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We study gradient corrections to the transport equation for energetic light partons in dense QCD
environments. In the diffusion limit, the transport dynamics is solely controlled by small-angle
elastic scatterings, leading to transverse momentum broadening with respect to the parton’s initial
direction. Such a parton propagation is usually considered in the limit of transversely homogeneous
matter. The transport processes admit a classical description and the transverse spatial dependence
of the medium properties emerges only through the jet quenching parameter. In this work, we show
that a gradient expansion of the all-order evolution equation for the partonic Wigner function leads
to an evolution equation in the Boltzmann-diffusion form only up to the leading order in transverse
gradients. At the second order in gradients, the quantum corrections associated with non-local
interactions give rise to a novel transport that can be implemented in Monte Carlo simulations. In
addition, using our results, we compute the gradient corrections to the jet quenching parameter in
inhomogeneous matter.

Introduction: Jets are commonly found in the final
state of heavy-ion collisions (HIC), providing a powerful
tomographic tool to study the evolution of the quark-
gluon plasma (QGP) [1–12]. They evolve in parallel with
the hot matter and are able to probe it at different time
and length scales. Extracting the details of how jet struc-
ture is modified by the matter is a highly non-trivial
open problem, both from the theoretical and experimen-
tal points of view [13–15].

For energetic colored particles, the interactions are
dominated by t-channel gluon exchanges. These result
in deflection of partons and consequent inelastic emission
of gluon radiation. Describing these processes in pertur-
bative QCD, one has to rely on multiple simplifying as-
sumptions. For instance, treating the parton energy as
the largest scale and assuming the matter to be uniform
in the transverse directions, one can usually make the
problem theoretically tractable in a so-called eikonal ex-
pansion, an expansion in inverse powers of energy. How-
ever, in doing so one further decouples the dynamics of
the jets from the medium evolution, severely diminishing
their tomographic capabilities [6, 9, 11].

Only recently, it was shown that the hydrodynamic
evolution of the medium can be systematically accounted
for in the parton-matter interactions [6], if one goes be-
yond the leading eikonal limit and treats the transverse
variations of the matter properties in a gradient expan-
sion.1 Phenomenologically, the coupling of the parton
evolution to the medium anisotropies reflects itself in the

1 For earlier works introducing the hydrodynamic gradient expan-
sion in the probe-matter interactions, see e.g. [16–21].

generation of odd moments of the underlying transverse
momentum distribution, related to the non-trivial az-
imuthal particle distribution. So far, only the leading
order gradient effects at the level of the final particle dis-
tribution have been computed [6, 9]. In parallel, it was
noticed that the same effects could be explored via the in-
medium parton Wigner function [10]. One advantage of
the Wigner function approach, in contrast with the direct
computation of the particle distributions, is that it offers
a direct connection to the parton evolution equation.

In the case of homogeneous matter and in the limit
of small-angle in-medium scatterings, the corresponding
Wigner function is a solution of the Boltzmann-diffusion
equation [22–25]. Since this regime admits a classical
description, one may expect that accounting for gen-
eral anisotropic effects would require a full understand-
ing of the quantum evolution of energetic partons in the
medium. One has to derive the associated quantum evo-
lution equation and compute the corresponding Wigner
function beyond the classical limit.

In this work, we derive the parton Wigner function,
using the results for the parton broadening in inhomo-
geneous matter obtained within the BDMPS-Z approach
[9]. We will generalize the transport equation to all or-
ders in matter gradients, and show how it gets modified
beyond the diffusion approximation. Truncating the gra-
dient expansion up to the second order, we will show
that matter anisotropies are responsible for novel quan-
tum corrections to the transport equation. The resulting
equation can be integrated into commonly used transport
models for jet quenching phenomenology [25–30], consid-
erably enhancing their tomographic capabilities.

In-medium parton Wigner function: In parton
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energy loss calculations, the QCD medium is often de-
scribed with a background color field induced by stochas-
tic color densities ρ̂a(x, z) [11, 31]. Then, the leading in-
teraction of a parton with the matter, in the limit when
no gluon radiation is produced, can be described via a
reduced single-particle propagator,

G(xL, L;x0, 0) =

xL
∫

x0

Dr exp





iE

2

L
∫

0

dτ ṙ2





× P exp



i

L
∫

0

dτ taprojv
a(r(τ), τ)



 , (1)

where we have assumed that the sources are in the same
color representation R [9, 11], E is the conserved en-
ergy of the parton, L is the longitudinal size of the mat-
ter, and xL and x0 are the initial and final two dimen-
sional coordinates in the directions transverse to the ini-
tial parton’s momentum. In this picture, the parton-
matter interactions are described by an effective potential
va(x, z) =

∫

q
eiq·xv(q2, z) ρa(q, z).2 In turn, the elemen-

tary scattering potential v(q2, z) corresponds to the par-
ticular matter model, defining how the in-medium gluon
field is screened at large distances, and its z-dependence
is driven by the screening mass. The screening length
is assumed to be small comparing to the characteristic
distance between the sources.

The presence of the matter results in the broadening
of the transverse momentum distribution of the partons.
This process can be described through the corresponding
parton Wigner function [5, 10], which reads

WL(Y ,p) ≡

∫

y,x,X,p0

e−i(p·y−p0·x)W0(X,p0)

×
〈

G
(

Y +
y

2
;X +

x

2

)

G†
(

Y −
y

2
;X −

x

2

)〉

. (2)

Here we have used shorthand notations omitting the
length dependence in the propagators, Y can be in-
terpreted as an impact parameter of an effective dipole
formed by the parton in the amplitude and its complex
conjugate, and p is the parton’s final transverse momen-
tum. Also, we implicitly assume that the medium aver-
aging involves a trace over the color indices, such that
〈I〉 = 1 with I being the identity matrix in the color
space. The initial Wigner function W0(X ,p0), is natu-
rally related to the initial distribution of partons. No-
tice that the Wigner function should include a gauge
link. However, here this link is trivial since the trans-
verse field components are zero for static sources in the
Lorentz gauge [10].

2 Throughout this work, we will use the shorthand notations
∫

d2q/(2π)2 =
∫

q
and

∫

d2x =
∫

x
.

The two-point correlator of the propagators entering
(2) implies an averaging over the scattering centers. In
this work and as is usually done, we assume that the
medium can be described in terms of classical background
densities with Gaussian statistics [13, 32, 33]

〈

ρ̂a(q, z)ρ̂b(q̄, z̄)
〉

=
δab

2CR̄

δ(z − z̄) ρ(q + q̄, z) , (3)

where ρ(q+ q̄, z) is a mixed representation of ρ(x, z), the
number density of the sources, and CR̄ is the quadratic
Casimir of the representation opposite to the representa-
tion of the sources. We further follow [6, 9, 11], assuming
that the medium properties are slowly varying from point
to point. This allows one to study W using an expansion
in the transverse gradients of the medium parameters,
such as the density of the scattering centers ρ(x) and the
Debye mass µ(x) in the scattering potential. To do so,
we will Taylor expand the parameters

ρ(x) ≈ ρ+ x ·∇ρ +
1

2
xixj∇i∇j ρ ,

µ2(x) ≈ µ2 + x ·∇µ2 +
1

2
xixj∇i∇j µ

2 , (4)

assuming for simplicity that they (and their transverse
gradients) are z-independent.

At the leading order in gradients, the two-point func-
tion of the single-particle propagators has been previ-
ously computed in [9], and reads

〈

G(xL;x0)G
†(xL;x0)

〉

=

(

E

2πL

)2

×

exp

{

iE (w · u̇c)
∣

∣

∣

L

0
−

L
∫

0
dτ V (uc(τ))

}

1 + i
EL

ĝ ·
L
∫

0
dζ

ζ
∫

0
dξ ξ∇V (uc(ξ))

, (5)

where w ≡ x+x̄
2 , u ≡ x− x̄, V(q) is the dipole potential,

and ĝ ≡ ∇ρ δ
δρ +∇µ2 δ

δµ2 is an operator generating the
gradient corrections. The trajectory uc(τ) is the solution
of the classical equations of motion, arising in the path
integral.3 The dipole potential is defined as

V(q) ≡ −C ρ

(

∣

∣v(q2)
∣

∣

2
− (2π)2δ(2)(q)

∫

l

∣

∣v(l2)
∣

∣

2
)

,

3 To leading order in transverse gradients, see [9], uc = u
(0)
c +u

(1)
c

with u
(0)
c (τ) = τ (uL − u0)/L+ u0 and

u
(1)
c (τ) =

i

E
ĝ

{ τ
∫

0

dζ

ζ
∫

0

dξ −
τ

L

L
∫

0

dζ

ζ
∫

0

dξ

}

V

(

u
(0)
c (ξ)

)

.
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where C = Cproj

2CR̄
, and Cproj is the quadratic Casimir in

the representation of the energetic parton.

We are interested in the diffusion regime, which corre-
sponds to the so-called harmonic approximation for V(q).
In this regime, the soft gluon exchanges with the medium
are captured but the hard momentum transfers are ne-
glected, and the dipole potential can be approximated
by

V(y) ≡

∫

q

eiq·y V(q) ≈
q̂

4
y2 , (6)

where q̂ ≡ q̂0 log
Q2

µ2 is the jet quenching parameter,
and Q is a free large momentum scale ubiquitous to

the harmonic approximation. The explicit form of q̂0
in terms of medium parameters depends on the model of
the medium. Here we will use the Gyulassy-Wang (GW)
model, corresponding to v(q2) = −g2/(q2 + µ2) with g
the strong coupling constant and the bare jet quench-
ing coefficient q̂0 ≡ 4πC α2

sρ. For other medium models
such as the ones based on the Hard Thermal Loops ap-
proximation [34] or in holographic pictures [35], Eq. (6)
still holds, though the dependence of q̂0 on the medium
parameters is different [36].

Under all these assumptions, the resulting Wigner
function can be easily obtained using (5). For point-like
initial conditions, W0(X,p0) = (2π)2δ(2)(X)δ(2)(p0),
the final state Wigner function can be written as

W (Y ,p) =
48E2

q̂2L4
exp

{

−
4

q̂L3

(

L2p2 − 3ELp · Y + 3E2Y 2
)

}

×

[

1 +
g

15Eq̂L3
·
(

q̂L4 p− 5L3
(

p2 p+ 3Eq̂ Y
)

+ 12EL2
(

4p2 Y + (p · Y )p
)

+ 90E3Y 2 Y − 9E2L
(

14(p · Y )Y + Y 2 p
)

)

]

, (7)

where g is the parameter resulting from ĝ which encap-
sulates the matter gradients. For the GW model in the
harmonic approximation, the gradient parameter can be
written as

g ≡
∇q̂

q̂
=

∇ρ

ρ
−

1

log Q2

µ2

∇µ2

µ2
. (8)

Kinetic approach to parton transport: While
we have derived the final state Wigner distribution to
the leading order in gradients (7), for many phenomeno-
logical applications the evolution equation defining W
is of greater importance, since it allows to study the
in-medium parton evolution within the kinetic picture,
which is more suitable for numerical simulations. In the
past, it has been noticed that in the absence of gradi-
ents and in the small angle scattering approximation the
Wigner function satisfies a diffusion equation [5]. In the
present case, having access to the explicit form of the
Wigner function (7), we can directly check how the lead-
ing order gradients modify the diffusion in an inhomoge-
neous matter.

In the kinetic approach to the in-medium evolution of
the parton distribution f(Y ,p), one usually starts from
the following reduced Boltzmann equation [22, 23]

(

∂L +
p

E
·∇Y

)

f(Y ,p) = C[f ] , (9)

where C[f ] is the collision kernel, involving only energy
conserving elastic processes in our approximation, and
the force terms are assumed to be vanishing. To gener-
alize the result to the inhomogeneous case, one has to
take into account the impact parameter dependence of
the parton-matter interactions within a detailed micro-

scopic derivation.

It is instructive to notice the following two facts. First,
one may attempt to generalize the evolution equation in
a naive ideal-hydrodynamic way, promoting the only ki-
netic coefficient q̂ to a function of Y . Second, we already
have the solution for the Wigner function, derived with
the field theoretical methods. Thus, we can substitute
(7) into the naively generalized evolution equation, and,
expanding q̂(Y ) ( q̂ + Y ·∇q̂, we find

(

∂L +
p

E
·∇Y −

q̂(Y )

4
∂2
p

)

W (Y ,p) = O
(

∂2
⊥q̂
)

. (10)

As expected, in the absence of the gradient correc-
tions, the Wigner functions obeys the usual Boltzmann-
diffusion equation, with q̂ playing the role of the diffusion
constant. Remarkably, the leading order gradient correc-
tions in (7) are accounted for by the minimal replacement
q̂ → q̂(Y ), and the naive generalization of the evolution
equation does work at this order. This observation in-
dicates that the kinetic description of momentum broad-
ening gains no structural corrections at the first order
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in gradients, and the two approaches to the problem are
equivalent at this level.

However, the naive generalization of the evolution
equation is not necessarily adequate in general. Indeed,
assuming that the in-medium scattering rates are local
in impact parameter implies that the resulting trans-
port equation has the same functional form as the usual
Boltzmann-diffusion equation (up to a drift term), with
the minimal replacement q̂ → q̂(Y ). This locality as-
sumption can be lifted if one considers the quantum gen-
eralization of Boltzmann transport, e.g. starting from
the Kadanoff-Baym equations [37]. In turn, the results
in [9] indicate that the higher order gradient corrections
to (5) are non-trivial, and the two approaches should be
further compared. The fact that the given Wigner func-
tion (7) solves the particular evolution equation is only
indicative.

Quantum corrections to parton transport: In the
previous section, we have discussed how the leading order
gradient correction to the evolution equation can be ab-
sorbed into a spatial dependent jet quenching parameter.
Now, we turn to the derivation of the evolution equation
beyond the first order in gradients from a microscopic
consideration. For simplicity, we will focus on the gradi-
ents of ρ, while µ gradients can be obtained similarly.

Since we are interested in the evolution equation gov-
erning the Wigner function, it is instructive to study the
path length derivative of the two-point correlator in (5).
For that, we consider the two-point function of the prop-
agators between z = 0 and z = L + ε with ε * L. Fol-
lowing [11], one can express it as a convolution

〈

G†(k̄, L+ ε; k̄0, 0)G(k, L+ ε;k0, 0)
〉

=

∫

l,̄l

〈

G†(k̄, L+ ε; l̄, L)G(k, L+ ε; l, L)
〉

×
〈

G†(̄l, L; k̄0, 0)G(l, L;k0, 0)
〉

, (11)

where we use the locality of the averages in z to break the
full evolution into two steps, both in color singlet states.

Expanding (11) to the leading order in ε, one can ex-
tract the evolution kernel. We then find that the Wigner
function in a momentum space representation satisfies

∂LW (k, k̄) = −i
k2 − k̄

2

2E
W (k, k̄)

−

∫

q,q̄,l,̄l

K(q, q̄; l, l̄)W (l, l̄) , (12)

where

K(q, q̄; l, l̄) = −(2π)4 C v(q)v(q̄)

×

{

ρ(q − q̄) δ(2)(k − q − l)δ(2)(k̄ − q̄ − l̄)

−
1

2
ρ(q + q̄) δ(2)(k − l)δ(2)(k̄ − q − q̄ − l̄)

−
1

2
ρ†(q + q̄) δ(2)(k − q − q̄ − l)δ(2)(k̄ − l̄)

}

, (13)

and ρ(k) is the Fourier of the source number density.

The evolution equation (12) generalizes (10) for exact
transverse coordinate dependence of the matter param-
eters, and is valid beyond the harmonic approximation.
Expanding (12) in gradients, we substitute the explicit
form of (4) up to the second order. Using the shorthand
notations h′(q2) ≡ ∂q2h(q2) and p = (k+ k̄)/2, we write
the second order evolution equation in the harmonic ap-
proximation as

(

∂L +
p ·∇Y

E
−

q̂(Y )

4
∂2
p

)

W (Y ,p) = ∇i∇jρ

×

∫

q

[

κ
∂2

∂pi∂pj
δ(2)(q)− Vij(q)

]

W (Y ,p− q) , (14)

where we have introduced κ = 2π2C
∫

q
v2 and a new

directional potential reading

Vij(q) =
C

2

(

{

2qiqj [vv
′′ − v′v′] + vv′δij

}

− (2π)2δ(2)(q)

∫

l

{

2lilj [vv
′′ − v′v′] + vv′δij

}

)

. (15)

The term proportional to ρ(Y ) in (14) is a direct gener-
alization of its analogue in (10). However, at the second
order the evolution equation gains additional terms of
new functional form.

Notice that these do not directly depend on the effec-
tive scattering potential V , but rather on the in-medium
scattering cross-section v. As a consequence, Eq. (14),
even in the diffusion approximation, is more sensitive to
the details of the medium model.

Another important conclusion is that assuming local-
ity of interactions in Y , one implies that all corrections
to the evolution equation could be taken into account
with the minimal replacement q̂ → q̂(Y ). Thus, one may
conclude that the additional terms in (14) can only be ob-
tained if the interactions between the matter and the jet
are non-local in Y . These types of interactions are linked
to the quantum nature of the evolution of the parton in
the medium, and thus the novel evolution equation also
accounts for quantum corrections to the classical Boltz-
mann transport, see e.g. [38, 39] for a recent discussion.
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Finally, it is instructive to look at the second moment
of the Wigner function, since it provides access to the full
jet quenching parameter q̂r ≡ ∂L〈p2〉 containing power
corrections induced by the matter gradients. The terms
in (14) depending on the scattering rates can be absorbed
into a coefficient η = ρ κ/(2π2q̂) + Cρ

2q̂

∫

q
q2v2[q2v′/v]′,

which can be computed directly once a particular model
for the medium is chosen. Using that at the zeroth order
in gradients

∫

Y ,p
YiYjW (Y ,p) = δij q̂L3/(6E2), we find

the full jet quenching parameter

q̂r = q̂ +∇
2q̂

(

q̂L3

12E2
+ η

)

. (16)

This effective jet quenching coefficient gets two types of
corrections. The first ones are the sub-sub-eikonal terms,
which one would expect since the gradient expansion is
sensitive to the kinetic phases [6, 9]. Such corrections will
compete with other sub-sub-eikonal effects we did not in-
clude, although with different parametric dependence. In
turn, the η-term on the right-hand side of (16) is indepen-
dent of E, and enters at the eikonal accuracy. Similar en-
ergy independent corrections have recently been observed
in non-perturbative real-time simulations of single parton
in-medium evolution [40]. The phenomenological impli-
cations of these novel corrections require further study,
which we leave for future work.

Conclusion: In this letter, we have detailed the first ab-

initio derivation of the kinetic equation describing the
evolution of energetic partons in inhomogeneous QCD
environments. Studying the gradient corrections to the
in-medium parton Wigner function, we have derived the
all-order master transport equation. Although the lead-
ing gradient corrections can be accounted for in the
Boltzmann-diffusion form under a minimal replacement
for q̂, already at the second order the resulting equation
has functionally novel terms. We have further argued
that these are associated with non-local interactions, and
can be considered as quantum corrections to the classical
transport. As a direct consequence of the modified evolu-
tion, we find new power corrections to the jet quenching
parameter. Strikingly, q̂ gets energy independent contri-
butions, which could be sizeable compared to radiative
corrections [41–44].

The new transport equation derived in this paper has
ample applications in jet quenching phenomenology, al-
lowing to include gradient effects in existing parton trans-
port models. Besides such phenomenological applica-
tions, it would be important to confirm that using the
formal kinetic theory approach, it is possible to recover
the master equation derived in this paper. Such an ex-
ercise would give new insights into the role played by
matter gradients, helping to lift some of the assump-
tions. Another interesting extension would be to include
other sub-eikonal corrections, such as friction terms, into
the evolution equation. These corrections would com-

pete with the gradient terms and are needed to have a
complete picture of in-medium evolution.

The results derived here are applicable in the QGP
phase of HIC, but the formalism can be extended to
the other phases of QCD matter. Since anisotropic ef-
fects might be more important at earlier times in the
aftermath of HIC or in smaller collision systems [45–48],
having theoretical tools to describe such scenarios is of
utmost importance. The inclusion of inelastic processes
can also be studied using the approach followed in this
work, although its exact kinetic formulation is not known
at the moment for inhomogeneous backgrounds.
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