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Abstract

A “pure pair” in a graph G is a pair A, B of disjoint subsets of V(G) such that A is complete or
anticomplete to B. Jacob Fox showed that for all € > 0, there is a comparability graph G with n
vertices, where n is large, in which there is no pure pair A, B with |A|,|B| > en. He also proved
that for all ¢ > 0 there exists € > 0 such that for every comparability graph G with n > 1 vertices,
there is a pure pair A, B with |A|, |B| > en!~¢; and conjectured that the same holds for every perfect
graph G. We prove this conjecture and strengthen it in several ways.

In particular, we show that for all ¢ > 0, and all ¢1,¢ > 4/c + 9, there exists € > 0 such that,
if G is an (n > 1)-vertex graph with no hole of length exactly ¢; and no antihole of length exactly
{5, then there is a pure pair A, B in G with |A| > en and |B| > en!~¢. This is further strengthened,
replacing excluding a hole by excluding some “long” subdivision of a general graph.



1 Introduction

Graphs in this paper are finite, and without loops or parallel edges. Let A, B C V(G) be disjoint.
We say that A is complete to B, or A, B are complete, if every vertex in A is adjacent to every vertex
in B, and similarly A, B are anticomplete if no vertex in A has a neighbour in B. A pure pairin G is
a pair A, B of disjoint subsets of V(G) such that A, B are complete or anticomplete, and |G| denotes
the number of vertices of a graph G.

Let H be a set of graphs: we say G is H-free if no induced subgraph of G is isomorphic to a
member of H. For some choices of H, every H-free graph admits a pure pair A, B with both |A|, |B|
large in terms of |G|. Pure pairs with both |A|,|B| linear in |G| are particularly of interest because
of connections with the Erdds-Hajnal conjecture [4, 5], and the following was shown in [2]:

1.1 Let H be a finite set of graphs.

o [f H contains a forest and the complement of a forest, then there exists € > 0 such that every
H-free graph G with |G| > 1 admits a pure pair A, B with |A|, |B| > €|G|;

o If H does not contain both a forest and the complement of a forest, then there exists ¢ > 0 and
arbitrarily large H-free graphs G in which there is no pure pair A, B with |A|,|B| > |G|*~¢.

But if we allow H to be infinite, the pretty dichotomy of 1.1 disappears: the first bullet remains true,
but the second may be false. For example, it was shown in [3] that:

1.2 Let H be a graph and let H be the class of all subdivisions of H and their complements; then there
exists € > 0 such that every H-free graph G with |G| > 1 admits a pure pair A, B with |A|, |B| > €|G]|.

And also, there are classes that do not admit linear pure pairs, but for all ¢ > 0, do admit pure pairs
A, B with |A|,|B| > |G|'~¢. For instance, Jacob Fox [6] proved:

1.3 For every sufficiently large positive integer n:
e for every n-vertex comparability graph G, there is a pure pair A, B in G with |A|,|B| > @;

e there is an m-vertex comparability graph G such that there is no pure pair A, B in G with
AL, |B] > .2

logy n*

There is also a related asymmetric result, by Fox, Pach and Téth [8]:

1.4 There exists € > 0 such that for every comparability graph G with |G| > 1, either there is
a complete pair A, B with |A|,|B| > |G|, or there is an anticomplete pair A, B with |A|,|B| >
|G|/ log |G]|.

Comparability graphs are perfect, and Fox [6] (and see also [7]) conjectured that something like
1.3 holds for all perfect graphs; more exactly:

1.5 Conjecture: For every sufficiently large positive integer n and every n-vertex perfect graph G,
there is a pure pair A, B in G with |A|,|B| > n*=°(),

We will prove this conjecture, and several strengthenings. To prove 1.5 itself, we will show that



1.6 For all ¢ > 0, and all sufficiently large n, if G is an n-vertex perfect graph, then there is a pure
pair A, B in G with |A|,|B| > n'~¢.

This can be strengthened: we can make one of the two sets of linear size (and replace the “sufficiently
large” condition in 1.6 with a multiplicative constant). We will show:

1.7 For all ¢ > 0 there exists € > 0 such that if G is a perfect graph with |G| > 1, then there is a
pure pair A, B in G with |A| > ¢|G| and |B| > ¢|G|*~¢.

The complement graph of G is denoted by G. A hole in G is an induced cycle of length at least four,
and an antihole in G is an induced subgraph whose complement graph is a hole in G. Perfect graphs
are the graphs that have have no holes or antiholes of odd length [1], but we will show that it is not
necessary to exclude all odd holes and odd antiholes to have the result 1.7; it is enough to exclude
one of each, of sufficient length. The next result is a strengthening of 1.7:

1.8 Let ¢ > 0 with 1/c an integer, and let €1,0o > 4/c+ 5 be integers. Then there exists € > 0 such
that if G is a graph with |G| > 1, with no hole of length exactly {1 and no antihole of length exactly
{9, then there is a pure pair A, B in G with |A| > ¢|G| and |B| > ¢|G|*~¢.

This can be further strengthened, as follows. Let us say G contains H if some induced subgraph
of G is isomorphic to H, and G is H-free otherwise. If X C V(G), G[X]| denotes the subgraph
induced on X. We say that a graph H has branch-length at least £ if every cycle of H has length at
least ¢, and every two vertices of H with degree at least three have distance at least ¢ in H. Since
a cycle of length ¢ has branch-length ¢, the next result strengthens 1.8 and is the main result of the

paper:

1.9 Let ¢ > 0 with 1/c an integer, and let Hy, Hy be graphs with branch-length at least 4/c + 5.
Then there exists € > 0 such that if G is a graph with |G| > 1 that is Hy-free and Ho-free, then there
is a pure pair A, B in G with |A| > €|G| and |B| > ¢|G|*~¢.

2 Reduction to the sparse case

Let us say a graph G is e-sparse if every vertex has degree less than ¢|G|. We say G is (a, 3)-coherent
if there do not exist disjoint subsets A, B of V(G), anticomplete to each other, such that |[A| > «
and |B| > f.

A one-vertex graph does not admit any non-trivial pure pair, but it is e-sparse for all € > 0, and
(a, B)-coherent for all o, f > 0; so our standard hypothesis that G is suitably sparse and suitably
coherent does not exclude the case |G| = 1, and we always need to assume separately that |G| > 1.
But we observe:

2.1 Let 0 <e <1/2; if G is e-sparse and (|G|, e|G|)-coherent, with |G| > 1, then |G| > 1/e.

Proof. Suppose that |G| < 1/e. If some distinct u,v € V(G) are non-adjacent, {u}, {v} form an
anticomplete pair, both of cardinality at least ¢|G|, a contradiction. So G is a complete graph; but
its maximum degree is less than |G| and € < 1/2, which is impossible since |G| > 1. This proves
2.1. |



If G is a graph and v € V(G), a G-neighbour of v means a vertex of G adjacent to v in G. A
theorem of R6dl [11] implies the following:

2.2 For every graph H and all n > 0 there exists § > 0 with the following property. Let G be an
H-free graph. Then there exists X C V(G) with | X| > 6|G|, such that one of G[X], G[X] is n-sparse.

Consequently, in order to prove 1.9, it suffices to prove the following:

2.3 Let ¢ > 0 with 1/c an integer, and let H be a graph with branch-length at least 4/c + 5. Then
there exists € > 0 such that every e-sparse (¢|G|' ¢, e|G|)-coherent graph G with |G| > 1 contains H.

Proof of 1.9, assuming 2.3. Let ¢ > 0 with 1/c¢ an integer, and let Hj, Hy have branch-
length at least 4/c + 5. For i = 1,2, choose ¢; such that 2.3 holds with ¢ = ¢; and H = H;. Let
1 = min(ey,e2,1/2). Choose § such that 2.2 holds taking H = H;. Let ¢ = nd. We claim that ¢
satisfies 1.9.

Let G be a graph with |G| > 1 that is Hj-free and Ha-free. We must show that there is
a pure pair A, B in G with |A| > |G| and |B| > ¢|G|'7¢. From the choice of §, there exists
X C V(G) with | X| > J|G], such that one of G[X], G[X] is n-sparse; and by 2.1 we may assume
that |G| > 1/ > 1/§, and so |X| > 1. In the first case, since n < ¢, 2.3 applied to G[X]| implies
that there is an anticomplete pair A, B in G[X] with |A| > n|X| and |B| > n|X|'7¢. Thus

Al = | X[ = nd|G| = €| G|

and
1B > 0| X|'7¢ > ns" |G| = nd|G|' ¢ = |G|,

as required. In the second case we argue similarly, working in G[X]. This proves 1.9. |

The remainder of the paper is devoted to proving 2.3.

3 The pathfinder lemma: finding a path of specified length

In this section we will prove the main technical tool that we need, which we call the “pathfinder”. If
A, B C V(QG) are disjoint, we say A covers B if every vertex in B has a neighbour in A. A levelling
in G is a sequence £ = (Lo, Ly, ..., L) of disjoint subsets of V(G) with k& > 1 such that

 [Lo| =1;

e [, 1 covers L; for 1 <i<k; and

e LyU---UL;_5 is anticomplete to L; for all i € {2,... k}.

We denote LoU Ly U---U L, by V(L£). We call Ly, the base of the levelling £ = (Lo, L1, ..., L), and
V(L) \ Ly is called the heart of L. We call k the height of the levelling, and the unique vertex in Lo

is the apex. We call Li_1 the penultimate level of the levelling (for want of a better name). A path
P is L-vertical if V(P) C V(L) and |V(P)NL;| <1 for 0<i<k.



The pathfinder says that if a graph G is suitably sparse and suitably coherent, and we are given
two levellings with disjoint vertex sets and with bases of size linear in |G|, and there are suitable
constraints on the edges between the two levellings, then we can find an induced path between the
two apexes of any given length greater than the sum of the two heights. (And there is also a version
when the two apexes are equal, and in this case we will find a cycle rather than a path.)

Let us explain how the pathfinder will be used to prove 2.3 and hence 1.9. We can assume (by
extending H if necessary) that the graph H of 2.3 is obtained from some stable set X by adding
paths, each of length at least 4/c + 5, where each path has both ends in X and no other vertices
in X, and all these paths are pairwise vertex-disjoint except for their vertices in X. (For numerical
reasons, we will also allow the addition of cycles, but let us skip that for now.) We are given a graph G
which is suitably sparse and suitably coherent, and we need to show that it has an induced subgraph
isomorphic to H. To obtain a copy of H in G, we will choose an appropriate set X C V(G), and then
try to route paths of GG of the right length between the correct pairs of vertices of X. We will find
each such path by applying the pathfinder to some pair of levellings with apexes the corresponding
pair of vertices of X. But we cannot apply the pathfinder twice to the same levelling, because the
paths we want to produce need to be pairwise disjoint and anticomplete except for their ends. Thus,
if some vertex in X is supposed to be an end of several paths of H, we will need several levellings
all with this apex. So we need a way to find a good supply of levellings, each with base of linear
size, and pairwise disjoint except for their apexes, grouped into several sets each with a common
apex; and we want the edges between them to be under control. And another thing: the pathfinder
can only provide paths between the two apexes of length greater than the sum of the two heights of
the corresponding levellings, and we need paths which might be as short as 4/c 4+ 5, so we need the
levellings to have height at most something like 2/c.

The paper is organized as follows. In this section we prove the pathfinder; and in the next we
explain why we can get levellings of height about 1/c¢ (later, when we try to get several levellings
with a common apex, this height will double). In section 5 we relax the conditions on levellings, and
instead just look for subgraphs of radius about 1/¢ that have a linear set of neighbours (we call this
a “covering”, and the subgraph of bounded radius is its “heart”); we find that we can obtain many
coverings, with hearts that are disjoint and pairwise anticomplete. What we really want is something
slightly more: we want there also to be a vertex with a neighbour in each of the hearts. To prove
this, we prove something stronger, that there is a “multicovering”, but this is just a tool to get one
neighbour in common.

So we have many coverings, with hearts pairwise anticomplete and with a common neighbour a.
Add a to each of the hearts; then we get many coverings, with hearts pairwise anticomplete except
for one common vertex, which we call its “apex”. We call this group of coverings a “spider”, and
this is the topic of section 6. By making each of the hearts only just big enough that it has linearly
many neighbours, we can find a spider such that most vertices of the graph have no neighbours in
any of the hearts of the spider; and so, among them we can do it again, and find another spider. This
way we get a “troupe” of spiders, with no edges between their hearts. The next step is to convert
the hearts of the coverings in each spider to levellings (so the spiders become “lobsters”); this is also
done in section 6. Then we are ready to apply the pathfinder, which is done in section 7, and this
completes the proof of 2.3.

Let us begin by proving the pathfinder. First we need the following lemma:



3.1 Let p > 1 be some real number, let K,k > 0 be integers with K > k, and let ny,...,ng be non-
negative integers, all less than p/*=2=1Yk  Then there exists i € {1,..., K — k} such that pn; > n;
forj=i4+1,...,i+k.

Proof. Suppose not; then for each i € {1,..., K — k} there exists f(i) such that i < f(i) <i+k
and pn; < ny(;). Define 1 = 1 and x;11 = f(x;) provided z; < K — k. Let 1,...,2; be defined by
this process; thus K — k < z; < K. Since x;11 — x; < k for each i, it follows that tk > K — 1. Since
Ng, > png, and ng, is an integer, it follows that n,, > 1. Thus for 2 <7 < ¢, n,, > pi_Q, and so
Ny, > pi2 > pK/k=2=1/k contrary to the hypothesis. This proves 3.1. |

Next we need:

3.2 Let ¢ > 0 such that 1/c is an integer, and define r = 2+ 1/c. Let £ > 1 be an integer, and
define K =r' —1, and k = r'~1 — 1. Let € > 0, and let G be an e-sparse (¢|G|*~¢,|G|)-coherent
graph. Let By, B1,...,Bx C V(G) be disjoint, where By # 0 and B, ..., Bk each have cardinality
at least r*'¢|G|. Then either:

e there is an induced path of length £, with vertices py,p1,...,pe¢ in order, and
1<ti<ta<--- <ty <K,

such that po € By, and p; € By, for 1 <i </{; or

e |By| < Ke|G|*™¢, and there are sets Cy,...,Cx_y with union By, such that for each i with
1 <i< K-k, and each j withi < j < i+k, at least r**"2¢|G| vertices in Bj have no neighbour

Proof. We proceed by induction on £. Suppose first that £ = 1. If there is an edge between By and
By U---U By, then the first bullet holds; and if By is anticomplete to By U - - - U By, then since H
is (¢|G|'~¢, €| G|)-coherent and |By| > r?¢|G| > ¢|G|, it follows that |By| < €|G|' ¢, and the second
bullet holds, taking Ci,...,Ck_r = By. Thus we may assume that £ > 2 and the result holds for
¢ — 1. Define p = |G|°.

Let By = {v1,...,v,}. Forallie {1,...,K —k} and all j € {i,...,i + k}, define A?; = (), and
AY = (. Inductively for h = 1,...,n we will define

e aset X! C B, foreachic {1,...,K}

the type of vy, (one of the numbers 1,..., K — k);
e a set A?,jQBj for each i € {1,..., K — k} and each j € {i,...,i + k}; and
e a set A" which is the union of Aﬁj overallie{l,...,K —k}and all j € {i,...,i + k}

as follows. Suppose that 1 < h < n, and A" ! and AZ;I are defined for all 4,5 with 1 <i< K — k
and 1 < j<i+4+ k. Forl<i<K let Xl-h be the set of vertices in B; \ Ah-1 adjacent to vy. Since
(K+1)/(k+1) =241/c, it follows that K > (24+1/c)k+1, and so 1/¢ < K/k—2—1/k. Hence for
1 <i<K,|X!<|G| < pf/F=2=1/k By 3.1 applied to the numbers |X7|,...,|X%|, there exists
with 1 <t < K —k such that p|X}}| > ]X]h\ for j =t,...,t+k. Choose some such ¢, which we call the
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type of vy,. For each j € {t,...,t+k} define Aﬁj = AZ;I UX]}-L; and For each i € {1,..., K —k}\ {t}
and each j € {i,...,i + k} define Azh’ ;= A?’;l. This completes the inductive definition.

(1) p|AZj] > |A§l’i]f07“ allhe{l,...,n} and alli € {1,...,K —k} and all j € {i,...,i + k}.

AZJ. is the disjoint union of the sets XJ’-‘ for all h € {1,...,n} such that v, has type i; and A?Z is
the disjoint union of X! for the same values of h. Since p|X!| > |X Jh| for each such h, this proves (1).

(2) If vy, has type i, then every vertex of B; adjacent to vy, belongs to Al for all h € {1,...,n}, all
1<i< K-k, and allje {i,...,i+k}.

Let o € B; be adjacent to vj,. If x € A"~ then the claim holds since A"~ C A", If x ¢ A"~1 then
reX ]h from the definition of X ]h, and since vy, has type i, it follows that

zeX]C Al C A
This proves (2).

For 1 <i < K —k, let C; be the set of vertices in By that have type i. Thus C1,...,Ck_j are
pairwise disjoint and have union By. We note that

P22 = (34 dfe+1/P)(k+1)% > 20k + 1)2.

(3) We may assume that |A7;| > ke|G| for some i € {1,..., K — k} and some j € {i,...,i+k}.

Suppose not. Let 1 < j < K. Since A" N Bj; is the union of the sets A7, for all i € {1,..., K'} with
j—1i€{0,...,k}, it follows that |[A" N Bj| < k(k + 1)e|G|. Now let 1 < i < K —k; by (2), C; is
anticomplete to B; \ A", for all j € {i,...,i+ k}. Since

|Bj \ A" = |Bj| — | B N A"| > r*¢|G| — k(k + 1)e|G| > r*7%|G| > |G|

and G is (¢|G|'~¢, | G|)-coherent, it follows that |C;| < e|G|*~¢. Hence |By| < Ke|G|'~¢; and so the
second bullet of the theorem holds. This proves (3).

From (3), we may choose h € {1,...,n} minimum such that ]Afjl > ke|G| for some i €
{1,..., K — k} and some j € {i,...,i + k}. Define D to be the set of all vy € C; with 1 < h’/ < h.
From the minimality of h, and since G is e-sparse, it follows that ]Af]\ < (k + 1)e|G| for all
ic{l,...,K —k}andall j€{i...,i +k}. Consequently |A" N B;| < (k+1)%|G| for 1 <i < K.
Now choose ¢ € {1,...,K — k} such that ]A?j\ > ke|G| for some j € {i,...,71 + k}. By (1),
\AM > ke|G|/p = ke|G|17¢. For j =i+1,...,i+k, let D; be the set of all vertices in B; that have
no neighbour in D. Thus B; \ A" C D;, and so

|D;| > r*¢|G| — (k4 1)%|G| > r?2¢|G|.



Since |A?Z| > ke|G|'~¢, it follows from the inductive hypothesis (with ¢ replaced by ¢ — 1, and By
replaced by AZZ-, and By, ..., Bk replaced by Djt1,...,D;x) that there is an induced path of length
¢ — 1, with vertices p1,...,py in order, and

i+1<to<---<ty<i+k,

such that p; € A" and p; € By, for 2 < i < {. Choose py € D adjacent to p;, and define t; = g;

1,00
then the path with vertices pg, p1,...,pr is induced and satisfies the first bullet of the theorem. This
proves 3.2. |

The “pathfinder”, the main result of this section, is the following:

3.3 Let ¢ > 0, such that 1/c is an integer. Let {,s,t > 0 be integers, and let d > 0. Let € > 0 with
(2+1/c) VD < d. Let G be an e-sparse (e|G) ¢, e|G|)-coherent graph, and for i = 1,2, let L;
be a levelling in G, with heart H;, apex a;, and base B;, satisfying:

o V(L) NV (L) ={a1} N{a};

o V(Ly)\ {az} is anticomplete to Hy, and if a1 # az then ay is anticomplete to Hy;
o L1, Ly have heights s,t respectively; and

e |B;| > d|G| fori=1,2.

Then there is an induced path (or cycle, if ay = ag) of length £ + s+t between ay, as, with vertex set
a subset of Hy U By U Ho U Bs.

Proof. For each integer i > 0, let k; = (2+1/c)* — 1. It follows that keky1 ... keyte < d. Moreover,
since € < d, it follows that ¢ > 2 (because |Bz| > €|G| and G is e-sparse), and s0 kyi¢(kaptot+2)e < d.
Define d; = (2 + 1/c)%¢ for each integer i > 0.

Let G, L1, L2 and H;, a;, B; (i = 1, 2) satisfy the hypotheses of the theorem. Let £ = (Lo, ..., L)
and Ly = (My, ..., M) say; thus Ly = By and My = By. Let Zg = 0. For i = 1,...,keyy, we will
inductively define Z; C L, 1 with Z; 1 C Z;, and D; C L, with Dq,...,D; pairwise disjoint,
satisfying

o dpi|G| < |Dj| < (deye +€)|G

e D, is the set of all vertices in Ly that have a neighbour in Z; and have no neighbour in Z; 4
(and so Dy U---U D; is the set of all vertices in L, that have a neighbour in Z;).

Thus, suppose that 1 < i < kypyy, and Zp,...,Z;—1 and Dy,...,D;_1 are defined satisfying the
conditions above. It follows that

Dy U+ U Dy 1] < (i = 1)(dest + 2)|G] < kuraldrss +2)|G] — dpsalG.
But df-i—t +e = (kQ(Z-f—t) + 2)6, and k?g_i_t(kigg_’_gt + 2)6 S d, SO

[D1U - UDia| < ket (bogersy + 2)e|G| — dert |G| < (d — dpyt) |G-



Hence at least dyy;|G| vertices in Ly do not belong to Dy U --- U D;_q. All these vertices have a
neighbour in Lg_1\ Z;_1 and have no neighbour in Z;_1; and so there exists Z; with Z;_1 C Z; C L1,
minimal such that at least dy, |G| vertices in Lg have a neighbour in Z; and have none in Z;_;. Let
this set of vertices be D;. Since G is e-sparse, the minimality of Z; implies that |D;| < (dgs¢ +¢)|G].
This completes the inductive definition.

We will try to construct a path (or cycle) satisfying the theorem that starts from ag, runs down
through layers of Lo, jumps to some D;, runs through some of D;;1, D;t9,..., to make it the right
length, and then runs up to a; through the layers of £1. The sets Z; are designed so that when
the path has run through enough D;’s to make its length correct, we can exit into the heart of £
without picking up unwanted chords. Note that the only edges between V(L2) and V(£1) have an
end in the base of £ (or are incident with ay, if a1 = ag).

Let @ = (Qo,...,Q:) be a levelling in G. We say it is a sub-levelling of Lo if Q; C M; for
0 <i <t For 0<h<t, wesay that such a sub-levelling Q = (Qo, ..., Q;) is h-good if

e there exists g € {1,..., ket — koyt—p + 1}, and for each j € {g,..., 9+ kpr¢—p — 1} there exists
F; C Dy, such that Fj is anticomplete to Qo U Q1 U ---UQp—1, and |Fj| > dy4+—p|G|; and

] |Qt‘ > kgkprl - kg+t,h€‘G’1_c.

Since d|G| > kekgy1 - .- kere|G|P¢ it follows that Lo is 0-good. Choose h < t maximum such
that some sub-levelling @ = (Qo, ..., Q:} of L is h-good, and let g and the sets Fj (j € {g,...,9+
keyi—n — 1}) be as in the definition. Let K = kgy;. Since each |Fj| > dyi¢—p|G|, we may apply
3.2, replacing By by @)y, and replacing ¢ by ¢ 4+t — h, and replacing the sequence Bi,..., By, by
Fy, ..., Fyik—1. There are two possible outcomes of 3.2.

The first outcome is: there is an induced path P of length ¢+t — h, with vertices pg, p1,...,Dett—n
in order, and

gty <teg < - <tpppp<g+K-—1,

such that py € Qp, and p; € F;, for 1 < ¢ < £+t — h. In this case, choose a O-vertical path )

between ag and pg (therefore of length h); choose a neighbour v of pyiy—p in Zy, +t_n; and choose an

Li-vertical path R between aj,v (therefore of length s — 1). We claim that
ag-Q-po-P-poyt—n-v-R-ax

is an induced path or cycle. To show this, we must check that

o V(P)NV(Q) = {po}, and V(P) \ {po} is anticomplete to V(Q) \ {po}; this is true since
Qo, - - ., Qp—1 are anticomplete to Fy, ..., Fyyx_1 from the definition of h-good.

e V(P)NV(R) = 0, and the edge with ends pyis_, and v is the only edge between V(P) and
V(R); this is true since Ly, ..., L, 2 are anticomplete to L,, and v € Z;, , , is anticomplete
to Dt17 PN 7Dté+t—h—1‘

o V(Q)NV(R) = {a1}N{az}, and every edge between V(Q) and V(R) has an end in {a; }N{az};
this is true from the hypothesis.

This proves the path or cycle is indeed induced, and since it has length ¢, the theorem holds.



The second outcome of 3.2 is: £+t —h > 0, and |Qp| < Ke|G|'~¢, and, writing k = kg1,
there are sets Cy, ..., Cyq -1 with union @)y, such that for each i with g <i < g+ K —k—1, and
each j with i < j <i+ k, at least dgy¢+—p—1|G| vertices in Fj have no neighbour in Cj. Since

Qnl < Ke|G'™¢ < kekpg - - kopene] GI'° < Q]

it follows that h < t. For g <i < g+ K —k — 1, let X; be the set of vertices in @), that are joined to
a vertex in C; by a Q-vertical path. Since Q is a levelling and Cy,...,Cyyx_x—1 have union @, it
follows that X, ..., X4 x—k—1 have union Q¢; and since |Q;| > kekgq1 - .. kovi—ne|G]17¢, there exists
i with ¢ <i < g+ K — k — 1 such that

|1 X5 > |Qul/K > kekesr .. - kepr—n—18| G| C.

For h < h' <t let Q), be the set of vertices in @y that are joined to a vertex in C; by a Q-vertical
path. Thus Q) = C;, and

(QO: ey Qh*la th7 Q;7,+17 o 7Q:‘,)
is an (h 4 1)-good sub-levelling of L9, a contradiction. This proves 3.3. |

The next result is a form of 3.3 with similar hypotheses except that the bases of the two levellings
need not be disjoint, and we weaken slightly the condition about edges between the heart of £; and
V(L2).

3.4 Let ¢ > 0, such that 1/c is an integer. Let £,s,t > 0 be integers, and let d > 0. Let € > 0 with
(2 +1/c)HDEDe < d/3. Let G be an e-sparse (¢|G|*~¢,€|G|)-coherent graph. Fori = 1,2, let L;
be a levelling in G, with heart H;, apex a;, and base B;. Suppose that:

e fori=1,2, |B;| > d|G|;
° V(,Cl) M V(LQ) = ({al} M {CLQ}) U (Bl M Bg); and

e cvery edge between Hy and V(L2) has one end in the penultimate level of L1 and the other end
m BQ.

Let L1, Lo have heights s,t respectively. Then there is an induced path (or cycle, if ay = az) of length
L+ s+t between ay,as, with verter set a subset of Hy U By U Hy U Bo.

Proof. Let d' = d/3, and let G, L1, L2 and H;, a;, B; (i = 1,2) satisfy the hypotheses of the theorem.
Let £y = (Lo, ..., Ls); thus Ly = B;. Choose L’ _; C Ls_; minimal such that at least d'|G| vertices
in B; U By have a neighbour in qu- Let L’ be the set of vertices in By U By that have a neighbour
in L_,. Thus

d|G| < |Ly| < (d +¢)|G| < 2d|G.

Let £} be the levelling (Lo, ...,Ls—1,L, 1,L.). Let L, be the levelling obtained from Ly by
replacing its base by B \ L. Then |L| > d'|G|, and

|B2 \ L| > d|G| - 2d'|G| > d'|G].

Hence £}, £} satisfy the hypotheses of 3.3, and the result follows. This proves 3.4. |



When we apply 3.4, in the final section, it will be to levellings £, L2 such that every edge between
V(L1),V(L2) either is incident with the common apex (when there is one) or is between the base of
one of the levellings and one of the last two terms of the other levelling; so 3.4 is stronger than we
need.

4 Expansion

If X C V(G), N(X) denotes the set of vertices in V(G) \ X with a neighbour in X, and N[X] =
N(X)UX. A graph G is 7-ezpanding if |N[X]| > min(7|X]|,|G|/2) for every subset X C V(G).

4.1 Let ¢ > 0, and let G be a (|G|*7¢/4,|G|/4)-coherent graph. Then there exists Y C V(G) with
Y] <|G|*=¢/4 such that G\'Y is |G|°-ezpanding.

Proof. Let a = |G|'7¢/4 and 7 = |G|°. Choose Y C V(G) maximal such that |Y| < « and
IN[Y]| < 7]Y]| (possibly Y = 0). Let W = V(G) \ Y. If G[W] is m-expanding then the theorem
holds, so we assume not. Thus there exists X C W such that |[N[X] N W| < min(7|X|, |W]/2).
Consequently X # (). But

INIXUY]| < IN[Y][ + [NX]n W] < 7|Y] + 7]X],

and so from the maximality of Y, it follows that [ X UY| > a. Now |[N[Y]| < 7|Y]| < a0 = |G|/4,
and [N[X]NW| < |W|/2 <|G|/2; so

IN[X UY]| < INY]| + IN[X] W] < 3[G]/4.

Let U = V(G)\ N[ X UY]; then |U| > |G|/4. But X UY is anticomplete to U, contradicting that G
is (|G|17¢/4,|G|/4)-coherent. This proves 4.1. |

If u, v are vertices of a graph G, it is sometimes convenient to call the distance between u, v in G
the G-distance between u,v. We deduce:

4.2 Let ¢ >0, and let G be a (|G|*~¢/4,|G|/4)-coherent graph. Then there exist u € V(G) and an
integer k < 1+ 1/c, such that:

e at most |G|/2 vertices have G-distance less than k from u; and

o at least |G|/4 vertices have G-distance exactly k from u.

Proof. By 4.1, there exists Y C V(G) with [Y| < |G|'7¢/4 such that G\ Y is 7-expanding, where
T = |G|¢. Choose u € V(G) \Y, and for each integer ¢ > 0 let M; be the set of vertices of G
that have G-distance at most ¢ from u. Since G \ Y is 7-expanding, it follows that for all i > 0,
|M; 41\ Y| > min(r|M; \ Y|,|G\ Y|/2). For each i > 1, let L; = M; \ M;_;.

(1) There ezists k < 1+ 1/c such that |Lg| > |G|/4.

Since G\ 'Y is T-expanding, it is connected, and so there exists ¢ such that V(G) \'Y C M,. Since
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IV(G)\Y]| 2 3|G|/4, we may choose j > 0 minimum such that |M;| > |G|'7¢/4. Hence for each
i€ {l,...,5— 1} M| < |G|*"¢/4 < |V(G)\Y]|/2, and so |[M; \ Y| > 7|M;_1 \ Y| since G\ Y is
T- expandmg Since [My \ Y| = 1, it follows that |M,_1 \ Y| > 7771, Hence

GIU=Ye = 7771 < My \ Y| < [Mj_q] < |G]'7¢/4,

and so (j —1)e < 1—¢, that is, j < 1/c.

Since G is (|G|'7¢/4,|G|/4)-coherent, and M; is anticomplete to V(G) \ N[M;], it follows that
|V(G)\ N[M,]| < |G|/4. But also |M;_1| < |G|*7¢/4 (or j =0), and so |L; U Lj+1| > |G| — |G|/4 —
|G|1=¢/4 > |G|/2. Thus some k € {j,j + 1} satisfies the claim. This proves (1).

Choose k as in (1), minimum. Thus |Liy_1| < |G|/4, and |My_s| < |G|'7¢/4 since G is
(|G|*~¢/4,|G|/4)-coherent. Thus |Mj_1| < |G|/2. This proves 4.2. |

5 Covering sequences

Let us say a covering L in G is a triple (a, H, B) where H, B are disjoint subsets of V(G), a € H, H
covers B, and G[H] is connected. We call a the apezr, H the heart, and B the base of the covering,
and define V(£) = HUB. If for every vertex v € H there is a path of G[H] between a, v of length at
most r — 1, we say that (a, H, B) has height at most r, and the least such r is the height of (a, H, B).
For instance, if (Lg,..., L) is a levelling with k£ > 0, and Ly = {a}, then (a,LoU---U L_1, Lg) is
a covering of height k.

A covering sequence in G is a sequence (Lq,...,Ly) of coverings in G, with hearts Hy,..., H,
say, such that Hq,..., H, are pairwise disjoint and pairwise anticomplete. We call n its length. We
say such a sequence has height at most r if each term has height at most r. If M = (£4,...,L,) is
a covering sequence, we define V(M) to be the union of the sets V(£;) for 1 <i <n.

AA AA AA

Figure 1: A covering sequence of length three. Hy, Ho, H3 are disjoint and anticomplete, but
By, By, B3 need not be; and there may be edges between H; and B; \ B;.

A covering sequence (L1,...,L,) is a multicovering if Ly,...,L, all have the same base, and
then this common base is called the base of the multicovering. The main result of this section says
that a graph with the usual properties (suitably coherent, suitably sparse) contains a multicovering
of length any specified constant, with height at most about 1/c and with base of linear cardinality.
We prove this in several steps. We begin with:



5.1 Let n > 0 be an integer. Let ¢ > 0 such that 1/c is an integer; let ¢ > 0 with ¢ < 27"72; and
let G be an e-sparse (g|G|'=¢, e|G|)-coherent graph. Then there is a covering sequence (L1, ...,Ly)
in G, where L; = (a;, H;, B;) for 1 <i <mn, such that:

o for1 <1< j<mn, H;is anticomplete to Bj;
o for 1 <i<mn, L; has height at most 1/c; and
e for1<i<n,|B;]>2""1a]|.
Proof. We proceed by induction on n. If n = 0 the result is trivial, so we assume that n > 1 and

the result holds for n — 1. By 4.2, there exists u € V(G) and an integer £ < 1 + 1/c (and hence
k <1/e, since 1/c is an integer), such that:

e at most |G|/2 vertices of G have distance less than k from wu; and
e at least |G|/4 vertices of G have distance exactly k from u.

For 0 < i <k let L; be the set of all vertices of G with distance exactly ¢ from u. Then (Lyg,..., L)
is a levelling, with height at most 1/¢; and |Lx| > |G|/4, so the theorem holds for n = 1. Choose
L), € Ly_, minimal such that at least |G|/4 vertices in L, have a neighbour in Lj_,, and let L} be
the set of vertices in Ly, that have a neighbour in Lj_,. Thus |L| < (1/4+¢)|G]| since G is e-sparse.
Let £y be the levelling (Lo, ..., Lr—2, Lj_4, L}.), and let Hy be its heart. Thus [V (£1)| < (3/4+¢)|G].
Let W be the set of vertices of G not in V(L1); so |[W| > (1/4 — ¢)|G|. Since W is anticomplete
to Hy, and 1/4 — e > ¢ and G is (¢|G|*7¢,¢|G|)-coherent, it follows that |H;| < ¢|G|'7¢, and so
[W| > (3/4—¢)|G|—¢|G|*~¢ > |G]/2. Hence G[W] is (2¢)-sparse and ((2¢)|W|1~¢, (2¢)|W])-coherent.
From the inductive hypothesis applied to G[W], there is a covering sequence (Ls,...,L,) in G[W],
where £; = (a;, H;, B;) for 2 < i < n, such that:

o for 2 <i < j <n, H; is anticomplete to Bj;
e for 2 <i <mn, L; has height at most 1/¢; and
o for 2 <i<n, B >27"YW|>2""YaG|.

But then (Ly,...,L,) satisfies the theorem. This proves 5.1. |

5.2 Let n > 0 be an integer, let m = (n — 1)2+ 1 and let e = 27™2 = 277" +2n—4_ [op o >
such that 1/c is an integer, and let G be an e-sparse (¢|G|'=¢,|G|)-coherent graph. Then there is a
covering sequence (L1, ...,Ly) in G, where L; = (a;, H;, B;) for 1 < i <mn, such that:

o for 1 <i<mn, L; has height at most 1/c;
o for1 <i<mn,|B;|>2""1G|;

e cither By,..., B, are pairwise disjoint and H; is anticomplete to B; for all distinct i,j €
{1,...,n}, or By =By =--- = B,.
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Proof. Choose Li,...,Ly, as in 5.1, such that each £; has base of cardinality at least 27'~1G]|
and height at most 1/c. Let £; = (a;, H;, B;) for 1 < ¢ < m. For 1 < ¢ < m, Hy,...,H;_; are
anticomplete to B;, but H;i1,..., H, might have neighbours in B;. Choose B, C B; of cardinality
at least | B;| /2™~ > |G|/2™ "1, such that for each j € {i+1,...,m}, either every vertex in B! has a
neighbour in Hj, or none do. Let £} be the covering obtained from L£; by replacing its base by B;.
Then (L£Y,..., L)) is a covering sequence, and for 1 < i < j < m, H; is anticomplete to B;», and
either Hj is anticomplete to B; or H; covers B;. If some B, is covered by H; for at least n values of
j, the second outcome of the third bullet of the theorem holds, so we assume not. Let iy = 1, and

inductively for 2 < k < n, let i;, € {1,...,m} be minimum such that H;, is anticomplete to each
of B{,...,B; . This is possible since each of B; ,...,B;  is covered by H; for at most n — 1
values of j, and m > (n — 1)(k — 1). It follows that Bz{l? ..., Bj are pairwise disjoint. Moreover,

i1 < -+ < iy, and so the third bullet of the theorem holds. This proves 5.2. |

Now we prove the main result of this section. Its proof is closely related to the proof of the main
theorem of [10].

5.3 Let ¢ > 0 such that 1/c is an integer, and let n > 0 be an integer. Let ¢ = 9-2"", If G is an
e-sparse (¢|G|17¢,e|G|)-coherent graph, then G contains a multicovering of length n and height at
most 1+ 1/c, and with base of cardinality at least 3e|G)|.

Proof. Define ¢ = 2", p = (¢ — 1)> + 1, and 2 = 27P~!. It follows that ¢ < 237" and ¢ < 27P~2,
From 5.2 (with m, n replaced by p, q), we may assume that there is a covering sequence (L1, ..., L)
in G, such that:

o V(Ly),...,V(L,) are pairwise disjoint;
e for 1 <i < g, £; has height at most 1/¢;
e for 1 <i < g, the base of £; has cardinality at least x|G|; and

e for all distinct 4,5 € {1,...,q}, every edge between V(L;) and V(L;) is between the base of
V(L;) and the base of V(L;).

Let t,dy,...,d; > 0 be integers, where dy,...,d; < n. Let us say a battery with length t of type
(di,...,d;) is a sequence of ¢ multicoverings (M, ..., M) in G, such that:

o V(My),...,V(M,;) are pairwise disjoint;

e for 1 < i <t, M; has length d;, and height at most 14 1/¢, and the first term of M, has height
at most 1/¢;

e for 1 <i <t, the base of M; has cardinality at least 23'~%|G/;

for all distinct 4,5 € {1,...,q}, every edge between V(M;) and V(M) is between the base of
V(M;) and the base of V(M;).

Thus G contains a battery of type (1,...,1), and of length q. Choose a battery B of type
(dy,...,dy) with t minimum such that 2% + ... +2% > ¢. Let B= (My,..., M;). For 1 <i <t, let
the base of M; be B;. For each i, | B;| > 23!7"|G| > 3¢|G|. If some d; = n, then the ith term of B is
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Figure 2: A battery of type (di,...,d;)

a multicovering satisfying the theorem; so we assume that di, ..., d; < n. In particular, 2% < 2" = g,
and so t > 2. By reordering the terms of the battery, we may assume that d; < dy,...,d;—1. Since
G is (e|G|'~¢,¢|G|)-coherent, and |B;| > ¢|G|, for 1 < i < t there are fewer than ¢|G|'~¢ < 2|B;|/3
vertices in B; that have no neighbour in B;. Hence we may choose X C B; minimal such that for
some ¢ € {1,...,t — 1}, at least |B;|/3 vertices in B; have a neighbour in X. For 1 < i < ¢, let
Y; be the set of vertices in B; that have a neighbour in X, and Z; = B; \ Y;. By reordering, we
may assume that |Yi| > |B1]/3. From the minimality of X, |Yi| < |B;|/3 +¢|G| for 2 <i <t —1,
and so |Z;| > 2|B;|/3 — ¢|G| > |B;|/3. Let My = (L1,...,Lq4,), and let the first term of M; be
L = (a,H, By). Let L] be the covering (a, H U X, Y1), which therefore has height at most 1+ 1/c.
Let M/ be obtained from M by replacing its base by Y7 and adding a new final term £}; so M)
has length d; + 1. For 2 <7 <t —1, let M/ be obtained from M; by replacing its base by Z;. Then
(M), ..., M},_,) is a battery of type (di + 1,d2,...,ds—1). Since dy > d;, it follows that

2d1+1+___+2dt—122d1+___+2dt22‘]7

a contradiction to the choice of B. This proves 5.3. |

6 Making spiders
Let Lyq,..., L, be coverings in G, such that

e Li,...,L, all have the same apex a;

e for 1 < i < n let £; have heart H;; then for 1 < i < j < n, H; \ {a} is disjoint from and
anticomplete to H; \ {a}.

We call (a,Lq,...,Ly,) a spider in G, and a is its apez. Its height is the maximum of the heights
of L1,...,L,, and its length is n. It has mass b where b is the minimum cardinality of the bases of
L1,...,L,. The union of the hearts of L1,..., L, is called the heart of the spider. We call L4, ..., L,
the members of the spider.
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Figure 3: A spider of length three.

6.1 Let ¢ > 0 such that 1/c is an integer, let n > 1 be an integer, and let ¢ = 9-2"", If G is an
e-sparse (e|G|'¢, &|G|)-coherent graph with |G| > 2, then G contains a spider of length n and height
at most 2+ 2/c, and with mass at least €|G]|.

Proof. 5.3 implies that G contains a multicovering (L1,...,L,) of length n and height at most
1+ 1/¢, and with base B of cardinality at least 3¢|G|. Choose a € B. Let 1 < i < n, and let H;
be the heart of £;. Then every vertex of H; U {a} can be joined to a by a path of G[H; U {a}]| with
length at most 1 + 2/c. Hence (a, H; U {a}, B \ {a}) is a covering of height at most 2 + 2/¢, say
L. Consequently ({a},L),...,L]) is a spider of length n and height at most 2 + 2/c¢, and mass
|B| — 1> 3¢|G| — 1 > ¢|G|, since |G| > 1/e by 2.1. This proves 6.1. |

A troupe of spiders is a set of spiders such that their hearts are pairwise disjoint and anticomplete.

6.2 Let c > 0 such that 1/c is an integer, and let m,n > 1 be integers. Let lete~! = 222n+3(m—1)n.
If G is an e-sparse (g|G|'=¢,e|G|)-coherent graph, then G contains a troupe of m spiders, each of
length n and height at most 2+ 2/c, and with mass at least €|G]|.

Proof. We proceed by induction on m. The result is true if m = 1, from 6.1; so we assume that
m > 2, and the result holds for m — 1. From 6.1 it follows that G contains a spider of length n and
height at most 2 + 2/¢, and with mass at least ¢|G|; say S1 = (a1, L1,...,Ly). For 1 <i <mn,let H;
be the heart of £;. Thus every vertex of H; has G[H;]-distance from a; at most 1+ 2/c, and there
are at least |G| vertices in V(G) \ H; with a neighbour in H;. Let us choose S; such that each H;
is minimal with these two properties (that is, there are at least ¢|G| vertices in V(G) \ H; with a
neighbour in H;, and every vertex of H; can be joined to a; by a path of G[H;] with length at most
1+2/c.) Let B; be the set of vertices in V(G) \ H; with a neighbour in H;.

(1) For 1 <i<mn, |H| <¢|G|'7¢, and |B;| < 2¢|G|.
Let H; = {v1,...,v}, ordered with increasing G|[H;]-distance from a; (and hence v; = a1). Ev-
ery vertex in B; either has a neighbour in H; \ {v;} or is adjacent to v; there are fewer than |G|

vertices in B; with a neighbour in H; \ {v;}, from the minimality of H;, and there are fewer than
¢|G| vertices in B; that are adjacent to vy, since G is e-sparse. Thus |B;| < 2¢|G|. Let j = [¢|G|*~¢],
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and suppose that ¢ > j. Let J = {vi,...,v;}. Thus |J| < ¢|G| +1 < 2¢|G| by 2.1, and so
[V(G)\ J| > (1 —2¢)|G|. Since G is (¢|G|'~¢, ¢|G|)-coherent, there are fewer than ¢|G| vertices in
V(G) \ J that have no neighbour in J, and so there are at least (1 — 3¢)|G| > 2¢|G| vertices in
V(G) \ J that have a neighbour in J. Thus ¢t = j and H; = J, from the minimality of H;; but this
is impossible since |B;| < 2¢|G|. This proves that ¢ < j, and so proves (1).

From (1),
|HyU---UH, UByU---UBy| < 3en|Gl.

Let X be the complement in V(G) of this set; thus | X| > (1 — 3en)|G|. Let
(= 22" 4 3(m—2n=¢"1—3n.

Thus €'(1 — 3ne) = ¢, and so €/|X| > ¢|G|. Tt follows that G[X] is &’-sparse and (&/| X |'~¢,&'| X|)-
coherent. From the inductive hypothesis applied to G[X], we deduce that there is a troupe of m — 1
spiders in G[X], each of length n and height at most 2 + 2/¢, and with mass at least '|X| > ¢|G].

But then adding &7 to this troupe gives a troupe of m spiders satisfying the theorem. This proves
6.2. |

So, our graph contains a troupe of spiders, of arbitrarily large cardinality, and each with arbitrarily
large length, all of height at most 242 /¢, and with bases of linear cardinality. The next result converts
the members of these spiders to levellings, but we need to be careful exactly what we mean. In a
levelling, all edges from heart to base start from the penultimate level of the levelling. We need more
than this: we need that for every two levellings that are members of spiders in the troupe, every
edge from the heart of one to the base of the other starts from the penultimate level of the first, and
this is more tricky to arrange.

Let us first state the definition formally. Let n > 1 and let L4, ..., L, be levellings in a graph G,
all with the same apex a, such that

e for 1 <i < n,let H; be the heart of L;; then Hy \ {a},..., Hy, \ {a} are pairwise disjoint (the
bases of L1, ..., L, may intersect);

e for all distinct 4,5 € {1,...,n}, every edge of G between H; \ {a} and V(L) \ {a} has one end
in the penultimate level of £; and the other in the base of ;.

We call (a, L1, ...,L,) alobsterin G, and a is its apex. Its heightis the maximum height of £1,..., L,,
and its length is n. It has mass b where b is the minimum cardinality of the bases of L1,...,L,. Its
heart is the union of the hearts of Li,...,L,. We call L4, ..., L, the members of the lobster.

A troupe of lobsters is a set {71, ..., T} of lobsters, such that for all 7,j € {1,...,m}:

o for 1 <1i < j < m, the heart of 7; is disjoint from and anticomplete to the heart of 7;;

e let £, M each be a member of one of Ti,..., T, with £ # M, and let £ = (Lo, ..., Lg); then
there is no edge between LgU ---U Li_o and the base of M.
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Figure 4: A lobster of length three.

6.3 Let ¢ > 0 such that 1/c is an integer, and let m,n > 1 be integers. Let
el = (222n +3(m—1)n)(2+2/c)™".

If G is an e-sparse (e|G|1=¢,e|G|)-coherent graph, then G contains a troupe of m lobsters, each of
length n and height at most 2+ 2/c, and with mass at least |G)|.

Proof. Let G be an e-sparse (¢|G|!7¢, £|G|)-coherent graph. By 6.2 with € replaced by (2+2/c)™"¢,
there is a troupe of spiders {S1,...,S,} in G, each of length n and height at most 2+ 2/¢, and with
mass at least (2+2/c)™"¢|G|. Let the members of these spiders (in some order) be L1, ..., Ly, and
for 1 <i < mnlet £; = (a;, H;, B;). (Thus, some of ay,...,an, may be equal.) We shall convert
these members one by one to levellings, at each step shrinking all the bases.

Let X = By U---U By, and for 1 < i < mn let XlQ be the set of all vertices in X? with a
neighbour in H; (thus B; C Xio). Inductively, let 1 < h < mn, and suppose that we have defined
Xh=tand £),..., L} |, and Xih_1 for 1 < i < mmn, satisfying:

e for 1 <i < h—1, L] is a levelling; its heart is a subset of H;, and q; is its apex; its height is
at most 2 4 2/c¢;

e forl1 <i<h-—1, Xih_1 is the set of all vertices in X"*~! with a neighbour in the heart of L,
and for h < i < mn, Xl-h*1 is the set of all vertices in X" ! with a neighbour in the heart of
Li;

e for 1 <i < h—1, every edge between the heart of £; and X”~! has an end in the penultimate
level of £}; and

o for 1 <i <mm, | X' > (24 2/c)™H1-"e|q.

For 0 < j <1+42/c, let L; be the set of vertices in Hy, with G[H}]-distance to aj, exactly j. Thus
every vertex v € X,};*l has a neighbour in some L; where j € {0,...,1+2/c}, and the smallest such
j is called the type of v. There are only 2+2/c possible types, and so there exists k € {0,...,1+2/c}
such that at least | X ;;_1] /(24 2/c) vertices in X Z_l have type k. Consequently, since

X2+ 2/6) > (24 2/ 1Rl Gl /(24 2/c) = (24 2/c)™ el G,
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there exists k € {0,...,1+2/c} minimum such that at least (2+2/c)™""¢|G| vertices in X;fl have
type k. Let X;LZ be the set of all vertices in X}?*l that have type k, and let £} = (Lo, ... ,Lk,X,’;).
Thus £}, is a levelling with height & +1 <24 2/c.

Let Z" be the set of vertices in X}?fl with type less than k. Thus

1Zh| < (14 2/¢)(2+2/c)™ |G,
For 1 <4 < mn with i # h, define X = X"=1\ Z". Thus |X!'| > | X1 — 2", and so
(X = (2+2/c)"" el Gl = (1+2/¢)(2 + 2/c)™" "e|G| = (2 +2/c)™" el

Let X" be the union of the sets X" (1 <14 <n). This completes the inductive definition.
For 1 <1i < m, let 7; be the lobster obtained from S; by replacing each of its members £; by 59.
This makes a troupe of lobsters satisfying the theorem, and so proves 6.3.

7 Part assembly

Now we put these several pieces together to prove 1.9, which we restate:

7.1 Let ¢ > 0 with 1/c an integer, and let Hy, Hy be graphs with branch-length at least 4/c + 5.
Then there exists € > 0 such that if G is a graph with |G| > 1 that is Hi-free and Ha-free, then there
is a pure pair A, B in G with |A| > ¢|G| and |B| > ¢|G|*~¢.

As we saw in section 2, to prove 7.1, it suffices to prove the following:

7.2 Let ¢ > 0 with 1/c an integer, and let H be a graph with branch-length at least 4/c + 5. Then
there exists € > 0 such that if G is an e-sparse (g|G|17¢, €|G|)-coherent graph, then G contains H.

Proof. By adding more vertices to H, we may assume that if X denotes the set of vertices of H
that have degree different from two, then every cycle of H contains at least one vertex in X, and
every path in H with both ends in X has length at least 4/c+ 5, and every cycle of H has length at
least 4/c+5. Let X = {z1,...,2mn}. Consequently H can be obtained from the set X of m isolated
vertices by adding

e paths with ends in X and each of length at least 4/c + 5, and
e cycles with exactly one vertex in X, of length at least 4/c+5

where every vertex of V(H) \ X belongs to exactly one of these paths and cycles, and has degree
exactly two in H. Let the paths be R; (i € I1), and let the cycles be R; (i € I5), where I} N Is = (.
For i € Iy, let R; have ends (u;, v;) (ordered arbitrarily) and have length ¢;, and for i € Io, let u; = v;
be the unique vertex of R; in X, and let R; have length ¢;. Thus H is determined up to isomorphism
by a knowledge of X, the pairs (u;,v;) (i € Iy Uly), and the numbers ¢; (i € [;U ). Let I = I; U Iy,
and for each i € I let oy, 5; € {1,...,m} such that z,, = u; and xg, = v;. Let I = {1,...,p}.

Let n be the maximum degree of H, and let d~1 = (22" + 3(m — 1)n)(2 + 2/c¢)™™. Choose
e > 0 with 3(2 + 1/¢)#P(4p)Pe < d. We claim that e satisfies the theorem. Let G be an e-sparse
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(e|G|*~¢, e|G|)-coherent graph. We must show that G contains H. By 6.3, G contains a troupe
{S1,...,8n} of m lobsters, each of length n and height at most 2 + 2/c, and with mass at least
d|G|. For 1 < i < p, choose a member L9;_1 of S,, and a member Lo; of Sg,, in such a way that the
levellings £;, M; (i € I) are all different. (This is possible from the definition of n).

We will prove that for all h € I, there is a path P}, (or cycle, if the two apexes are equal) between
the apex of Lo, and the apex of Lo, of length ¢j, such that the union of Pi,..., P, makes an
induced subgraph of G isomorphic to H. We will choose these paths and cycles in order. Also for
1 < h < p we need to choose a subset X,? of the base of each £ for 2h < k < 2p, and a subset Ykh
of the penultimate level of Ly, with properties that we will describe below. We denote by P; the
set of vertices of P}, different from its ends (if it is a path) or different from the apex of A, (if it is a
cycle). In either case |Py| = ¢; — 1.

For 0 < h < p let wy, = (4p)~"d. Let B be the union of the bases of L1, .., Ls,. For 1 <i < 2p,
let Y;O be the penultimate level of £;, let XZO be the set of vertices in B with a neighbour in Y;O, and
let a; be the apex of £;. Thus, |X?| > w|G|. Now inductively, suppose we have chosen the first
h — 1 paths or cycles, say Pi,..., P,_1, where 1 < h < p, satisfying:

o for 1 < g <h—1,if agg—1 # azg, then P, is an induced path joining these apexes, of length £,;
and if the apexes are equal then P, is a cycle of length £, containing this apex;

o for 1 <g<h-—1,and 2h+1 <1 < 2p, every vertex of the heart of £; with a neighbour in Pg*
belongs to the penultimate level of L;.

Suppose moreover that for 2h — 1 < i < 2p we have chosen Xih_1 - XZO and Yih_1 - YZ-O, such that
for alli e {2h —1,...,2p}:

. Xih_1 is the set of all vertices in B with a neighbour in Y;h_l;
. Xl.h_1 U Yih_1 is anticomplete to Pf,..., P;_;; and
o |Xz»h_1‘ > wh,1]G|.

We choose P, as follows. For 2h + 1 < ¢ < 2p, choose Yih - Yih_1 minimal such that at least

(wp, + e(|H| — 1))|G] vertices in B (necessarily all in X/™!) have a neighbour in Y;, and let X; be
the set of vertices in B with a neighbour in Y;. From the minimality of Y;,

(wn +e([H| = 1))|G| < [Xi] < (wn + e[H])|G].

Now e|H| < wp, so |X;| < 2wp. Let Z = Xopyq U--- U Xogp; thus |Z] < 2(2p — 2)wy|G|. For
i=2h—1,2hlet X; = X'\ Z. Thus

X > [XP7 = 1Z] > (w1 — 4(p — Dwp)|G| > wilG| > (4p) Pd|G] = 3(2+ 1/¢) el

for ¢ = 2h — 1, 2h.

For i = 2h—1,2h let L] be the levelling obtained from £; by replacing its base by X;. Now £, ,
L), both have height at most 2+ 2/c, and ¢;, > 5+4/c. By 3.4 applied to the levellings £, |, L), ,
there is an induced path P}, of length ¢;, between agp—_1, agp, (or a cycle, if agp—1 = agp), with vertex
set included in V(L) ;) UV(L)},). Consequently Py is anticomplete to Y; for 2h +1 <1 < 2p, and
to P, ..., Py_,. It might have neighbours in X; for 2k +1 < < 2p, but since |P;| < |[H| — 1, there
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are at most £(|H| — 1)|G| such vertices. For 2h + 1 < i < 2p, let X! be the set of vertices in X;
with no neighbour in P;. Thus |X!| > |X;| — e(|H| — 1)|G| > wp|G|. This completes the inductive
definition.

But then the union of P,..., P, forms an induced subgraph isomorphic to H. This proves 7.2,
and hence completes the proof of 1.9. |

One might wonder how ¢ in 1.9 depends on ¢, Hi, Ho. For simplicity let us assume that if X
denotes the set of vertices of H; that have degree different from two, then every cycle of H; contains
at least one vertex in X, and every path in H; with both ends in X has length at least 4/c+ 5, and
every cycle of Hy has length at least 4/c + 5; and the same for Ha. Let r = max(|H1|,|Hz2|). Then
one can check that (with H = Hp, Hs) defining d, e as in the proof of 7.2 yields a value of & that
satisfies 7.2, with loglog(1/¢) = O(r). Next we need a version of 2.2 with an explicit dependence of
d on 7, and for this we can use the proof of 2.2 due to Fox and Sudakov [9]; this can be used to show
that 2.2 holds where log1/5 = O(|H|(log 1/1)?). The argument given in section 2 that 2.3 implies
1.9 shows that if ¢ satisfies 7.2, and ¢ satisfies 2.2, then ¢ = & satisfies 1.9. Putting these pieces
together, we deduce that there exists ¢ with loglog(1/¢) = O(r) that satisfies 1.9.

8 Further extension

We have found a kind of strengthening of 1.9, that we state without proof. For ¢ > 2, let us say a
graph H is £-handled if there are induced subgraphs Fj,..., Py of H, for some k > 1, such that:

e [ is a forest;

every path of Py has length at most ¢;
e Pi,..., P, are pairwise vertex-disjoint paths, each of length at least ¢;
o for 1 <i <k, V(P;,N Py) consists exactly of the two ends of P;; and
e H=PFRUPU---UP.

Then:

8.1 There exists v > 0 with the following property. Let ¢ > 0 with 1/c an integer, and let Hy, Hy
be v/ihcmdled graphs. Then there exists € > 0 such that if G is a graph with |G| > 1 that is Hy-free
and Hay-free, then there is a pure pair A, B in G with |A| > ¢|G| and |B| > |G|* <.

Then the essentials of 1.9 follow from 8.1 by taking Py to be the subgraph of H induced on the set of
all vertices of degree at least three and their neighbours. But we feel that 8.1 is not very satisfactory,
because if the forest Py has long paths, the hypothesis requires the paths Py, ..., P to be long too.
We would prefer a version of 8.1 where we omit the second bullet from the definition of ¢-handled,
but so far we cannot prove it.

A weaker form of 1.9 will be proved for a wider class of graphs in [12]. Let H be a graph. If
E(H) # (), we define the congestion of H to be the maximum of 1 — (|.J| — 1)/|E(J)]|, taken over all
subgraphs J of H with at least one edge; and if E(H) = (), we define the congestion of H to be zero.
Thus the congestion of H is always non-negative, and equals zero if and only if H is a forest; and,
for instance, long cycles have smaller congestion than short cycles.

In [12] we will prove:
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8.2 Let ¢ >0, and let Hy, Hy be graphs with congestion at most ¢/(9+15¢). Then there exists € > 0
such that if G is a graph with |G| > 1 that is Hi-free and Ha-free, then there is a pure pair A, B in
G with |Al,|B| > ¢|G|*~¢.

This is pleasing because of the following weak converse (easily proved with a random graph
argument that we omit):

8.3 Let ¢ > 0, and let Hy, Ho be graphs both with congestion more than c. There is no € > 0 such
that for every graph G with |G| > 1 that is Hi-free and Ha-free, there is a pure pair A, B in G with
A, |B| > e]G|' .

The result 8.2 does not contain 1.9, because in 8.2 neither of A, B have to have linear cardinality.
What if we ask for a strengthened version of 8.2 that would contain 1.9 (by requiring one of |A|, |B|
to be linear)? We pose that as a conjecture:

8.4 Conjecture: For all ¢ > 0, there exists o > 0 with the following property. Let Hy, Hy be graphs
with congestion at most o. There exists € > 0 such that if G is a graph with |G| > 1 that is Hy-free
and Hy-free, then there is a pure pair A, B in G with |A| > €|G| and |B| > ¢|G|*~¢.
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