

Available online at www.sciencedirect.com

Manufacturing Letters

Manufacturing Letters 00 (2023) 000–000

2213-8463 © 2023 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Peer-review under responsibility of the Scientific Committee of the NAMRI/SME.

51st SME North American Manufacturing Research Conference (NAMRC 51, 2023)

Grid Search Hyperparameter Tuning in Additive Manufacturing Processes

 Michael Ogunsanyaa, Joan Isicheia, Salil Desaia,*

aCenter of Excellence in Product Design and Advanced Manufacturing, North Carolina A&T State University, 1601 E Market Street, Greensboro, NC 27401,

USA

* Corresponding author. Tel.: +1-336-285-3725; fax: +1-336-334-7729. E-mail address: sdesai@ncat.edu

Abstract

In Machine learning (ML) and deep learning (DL), hyperparameter tuning is the process of selecting the combination of optimal hyperparameters

that give the best performance. Thus, the behavior of some machine learning (ML) and deep learning (DL) algorithms largely depend on their

hyperparameters. While there has been a rapid growth in the application of machine learning (ML) and deep learning (DL) algorithms to Additive

manufacturing (AM) techniques, little to no attention has been paid to carefully selecting and optimizing the hyperparameters of these algorithms

in order to investigate their influence and achieve the best possible model performance. In this work, we demonstrate the effect of a grid search

hyperparameter tuning technique on a Multilayer perceptron (MLP) model using datasets obtained from a Fused Filament Fabrication (FFF) AM

process. The FFF dataset was extracted from the MakerBot MethodX 3D printer using internet of things (IoT) sensors. Three (3) hyperparameters

were considered – the number of neurons in the hidden layer, learning rate, and the number of epochs. In addition, two different train-to-test

ratios were considered to investigate their effects on the AM process data. The dataset consisted of five (5) dominant input parameters which

include layer thickness, build orientation, extrusion temperature, building temperature, and print speed and three (3) output parameters: dimension

accuracy, porosity, and tensile strength. RMSE, and the computational time, CT, were both selected as the hyperparameter performance metrics.

The experimental results reveal the optimal configuration of hyperparameters that contributed to the best performance of the MLP model.

© 2023 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Scientific Committee of the NAMRI/SME.
 Keywords: Grid Search, Hyperparameter Tuning, Additive Manufacturing, Multilayer Perceptron, Machine Learning.

1. Introduction

Additive manufacturing (AM), which is also known as

three-dimensional (3D) printing, is a technique rapidly

gaining ground in numerous fields including engineering,

healthcare, manufacturing, aerospace, and medicine [1], [2].

The global market for AM grew by 7.5% to $12.8 billion in

2020 in spite of the current global Covid-19 pandemic [3]. As

its name implies, AM consists of adding materials layer by

layer to build a part or product. AM facilitates the production

of components, parts, or products with complex geometries

with the aid of computer aided design (CAD). Such parts can

be manufactured using various materials including polymers

[4], biomaterials [5] and metals [6]. In recent times, textiles

[7], ceramics [8], biomaterials [9], glass [10], and batteries

[11], [12] have been successfully printed using various AM

techniques [13]. In additive manufacturing, the relationships

between part design, manufacturing parameters, dimensional

accuracy, part quality and reliability are not fully understood.

However, part quality and reliability are extremely crucial to

sustaining the structural integrity required for AM parts.

Defects in AM parts could diminish the public’s trust in the

technology. Subsequently, it is necessary to detect any

defects that may occur in the AM process which may cause a

discrepancy between the target designs and printed parts.

However, identifying the imperfections within complex

2 Ogunsanya M., Isichei J., Desai S./ Manufacturing Letters 00 (2023) 000–000

printed features accurately and efficiently is a difficult and

challenging task. Machine and Deep learning

models/algorithms offer a distinctive and intriguing approach

to addressing this challenge. Recent advances have witnessed

the application of ML/DL to AM techniques such as fused

filament fabrication (FFF) [14], [15]. FFF is a prominent AM

technique that constructs parts by extruding a semi-molten

metal or polymer filament through a heated nozzle in a

specified pattern onto a build bed [16]. FFF is the primary

AM technique under focus in this paper.

1.1. Machine and Deep learning Techniques

ML/DL models rely on training and test datasets to deduce

knowledge and vital relationships between various AM

features or attributes and make predictions based on the

acquired knowledge. ML/DL algorithms are also extremely

beneficial because they can be used to determine optimal AM

processing parameters, thus, making them useful for

applications such as real time in-situ AM defect detection

[17], [18]. Based on the foregoing, it is imminent that ML is

a vital aspect of Industry 4.0 [19]–[21]. In this paper, the

multilayer perceptron (MLP) ML was considered for our

analysis. This is because MLP can deal with highly complex

systems and has seen wide adoption in multiple input

multiple output (MIMO) systems [22]. An MLP network

comprises an input layer, single or multiple hidden layers,

and an output layer. The proficiency of a neural network is

contingent on appropriately choosing the number of hidden

layers, the number of neurons in each hidden layer, activation

functions at each layer, and optimizers. The MLP algorithm

works on the feed-forward back propagation approach.

While there has been a rapid growth in the application of

machine learning (ML) and deep learning (DL) algorithms to

generic application. However, in the context of Additive

manufacturing (AM), little to no attention has been paid to

carefully selecting and optimizing the hyperparameters of

these algorithms to investigate their influence and achieve the

best possible model performance. Based on an exhaustive

literature search, our findings indicate the dearth of

hyperparameter tuning of machine learning algorithms to

improve the performance of predictive additive

manufacturing models. Thus, the current research of

hyperparameter tuning in additive manufacturing addresses

shortcoming mentioned above.

1.2. Hyperparameter Tuning/Optimization

In machine learning, two main parameters are considered:

the model parameters and the hyperparameters [23]. Model

parameters are the parameters that are internal, configurable,

and can be estimated based on the given data set. These

parameters are learned and estimated after the training phase

of machine or deep learning models. For example, the

weights and biases in deep learning models are often

initialized to zeros and the task in the training phase of the

deep learning model is to optimize both the weights and

biases to give the least loss in a regression problem or the

highest accuracy in a classification process without

underfitting or overfitting. In summary, model parameters are

obtained after training the model. On the other hand,

hyperparameters are external parameters of the model. They

are parameters that are required to be set before training the

chosen machine or deep learning model. They are

predetermined before the training commences and used to

control the learning process. If the hyperparameters are

carefully chosen, then the training phase can guarantee better

learning. Thus, leading to better performance of the chosen

machine learning algorithm.

Grid search hyperparameter tuning algorithm was used in

this work because of the following advantages: 1)

Exhaustive: Grid search considers every feasible

combination of hyperparameters, and this will always

guarantee an optimal solution. 2) Simple and straightforward:

Grid search employs a simple and straightforward method

that can be easily executed.

The grid search approach is an exploratory algorithm that

evaluates hyperparameter performance at all possible settings

thus, is an exhaustive search approach. It is an independent

search algorithm which entails testing every unique

combination of hyperparameters in the search space to

determine the combination that yields the best performance.

On the contrary, the Bayesian optimization is an informed

search approach, which augments the learning behavior from

previous iterations. In addition, more time is required to

determine the next hyperparameters to evaluate based on the

results of the previous iterations. At the expense of

minimizing the number of trials, Bayesian optimization

requires more time for each iteration. Thus, to ensure an

exhaustive yet timely solution a grid search approach was

implemented in this research.

One of the main contributions of this work is to

demonstrate how hyperparameter tuning can be used to

explore the hyperparameter configuration/search space.

Furthermore, how these steps when incorporated effectively

into any ML/DL algorithms would help to obtain an optimal

ML/DL model. This would help researchers and practitioners

to always consider hyperparameter optimization as one of the

core steps for fully exploiting the potential of their chosen

ML/DL model in order to unravel the complexity and

nonlinearity in their data.

The remainder of this work consists of the system

overview in Section 2, the chosen ML/DL learning model and

the grid search hyperparameter tuning technique were fully

explained in Section 3, Section 4 shows the results and

discussion on the findings, Section 5 concludes the work and

further directions are provided as well.

2. System Overview

For this work, additive manufacturing process data were

obtained for the most widely used fused filament fabrication

(FFF) which is classified as a material extrusion AM process

by the American Society for Testing and Materials (ASTM)

International D638 for tensile stress testing.

 Ogunsanya M., Isichei J., Desai S./ Manufacturing Letters 00 (2023) 000–000 3

2.1. Printer descriptions

The Makerbot MethodX 3D printer shown in Fig.1a and

Fig.1b was used to print the tensile strength specimen as

given by ASTM International D638 for tensile strength

testing [24] (Fig. 2a). The MethodX was used because it has

a closed chamber for controlling the build temperature. Fig.

2b shows a sample printed at a given set of input parameters.

Fig. 1a. The MakerBot MethodX mounted with IOT sensors for capturing

fused filament fabrication data

Fig. 1b. The MakerBot MethodX camera feed showing printing in action.

Fig. 2. a. ASTM specimen for AM tensile strength b. A printed sample of

the ASTM standard at candidate input parameters

3. Methodology

This section introduces the selected deep learning model’s

description, the model’s architecture, types of activation

functions, and the chosen rectified linear unit. Second, the

hyperparameter tuning problem which was the major

contribution in this paper was defined mathematically. Third,

the grid search technique, which was the chosen

hyperparameter tuning technique for this work was

introduced and the steps used were itemized. Fourth, the

fused deposition modeling additive manufacturing process

dataset and the evaluation metric for the model at a given

hyperparameter vector, 𝜆𝜆, were explained. Last, the Python

scripting detail was fully explained.

a

b

4 Ogunsanya M., Isichei J., Desai S./ Manufacturing Letters 00 (2023) 000–000

3.1. The multilayer perceptron deep learning model

Multilayer perceptron (MLP) was used in this work to

study the interplay between the considered input and output

parameters. Multilayer perceptron is a type of feedforward

artificial neural network that is fully connected [25]. For an

MLP, there must be at least three layers – an input layer, a

hidden layer, and an output layer. This can also be referred

to as a “vanilla” neural network. MLP is a type of supervised

learning, and this learning is done via the backpropagation

during the training phase [26], [27]. MLP perceptron was

chosen over other ML/DL algorithms for this work because

of its appropriateness for the FFF dataset. Deep learning

(DL) models such as Recurrent neural networks (RNN) and

long short-term memory networks (LSTM) are best suited

for sequential and time-series data [28]. Another widely used

DL algorithm is convolutional neural networks (CNN),

however it is best used for image classification [29]. Other

machine learning (ML) algorithms such as support vector

machines (SVM), Random Forest, K-Nearest Neighbor

(KNN), and Stochastic Gradient Boosting (SGB) can be used

for the FFF hyperparameter study. However, MLP has a

higher ability of unraveling complex non-linearity that exist

in systems such as additive manufacturing process [22], [30],

[31]. Also, it works well with smaller data set as it does with

large input data. Also, it has multiple hyperparameters, for

example, number of hidden layers, number of neurons in

each hidden layers, activation function, learning rate, number

of epochs, etc. that can be tuned to obtain a model with

optimal hyperparameter vectors for the given dataset. These

hyperparameters help to explicitly demonstrate our work for

an FFF additive manufacturing processes.

Fig. 3. A multilayer perceptron (MLP) architecture with one input layer,

one hidden layer, and output layer

Fig. 3 shows the MLP model architecture – the input

layer, hidden layers, and output layer used in this work as

similar to [27] and definition on each layer is given by [32].

The input layer serves as the layer that contains the neurons;

each neuron represents an input parameter. The output is the

layer containing the node that measures the output parameter.

In this work, the three outputs were considered at a time.

Lastly, the hidden layer, which is the layer between the input

and output layers. The hidden layer can be as many as one or

more depending on how dense the MLP would be. It helps

the model to learn some complexity in the given data set. For

an illustrative case, one dense layer was considered in this

work.

3.2. Activation function

It is a type of function used in deep learning to unravel the

nonlinearity or complexity in any given data. It goes further

than that by removing linearity from the neural network.

There are various types of activation functions as explicitly

defined in the work of [33] such as sigmoid function, tanh

function, rectified linear unit (ReLU), exponential linear unit

(ELU), exponential function, scaled exponential linear unit

(SELU), etc. Rectified linear unit (ReLU) function was used

as the activation function in this work.

3.2.1. Rectified linear unit (ReLU)

A rectified linear unit, ReLU, is an activation function,

f(x) that returns the value of the independent variable if

positive, and zero, otherwise. Mathematically, a ReLU

function is given in Equation 1: 𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥 (0,𝑥𝑥) (1)

3.3. Mathematical definition of hyperparameter tuning

The formal mathematical hyperparameter tuning

definition given by [34] was adapted to this work. Given a

machine learning algorithm, 𝒜𝒜 , with 𝑁𝑁 number of

hyperparameters, 𝑑𝑑𝑛𝑛 is the domain of the 𝑛𝑛 -th

hyperparameter, such that the hyperparameter configuration

space, 𝑑𝑑 = 𝑑𝑑1 × 𝑑𝑑2 × … × 𝑑𝑑𝑁𝑁 , 𝜆𝜆 ∈ 𝑑𝑑 is a vector of

hyperparameters, 𝒜𝒜𝜆𝜆 denoted a machine learning 𝒜𝒜 having

its hyperparameters instantiated to 𝜆𝜆. The problem at hand is

to find the optimal vector of hyperparameters, 𝜆𝜆∗, that has the

least loss, 𝐿𝐿, of a model generated by the machine learning

algorithm, 𝐴𝐴, instantiated at a vector of hyperparameters, 𝜆𝜆,

on training data, 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 , and evaluated on test data, 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 as

given in Equation 2 : 𝜆𝜆∗ = 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑛𝑛𝜆𝜆∈𝑑𝑑 𝑓𝑓(𝐿𝐿,𝒜𝒜𝜆𝜆 ,𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 ,𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

3.4. Hyperparameter tuning techniques

Many works exist in hyperparameter tuning or

optimization. Hyperparameter tuning is often referred to as a

black box problem [35], and many techniques are found in

the literature. Some of these techniques are manual tuning

[36], [37], grid search [36], [38], [39], random search [36],

[40], Bayesian optimization [35], [41], genetic algorithm

[33], particle swarm optimizations [42], etc. Some of the

techniques have variants as explored by different researchers

in the field, especially for Bayesian optimization.

The grid search is considered in this work for exploration

purposes and for a deep illustrative case of the additive

manufacturing process. As seen in many recent times, much

attention has been on developing new machine learning

models, whereas there is a need to explore the effects of

hyperparameter tuning of the chosen model on the data.

 Ogunsanya M., Isichei J., Desai S./ Manufacturing Letters 00 (2023) 000–000 5

3.5. Grid search algorithm

Grid search hyperparameter tuning is a systematic way of

creating a grid from the considered hyperparameters in

which each possible combination is used to tune the chosen

model [15]. It is an exhaustive search method, as each

combination is observed one at a time [20]. In addition, the

search range for each hyperparameter is many folds. Also, in

grid search, all hyperparameters are assumed to have equal

weights irrespective of their effect on the machine learning

training phase. Grid search was used because it is an

exhaustive method as it considers all feasible hyperparameter

combinations which supports the objective of this work.

Also, it is simple and straightforward as it can be applied

without much mathematical expertise.

3.5.1. Grid search hyperparameter tuning procedure

To fully see the workings of hyperparameter tuning, the

grid search technique is chosen for full hyperparameter

exploration, and the following steps were carried out:

1. Select the hyperparameters to be tuned.

2. For each hyperparameter, determine the search

range.

3. Systematically, obtain all possible combinations.

4. In turn, each combination during the training of the

model obtains the RMSE values and computational

time based on the stopping condition. In this case,

the number of epochs.

5. Rank your hyperparameter combination from the

least RMSE values, then the computational time.

Break tie arbitrarily.

For the chosen deep learning model, that is, the multilayer

perceptron, three hyperparameters were considered – the

number of neurons in the hidden layer, learning rate, and the

number of epochs. The hyperparameter list and search ranges

for the considered hyperparameters are given as:

1. Number of neurons in each hidden layer = [3, 6, 9]

2. Learning rate = [0.001, 0.0001, 0.00001]

3. Epoch = [5000, 10000, 20000]

From the hyperparameter sets above, there are 3 × 3 ×

 3 = 27 different hyperparameter combinations. In addition

to these, two different train-to-test ratios were considered to

investigate their effects on the AM process data. The

considered train-to-test ratios in this work are 70/30 and

80/20.

The framework in this section is extensible to other

chosen machine learning models. The hyperparameters and

hyperparameter ranges can be chosen accordingly for the

considered model to give the hyperparameter

combinations/vectors.

3.6. Dataset and evaluation metrics

3.6.1. Dataset

From the hyperparameter tuning framework in Section

3.5.1, a combination of AM input and output data can be

used. The AM input and output parameters of interest need

to be measured, and the appropriate design of experiment can

be performed. The obtained data serves as the dataset.

For this work, the AM dataset was obtained using the

MakerBot MethodX 3D printer using internet of things (IoT)

sensors. Five of the dominant input parameters were

considered [43] and three print outputs [44] were measured.

The input parameters include layer thickness, build

orientation, extrusion temperature, building temperature, and

print speed while the measured outputs were dimension

accuracy, porosity, and tensile strength. The feed rate of the

filament was held constant as is typically done for FFF

systems. For each input parameter, three different levels

were considered, which led to a full factorial experimental

design There were a total of 35 = 243 data points which

were split based on the two train-to-test split ratios. See Table

1, for a snapshot of the 243 data points.

3.6.1.1. Output parameters

Dimension accuracy was measured in this work by

measuring how closely the 3D printed structure match the

tensile strength specimen as given by ASTM International

D638 computer-aided design (CAD). The deviation was

calculated following the guide in [43] as given below. Nine

different measurements were measured for individual printed

specimen. The overall length (OL) of the 3D printed part was

measured with a vernier caliper. Other measurements such as

the total width (OW), the thickness and the inner width were

measured at three different points which resulted into three

measurements. The three measurements for the thickness and

width were averaged to a single value thickness (T) and

width (W). Individual dimensional error was computed using

equation 3 while equation 4 was used to compute the overall

dimensional accuracy.

Error, 𝜀𝜀 = Measured value – CAD value (3) 𝐷𝐷𝑎𝑎𝑚𝑚𝐷𝐷𝑛𝑛𝐷𝐷𝑎𝑎𝐷𝐷𝑛𝑛𝑚𝑚𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑚𝑚𝐴𝐴𝐴𝐴 (%) =
𝜀𝜀𝐿𝐿 + 𝜀𝜀𝑂𝑂𝑂𝑂 + 𝜀𝜀𝑂𝑂 + 𝜀𝜀𝑇𝑇4 ×

100 (4) εL = 𝐷𝐷𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝑛𝑛 𝐷𝐷𝑜𝑜𝐷𝐷𝑎𝑎𝑚𝑚𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑛𝑛𝑎𝑎𝑙𝑙ℎ, ε𝑂𝑂𝑂𝑂 = 𝐷𝐷𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝑛𝑛 𝐷𝐷𝑜𝑜𝐷𝐷𝑎𝑎𝑚𝑚𝐷𝐷𝐷𝐷 𝑤𝑤𝑎𝑎𝑑𝑑𝑙𝑙ℎ ε𝑂𝑂 = 𝐷𝐷𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝑛𝑛 𝑎𝑎𝑛𝑛𝑛𝑛𝐷𝐷𝑎𝑎 𝑤𝑤𝑎𝑎𝑑𝑑𝑙𝑙ℎ ε𝑇𝑇 = 𝐷𝐷𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝑛𝑛 𝐷𝐷𝑜𝑜𝐷𝐷𝑎𝑎𝑚𝑚𝐷𝐷𝐷𝐷 𝑙𝑙ℎ𝑎𝑎𝐴𝐴𝑖𝑖𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷

6 Ogunsanya M., Isichei J., Desai S./ Manufacturing Letters 00 (2023) 000–000

Table 1: Snapshot of FFF Dataset

Color key: good level – green, medium level – yellow, and low level - red

Although, porosity of FFF AM printed parts can be

measured using different methods, such as, microscopy of a

polished cross-section, Archimedes’ principle, X-Ray

computed tomography [45], and simple ratio of mass to

volume approach [46]. This work used the latter method to

measure the FFF AM printed parts as explicitly explained in

the works of [47] Equation 3 shows the formula for

computing the porosity. 𝑃𝑃𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝑎𝑎𝑙𝑙𝐴𝐴 % =
𝑉𝑉𝑏𝑏− 𝑉𝑉𝑠𝑠𝑉𝑉𝑏𝑏 * 100 (5)

𝑤𝑤ℎ𝐷𝐷𝑎𝑎𝐷𝐷 𝑉𝑉𝑏𝑏 = 𝑙𝑙ℎ𝐷𝐷 𝑜𝑜𝐷𝐷𝐷𝐷𝐴𝐴𝑚𝑚𝐷𝐷 𝐷𝐷𝑓𝑓 𝑏𝑏𝐴𝐴𝐷𝐷𝑖𝑖 𝐷𝐷𝑠𝑠𝐷𝐷𝐴𝐴𝑎𝑎𝑚𝑚𝐷𝐷𝑛𝑛, 𝑉𝑉𝑡𝑡 = 𝑙𝑙ℎ𝐷𝐷 𝑜𝑜𝐷𝐷𝐷𝐷𝐴𝐴𝑚𝑚𝐷𝐷 𝐷𝐷𝑓𝑓 𝑙𝑙ℎ𝐷𝐷 𝐷𝐷𝑠𝑠𝐷𝐷𝐴𝐴𝑎𝑎𝑚𝑚𝐷𝐷𝑛𝑛

Each 3D printed was tested for tensile strength for a given

set of input parameters. Tensile strength testing was

performed using the universal testing machine - Instron 5542

(Canton, MA, USA) with a 500N load cell and a

displacement rate as detailed for the ASTM D628. We

adopted the specific details on tensile strength testing of FFF-

printed parts using the work of [48].

3.6.2. Evaluation metrics

For each vector of hyperparameters or hyperparameter

combination, 𝜆𝜆, performed by the grid search technique, both

the root-mean-squared error, RMSE, and the computational

time, CT, were computed and they both served as the

hyperparameter performance metrics. RMSE serves the first

performance metric in this work, then the computational time

in this work. Computational time would serve as a tiebreaker

when two or more hyperparameter combinations have the

same or close RMSE values. In some other applications,

especially where time cannot be compromise, computational

time might take the lead.

3.6.2.1. Root-mean squared error (RMSE)

The root-mean-squared error is the square root of the

mean of the squared prediction errors across all the output

test data sets as given in Equation 6. The root-mean-squared

error had the same unit as the measured output parameter.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖,𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡−𝑦𝑦�𝑖𝑖, 𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝)2𝑛𝑛𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖=1 𝑛𝑛𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡 (6)

where,

 𝐴𝐴𝑡𝑡,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the 𝑎𝑎𝑙𝑙ℎ actual output test data 𝐴𝐴�𝑡𝑡, 𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑 is the 𝑎𝑎𝑙𝑙ℎ predicted output test data 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total number of the output test data

3.6.2.2. Computational time (CT)

In this work, computation time was measured as the time

taken from the training of the MLP model at the given

hyperparameter combination to the plotting of the visuals

and computing the errors.

3.6.3. Model training status

After obtaining both the RMSE values and computational

time, before the results can be used, the status of the MLP

model during the training phase must be checked. There are

two possible scenarios – “Learning” or “No-Learning''.

3.6.4. Learning status

Learning occurs when the MLP model can be trained

using the backpropagation technique. The ability of the MLP

to be trained at the given hyperparameter combination is

observed from the MLP prediction on the input test data set.

It is easily noticeable from the plotted visuals as illustrated

in Fig. 4.

 Ogunsanya M., Isichei J., Desai S./ Manufacturing Letters 00 (2023) 000–000 7

Fig. 4. A plot of actual/expected vs predicted dimension accuracy from the

test data set showing learning status

3.6.5. No-learning status

No learning occurs if the prediction from the MLP model

on the input test data set is either all zeros or it has the same

values all through the prediction as shown in Fig. 5. This

could be a result of being trapped in a local optimal during

the training phase using the backpropagation technique. It

further means that at the considered hyperparameter

combination, the complexity and nonlinearity of the data set

cannot be learned. Interestingly, this is one of the benefits of

hyperparameter tuning in machine learning and deep

learning domains.

Fig. 5. A plot of actual/expected vs predicted dimension accuracy from the

test data set showing no-learning status

3.7. Python scripting procedure

The pseudocode for the implementation of this work is

given as:

START PROGRAM

IMPORT necessary libraries or modules

LOAD dataset

BUILD the multi-layer perceptron deep learning

model

LIST SET of MLP hyperparameters with their range

LIST dataset test size

FOR each test size

 Split dataset into train and test datasets

 Split train dataset into input and outputs

 Split test dataset into input and outputs

 INITIALIZE random weights and biases

 FOR each output parameter

 FOR each hyperparameter vector

 OPEN a file to save desired results

 SET test size iteration COUNTER, n = 0

 WHILE n < 2

 START timer == initial time

 FOR the range of the epoch

 DO forward propagation

 DO backward propagation

 UPDATE both weights and biases

 GET weights and biases

 PREDICT on the trained model with test

data

 COMPUTE root-mean-squared value

 STOP timer == final time

 COMPUTE CT = final time - initial time

 SAVE all results

 n = n + 1

 COMPUTE means of RMSE and CT

 PLOT all needed visuals

END PROGRAM

8 Ogunsanya M., Isichei J., Desai S./ Manufacturing Letters 00 (2023) 000–000

4. Results and Discussions

Table 2: Mean RMSE values and computational times for dimension accuracy, porosity, and strength for the 18 hyperparameter vectors with “Learning” status

As stated in Section 3.6.3, the training status of the MLP

model must first be ascertained before the model’s RMSE

values and computational time are considered.

Table 2 shows the mean RMSE values and mean

computational times (CTs), at 70:30 and 80:20 train-to-test

ratios each ran for two iterations, where training status was

“Learning”. Learning occurred in 18 hyperparameter vectors

out of the possible 27.

For further analysis, all hyperparameter vectors, 𝜆𝜆, that

have “No-Learning” status are not considered. Only 18 out

of the 27 hyperparameter vectors have “Learning” as their

training status for dimension accuracy, porosity, and

strength. Therefore, the remaining 9 hyperparameter vectors

were not further considered.

4.1. Dimension Accuracy

For the MLP, predictions were made at 18 different

hyperparameter vectors. The values of the mean RMSE

values for the two different train-to-test ratios of 70:30 and

80:20 for two iterations each range from 1.70 to 1.75 and at

various computational times. Fig. 6 illustrates sorted

hyperparameter vectors first on the least RMSE value then

on the computational time. The optimal hyperparameter

vector rate was 0.00001. No learning occurs at a learning rate

of 0.001 which implies, learning rate is key to learning of the

complexity and nonlinearity of the dimensional accuracy

data. Some of the highest computational times are observed

when the hidden layer has 9 neurons which translates to the

need for more computations as the neurons increase. Thus,

computational time increased with an increase in the number

of epochs and also increased as the learning rate was reduced.

Based on the evaluation metric selection given in Section

3.6.2, the optimal hyperparameter vector for the given MLP

is 3 neurons in the hidden layer, learning rate of 0.00001, and

epoch of 5000 for the given dataset. On the other hand, if CT

is given more weight, then an optimal hyperparameter vector

is 3 neurons in the hidden layer, learning rate of 0.0001 and

epoch of 5000 for the MLP which is applicable in a process

where computational time cannot be compromised.

Interestingly, a compromise on the RMSE value by 0.03

gives about 35% reduction in CT. This is achieved by using

a learning rate of 0.0001 in place of 0.00001. Thus, an

application determines if this compromise can be made.

Fig. 7 shows the comparison of the RMSE values for the

dimensional accuracy at train-to-test of 70:30 and 80:20. The

curves shows that increasing the training data set from 70%

to 80% of the data set improved RMSE values except when

the hyperparameter vectors has its learning rate to be

0.00001. So, all improved RMSE values occurred at learning

rate of 0.0001 irrespective of other hyperparameters.

Dimension Accuracy Porosity Strength

H1 LR Epoch

Hyperparameter

Vector

Mean

RMSE

Mean

CT

 Mean

 RMSE

 Mean

 CT

 Mean

 RMSE

 Mean

 CT Status

1 3 0.0001 5000 3,0.0001,5000 1.74 1.91 3.60 1.98 6.03 2.01 Learning

2 3 1.00E-05 5000 3,0.00001,5000 1.7 2.92 3.51 3.09 6.07 3.09 Learning

3 3 0.0001 10000 3,0.0001,10000 1.75 6.31 3.60 6.49 6.03 6.53 Learning

4 3 1.00E-05 10000 3,0.00001,10000 1.7 8.00 3.51 8.23 6.04 8.30 Learning

5 3 0.0001 20000 3,0.0001,20000 1.75 13.92 3.60 14.20 6.03 14.44 Learning

6 3 1.00E-05 20000 3,0.00001,20000 1.7 16.87 3.56 17.21 6.03 18.54 Learning

7 6 0.0001 5000 6,0.0001,5000 1.73 1.98 3.60 1.98 6.03 2.37 Learning

8 6 1.00E-05 5000 6,0.00001,5000 1.715 3.07 3.51 3.13 6.08 3.58 Learning

9 6 0.0001 10000 6,0.0001,10000 1.75 6.66 3.60 6.81 6.03 7.30 Learning

10 6 1.00E-05 10000 6,0.00001,10000 1.705 8.47 3.51 8.66 6.05 9.20 Learning

11 6 0.0001 20000 6,0.0001,20000 1.75 14.96 3.60 15.51 6.03 15.74 Learning

12 6 1.00E-05 20000 6,0.00001,20000 1.7 18.16 3.54 19.52 6.03 19.01 Learning

13 9 0.0001 5000 9,0.0001,5000 1.74 2.14 3.60 2.17 6.03 2.21 Learning

14 9 1.00E-05 5000 9,0.00001,5000 1.7 3.34 3.51 3.39 6.08 3.43 Learning

15 9 0.0001 10000 9,0.0001,10000 1.75 7.82 3.60 7.40 6.03 7.44 Learning

16 9 1.00E-05 10000 9,0.00001,10000 1.7 10.27 3.51 9.40 6.05 9.48 Learning

17 9 0.0001 20000 9,0.0001,20000 1.75 17.28 3.60 16.49 6.03 17.73 Learning

18 9 1.00E-05 20000 9,0.00001,20000 1.7 20.78 3.55 20.09 6.03 21.35 Learning

 Ogunsanya M., Isichei J., Desai S./ Manufacturing Letters 00 (2023) 000–000 9

Fig. 6. Mean values for the RMSE values and the computational time for

dimensional accuracy.

Fig. 7. Comparison of the RMSE values for dimension accuracy on the test

data set at different hyperparameter vectors for 70:30 and 80:20 train-test

split

4.2. Porosity

Porosity has its optimal hyperparameter vector when the

hidden layer has 3 neurons, learning rate of 0.00001, and

5000 epochs. This corresponds to a mean RMSE value of

3.51 and occurred at computational time of 3.09s. For the

porosity as shown in Fig.8, the least RMSE value occurred

at 3.51 and the worst at 3.60. Most of the highest

computational time occurred when the learning rate was

0.00001. In this case, the optimal hyperparameter vector

occurs with the hidden layer having 3 neurons, 0.00001

learning rate, and 5000 epochs. On the other hand, if CT has

a higher weight compared to RMSE, then an optimal

hyperparameter vector occurs when the number of neurons

in the hidden layer is 3, learning rate is 0.00001, and epochs

of 5000. Similarly, to Section 4.1, if RMSE can be

compromised a bit, from 3.51 to 3.60, the computational time

can be dropped by about 37% by using a learning rate of

0.0001 instead of 0.00001 From Fig. 9, increasing the

training data set from 70% to 80% of the entire dataset

improved the RMSE values at all hyperparameter vectors.

This guarantees that having more porosity data would help

reduce improve the MLP model.

Fig. 8. Mean values for the RMSE values and the computational time for

porosity

Fig. 9. Comparison of the RMSE values for porosity on the test data set at

different hyperparameter vectors for 70:30 and 80:20 train-test split

4.3. Strength

The RMSE values for strength vary from 6.03 to 6.08, and

the least and highest computational time are at 2.01 s and

1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.705 1.715 1.73 1.74 1.74 1.75 1.75 1.75 1.75 1.75 1.75
2.92

3.34

8.00

10.27

16.87
18.16

20.78

8.47

3.07 1.98 1.91 2.14

6.31 6.66
7.82

13.92
14.96

17.28

0

5

10

15

20

25

R
M

S
E

/C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

Hyperparameter Vectors, λ

Mean RMSE Values and Mean Computational Time for

Dimensional Accuracy

Mean_RMSE Mean_CT

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78

R
M

S
E

Hyperparameter Vector, λ

RMSE values for dimension accuracy at different

hyperparameter vectors

70_30_RMSE 80_20_RMSE

3.51 3.51 3.51 3.51 3.51 3.54 3.55 3.56 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60

3.13 3.39

8.66
9.40

8.23

19.52
20.09

17.21

1.98 1.98 2.17

6.49 6.81
7.40

14.20

15.51

16.49

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

R
M

S
E

/c
o

m
p

u
ta

ti
o

n
a

l
ti

m
e

Hyperparameter vector, λ

Mean RMSE Values and Mean Computational Time for

Porosity

Mean_RMSE Mean_CT

3.62

3.52

3.63

3.53

3.63

3.58

3.62

3.52

3.63

3.52

3.63

3.55

3.62

3.52

3.63

3.52

3.63

3.573.57

3.49

3.57

3.49

3.57

3.54

3.57

3.49

3.57

3.49

3.57

3.52

3.57

3.49

3.57

3.49

3.57

3.53

3.48

3.5

3.52

3.54

3.56

3.58

3.6

3.62

3.64

R
M

S
E

Hyperparameter Vector

RMSE for Porosity at Different Hyperparameter

Combination

70_30_RMSE 80_20_RMSE

10 Ogunsanya M., Isichei J., Desai S./ Manufacturing Letters 00 (2023) 000–000

21.35 s respectively as shown in Fig.10. Although, the best

optimal hyperparameter vectors occurred when the hidden

layer has 3 neurons, learning rate of 0.0001, and 5000 epochs

at an RMSE value of 6.03 with a computational time of 2.01,

but other hyperparameter vectors within a closed

computational time occurred at the same learning rate of

0.0001 and 5000 epochs but at 6 and 9 neurons in the hidden

layer. Other lower computation times were observed at

epochs of 5000 in which the highest was at 3.58 s. Either a

learning rate of 0.00001, 20000 epochs, or both contributed

to higher computational time although some of the

hyperparameter vectors gave RMSE values of 6.03.

Fig. 11 shows that increasing the training data from 70%

to 80% improved the RMSE values by about 8%

corresponding to all hyperparameter vectors. This implies

that the more data available for training, the RMSE values

can be improved for the chosen hyperparameter vector.

Fig. 10. Mean values for the RMSE values and the computational time for

strength

Fig. 11. Comparison of the RMSE values for strength on the test data set at

different hyperparameter vectors for 70:30 and 80:20 train-test split

5. Conclusion and Future Works

Hyperparameter tuning is a crucial aspect of controlling

the performance of a machine learning model. Improper

tuning of an ML/DL model’s hyperparameters may lead to

suboptimal results and affect the model’s loss function. In

this paper, we shine the spotlight on the importance and

influence of hyperparameters on the performance of machine

and deep learning algorithms when applied to an FFF AM

process. The grid search technique along with a Multilayer

perceptron (MLP) network were used in this work to

illustrate the effectiveness of hyperparameter tuning on

ML/DL algorithms. Three (3) hyperparameters were

considered – the number of neurons in the hidden layer,

learning rate, and the number of epochs. In addition, two

different train-to-test ratios were considered to investigate

their effects on the AM process data. The FFF dataset was

extracted from the MakerBot MethodX 3D printer using

internet of things (IoT) sensors. The dataset consisted of five

(5) dominant input parameters and three (3) outputs

parameters. The input parameters include layer thickness,

build orientation, extrusion temperature, building

temperature, and print speed while the measured outputs

were dimension accuracy, porosity, and tensile strength. The

total dataset was made up of 243 data points which were split

based on the above-mentioned train-to-test split ratios.

RMSE, and the computational time, CT, were both selected

as the hyperparameter performance metrics. The results

show that for dimensional accuracy and porosity, the optimal

hyperparameter vector was obtained when the hidden layer

has 3 neurons, learning rate of 0.00001, and an epoch of

5000. An RMSE of 1.7 and a computational time of 2.92

along with an RMSE value of 3.51 and computational time

of 3.09s were obtained for dimensional accuracy and

porosity respectively. Tensile strength has its optimal

hyperparameter vector when the hidden layer has 3 neurons,

a learning rate of 0.0001, and 5000 epochs, and at an RMSE

value of 6.03 with a computational time of 2.01s.

One of the major findings of this work is that if a single

hyperparameter vector is to be used with little tradeoffs, then,

the hyperparameter vector for the MLP model can be set at 3

neurons in the hidden layer, learning rate of 0.00001, and

5000 epochs. At this hyperparameter vector, although the

computational times were not the optimal but not far off.

Both dimensional accuracy and porosity gave optimal RMSE

values but 1% off the optimal RMSE value for the strength.

Although we only study an MLP model using a grid

search hyperparameter tuning technique. Future research can

address the use of other tuning approaches such as random

search, Bayesian optimization, genetic algorithm, and

particle swarm optimizations, alongside alternative DL

algorithms such as recurrent neural networks (RNN).

Acknowledgements

The authors would like to express their gratitude for

funding support from the National Science Foundation Grant

(NSF CMMI Award #1663128, #2100739, #2100850,

6.03 6.03 6.03 6.03 6.03

6.03

6.03 6.03 6.03 6.03 6.03 6.03
6.04 6.05

6.05 6.07 6.08 6.08

2.01 2.21 2.37

6.53
7.3 7.44

14.44
15.74

17.73
18.5419.01

21.35

8.3
9.2 9.48

3.09 3.433.58

0
2
4
6
8

10
12
14
16
18
20
22
24

R
M

S
E

/C
o

m
p

u
ta

ti
o

n
a

l
T

im
e

Hyperparameter Vector, λ

Mean RMSE Values and Mean Computational Time for

Strength

Mean_RMSE Mean_CT

6.29
6.32

6.29 6.3 6.29 6.29 6.29
6.33

6.29 6.31 6.29 6.29 6.29
6.33

6.29 6.31 6.29 6.29

5.76
5.81

5.76 5.78 5.76 5.76 5.76

5.82

5.76 5.78 5.76 5.76 5.76

5.82

5.76 5.78 5.76 5.76

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

R
M

S
E

Hyperparameter Vector

RMSE for Strength at Different Hyperparameter

Combination

70_30_RMSE 80_20_RMSE

 Ogunsanya M., Isichei J., Desai S./ Manufacturing Letters 00 (2023) 000–000 11

#2200538) and the Center of Excellence in Product Design

and Advanced Manufacturing at North Carolina A&T State

University.

References

[1] S. K. Parupelli and S. Desai, “A Comprehensive Review of Additive

Manufacturing (3D Printing): Processes, Applications and Future

Potential,” Am. J. Appl. Sci., vol. 16, no. 8, pp. 244–272, 2019, doi:

10.3844/ajassp.2019.244.272.

[2] E. Adarkwa, R. Kotoka, and S. Desai, “3D printing of polymeric

Coatings on AZ31 Mg alloy Substrate for Corrosion Protection of

biomedical implants,” Med. DEVICES SENSORS, vol. 4, no. 1, Feb.

2021, doi: 10.1002/mds3.10167.

[3] Wohlers Associates, “Wohlers Annual Report: Additive

Manufacturing and 3D Printing State of the Industry,” 2021.

[4] F. Khaled Aldawood, A. Andar, S. Desai, G. Giammona, and E.

Fabiola Craparo, “A Comprehensive Review of Microneedles: Types,

Materials, Processes, Characterizations and Applications,” Polym.

2021, Vol. 13, Page 2815, vol. 13, no. 16, p. 2815, Aug. 2021, doi:

10.3390/POLYM13162815.

[5] E. Adarkwa, A. Roy, J. Ohodnicki, and S. Desai, “3D printing of

drug-eluting bioactive multifunctional coatings for orthopedic

applications,” Int. J. Bioprinting, vol. 110, no. 1, Jul. 2023.

[6] S. K. Parupelli and S. Desai, “Hybrid additive manufacturing (3D

printing) and characterization of functionally gradient materials via in

situ laser curing,” Int. J. Adv. Manuf. Technol., vol. 110, no. 1–2, pp.

543–556, Sep. 2020, doi: 10.1007/s00170-020-05884-9.

[7] D. Sun and A. Valtasa, “3D Printing in Modern Fashion Industry,” J.

Text. Sci. Fash. Technol., Mar. 2019, doi:

10.33552/JTSFT.2019.02.000535.

[8] C. Wang et al., “A general method to synthesize and sinter bulk

ceramics in seconds,” Science (80-.)., vol. 368, no. 6490, pp. 521–

526, May 2020, doi: 10.1126/SCIENCE.AAZ7681.

[9] E. Adarkwa, S. Desai, J. M. Ohodnicki, A. Roy, B. Lee, and P. N.

Kumta, “Amorphous calcium phosphate blended polymer coatings for

biomedical implants,” in IIE Annual Conference and Expo 2014,

2014, pp. 132–138, Accessed: Oct. 10, 2022. [Online]. Available:

https://www.iise.org/uploadedFiles/IIE/Community/Technical_Societi

es_and_Divisions/Manufacturing_and_Design/FirstPlace-

BestPaper.pdf.

[10] F. Kotz et al., “Three-dimensional printing of transparent fused silica

glass,” Nat. 2017 5447650, vol. 544, no. 7650, pp. 337–339, Apr.

2017, doi: 10.1038/nature22061.

[11] D. W. McOwen et al., “3D-Printing Electrolytes for Solid-State

Batteries,” Adv. Mater., vol. 30, no. 18, p. 1707132, May 2018, doi:

10.1002/ADMA.201707132.

[12] T. S. Wei, B. Y. Ahn, J. Grotto, and J. A. Lewis, “3D Printing of

Customized Li-Ion Batteries with Thick Electrodes,” Adv. Mater., vol.

30, no. 16, p. 1703027, Apr. 2018, doi: 10.1002/ADMA.201703027.

[13] T. Erps et al., “Accelerated discovery of 3D printing materials using

data-driven multiobjective optimization,” Sci. Adv., vol. 7, no. 42,

Oct. 2021, doi: 10.1126/SCIADV.ABF7435.

[14] N. Almakayeel, S. Desai, S. Alghamdi, and M. R. N. M. Qureshi,

“Smart Agent System for Cyber Nano-Manufacturing in Industry

4.0,” Appl. Sci., vol. 12, no. 12, 2022, doi: 10.3390/app12126143.

[15] G. Haeberle and S. Desai, “Investigating Rapid Thermoform Tooling

Via Additive Manufacturing (3d Printing),” Am. J. Appl. Sci., vol. 16,

no. 8, pp. 238–243, Oct. 2019, doi: 10.3844/ajassp.2019.238.243.

[16] L. Li, Q. Sun, C. Bellehumeur, and P. Gu, “Composite Modeling and

Analysis for Fabrication of FDM Prototypes with Locally Controlled

Properties,” J. Manuf. Process., vol. 4, no. 2, pp. 129–141, Jan. 2002,

doi: 10.1016/S1526-6125(02)70139-4.

[17] H. Elhoone, T. Zhang, M. Anwar, and S. Desai, “Cyber-based design

for additive manufacturing using artificial neural networks for

Industry 4.0,” Int. J. Prod. Res., vol. 58, no. 9, pp. 2841–2861, May

2020, doi: 10.1080/00207543.2019.1671627.

[18] M. Ogunsanya, J. Isichei, S. K. Parupelli, S. Desai, and Y. Cai, “In-

situ droplet monitoring of inkjet 3D printing process using image

analysis and machine learning models,” in Procedia Manufacturing,

2021, vol. 53, pp. 427–434, doi: 10.1016/j.promfg.2021.06.045.

[19] H. Almakaeel, A. Albalawi, and S. Desai, “Artificial neural network

based framework for cyber nano manufacturing,” Manuf. Lett., vol.

15, pp. 151–154, Jan. 2018, doi: 10.1016/j.mfglet.2017.12.013.

[20] S. Desai, P. De, and F. Gomes, “Design for Nano/Micro

Manufacturing: A Holistic Approach Towards Achieving

Manufacturing Excellence,” J. Udyog Pragati , vol. 39, no. 2, pp. 18–

25, 2015.

[21] S. Desai and C. Dean, “Concurrent material and process selection in a

flexible design for manufacture paradigm.,” in IIE Annual

Conference. Proceedings, 2007, p. 764.

[22] A. Yaseer, H. Chen, and B. Zhang, “Predicting Layer Roughness with

Weaving Path in Robotic Wire Arc Additive Manufacturing Using

Multilayer Perceptron,” 2021 IEEE 11th Annu. Int. Conf. CYBER

Technol. Autom. Control. Intell. Syst. CYBER 2021, pp. 61–66, Jul.

2021, doi: 10.1109/CYBER53097.2021.9588272.

[23] L. Yang and A. Shami, “On hyperparameter optimization of machine

learning algorithms: Theory and practice,” Neurocomputing, vol. 415,

pp. 295–316, Nov. 2020, doi: 10.1016/J.NEUCOM.2020.07.061.

[24] ASTM International, “Standard Test Method for Tensile Properties of

Plastics.” .

[25] V. Schaffer, B. Moyle, and K. Wishaw, Artificial Neural Networks.

Edward Elgar Publishing, 2022.

[26] S. Abirami and P. Chitra, “Energy-efficient edge based real-time

healthcare support system,” Adv. Comput., vol. 117, no. 1, pp. 339–

368, Jan. 2020, doi: 10.1016/BS.ADCOM.2019.09.007.

[27] T. Menzies, E. Kocagüneli, L. Minku, F. Peters, and B. Turhan,

“Using Goals in Model-Based Reasoning,” Shar. Data Model. Softw.

Eng., pp. 321–353, Jan. 2015, doi: 10.1016/B978-0-12-417295-

1.00024-2.

[28] H. Liu and I. Lee, “End-to-end trajectory transportation mode

classification using Bi-LSTM recurrent neural network,” in

Proceedings of the 2017 12th International Conference on Intelligent

Systems and Knowledge Engineering, ISKE 2017, 2017, vol. 2018-

Janua, pp. 1–5, doi: 10.1109/ISKE.2017.8258799.

[29] Z. Liang, A. Powell, I. Ersoy, and M. Poostchi, “CNN-based image

analysis for malaria diagnosis,” Ieeexplore.Ieee.Org, pp. 8–11, 2016,

Accessed: Feb. 16, 2023. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/7822567/.

[30] M. W. Gardner and S. R. Dorling, “Statistical surface ozone models:

An improved methodology to account for non-linear behaviour,”

Atmos. Environ., vol. 34, no. 1, pp. 21–34, 2000, doi: 10.1016/S1352-

2310(99)00359-3.

[31] D. Pérez-Marín, A. Garrido-Varo, and J. E. Guerrero, “Non-linear

regression methods in NIRS quantitative analysis,” Talanta, vol. 72,

no. 1. pp. 28–42, 2007, doi: 10.1016/j.talanta.2006.10.036.

[32] S. HAYKIN, “Neural Networks: A Guided Tour,” Soft Comput. Intell.

Syst., pp. 71–80, Jan. 2000, doi: 10.1016/B978-012646490-0/50007-

X.

[33] H. Alibrahim and S. A. Ludwig, “Hyperparameter Optimization:

Comparing Genetic Algorithm against Grid Search and Bayesian

Optimization,” in 2021 IEEE Congress on Evolutionary Computation,

CEC 2021 - Proceedings, 2021, pp. 1551–1559, doi:

10.1109/CEC45853.2021.9504761.

[34] M. Feurer and F. Hutter, “Hyperparameter Optimization,” in

library.oapen.org, 2019, pp. 3–33.

[35] P. I. Frazier, “Bayesian Optimization,” Recent Adv. Optim. Model.

Contemp. Probl., pp. 255–278, Oct. 2018, doi:

10.1287/EDUC.2018.0188.

[36] P. P. Ippolito, “Hyperparameter Tuning,” Springer, Cham, 2022, pp.

231–251.

[37] F. Hutter, J. Lücke, and L. Schmidt-Thieme, “Beyond Manual Tuning

of Hyperparameters,” KI - Kunstl. Intelligenz, vol. 29, no. 4, pp. 329–

337, Jul. 2015, doi: 10.1007/s13218-015-0381-0.

[38] L. Zahedi, F. G. Mohammadi, S. Rezapour, M. W. Ohland, and M. H.

Amini, “Search Algorithms for Automated Hyper-Parameter Tuning,”

Apr. 2021, doi: 10.48550/arxiv.2104.14677.

[39] B. H. Shekar and G. Dagnew, “Grid search-based hyperparameter

tuning and classification of microarray cancer data,” 2019, doi:

10.1109/ICACCP.2019.8882943.

12 Ogunsanya M., Isichei J., Desai S./ Manufacturing Letters 00 (2023) 000–000

[40] J. Bergstra, J. B. Ca, and Y. B. Ca, “Random Search for Hyper-

Parameter Optimization Yoshua Bengio,” J. Mach. Learn. Res., vol.

13, pp. 281–305, 2012, doi: 10.5555/2188385.

[41] R. Martinez-Cantin, “BayesOpt: A Bayesian Optimization Library for

Nonlinear Optimization, Experimental Design and Bandits,” J. Mach.

Learn. Res., vol. 15, pp. 3735–3739, May 2014, doi:

10.48550/arxiv.1405.7430.

[42] P. R. Lorenzo, J. Nalepa, M. Kawulok, L. S. Ramos, and J. R. Pastor,

“Particle swarm optimization for hyper-parameter selection in deep

neural networks,” in GECCO 2017 - Proceedings of the 2017 Genetic

and Evolutionary Computation Conference, Jul. 2017, vol. 8, pp.

481–488, doi: 10.1145/3071178.3071208.

[43] A. Alafaghani, A. Qattawi, B. Alrawi, and A. Guzman, “Experimental

Optimization of Fused Deposition Modelling Processing Parameters:

A Design-for-Manufacturing Approach,” Procedia Manuf., 2017, doi:

10.1016/j.promfg.2017.07.079.

[44] I. J. Solomon, P. Sevvel, and J. Gunasekaran, “A review on the

various processing parameters in FDM,” Mater. Today Proc., vol. 37,

no. Part 2, pp. 509–514, Jan. 2021, doi:

10.1016/J.MATPR.2020.05.484.

[45] J. J. Lifton, Z. J. Tan, B. Goh, and B. Mutiargo, “On the uncertainty

of porosity measurements of additively manufactured metal parts,”

Meas. J. Int. Meas. Confed., vol. 188, 2022, doi:

10.1016/j.measurement.2021.110616.

[46] J. A. Slotwinski and E. J. Garboczi, “Porosity of additive

manufacturing parts for process monitoring,” AIP Conf. Proc., vol.

1581 33, pp. 1197–1204, 2014, doi: 10.1063/1.4864957.

[47] A. Aljohani and S. Desai, “3D Printing of Porous Scaffolds for

Medical Applications,” Am. J. Eng. Appl. Sci., vol. 11, no. 3, pp.

1076–1085, 2018, doi: 10.3844/ajeassp.2018.1076.1085.

[48] T. J. Gordelier, P. R. Thies, L. Turner, and L. Johanning, “Optimising

the FDM additive manufacturing process to achieve maximum tensile

strength: a state-of-the-art review,” Rapid Prototyp. J., vol. 25, no. 6,

pp. 953–971, Aug. 2019, doi: 10.1108/RPJ-07-2018-

0183/FULL/T.J.GORDELIER.

