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Gradient jet tomography in high-energy heavy-ion collisions utilizes the asymmetric transverse
momentum broadening of a propagating parton in an inhomogeneous medium. Such broadening is
studied within a path integral description of the evolution of the Wigner distribution for a prop-
agating parton in medium. Going beyond the eikonal approximation of multiple scattering, the
evolution operator in the transverse direction can be expressed as the functional integration over
all classical trajectories of a massive particle with the light-cone momentum w as its mass. With
a dipole approximation of the Wilson line correlation function, evolution with the light-cone time
t is determined by the jet transport coefficient ¢ that can vary with space and time. In a uniform
medium with a constant §o, the analytical solution to the Wigner distribution becomes a typical
drifted Gaussian in both transverse momentum and coordinate with the diffusion width /got and
v/ Got?®/3w?, respectively. In the case of a simple Gaussian-like transverse inhomogeneity with a
spatial width o on top of a uniform medium, the final asymmetrical momentum distribution can be
calculated semi-analytically. The transverse asymmetry defined for jet gradient tomography that
characterizes the asymmetrical distribution is found to linearly correlate with the initial transverse
position of the propagating parton within the domain of the inhomogeneity. It decreases with the
parton energy w, increases with the propagation time initially and saturates when the diffusion
distance is much larger than the size of the inhomogeneity or ¢ > 3w202/ go. The transverse mo-
mentum broadening due to the inhomogeneity also saturates at late time in contrast to the continued
increase with time if the drifted diffusion in space is ignored.

I. INTRODUCTION

A jet is essentially a collection of collimated shower of
particles stemming from the fragmentation of energetic
partons in high-energy hadron and nuclear collisions. In
high-energy heavy-ion collisions, jets also interact with
quark-gluon plasma (QGP), a deconfined and strongly
coupled state of matter formed in the collisions [1-4], as
they travel through the hot and dense matter. The final
jet observables therefore should carry the information of
jet-medium interaction and are naturally a useful probe
to the fundamental properties of QGP.

When jets propagate through the strongly coupled
QGP, the energetic partons undergo multiple scattering
with the constituents of the QGP and lose their energy,
giving rise to the strong attenuation of the high trans-
verse momentum tails of single inclusive hadron spectra
as well as the single inclusive jet spectra. These phe-
nomena are usually referred to as jet quenching [5, 6],
which has been observed in experiments at the Relativis-
tic Heavy-ion Collider (RHIC) via suppression of large
transverse momentum (pr) hadrons [7, 8] and later con-
firmed at the Large Hadron Collider (LHC) via the dijet
and ~y/Z-jet asymmetry [9, 10] and the suppression of
high pr particle [11] and jets [12, 13]. These experimen-
tal data have provided important information about the
properties of the QGP through jet tomographic studies.
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Central to the jet tomography is the energy loss and
transverse momentum broadening of a propagating par-
ton inside QGP. Following the first attempt to calcu-
late the parton energy loss in QGP [14], several ap-
proaches have been established, including BDMPS-Z[15—
20], GLV[21, 22], ASW[23-27], AMY[28-30] and Higher-
twist[31, 32]. In these approaches, the parton energy loss
is dictated by the jet transport coefficient ¢, which is de-
fined as the averaged transverse momentum broadening
squared per unit length [16]. It has been extracted from
comparisons between model calculations and experimen-
tal data on single inclusive hadron spectra at both RHIC
and LHC [33-35].

The initial jet production positions in high-energy
nucleus-nucleus collisions in these model calculations are
assumed to follow the number of binary nucleon-nucleon
collisions with the Woods-Sexon nuclear distribution [36].
The final hadron spectra are averaged over the initial jet
production positions and propagation direction. For non-
central nucleus-nucleus collisions, the parton propagation
length and energy loss will depend on the azimuthal an-
gle of the initial parton propagation direction relative
to the reaction plane. This will lead to the azimuthal
anisotropy of the final hadron and jet spectra [37-39]
which in turn can provide information about the path-
length dependence of the parton energy loss and the geo-
metrical properties of the QGP [40-46]. One can further
use both longitudinal [47, 48] and transverse jet tomog-
raphy [49] to localize the initial jet production positions
and study the space-time profile of the jet transport co-
efficient in more detail.



The longitudinal jet tomography utilizes the path-
length dependence of the parton energy loss and suppres-
sion of the final hadron and jet spectra while the trans-
verse jet tomography relies on the asymmetrical trans-
verse momentum broadening of the propagating parton
due to the inhomogeneity of the jet transport coefficient
in the transverse plane. The latter is also referred to as
the gradient jet tomography. It has been applied to local-
ize the initial transverse production positions of Z/7-jet
to enhance the effect of the diffusion wake induced by
Z /~-jets in the final Z/~-hadron and jet-hadron correla-
tions [50].

The principle of gradient jet tomography [49] is based
on the asymmetrical transverse momentum broadening
for an energetic parton propagating in a medium that is
inhomogeneous in the transverse direction as character-
ized by the finite transverse gradient in the jet transport
coefficient ¢. One can study the asymmetrical transverse
momentum broadening via solving a drift-diffusion Boltz-
mann equation which describes the diffusion of a jet par-
ton in both transverse momentum and coordinate. The
finite transverse gradient of the jet transport coefficient
in a nonuniform medium leads to a drift in both the final
transverse momentum and coordinate distribution of the
jet parton which depends on the propagation length and
the initial transverse position in the region of the medium
with finite gradient of jet transport coefficient [49]. One
can therefore use the transverse momentum asymmetry
of the final jet particles to localize the initial transverse
position of the jet production. This principle of gradient
tomography has been verified [49] by full event-by-event
simulations of y-jet propagation within the Linear Boltz-
mann Transport (LBT) model[51-54]. It has also been
applied to the study of diffusion wake induced by ~v/Z-
jets in high-energy heavy-ion collisions [50].

In this study we will formulate the transverse diffusion
of a propagating parton in the path integral approach
[19, 20, 24, 25] for the evolution of parton distributions
which are defined via a Wigner function [55, 56]. Within
a picture of multiple soft scattering off independent scat-
tering centers without color flow, the evolution of the
Wigner function can be described by the Green’s func-
tion in Quantum Chromodynamics (QCD) in a medium
that is nonuniform in the transverse plane. One can ex-
press the final parton transverse momentum spectrum in
terms of the Green’s function and calculate the transverse
momentum asymmetry and study its path length and
transverse gradient dependence. Both our approach with
path integral and the drift-diffusion Boltzmann equation
assume the dominance of multiple soft scattering in the
medium. Asymmetrical transverse momentum broaden-
ing due to a few hard parton scatterings has been studied
recently in Refs. [57, 58].

The remainder of this paper is organized as follows.
In Sec. II, we briefly review the Wilson line and the
Green’s function or evolution operator for a parton trav-
eling through a background medium within the multiple
soft scattering picture. We will introduce the Wigner

function to describe the phase-space distribution of the
parton projectile and employ the dipole approximation
to related the Wilson line correlations to the jet trans-
port coefficient. We will derive the final phase-space dis-
tribution of the propagating parton within the path in-
tegral approach. In Sec. III, we derive the final phase-
space distribution of a propagating parton in a uniform
medium which will be shown to satisfy the drift-diffusion
Boltzmann equation. In Sec. IV, we calculate the final
transverse momentum spectrum, transverse momentum
broadening and the transverse momentum asymmetry of
a jet parton propagating in a medium with a simple form
of transversely inhomogeneous jet transport coefficient.
We will examine their dependence on the initial trans-
verse position, propagation length and the energy. In
Sec. V, we summarize the result.

II. THE PROPAGATION OF PARTON IN
MEDIUM

To describe the propagation of an energetic parton in
a QGP medium within the path-integral approach, we
consider multiple soft interaction between a propagating
quark and the background field A(x™,x) of the QGP
medium'. Here we adopt the light-cone variables for

space-time coordinates,

(a” £ 2%), (1)
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and similarly for other four-vectors. Assume the initial
and final momentum of the quark is p and p’, respectively,
and p* is the large component of the momentum, these
multiple soft interactions, as illustrated in Fig. 1, can be
resummed under the eikonal approximation to give the
S-matriz [24, 25, 59, 60]

S(p',p) ~ 2r6(p'" —p+)2p+/da:e_i(p/_p)'wW(a:), (2)
where the Wilson line is defined as
W(x) = Pexp [ig/dx+A_ (xﬂ:l:)}, (3)

and P denotes the path-ordering of field A~ (z ™, x).

1 The bold letter refers to the vector lying on the transverse plane
throughout this paper.
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FIG. 1. Illustration of the eikonal propagation of a quark with
initial momentum p and final momentum p’ in the medium,
where the ’cross’ donates medium field.

Under the above eikonal approximation, the sub-
leading term p% in poles of the propagator is ignored.
To relax the eikonal approximation, we can keep the p?
term. This is equivalent to considering the Brownian mo-
tion of the propagating quark in the transverse plane. In
this case, assuming that the initial and final coordinates
are (z;,z;) and (x}*',mf) respectively, the S-matrix can
be expressed in the path-integral form [24, 25, 59, 60],

S(p',p) ~ 2m(p'* —p+)2p+/dwe’i(”"”)‘”U(mf,x?;mi,xTL (4)
where
r(of)=w; + 4
o ) + D +0 4T o 5
Uiepefieoat) = [ 1 Drenlily [t (W), )

is the Green’s function or evolution operator[24] that re-
places the Wilson line in Eq. (2) and describes the quark’s
propagation in the transverse plane of the medium. In
the adjoint representation, a similar expression for the
propagation of a fast gluon with multiple soft scattering
has also been derived in Ref. [59].

We use the Wigner function [55, 56],

W(X,p;at) = /dQ:m_i’”'m

x (X + %;f)Uu/J*(X - §;$+), (6)
|

2
W(Y,p;a}) = /dQXdzdewMe*"”'(y“)W(X,po; )

(2n)?
<U(Y +

Y

+.
7xfaX+
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to describe the transverse phase-space distribution of a
propagating quark at a given time zT, where X and p
are the transverse coordinate and momentum. The Wil-
son line U in this expression makes the Wigner function
gauge invariant. It may be taken as a fixed ' link be-
tween the transverse positions of the partonic wave func-
tions. In this work we are interested in the accumulated
transverse momentum over a long propagation length in
the plasma; therefore, we will neglect its contribution
since U, depends on a fixed value of . With this ap-
proximation and using the evolution operator we can ex-
press the evolution of the Wigner function at a later time
x? from its initial distribution at xg with momentum pg
as,

i
2
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L UT(Y — 5,:{:?;X — 5,x§)>>,

y T T
<<U(Y+ f,a:}";X—F g,xg')UT(Y— §,x}';X — ,ma’)>>
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ri(zf)=Y+% ra(zf)=Y % P
:/ Drl/ Drgexp{i—
r r 2

1zd)=X+2 2(2)=X-2

where << . >> denotes the average over the proper ensemble
of the medium field configurations and 7 = dr/dz™. Note
that the trace and the 1/N. factor correspond to the

2
ol ®)
[ atn® = (W W ),
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average over the initial color indices in the fundamental
representation.

Under the dipole approximation, the expectation value



of the correlation of two Wilson lines can be related to
jet transport coefficient ¢, [19, 20, 23]

4xf
(R)r?},

Nic<tr{W(T1)WT(7’2)}>>“GXP{*/I da™ §(R)r?}
kg

= exp{— 1

to
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where R = (r1+72)/2 and = r; —75. In this expression
we are implicitly assuming that the transverse separation
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W(Y,p;ty) :/d2Xd2yd2 @2 )

r(ty)=y
" PR /

R(ts)

o
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To evaluate the path-integral, we discretize the time into
N equal steps (N — oo0) and denote ¢ = (t; — tg)/N,

J

1 N-—-1
K= (11

k=1

/dsz) exp {z’w(RNrN — Roro)}(

k

where A = y/2mie/w. More details on the evaluation
of the functional measure can be found in Appendix A.
Completing the squares and performing Gaussian func-

J

dpo

Y . _ 2X2 2
W pity) = [ EXyatn

R(tf)=Y

XZ/
R

(to)=X

where
93N N 1
= T (13)
4re2N-1 det{q¢(R)}
is a divergent normalization constant and
H (14)

det{q q( Rk

Note that in the above expression, the initial and final
transverse momenta are given by the classical momenta
of a particle with mass w which follows a trajectory R(t).

i

DRexp {iw (R(tf)y - R(to)m) } exp { - /tfdt

r ~ 1/p is much smaller than the scale of variations in
G(R). For convenience, we have re-defined the light-cone
variables t = 2t /v/2 and w = p*/v/2 which become the
normal time and energy on the light-cone. In a static and
homogeneous medium, the correlation will only depend
on the relative position of the dipole and the jet transport
coefficient will be a constant. Such an approximation is
often referred to as the “harmonic approximation”. In
this study, however, we generalize the dipole approxima-
tion to the case in which the jet transport coefficient has a
spatial dependence in the transverse plane. The Wigner
distribution of the propagating parton at time t; is now

B i vim (X pito

(10)

Dr expfiw / AR - 7} exp{— / art qR) 2y,

to
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ty = tn, R(tk)
be expressed as

= Ry. The second line in Eq. (10) can

1
/dQ’I’k exp { — eq(

1
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tional integral to integrate over the relative distance r,
and switching back to the continuous form, Eq. (10) can
be rewritten as

—zp~y+ipo~mW(X7pO; to)

S ()

I(R)

}

to

To proceed, we introduce a two-dimensional auxiliary

variable £ = (£2,£P) by defining

£=wR or 1:A/D§6(£—wR), (15)

where A is a normalization constant and §(¢ — wR) is a
functional delta-function. We note that & as so defined
can be interpreted as a random force acting on the hard
particle with effective mass w.

Again, after discretizing the space-time, we can write



down the expression of £ at tj as

Ry — 2R, + Ry

€ =wRy, = w 5

: (16)

Replacing the variable R with £ and using the Jacobian
of the transformation,

1 -2 0 0 0
-1 =L 0 ... 0

2 2

1 1
(a&"fag?\']_l) —2w N_1 0 —3 1 -3 .- 0 W N_1
/ (OR{---OR%_,) ( €2 ) xde oo (62) ’ (17)
0 0o -2 1 -1
1
0 0 0 -3 1 (N=1)x(N-1)

we can rewrite Eq. (11) in terms of a functional integral with respect to &,

et [l el [58)

and the Wigner function in Eq. (12) as,

2
W pity) =()° [ EXEpWE it
19
Ses2( T 2 7 b E()? 19)
Deo? (wR(to, €) — po)* (wR(t7,€) —p) exp{ — [ dr> L,
to I(R)
[
where we have defined For parton propagation in a uniform medium with a con-
stant jet transport coefficient §(R) = §o, the two-point
~ e o correlation function is (see Appendix C for details),
= m (;)d 3 (20)
=1 (€ /Dg{g’ &)} exp{ - /dt—
such that
o - %5”5@ ). (24)
s
/D£ exp i(R) } =1 (21) As we noted before, £ can be considered as a random

force acting on a particle with an effective mass w on
See Appendix B for more details on this. With such a classical trajectory. The boundary conditions for the
a normalization condition above, we can interpret the trajectory are
functional integrand
& R<t07£)

1 £(t)?
det{q(R)] exp{ — [ ar (R)}

=X, R(tfvg) =Y, (25)

at the initial time ¢y and the final time ¢y, respectively,
during which the random force £ gives rise to a displace-

(22)

ment
as a Gaussian probability distribution of the random . ty ¢ (")
force &, driving the Brownian-motion-like transverse mo- Y — X = (ty —to)R(to, &) + / dt’ / dt”’ =—=—=.
mentum broadening of the propagating parton in the w
QGP medium. (26)

With this probability distribution, averaging for any
function f(&) over the random variable £ can now be .
computed as a functional integral, R(ty,&) =~

O e ex [ [l e

ty —1to

The initial velocity of the particle is therefore

— [ Des@exnf -




The velocity of the particle at any given time ¢ should be

R(ty, &) + / dt”#, (28)

to

R(t,€) =

and the position of this particle is given by

R(t, &) =X + (t — to)% + % /t dt'(t —t)E(t'). (29)
to |

w
W(Y ,pity) =(tf 7t0)2/d2Xd2poW(X,po;to)/

d?x d%y ox
(2m)? (27)2
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In arriving at the last equation for the position R(t,&),
the following identity is used for an arbitrary smooth
function f(t),

/t: dt’ /t: at" f(t") = /t: A’ (t — ') f (). (30)

Substituting particle’s velocities in Eqs. (27) and (28)
into the delta-function in Wigner function in Eq. (19) ,
we arrive at

{Z_w(Y—X)

-(y—w)+ipo-w—ip-y}
tffto

- /t ),

0

(31)

Performing the integration over p or Y, we can get the transverse position or transverse momentum distribution of

the propagating parton at time ¢y, respectively,

>N W of oen  dz —iz. (4N Y 1 5 (") o E)?
— . tf to
" (tfto)/d X o WX pos to)e /Dgexp iz /t at’ /Odt e /t dtq(R)},
(32)
2N L2z : ~ b boE)?
—— = [ ®XdPpy——W(X,po; t *”B'(P*Po)/p j / deg(t 7/ dt . 33
7 Po gz V(X posto)e goxp {im | dem- | @(R)} (33)

III. SPECTRA IN UNIFORM MEDIUM

The general expression for the final phase-space dis-
tribution of a propagating parton in terms of path inte-
grals is valid for a inhomogeneous medium in the trans-
verse plane. In the special case of a uniform QGP

J

(

medium in which the jet transport coefficient is a con-
stant ¢(R) = §o, one can complete the path integral in
Egs. (31)-(33). The distributions can be simplified to
a greatest extent as (more details on the derivation are
given in Appendix D.)

12w?
Wo(Y,p;ts) 74/d2Xd2p0W(X7po;to)
4o (tf —to) (34)
exp{i((y X) - ) - M}
(jo(tf — to)s 2w (jo(tf — to) ’
d*No 1 / 2 2 (P—Po)2
= A2 X A2poW(X, po;to) exp{ — ————— &, 35
@p oty —to) PoW(X, poito) p{ dolts —to)} (35)
42N, 302 2o 3wi=% —po)?
_ X X . L 36
PY ~ riolty —to)? /d d"poWV( ,p07ﬁ0)exp{ doltr —to) }7 (36)

for any given initial Wigner distribution W(X, po; to).

For an initial point-like classical particle with spe-

(

cific initial momentum and position W(X,po;to) =
(27)26%(X)d2%(po), the final Wigner function at a later
time t; becomes



(4w)? —12uw? tr—to o p?
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oY, pity) 2(tr — o) {qg(tfftO)B( 50 P qo(tffto)} -
_3 (4w)? exp{ _(p— 3w Y)? 4 2 3w? }
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One can verify that the final Wigner distribution func-
tions in Egs. (34) and (37) satisfy the drift-diffusion equa-
tion,

(o
ot

=

DoV WY pit) = TV pit), (39)
which is just the Boltzmann equation under the spe-
cial approximation of small-angle scattering whose so-
lution for an initial classical point-like particle in a uni-
form medium as shown in Eq. (37) was first obtained in
Ref. [49]. Indeed, as shown in Fig. 2, apart from the usual
diffusion in both transverse momentum and coordinate,
the Wigner distribution develops a drift thjOp in the
transverse coordinate for a given value of the transverse

momentum p and a drift %Y in the transverse mo-

2(t

mentum for a given Value( éf the transverse coordinate
Y. The Gaussian diffusion width in the transverse mo-
mentum +/go(ts — to) is the typical momentum broaden-
ing during the given time interval. The diffusion width

in the transverse position is given by the average trans-

verse velocity \/qo(ty — to)/w times the time interval or
(jg(tf — t0)3/w.

WD(Y: P, tf - tO)
3[dw/qo(ts — t0)?]?

1.0
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FIG. 2. The scaled Wigner distribution for an initial classical
parton in a uniform medium with a constant jet transport
coefficient go given by Eq. (37) as a function of the transverse
momentum and coordinate, both scaled by their respective

widths, v/do(ts — to) and v/do(ts — to)3/w.

Integrating over the transverse coordinate Y or the
transverse momentum p, the Wigner distribution in
Eq. (37) gives the diffusion distribution in transverse mo-

[
mentum and transverse coordinate, respectively,

d*N (27)?

2
p

= — [$) - T~ (> 39

d’p  wo(ty —to) Xp{ QO(tf—to)} (39)

2N 2 2 2 Y 2
d2 _ A(7r) 3w Cex {_ A3(w ) 3}) (40)
d Y ﬂqO(tffto) qO(tffto)

that satisfies the usual Fokker-Planck diffusion equation.
We note that the diffusion distribution in the transverse
momentum has been obtained within the framework of
higher-twist formalism under maximal two-gluon correla-
tion approximation[61] or by a direct summation of mul-
tiple scattering [62].

IV. TRANSVERSE MOMENTUM
ASYMMETRY IN NONUNIFORM MEDIUM

To investigate the momentum diffusion in a nonuni-
form medium within the path integral approach, we con-
sider a simple transverse distribution of the jet transport
coefficient,

i) = = (1)

with f(R) < 1 for all values of R which allows us to
complete the path integral analytically.

For convenience we denote the functional integral part
in Eq. (33) for the final momentum spectrum as

F(z, X, po) = /ﬁ&exp{/t:f dt[z’x-g(t) - f]((g]}
(42)

With the variable transformation & = £ — i%‘)w and to
the leading order in f, it can be approximately rewritten
as (see Appendix E for more details)

(43)

where the average < e > is defined as
0

2

()= [P Yot [l



The classical trajectory of the particle presented in perturbatively,
Eq. (29) can be rewritten as

00 2
f(R(tv 5/)) = 2:20 nl E :?Ril (t7 él) T AR“’ (t7 5/)
< (ViVi - Va (ROE)) o (4T)

R(ta €l) = RO (t) + AR(ta €I)7 (45)

where V; = aiRi' Using the following correlators,

(AR'(t,€')), =0, (48)

with
A _ 3
<ARi(t,£’)ARj(t,§’)>O:é%oéij(t 3’50) o (49)

Ro(t)= X + (t —to)@ T 4 (t ~t0)?, (AR"(t,&)AR™(t,&")--- AR (t,£')), =0, (50)
(46)
R(t,¢) = 5/t ' (t — )¢ (t). (AR™AR™---AR™(t,¢)),
’ = (ARTAR=(t,¢)), - (AR AR (t,€')),
+ all other permutations, (51)

where total number of permutations is (2n — 1)!!, we can
Since only AR(t,£’) contains the effect of the noise &,  substitute the expansion of f(R) in Eq. (47) into Eq. (43)
and we can treat it as a perturbation and expand f(R) and obtain

F(CE X p())

mew(- [[afpenfi-a [afy S BRI (90 6)

R(té’):Ro(t)} (52)

—exp{— Y dt%fw?}[l—m?/t dt%oab(Ro(t))}

to tO
[
where and D = §o/12w2.
o (D(t — t5)5V2)" With the above approximation of the path integral, we
R t)) = Z 0 R F(R()), can obtain the transverse momentum distribution,
_ R R(t) — R)? (%) d*N _ d®N, d’N
:/dzRLex _(R() — R)” — a0 C (55)
A7 D(t — to)3 4D(t — to)3 d’p d?*p d’*p
with d?Ny/d*p given by the solution for a parton propa-
®(Ry(t)) = ®(R(1)) ‘R( o) (54)  gating in a uniform medium in Eq. (35) and
t)=Ro(t
J
&Ny Lz o Yo
k= [ X WX pt)e e - [T a®a e [ ale(rom)]. 6o
d*p (2m)? to 4 to 4

is the correction linear in f(R) due the inhomogeneity of the medium. This linear correction can be rewritten as

d* N,

ty
Tt == [ [ EXE VX pusto) Gl X .81, (57)

to



where the evolution function is defined as

d?x
G(papo;XatfatatO):/We

For a Gaussian form of f(R),

2

F(B) = bexp { ), (59)

the jet transport coefficient in Eq. (41) describes a
medium that has an increased density within a radius
of ¢ in a uniform medium. One can complete the inte-
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G(p, po; Xatfatato) _/(277)2

1 —1670% —(X A+ (t—to)B2)?
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to
[
gration in Eq. (53) and obtain,
a%s —R(t)?
) = 60
(R = 5500 { 5 ) (60)
where
_ 2 5_ o Go(t—1to)®
The evolution function in Eq. (58) becomes,

to) 0% —[X + (t — to) B2 +iw e (t — t9)?)?
2}[ 2 ( ) exp{ Z(t) 4 }}
[p — o+ A(t) (X + (t — to)B2)]? )
A(t)
(62)
[
duced at x = (z,y) the corresponding initial Wigner

function is

W(X, pito) = (27)6°(p — po)0*(X — x) (65)

The final transverse momentum distribution at time ¢y

s 2 in Eq. (55) is now,
/\(t) = qoéw;:(to)) (64) d2N0 _ 4 e _ (p _p0)2 } (66)
?p  Golty —to) P Qo(ty —to)”’
For a parton with initial transverse momentum pgy pro-
J
BNy _ [V Ao (x+(t=t0)B)?  [p—po+MO(x+ (¢ —t) 2]’
7 =/, s o SONE NG } ©7)
x Aj(t){[ Po+ A(0)Gx + (1~ 10)P2)]* — Ar) )

For a parton with initial transverse momentum pg = 0,
the above final distributions become

d2NO 4 2

el e K v

5o (68)

2 ty nine %2 %2
%:/t 4(505 of - _[pﬂ@)}}

<{lp+rwx]* - am}.
(69)

Since d?Ny/d*p is the solution to the diffusion equation



in a uniform medium, it is symmetric in the transverse
plane independent of the initial position x. The first
order correction d2Ny/d*p due to the inhomogeneity of
the jet transport coefficient §(x) as given by Egs. (41)
and (59) is asymmetric in the transverse plane for finite
values of the parton’s initial position x.

To illustrate the asymmetrical transverse momentum
broadening, we show in Fig. 3 (a) the first-order correc-
tion d2N;/d?*p and (b) the final transverse momentum
distribution as a function of p - X for p - (z x x) = 0 and
different values of the initial position |x|. We have set
ty —to =10 fm/c, o0 =5 fm, § = 0.1, o = 2 GeV?/fm,
w =25 GeV and pg = 0.

0.00
e
> 002
Q
e
s| =
% | 5 -0.04}
-0.06
-5 0 5
-
1
>
[}
e
2
%

-5 0 5
p (GeV)

FIG. 3. (a)The first-order correction and (b) the final trans-
verse momentum distribution for initial position z = —4.0
fm (red dashed), 0.0 (black solid), 4.0 (blue dot-dashed) fm,
w=>5CeV, t; —to = 10 fm/c, o = 2 GeV?/fm, § = 0.1
and o = 5 fm in the simple model for an inhomogeneous jet
transport coefficient. The dotted line is the distribution in a
uniform medium with a constant jet transport coefficient go.

In general, the first-order correction in the case we
consider here makes the final momentum distribution
broader, leading to the increased transverse momentum
broadening as compared to that in a uniform medium
without a region of inhomogeneity. The distribution is
asymmetric for finite values of the initial transverse po-
sition of the propagating parton.

One can show that the first order correction in
Eq. (69) does not contribute to the zeroth and first
moment of the final transverse momentum distribution,
[ ®pd®Ny/d?p = [d®ppd®N;/d*p = 0. However, it
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{(Ap%)o — (Ap?)
(ty — to)dod

FIG. 4. The reduction of scaled momentum broaden-
ing ((Ap?)o — (Ap?))/(t; — to)dod as a function of the
scaled transverse position x/o and propagation time (t; —
to)/(3w”0® /do)'/*.

increases the total transverse momentum broadening,

(p?) = (ty —to)do + (AP*(x, ty)),
2 o Go0%s x? (70)

0

due to the extra density of the medium with inhomogene-
ity in the region |z| < o on top of a uniform medium. The
extra momentum broadening (Ap?(x,ts)) due to this re-
gion of inhomogeneity grows linearly with the time ini-
tially when ¢; — ¢ty < (3w?0?/4o)"/® and saturates at a
finite value asymptotically. At x = 0, this finite extra
broadening is (Ap?(0,t;)) ~ 1.24o0(3w?0?/4)'/? when
ty —to > (3w?0?/4p)'/?. Compared to the extra mo-
mentum broadening in this region of transverse inhomo-
geneity in a scenario of eikonal propagation without the
spatial drifted diffusion in the transverse direction,

(0% (x,15))o = (b5 — to)do + (AP (x. 1)
x? (71)
(AP?(x.tp))o = (ty — to)iodexp | ~ 5.

the drifted diffusion in transverse coordinate due to the
transverse gradient reduces the extra momentum broad-
ening in the region of inhomogeneity. Shown in Fig. 4
is the reduction of the scaled momentum broadening
((p2)o — (P))/(ts — to)iod = (AP — (AP))/(ty —
t0)4od as a function of the scaled transverse position x/o
and the scaled propagation time (t; —to)/(3w?0%/do)'/3.
One can see that the reduction becomes significant for a
propagation time when the transverse drift distance be-
comes comparable to the size of the inhomogeneity. Since
the inhomgeneity-induced broadening in both scenarios
dies out exponentially at large |x| > o [see Egs. (70) and
(71)], their difference in Fig. 4 also goes to zero exponen-
tially at large |x]|.



The first non-vanishing odd moment of the distribution
due to the gradient-induced asymmetrical transverse mo-
mentum distribution is

—2x /t:f dt(jgi)é)\(t) exp{ - %}

X
—Qowazéﬁ {exp { —

(p*)

X
0% + Go(ty — t0)3/3w2}
2

—exp{ - 55},

which grows initially with the cubic of time and satu-
rates at a finite value asymptotically when (t; — t0)? >
3w?0? /Gy because of the finite size of the spatial inhomo-
geneity.

We can define the transverse asymmetry as proposed
in Ref. [49],

(72)

_ J Y d*p W(Y,p,ty) sign(p - x)

A
N [@2Yd2p W(Y,p, tf) 73)
/ 2p &N sign(p- %)
= — ——— S1gn - X

to characterize the asymmetrical momentum broaden-
ing due to the transverse gradient of the medium.
Note that the Wigner function is normalized as
[ Y d*p W(Y,p,ts)/(2m)? = 1. Since the asymmetry
is only caused by the first-order correction in Eq. (69),
one can complete the integration over the transverse mo-
mentum and obtain the transverse asymmetry as

e 40?6 At)x
Az\f—/t0 dtz(t)A(t) TA(t) (74)
x?2 A(t)*x?
5w am )

The integration over time can be done numerically.
Shown in Fig. 5(a) is the transverse asymmetry Ay as a
function of the initial transverse position x for different
values of the parton’s energy w. We note that within the
size of the transverse inhomogeneity |z| < o, the trans-
verse asymmetry is approximately linear in x driven by
the transverse gradient. Conversely one therefore can use
the transverse asymmetry to infer the initial transverse
position of the propagating parton. This is the principle
underpinning the gradient jet tomography as proposed
in Ref. [49]. Combined with the longitudinal jet tomog-
raphy, which uses the longitudinal momentum of the fi-
nal jet or parton energy loss to constrain the propagation
length, the 2D jet tomography can be used to localize the
initial jet production position. Outside the range of the
medium inhomogeneity |x| > o, the transverse asymme-
try decreases and vanishes when the transverse gradient
diminishes.

Similar to the second and third moment of the mo-
mentum distribution, the transverse asymmetry Apn
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FIG. 5. Transverse momentum asymmetry as a function of
the initial transverse position x for ty — to = 10 fm/c, §o = 2
GeV?/fm, § = 0.1, 0 = 5 fm in the simple model.

also increases with the propagation time during the
diffusion across the domain of the inhomogeneity.

Since /qo(ty —to)/w is the average diffusion velocity,
Vao(ty —t9)?/w is the diffusion distance during the

propagation time. When this distance is much larger
than the size of the inhomogeneity o or (ty — t)® >
w?0? /4o, the transverse asymmetry as well as the in-
creased momentum broadening (Ap?) and the third mo-
ment (p®) will saturate to the asymptotic values. Since
the average diffusion distance is inversely proportional
to the parton’s energy w, the transverse asymmetry Ay,
as well as the third moment and the extra momentum
broadening, decreases with w.

In Fig. 5(b), we also plot the third moment (p3) as
a function of the initial transverse position x. It has
the same behavior as the transverse asymmetry. As seen
in Fig. 3 (a), the first order correction to the distribu-
tion changes sign at large transverse momentum. The
third moment has a much large weight at large trans-
verse momentum and is therefore dominated by the first
order correction in this large momentum region. There-
fore, the asymmetry as characterized the third moment
has the opposite sign to the transverse asymmetry Ay
which is dominated by the distribution at small momen-
tum. However, their dependence on the initial transverse
position x, the propagation time ¢y — ty and energy w is
the same.



V. SUMMARY

To demonstrate the principle of the gradient tomogra-
phy in jet quenching, we have derived the evolution of
the Wigner distribution function in transverse momen-
tum and coordinate for a fast parton traveling inside a
strong interaction medium within the path integral ap-
proach. Within the dipole approximation for the soft
multiple scattering in the medium encoded in the corre-
lation of Wilson operators, the evolution can be expressed
generally in terms of a Green’s function or the evolution
operator which is determined by the space-time profile of
the jet transport coefficient ¢.

In a uniform medium with a constant jet transport co-
efficient ¢y, one can complete the path integral and obtain
the evolution operator and the corresponding Wigner dis-
tribution analytically which is also a solution to an drift-
diffusion Boltzmann transport equation. We also consid-
ered a special case of inhomogeneous medium by assum-
ing a form of spatial-dependent jet transport coefficient
that adds a Gaussian-like region of enhanced medium
density with a finite size. The path integral can also
be completed in this case and we obtained the evolu-
tion operator analytically. We have considered an initial
condition for a classical point-like particle and calculated
the final transverse momentum distribution and its de-
pendence on the initial transverse coordinate. The dis-
tribution is asymmetric when the initial position of the
parton is off the center of the Gaussian region because of
the transverse gradient. The Gaussian-like inhomogene-
ity is found to increase the momentum broadening (p?)
and lead to a nonvanishing value of the odd moment (p?)
due to the asymmetrical distribution. We also calculated
the transverse asymmetry Ay as proposed in the study
of the gradient tomography [49]. We found both Ay and
(p?) linearly correlated with the initial transverse posi-
tion within the region of the inhomogeneity, validating
the principle of the gradient jet tomography. This an-
alytical solution also allows us to understand both the
propagation time (length) and energy dependence of the
transverse asymmetry.

Going beyond the simple form of the spatial-dependent
jet transport coefficient, numerical evaluation of the path
integral for more realistic case of the medium in high-
energy heavy-ion collisions is needed. Since the path in-
tegral approach differs from the classical transport ap-
proach in which one can also introduce space and time
dependence of the jet transport coefficient in the drift-
diffusion Boltzmann equation as done in Ref. [49], it will
also be interesting to examine the difference between the
two approaches. These studies will help to establish the
gradient jet tomography as a powerful tool to explore
properties of QGP using jet quenching.
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Appendix A: Functional measure

Let us consider the calculation of the propagator in
one-dimensional space. We divide the computation into
many steps; inserting the closure relation many times,
we write the propagator as the products with small time
steps,

tH(ty—to iHe —iHe

_ ) 7 — —iHe
(xsle |zo) ll_r)%<zf|e e ...e |zo)

N—-1
“ 11 / gz fle e - ) en—1le e ans)
=1

e (wale” @y ) (@ e € a).

(A1)

We also insert the identity operator which runs over all
the momentum states in the propagator,

(e e z) = / Api s [pi) (pile ™1 )
ePiTit1

= [ dpi—=—(pile
pi— =il

(A2)
—iHe |='Ez>

Suppose H takes the form H(z,p) = % + V(z) and in
the limit € = % — 0, we have

exp [z(ﬁ+V(:c))e} A exp [z%e} exp [iV(x)e], (A3)

2m

or

<Pi\H|$i> = <Pz|$z>H($Z7Pz)



The propagator in Eq. (A2) can be written as

<$i+1|€_iH€|l'i> =/%ei”"(m"“_“”"')_ZH(“’J""/)E
m

[ m ‘ .
= %exp{zeL(xi,xi)}

Using the above equation for each time interval in
Eq. (Al), one can get the path integral in the form,
J Dze™S | with the functional measure defined as

Dx = | — , [ —— dxl
27me 2mie

2mie in Eq. (11).

(AG)
Replacing m — w, we have A =

Appendix B: Normalization of Gaussian distribution

The discrete version of the classical trajectory of the
hard parton R in Eq. (29) can be cast as

231

R; X—l—je——|— Zj—l (B1)

In this expression, R; depends only on &; with ¢ < j so

that
€
[

Since §(R;) is a function of & with ¢ < j and does not
depend on &;, the integrand is just a trivial Gaussian
form. Then we get

a(R;) p{e( )}—1 (B2)

/ £det{ to R
. : (B3)
= d?¢;(— exp{—e—2_} =1
H / ] 7" ) Q(Rj)
Appendix C: Correlation functions
We define the generating function
EQ
DE(t) exp{ / de=
det{ ( 1)

X exp{/ dtJ(t) - &(t)},
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2
J

}

and the corresponding discretization version is
i(R;)" (C2)

i oo,
X exp{—er &5t

which encodes all the correlation functions.
In the case of a constant §(R) = g in uniform medium,
differentiating Z[J (t)] with respect to J(t) evaluated at

some time ¢t = ¢; leads to
£(t)°
exp{— [ dt=— t
—ex(~ [ @il

575 o~ [P0

)ep{ €

_<§“ (t1 >0.
(C3)
In the same spirit, taking n derivatives gives us,
oz
6Jn (t1)5J“2 (tg) <o Jan (tn) J=0
1 2
=(€M (1€ (t2) € (1)),

(C4)

The generating function above is just a functional Gaus-
sian integral, which can be performed exactly. This leads
us to

J(1)] :/Dﬁ(t)ﬁexp{—/dti(ﬁ(t

X exp{/dt—J2} = exp{/dt—JQ}

dO 2
) - Ly

(C5)
Taking derivatives with respect to J¢, we have
0z (JO
Y(t)Z[J
62Z qD b
— =75 (t1 — 12)Z C6
5Jo(t1)0Jb(ty) 2 070t — t2)21J] (C6)

+ %Ja(tl)c]b(b)z[t]]

Setting J = 0, we get
u 0z
(€"(t1))o _W’J:O
_ 2z ‘
_5Ja(t1)5Jb(t2) J=0

b

= %05“5@1 —t).
(C7)

Note that when ¢ = ¢(R) but not a constant gy, we do
not have such simple expressions for two-point functions.
Since Ry_1 is € y_o-dependent, we can not perform the
above path integral in the generating function Eq. (C1)
exactly.

(€ (t1)€" (t2))o

Appendix D: Spectra in a uniform medium
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For a uniform medium, one can complete the following path integral by taking advantage of the two-point correlation
function in Eq. (24)

<exp{ i w./ttfdtg /Déexp w: /ttfdtg(t)—/ttfdtégoy}

0 0 0

/ﬁ&exp{/t:‘ dtd—o {ﬁ(t)lq;:c}Q/t: dtQO 2}exp{/t:f dt%mQ}_ (D1)

According to Eq. (33), we have

d®>N %~ 12 d%x iz (p—po) Yo 2
ot alladl . —ix- (p— _ 0 D2
Zp d* X d*pg (27T)2W(X,p0,to)e exp{ /to dt T }, (D2)

which leads to Eq. (35) after integrating over @. Similarly, one can get

ty 6 ty (j
7 _ _ 40 2 D3
exp i - / dt’ /to dt f—to exp{ /t0 dt12w }, (D3)
<exp{i(sc—y / dt/ dt” £t +iy - / dar'e(t —exp / dt— (x —y)? / dt—az y)}
to tr _to to to to ( )
D4

and then arrive at Eqgs. (36) and (34) as well.

Appendix E: Leading order (in f) approximation of the functional integral F

With the variable transformation £ = £ — i%”a:,

F(waXaPO)
_ oo o det{l — f(R)} YOEW s e’
et [ b TT [ (e L F B g q 2
—ewl- [Cafpay [T [ (eg =75 e {dh vim-g - et} N
E1
where € — 0 and N — oco. It can be approximately rewritten, to the leading order in f, as
F(maXaPO)
o 2 2 Go_o 1
~e(~ [t }H / )i 1+e[ - B0~ (R} exp( <!
_ b QO ts 5'(t)2 e do 1 b E(t)? (E2)
=exp{— 3 2}/D£ det{qo}{1+/ di] i +ix- € (t)—4m2_€]f(R)}exp{—/t0 dt i }
’ il 1
= exp{— / dtqo 2}{1+/ <[§(§O) iz ¢(t) - Lo~ Z)f(RLEW)) |
Using the expansion of f(R) (see Eq. (47)) and the following correlators,
12 = (1) = GoS(t — 1) (E3)




(€ OPAR(E)), = [ DE exp(- [ art & dm(t )€ (02t = 0 (E4)
(€ OPARi(t,E)AR;(t,€)), =([€'()]*) (AR:(t,€)AR;(t,€)), (E5)
([€'OPAR™(t,&)AR>(t,&')AR® (t,& ) AR (t,&) - -- AR (t, &), = (E6)
<[£I(t)]2AR“ (tv €I)AR12 (ta 5/) T ARizn (tv E/)>0 = <[£/(t)]2>0<AR“ (tv EI)ARZQ (ta EJ) e ARiZ'n, (tv €/)>0 (E7)
we arrive at,

F(x, X,po) =exp{— /tgf dti—OxQ} :1 —|—/ ' dt[%(s(;o_t) _ %0332 — %]<f(R(t,€/(t))>o}

q ty q N—-1 N—-1 1
—exp{— 027} 1 7/ P22 (F(R(E0) + 3 - Y €] (ES)

to to k=1 k=1
=oxp{~ | qo 2%} 1 —/t dt%f 2 (f(R(.E W) |

where we have used [ dzg(z)d(z —2') =

= Z,ICV:? g(zk )0k for a smooth function g(x).
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