameter 

combinations which supports the objective of this work. 

Also, it is simple and straightforward as it can be applied 

without much mathematical expertise. 

 

3.5.1. Grid search hyperparameter tuning procedure 

 

To fully see the workings of hyperparameter tuning, the 

grid search technique is chosen for full hyperparameter 

exploration, and the following steps were carried out: 

1. Select the hyperparameters to be tuned. 

2. For each hyperparameter, determine the search 

range. 

3. Systematically, obtain all possible combinations. 

4. In turn, each combination during the training of the 

model obtains the RMSE values and computational 

time based on the stopping condition. In this case, 

the number of epochs. 

5. Rank your hyperparameter combination from the 

least RMSE values, then the computational time. 

Break tie arbitrarily. 

For the chosen deep learning model, that is, the multilayer 

perceptron, three hyperparameters were considered – the 

number of neurons in the hidden layer, learning rate, and the 

number of epochs. The hyperparameter list and search ranges 

for the considered hyperparameters are given as: 

1. Number of neurons in each hidden layer = [3, 6, 9]  

2. Learning rate = [0.001, 0.0001, 0.00001] 

3. Epoch = [5000, 10000, 20000] 

From the hyperparameter sets above, there are 3 ×  3 ×

 3 =  27 different hyperparameter combinations. In addition 

to these, two different train-to-test ratios were considered to 

investigate their effects on the AM process data. The 

considered train-to-test ratios in this work are 70/30 and 

80/20.  

The framework in this section is extensible to other 

chosen machine learning models. The hyperparameters and 

hyperparameter ranges can be chosen accordingly for the 

considered model to give the hyperparameter 

combinations/vectors. 

3.6. Dataset and evaluation metrics 

3.6.1. Dataset 

 

From the hyperparameter tuning framework in Section 

3.5.1, a combination of AM input and output data can be 

used. The AM input and output parameters of interest need 

to be measured, and the appropriate design of experiment can 

be performed. The obtained data serves as the dataset.  

For this work, the AM dataset was obtained using the 

MakerBot MethodX 3D printer using internet of things (IoT) 

sensors. Five of the dominant input parameters were 

considered [43] and three print outputs [44] were measured. 

The input parameters include layer thickness, build 

orientation, extrusion temperature, building temperature, and 

print speed while the measured outputs were dimension 

accuracy, porosity, and tensile strength. The feed rate of the 

filament was held constant as is typically done for FFF 

systems. For each input parameter, three different levels 

were considered, which led to a full factorial experimental 

design There were a total of 35 = 243 data points which 

were split based on the two train-to-test split ratios. See Table 

1, for a snapshot of the 243 data points. 

3.6.1.1. Output parameters 

Dimension accuracy was measured in this work by 

measuring how closely the 3D printed structure match the 

tensile strength specimen as given by ASTM International 

D638 computer-aided design (CAD). The deviation was 

calculated following the guide in [43] as given below. Nine 

different measurements were measured for individual printed 

specimen. The overall length (OL) of the 3D printed part was 

measured with a vernier caliper. Other measurements such as 

the total width (OW), the thickness and the inner width were 

measured at three different points which resulted into three 

measurements. The three measurements for the thickness and 

width were averaged to a single value thickness (T) and 

width (W). Individual dimensional error was computed using 

equation 3 while equation 4 was used to compute the overall 

dimensional accuracy. 

Error, 𝜀𝜀 = Measured value – CAD value (3) 𝐷𝐷𝑎𝑎𝑚𝑚𝐷𝐷𝑛𝑛𝐷𝐷𝑎𝑎𝐷𝐷𝑛𝑛𝑚𝑚𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝐴𝐴 (%) =
𝜀𝜀𝐿𝐿 + 𝜀𝜀𝑂𝑂𝑂𝑂 + 𝜀𝜀𝑂𝑂 + 𝜀𝜀𝑇𝑇4 ×

100  (4) εL = 𝐷𝐷𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝑛𝑛 𝐷𝐷𝑜𝑜𝐷𝐷𝑎𝑎𝑚𝑚𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑛𝑛𝑎𝑎𝑙𝑙ℎ,  ε𝑂𝑂𝑂𝑂 = 𝐷𝐷𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝑛𝑛 𝐷𝐷𝑜𝑜𝐷𝐷𝑎𝑎𝑚𝑚𝐷𝐷𝐷𝐷 𝑤𝑤𝑎𝑎𝑑𝑑𝑙𝑙ℎ ε𝑂𝑂 = 𝐷𝐷𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝑛𝑛 𝑎𝑎𝑛𝑛𝑛𝑛𝐷𝐷𝑎𝑎 𝑤𝑤𝑎𝑎𝑑𝑑𝑙𝑙ℎ ε𝑇𝑇 =  𝐷𝐷𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝑛𝑛 𝐷𝐷𝑜𝑜𝐷𝐷𝑎𝑎𝑚𝑚𝐷𝐷𝐷𝐷 𝑙𝑙ℎ𝑎𝑎𝐴𝐴𝑖𝑖𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷 
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Table 1: Snapshot of FFF Dataset  

 

Color key:  good level – green, medium level – yellow, and low level - red 

Although, porosity of FFF AM printed parts can be 

measured using different methods, such as, microscopy of a 

polished cross-section, Archimedes’ principle, X-Ray 

computed tomography [45], and simple ratio of mass to 

volume approach [46]. This work used the latter method to 

measure the FFF AM printed parts as explicitly explained in 

the works of [47] Equation 3 shows the formula for 

computing the porosity. 𝑃𝑃𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝑎𝑎𝑙𝑙𝐴𝐴 % =  
𝑉𝑉𝑏𝑏− 𝑉𝑉𝑠𝑠𝑉𝑉𝑏𝑏  * 100 (5) 

𝑤𝑤ℎ𝐷𝐷𝑎𝑎𝐷𝐷 𝑉𝑉𝑏𝑏 = 𝑙𝑙ℎ𝐷𝐷 𝑜𝑜𝐷𝐷𝐷𝐷𝐴𝐴𝑚𝑚𝐷𝐷 𝐷𝐷𝑓𝑓 𝑏𝑏𝐴𝐴𝐷𝐷𝑖𝑖 𝐷𝐷𝑠𝑠𝐷𝐷𝐴𝐴𝑎𝑎𝑚𝑚𝐷𝐷𝑛𝑛,  𝑉𝑉𝑡𝑡 = 𝑙𝑙ℎ𝐷𝐷 𝑜𝑜𝐷𝐷𝐷𝐷𝐴𝐴𝑚𝑚𝐷𝐷 𝐷𝐷𝑓𝑓 𝑙𝑙ℎ𝐷𝐷 𝐷𝐷𝑠𝑠𝐷𝐷𝐴𝐴𝑎𝑎𝑚𝑚𝐷𝐷𝑛𝑛 

 

Each 3D printed was tested for tensile strength for a given 

set of input parameters. Tensile strength testing was 

performed using the universal testing machine - Instron 5542 

(Canton, MA, USA) with a 500N load cell and a 

displacement rate as detailed for the ASTM D628. We 

adopted the specific details on tensile strength testing of FFF-

printed parts using the work of [48]. 

3.6.2. Evaluation metrics 

 

For each vector of hyperparameters or hyperparameter 

combination, 𝜆𝜆, performed by the grid search technique, both 

the root-mean-squared error, RMSE, and the computational 

time, CT, were computed and they both served as the 

hyperparameter performance metrics. RMSE serves the first 

performance metric in this work, then the computational time 

in this work. Computational time would serve as a tiebreaker 

when two or more hyperparameter combinations have the 

same or close RMSE values. In some other applications, 

especially where time cannot be compromise, computational 

time might take the lead. 

3.6.2.1. Root-mean squared error (RMSE) 

 

The root-mean-squared error is the square root of the 

mean of the squared prediction errors across all the output 

test data sets as given in Equation 6. The root-mean-squared 

error had the same unit as the measured output parameter. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑦𝑦𝑖𝑖,𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡−𝑦𝑦�𝑖𝑖,   𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝)2𝑛𝑛𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖=1 𝑛𝑛𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡   (6) 

where, 

 𝐴𝐴𝑡𝑡,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the 𝑎𝑎𝑙𝑙ℎ actual output test data 𝐴𝐴�𝑡𝑡,   𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑  is the 𝑎𝑎𝑙𝑙ℎ predicted output test data 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total number of the output test data 

3.6.2.2. Computational time (CT)  

 

In this work, computation time was measured as the time 

taken from the training of the MLP model at the given 

hyperparameter combination to the plotting of the visuals 

and computing the errors. 

3.6.3. Model training status 

 

After obtaining both the RMSE values and computational 

time, before the results can be used, the status of the MLP 

model during the training phase must be checked. There are 

two possible scenarios – “Learning” or “No-Learning''. 

3.6.4. Learning status 

 

Learning occurs when the MLP model can be trained 

using the backpropagation technique. The ability of the MLP 

to be trained at the given hyperparameter combination is 

observed from the MLP prediction on the input test data set. 

It is easily noticeable from the plotted visuals as illustrated 

in Fig. 4. 
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Fig. 4. A plot of actual/expected vs predicted dimension accuracy from the 

test data set showing learning status 

3.6.5. No-learning status 

 

No learning occurs if the prediction from the MLP model 

on the input test data set is either all zeros or it has the same 

values all through the prediction as shown in Fig. 5. This 

could be a result of being trapped in a local optimal during 

the training phase using the backpropagation technique. It 

further means that at the considered hyperparameter 

combination, the complexity and nonlinearity of the data set 

cannot be learned. Interestingly, this is one of the benefits of 

hyperparameter tuning in machine learning and deep 

learning domains. 

 

  

Fig. 5. A plot of actual/expected vs predicted dimension accuracy from the 

test data set showing no-learning status 

3.7. Python scripting procedure 

The pseudocode for the implementation of this work is 

given as: 

START PROGRAM 

IMPORT necessary libraries or modules 

LOAD dataset 

BUILD the multi-layer perceptron deep learning 

model 

LIST SET of MLP hyperparameters with their range 

LIST dataset test size 

FOR each test size 

    Split dataset into train and test datasets 

    Split train dataset into input and outputs 

    Split test dataset into input and outputs 

    INITIALIZE random weights and biases 

    FOR each output parameter 

        FOR each hyperparameter vector 

            OPEN a file to save desired results 

            SET test size iteration COUNTER, n = 0 

            WHILE n < 2 

                START timer == initial time 

                FOR the range of the epoch 

                    DO forward propagation 

                    DO backward propagation 

                    UPDATE both weights and biases 

                GET weights and biases 

                PREDICT on the trained model with test 

data 

                COMPUTE root-mean-squared value 

                STOP timer == final time 

                COMPUTE CT = final time - initial time 

                SAVE all results  

                n = n + 1 

        COMPUTE means of RMSE and CT 

        PLOT all needed visuals 

END PROGRAM 

 
 
 
 
 



8 Ogunsanya M., Isichei J., Desai S./ Manufacturing Letters 00 (2023) 000–000 

4. Results and Discussions 

Table 2: Mean RMSE values and computational times for dimension accuracy, porosity, and strength for the 18 hyperparameter vectors with “Learning” status 

 

As stated in Section 3.6.3, the training status of the MLP 

model must first be ascertained before the model’s RMSE 

values and computational time are considered.  

Table 2 shows the mean RMSE values and mean 

computational times (CTs), at 70:30 and 80:20 train-to-test 

ratios each ran for two iterations, where training status was 

“Learning”. Learning occurred in 18 hyperparameter vectors 

out of the possible 27.  

For further analysis, all hyperparameter vectors, 𝜆𝜆, that 

have “No-Learning” status are not considered. Only 18 out 

of the 27 hyperparameter vectors have “Learning” as their 

training status for dimension accuracy, porosity, and 

strength. Therefore, the remaining 9 hyperparameter vectors 

were not further considered. 

4.1. Dimension Accuracy 

For the MLP, predictions were made at 18 different 

hyperparameter vectors. The values of the mean RMSE 

values for the two different train-to-test ratios of 70:30 and 

80:20 for two iterations each range from 1.70 to 1.75 and at 

various computational times. Fig. 6 illustrates sorted 

hyperparameter vectors first on the least RMSE value then 

on the computational time. The optimal hyperparameter 

vector rate was 0.00001. No learning occurs at a learning rate 

of 0.001 which implies, learning rate is key to learning of the 

complexity and nonlinearity of the dimensional accuracy 

data. Some of the highest computational times are observed 

when the hidden layer has 9 neurons which translates to the 

need for more computations as the neurons increase. Thus, 

computational time increased with an increase in the number 

of epochs and also increased as the learning rate was reduced. 

Based on the evaluation metric selection given in Section 

3.6.2, the optimal hyperparameter vector for the given MLP 

is 3 neurons in the hidden layer, learning rate of 0.00001, and 

epoch of 5000 for the given dataset. On the other hand, if CT 

is given more weight, then an optimal hyperparameter vector 

is 3 neurons in the hidden layer, learning rate of 0.0001 and 

epoch of 5000 for the MLP which is applicable in a process 

where computational time cannot be compromised. 

Interestingly, a compromise on the RMSE value by 0.03 

gives about 35% reduction in CT. This is achieved by using 

a learning rate of 0.0001 in place of 0.00001. Thus, an 

application determines if this compromise can be made. 

Fig. 7 shows the comparison of the RMSE values for the 

dimensional accuracy at train-to-test of 70:30 and 80:20. The 

curves shows that increasing the training data set from 70% 

to 80% of the data set improved RMSE values except when 

the hyperparameter vectors has its learning rate to be 

0.00001. So, all improved RMSE values occurred at learning 

rate of 0.0001 irrespective of other hyperparameters.  

 

     
Dimension Accuracy     Porosity       Strength 

 

 
H1 LR Epoch 

Hyperparameter 

Vector 

Mean 

RMSE 

Mean 

CT 

   Mean 

 RMSE 

        Mean 

         CT 

      Mean 

     RMSE 

    Mean 

    CT    Status 

1 3 0.0001 5000 3,0.0001,5000 1.74 1.91 3.60 1.98 6.03 2.01 Learning 

2 3 1.00E-05 5000 3,0.00001,5000 1.7 2.92 3.51 3.09 6.07 3.09 Learning 

3 3 0.0001 10000 3,0.0001,10000 1.75 6.31 3.60 6.49 6.03 6.53 Learning 

4 3 1.00E-05 10000 3,0.00001,10000 1.7 8.00 3.51 8.23 6.04 8.30 Learning 

5 3 0.0001 20000 3,0.0001,20000 1.75 13.92 3.60 14.20 6.03 14.44 Learning 

6 3 1.00E-05 20000 3,0.00001,20000 1.7 16.87 3.56 17.21 6.03 18.54 Learning 

7 6 0.0001 5000 6,0.0001,5000 1.73 1.98 3.60 1.98 6.03 2.37 Learning 

8 6 1.00E-05 5000 6,0.00001,5000 1.715 3.07 3.51 3.13 6.08 3.58 Learning 

9 6 0.0001 10000 6,0.0001,10000 1.75 6.66 3.60 6.81 6.03 7.30 Learning 

10 6 1.00E-05 10000 6,0.00001,10000 1.705 8.47 3.51 8.66 6.05 9.20 Learning 

11 6 0.0001 20000 6,0.0001,20000 1.75 14.96 3.60 15.51 6.03 15.74 Learning 

12 6 1.00E-05 20000 6,0.00001,20000 1.7 18.16 3.54 19.52 6.03 19.01 Learning 

13 9 0.0001 5000 9,0.0001,5000 1.74 2.14 3.60 2.17 6.03 2.21 Learning 

14 9 1.00E-05 5000 9,0.00001,5000 1.7 3.34 3.51 3.39 6.08 3.43 Learning 

15 9 0.0001 10000 9,0.0001,10000 1.75 7.82 3.60 7.40 6.03 7.44 Learning 

16 9 1.00E-05 10000 9,0.00001,10000 1.7 10.27 3.51 9.40 6.05 9.48 Learning 

17 9 0.0001 20000 9,0.0001,20000 1.75 17.28 3.60 16.49 6.03 17.73 Learning 

18 9 1.00E-05 20000 9,0.00001,20000 1.7 20.78 3.55 20.09 6.03 21.35 Learning 
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Fig. 6. Mean values for the RMSE values and the computational time for 

dimensional accuracy. 

 

 

Fig. 7. Comparison of the RMSE values for dimension accuracy on the test 

data set at different hyperparameter vectors for 70:30 and 80:20 train-test 

split 

4.2. Porosity 

Porosity has its optimal hyperparameter vector when the 

hidden layer has 3 neurons, learning rate of 0.00001, and 

5000 epochs. This corresponds to a mean RMSE value of 

3.51 and occurred at computational time of 3.09s. For the 

porosity as shown in Fig.8, the least RMSE value occurred 

at 3.51 and the worst at 3.60. Most of the highest 

computational time occurred when the learning rate was 

0.00001. In this case, the optimal hyperparameter vector 

occurs with the hidden layer having 3 neurons, 0.00001 

learning rate, and 5000 epochs. On the other hand, if CT has 

a higher weight compared to RMSE, then an optimal 

hyperparameter vector occurs when the number of neurons 

in the hidden layer is 3, learning rate is 0.00001, and epochs 

of 5000. Similarly, to Section 4.1, if RMSE can be 

compromised a bit, from 3.51 to 3.60, the computational time 

can be dropped by about 37% by using a learning rate of 

0.0001 instead of 0.00001 From Fig. 9, increasing the 

training data set from 70% to 80% of the entire dataset 

improved the RMSE values at all hyperparameter vectors. 

This guarantees that having more porosity data would help 

reduce improve the MLP model. 

 

 

Fig. 8. Mean values for the RMSE values and the computational time for 

porosity 

 

Fig. 9. Comparison of the RMSE values for porosity on the test data set at 

different hyperparameter vectors for 70:30 and 80:20 train-test split 

4.3. Strength 

The RMSE values for strength vary from 6.03 to 6.08, and 

the least and highest computational time are at 2.01 s and 
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21.35 s respectively as shown in Fig.10. Although, the best 

optimal hyperparameter vectors occurred when the hidden 

layer has 3 neurons, learning rate of 0.0001, and 5000 epochs 

at an RMSE value of 6.03 with a computational time of 2.01, 

but other hyperparameter vectors within a closed 

computational time occurred at the same learning rate of 

0.0001 and 5000 epochs but at 6 and 9 neurons in the hidden 

layer. Other lower computation times were observed at 

epochs of 5000 in which the highest was at 3.58 s. Either a 

learning rate of 0.00001, 20000 epochs, or both contributed 

to higher computational time although some of the 

hyperparameter vectors gave RMSE values of 6.03. 

Fig. 11 shows that increasing the training data from 70% 

to 80% improved the RMSE values by about 8% 

corresponding to all hyperparameter vectors. This implies 

that the more data available for training, the RMSE values 

can be improved for the chosen hyperparameter vector. 

 

 

Fig. 10. Mean values for the RMSE values and the computational time for 

strength 

 
 

Fig. 11. Comparison of the RMSE values for strength on the test data set at 

different hyperparameter vectors for 70:30 and 80:20 train-test split 

5. Conclusion and Future Works 

Hyperparameter tuning is a crucial aspect of controlling 

the performance of a machine learning model. Improper 

tuning of an ML/DL model’s hyperparameters may lead to 

suboptimal results and affect the model’s loss function. In 

this paper, we shine the spotlight on the importance and 

influence of hyperparameters on the performance of machine 

and deep learning algorithms when applied to an FFF AM 

process.  The grid search technique along with a Multilayer 

perceptron (MLP) network were used in this work to 

illustrate the effectiveness of hyperparameter tuning on 

ML/DL algorithms. Three (3) hyperparameters were 

considered – the number of neurons in the hidden layer, 

learning rate, and the number of epochs. In addition, two 

different train-to-test ratios were considered to investigate 

their effects on the AM process data.  The FFF dataset was 

extracted from the MakerBot MethodX 3D printer using 

internet of things (IoT) sensors. The dataset consisted of five 

(5) dominant input parameters and three (3) outputs 

parameters. The input parameters include layer thickness, 

build orientation, extrusion temperature, building 

temperature, and print speed while the measured outputs 

were dimension accuracy, porosity, and tensile strength. The 

total dataset was made up of 243 data points which were split 

based on the above-mentioned train-to-test split ratios.  

RMSE, and the computational time, CT, were both selected 

as the hyperparameter performance metrics. The results 

show that for dimensional accuracy and porosity, the optimal 

hyperparameter vector was obtained when the hidden layer 

has 3 neurons, learning rate of 0.00001, and an epoch of 

5000. An RMSE of 1.7 and a computational time of 2.92 

along with an RMSE value of 3.51 and computational time 

of 3.09s were obtained for dimensional accuracy and 

porosity respectively. Tensile strength has its optimal 

hyperparameter vector when the hidden layer has 3 neurons, 

a learning rate of 0.0001, and 5000 epochs, and at an RMSE 

value of 6.03 with a computational time of 2.01s.  

One of the major findings of this work is that if a single 

hyperparameter vector is to be used with little tradeoffs, then, 

the hyperparameter vector for the MLP model can be set at 3 

neurons in the hidden layer, learning rate of 0.00001, and 

5000 epochs. At this hyperparameter vector, although the 

computational times were not the optimal but not far off. 

Both dimensional accuracy and porosity gave optimal RMSE 

values but 1% off the optimal RMSE value for the strength.  

Although we only study an MLP model using a grid 

search hyperparameter tuning technique. Future research can 

address the use of other tuning approaches such as random 

search, Bayesian optimization, genetic algorithm, and 

particle swarm optimizations, alongside alternative DL 

algorithms such as recurrent neural networks (RNN). 
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