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In addition to biochemical and electrochemical signaling, cells also rely extensively on mechanical signaling to
regulate their behavior. While a number of tools have been adapted from physics and engineering to manipulate
cell mechanics, they typically require specialized equipment or lack spatiotemporal precision. Alternatively, a
recent, more elegant approach is to use light itself to modulate the mechanical equilibrium inside the cell. This

approach leverages the power of optogenetics, which can be controlled in a fully reversible manner in both time
and space, to tune RhoA signaling, the master regulator of cellular contractility. We review here the funda-
mentals of this approach, including illustrating the tunability and flexibility that optogenetics offers, and
demonstrate how this tool can be used to modulate both internal cytoskeletal flows and contractile force gen-
eration. Together these features highlight the advantages that optogenetics offers for investigating mechanical

interactions in cells.

1. Introduction

Mechanical interactions are vital to cell biology and impact a diverse
array of physiological processes (Lecuit et al., 2011; Iskratsch et al.,
2014). They originate both from internal cellular forces, such as those
produced by myosin motors pulling on actin filaments in the cytoskel-
eton (Murrell et al., 2015), and from external forces, such as shear stress
on the surface of endothelial cells (Humphrey and Schwartz, 2021).
Their impact also spans multiple length scales. At the molecular scale
they can alter the binding kinetics between proteins (Kong et al., 2009),
open ion channels (Coste et al., 2010), or even unfold cryptic domains to
reveal new binding sites (Yao et al., 2016). At the cellular scale they can
regulate the organization of the cytoskeleton (Yoshigi et al., 2005) and
change transcription activity in the nucleus (Dupont and Wickstrom,
2022). At the tissue scale they can change the stiffness of arteries (Tzima
et al., 2005), and regulate morphogenesis (Goodwin and Nelson, 2021).
Many of these mechanosensitive interactions also lead to changes in
downstream signaling, further expanding their influence (Humphrey
etal., 2014; Sun et al., 2016; De Belly et al., 2022). As these many works
readily illustrate, we have only really just begun to scratch the surface of
the many ways that mechanics impacts and regulates biological
processes.

While some mechanical interactions can be studied statically, the
majority require having knowledge of these interactions in both time
and space. It is not surprising, therefore, that the study of mechanics and
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mechanotransduction has been inextricably tied to microscopy (Paluch
et al., 2015; Wu et al., 2018). Indeed, the earliest approaches to alter
mechanics in cells came from the work of Albert Harris who used
transparent flexible silicone substrates to show that the inherent con-
tractile nature of fibroblasts caused the substrates to wrinkle (Harris
et al.,, 1980). Modulating the substrate stiffness has since become a
staple of mechanotransduction and has been tied to cellular processes as
diverse as spreading, motility and differentiation (Janmey et al., 2020;
SenGupta et al., 2021). To gain more local and temporal control, addi-
tional techniques have been adopted from physics and engineering,
including atomic force microscopy (Guolla et al., 2012), micropipette
manipulation (Riveline et al., 2001), and optical (Schwingel and Bast-
meyer, 2013) and magnetic tweezers (D’Angelo et al., 2019). While each
of these approaches has their strengths, they all require specialized
equipment and expertise, making their widespread adoption
challenging.

More recently, optogenetics offers an alternative approach to induce
mechanical changes in a cell without the need for special equipment.
Relying instead on light sensitive molecules, these systems offer tight
spatial and temporal control, with the additional feature of being
reversible. The most popular optogenetic techniques to perturb cell
mechanics hijack either Rho signaling (Wagner and Glotzer, 2016; Valon
et al., 2017; Oakes et al., 2017; Guo et al., 2022; Herrera-Perez et al.,
2021; Méry et al., 2023) or other molecules in the contractility pathway
(Guglielmi et al., 2015; Yamamoto et al., 2021; Qiao et al., 2023) to
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drive changes in actomyosin activity. In this review we highlight the
features of this approach that make it a powerful tool to optically per-
turb cell mechanics.

2. Controlling RhoA signaling with light
2.1. RhoA Signaling

Rho GTPases are crucial signaling molecules that regulate cytoskel-
etal activity and architecture (Lawson and Ridley, 2018; Miiller et al.,
2020; Schwartz, 2004). Activity of these proteins are controlled via GTP
hydrolysis, whereby guanine exchange factors (GEFs) and
GTPase-activating proteins (GAPs) effectively turn on and off protein
activity (Buchsbaum, 2007). In addition, guanine nucleotide dissocia-
tion inhibitors (GDIs) help maintain a cytoplasmic pool of Rho GTPases
and to shuttle them back and forth to the membrane (Garcia-Mata et al.,
2011). Different GEFs and GAPs have varying affinity and promiscuity
for RhoA, which can impact the magnitude of activation (Miiller et al.,
2020). Once activated, there are numerous downstream targets of RhoA
that affect the cytoskeleton, including the formin Diaphanous (Dia)
which leads to increased polymerization of actin filaments, and
Rho-associated coiled-coil kinase (ROCK) which leads to increased
myosin phosphorylation (Schwartz, 2004). The combination of actin
polymerization and myosin activity results in force production and
increased tension in the cytoskeleton (Aratyn-Schaus et al.,, 2011;
Murrell et al., 2015). It is thus unsurprising that RhoA plays a critical
role in processes that regulate cell shape and mechanics, such as cyto-
kinesis, migration and development (Ridley and Hall, 1992;
Chrzanowska-Wodnicka and Burridge, 1996; Fededa and Gerlich, 2012;
Duquette and Lamarche-Vane, 2014; Ridley, 2015). To avoid uninten-
tionally impacting RhoA’s myriad functions, most optogenetic ap-
proaches choose to modulate RhoA activity via localizing guanine
exchange factors (GEFs) (Wagner and Glotzer, 2016; Valon et al., 2017;
Oakes et al., 2017; Izquierdo et al., 2018; Herrera-Perez et al., 2021;
Meéry et al., 2023), though variants also exist which target the protein
itself (Berlew et al., 2021). An alternative approach would be to target
actin polymerization or myosin localization/activity directly. However,
a key benefit of targeting RhoA is the combinatorial nature of its
downstream actomyosin activation via enzymatic kinases (e.g. ROCK)
(Schwartz, 2004), whereas direct formin or myosin recruitment, for
example, may not be sufficient to invoke a response.

2.2. Components

Numerous optogenetic systems have been developed in recent years
to modulate cell signaling (Bugaj et al., 2013; Wagner and Glotzer, 2016;
Valon et al., 2017; Oakes et al., 2017; Izquierdo et al., 2018; Kamps
et al,, 2020; Cavanaugh et al., 2020a, 2020b; Rich et al., 2020;
Castillo-Badillo and Gautam, 2021; Herrera-Perez et al., 2021; Inaba
et al., 2021; Berlew et al., 2021; Ju et al., 2022). A unifying feature is
that they all incorporate at least one component that is sensitive to
specific wavelengths of light. To perturb cytoskeletal signaling, the most
common probes have typically relied wupon either the
light-oxygen-voltage 2 (LOV2) domain from Avena sativa (Zayner et al.,
2012; Guntas et al., 2015) or the protein cryptochrome 2 (CRY2) from
Arabidopsis (Kennedy et al., 2010; Duan et al., 2017). Both of these
molecules undergo conformational changes upon exposure to blue light
(8300-500 nm) (Liu et al., 2008; Salomon et al., 2000), unmasking
interaction motifs that are hidden in the dark state. In the case of CRY2
this involves interaction with another protein from Arabidopsis,
cryptochrome-interacting basic-helix-loop-helix (CIB1). For LOV2, the
conformational change results in the unwinding of a Ja helix on the side
of the protein, which can be modified to interact with different binding
partners. The most adopted of these modifications has been the
improved Light Inducible Dimer (iLID) system which appends the end of
the Ja helix with a short bacterial peptide, SsrA, which binds tightly to a

International Journal of Biochemistry and Cell Biology 161 (2023) 106442

companion bacterial protein SspB (Guntas et al., 2015). A number of
mutations have been identified within the SsrA and SspB proteins that
alter their binding affinity, ranging from 10 nM to 1 mM, thereby pro-
ducing a large dynamic range of affinities that researchers can take
advantage of (Zimmerman et al., 2016; Guntas et al., 2015). In practice,
the higher affinity partners should enable longer interactions and
require less frequent stimulation, but are also potentially subject to
enhanced binding in the absence of stimulation and reduced control of
the system.

To control localization, these probes are generally split into two
components (Fig. 1B). The first consists of an anchor protein that targets
the interaction to the region of interest. Since RhoA is most active at the
cortex, plasma membrane anchors ranging in complexity from a simple
CAAX domain (Valon et al., 2017) to larger transmembrane proteins like
Stargazin (Wagner and Glotzer, 2016) can be used to enhance Rho
signaling at the cortex. The choice of anchor in part is dictated by the
level of spatial control required, as larger anchor proteins exhibit
reduced diffusion in the membrane and therefore lead to tighter spatial
localization (Natwick and Collins, 2020). Notably, in contrast to a Rho
activation system, one can engineer a sequestration system to inhibit
contractility. For example, a mitochondrial anchored CIBN enabled
light-induced sequestration of RhoA from the cortex and resulted in
downregulation of cell contractility (Valon et al., 2017). Attached to the
anchor protein is a fluorophore which serves to mark cells expressing the
construct and also acts as a linker allowing greater mobility of the LOV2
(or CRY2) molecule attached at its end (Fig. 1B).

The second construct consists of the binding partner SspB (or CIB1)
tethered to the protein being recruited, followed by another fluo-
rophore. Activation by blue light drives dimerization of the two con-
structs, recruiting the protein to the anchor site. In the absence of blue
light, the system thermodynamically relaxes back to the dark state
without input from the user, allowing the two components to separate
(Fig. 1B). The kinetics of this relaxation are driven by the molecular
interactions of the two components (Benedetti et al., 2018). Mutations
have been identified in each system that allow for some variation in
kinetics, with the iLID variants relaxing with half-lives ranging from 10s
of seconds to minutes (Guntas et al., 2015; Salomon et al., 2000; Swartz
et al., 2001; Zimmerman et al., 2016), and the CRY2-CIB1 variants
relaxing with slightly longer half-lives ranging from 2 to 25 min (Ken-
nedy et al., 2010; Taslimi et al., 2016). The choice of whether to use iLID
or CRY/CIB ultimately comes down to experimental needs. When
localization and fast temporal control are prioritized, iLID constructs
will often be better suited due to their more rapid on/off kinetics and
limited ability to diffuse far once activated. If longer periods of activa-
tion are required with less frequent imaging, CRY/CIB constructs are
better suited on account of their generally slower kinetics. Alternative
systems such as the Magnet optogenetic system (Benedetti et al., 2018)
offer yet another potential avenue, but have yet to be used in this type of
approach.

A variety of GEF or GEF truncations have been used as the recruitable
protein fused to the SspB/CIB1 to control RhoA signaling. These include
the DH domain of LARG (Wagner and Glotzer, 2016; Oakes et al., 2017;
Cavanaugh et al., 2020a, 2020b; Rich et al., 2020; O’Neill et al., 2018;
Inaba et al., 2021), the DHPH domain of ARHGEF11 (Valon et al., 2017;
Berlew et al., 2021; Méry et al., 2023), the DHPH domain of RhoGEF2
(Izquierdo et al., 2018), and full length RhoGEF2 and RhoGAP71E
(Herrera-Perez et al., 2021). The DH domain is often used alone to
reduce basal activity and to ensure that any resulting signaling comes
from the optogenetic recruitment and not additional biochemical in-
teractions (Wagner and Glotzer, 2016).

Alternatively, full length RhoA (Bugaj et al., 2013; Berlew et al.,
2021) and a dominant negative RhoA have also been used (Guo et al.,
2022). Unfortunately, no systematic comparison of the different GEFs
has been made within the same systems, but previous research suggests
that individual GEFs will activate RhoA at different rates and magni-
tudes (Miiller et al, 2020). Ultimately, consideration of the
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Fig. 1. Using light to achieve spatiotemporal
control of RhoA activity. (A) The RhoA
Signaling Pathway. A GEF catalyzes the ex-
change of RhoA-GDP with its active form,
RhoA-GTP. Active RhoA in turn promotes actin
polymerization by activating Diaphanous-
related formins and increased myosin phos-
phorylation via ROCK. Together these result in
increased actomyosin contracitility within the
cell. (B) A schematic of the components of a
typical optogenetic approach to activate RhoA.
A LOV2 molecule with a SsrA peptide at the Ja
helix is anchored to the plasma membrane via a
transmembrane protein, Stargazin. The binding
partner of SsrA, SspB, is fused with the DH
domain of LARG and freely diffusing in the
cytosol. Upon stimulation with blue light, the
LOV2 molecule undergoes a conformational
change, exposing the SsrA peptide and allowing
it to interact with SspB. This results in LARG

moving to the plasma membrane where it can activate endogenous RhoA. When the activating blue light is removed, LOV2 thermodynamically relaxes back to its
dark state without input from the user, thus preventing further recruitment of LARG.

experimental goals must be the main driving factor in determining the
optimal components for a given experiment.

2.3. Microscopy and equipment

Unlike many of the other approaches to mechanically modulate the
cell, the optogenetic approach does not require additional specialized
equipment. Both CRY2 and LOV2 are sensitive to UV and blue wave-
lengths (~380-500 nm) (Crosson and Moffat, 2002; Kennedy et al.,
2010; Pathak et al., 2013), though we have also been able to excite LOV2
at 514 nm which is reaching into the green spectrum. Relatively mini-
mal amounts of light are needed for activation, with reports typically
ranging around a few mW,/mm? (Kennedy et al., 2010; Duan et al., 2017;
Cavanaugh et al., 2020a, 2020b; Castillo-Badillo and Gautam, 2021;
Meéry et al., 2023). This ensures that any standard blue light source
should be sufficient to induce activation, and that the excess exposure to
blue/UV light should have negligible phototoxic impact on cell
behavior, as the requisite intensity of light is minimal. With these fea-
tures, any standard laser scanning confocal microscope should be
capable of performing local activation. Other modalities, such as spin-
ning disk confocal or widefield microscopes can take advantage of
spatial light modulators, such as those used in fluorescent recovery after
photobleaching (FRAP) to induce local activation. While the blue light
sensitivity makes these probes easy to implement, it limits the choice of
additional fluorophores to use as markers. GFP and its variants all have
excitation spectra that overlap with both LOV2 and CRY2, removing
their availability as useful markers for other downstream signaling
partners. For this reason GFP is often used to label the LOV2 or CRY2
protein itself. If the GEF is also labeled, typically with a red fluorophore,
additional downstream markers are restricted to the far-red channel.
Available options then include proteins labeled with far-red fluo-
rophores (e.g. iRFP670 or HaloTag coupled to JF646), cell permeable
dyes (e.g. SiR-Actin), or fluorescent beads like those used in traction
force microscopy (TFM) (Oakes et al., 2017; Cavanaugh et al., 2020a,
2020b). To open up additional channels, the fluorophore on either the
CRY2/LOV2 or GEF can be mutated to be silent (i.e. non-fluorescent),
preserving its role as a linker while allowing another marker of inter-
est to visualized in the red channel (Oakes et al., 2017; Rich et al., 2020).
The downside of this approach is that it does not allow for direct
monitoring of GEF recruitment.

3. Tunability and repeatability of optogenetics

The power of optogenetics comes from its ability to modulate

interactions both globally and locally. Before attempting to activate
RhoA or another signaling pathway, it is worthwhile to optimize a given
microscope system with a recruitable fluorophore lacking any signaling
components. Here, we provide an example of this optimization, and
demonstrate features of the iLID system by recruiting a tagRFP-SspB to
the plasma membrane with varying laser settings (Fig. 2). Global acti-
vation can be done on any imaging system and simply requires taking an
image with standard blue (e.g. <500 nm or GFP) excitation source
(Fig. 2A-B). The membrane anchored SsrA shows no discernible change
in localization upon activation (Fig. 2A), while the SspB moves from the
cytoplasm to the membrane (Fig. 2B). In contrast, local activation can be
done by illuminating a defined region, resulting in local accumulation of
SspB (Fig. 2C). Recruitment is a function of the power incident on the
region, and thus can be tuned by changing either the intensity of the
incident light, or the length of time the region is illuminated. In Fig. 2C
we show a cell subjected to periodic (100 s) intervals of blue light pulsed
before each acquisition. During each interval the duration of the pulses
is increased (e.g. more photons are incident on the region of interest)
and we see a corresponding increase in the magnitude of recruitment.
After each activation interval we stop the blue light pulses with each
acquisition and the system relaxes back to equilibrium, which in this
case is a uniform distribution of fluorescence. If we measure the change
in intensity in the activation region, we observe that the average in-
tensity of the SspB fluorophore in this region increases with increasing
exposure time of blue light (blue; Fig. 2D). If we similarly plot the in-
tensity of light in a control region that is not being illuminated with blue
light, we see a corresponding drop in average intensity, indicating that
protein is leaving this area and translocating to the activation region
(black; Fig. 2D), consistent with the use of this system for protein
sequestration (Valon et al., 2017). Since the magnitude of recruitment is
dependent on the number of incident photons, repeated intervals of
activation using the same frequency and duration of blue light pulses at
each acquisition will result in similar levels of recruitment for each
activation interval. This is shown in Fig. 2E where a cell is exposed to
five repeated intervals of 100 s activations (i.e. pulsed prior to each
acquisition with blue light) and 200 s relaxations with similar magni-
tudes of recruitment for each activation interval. These examples
demonstrate the flexibility, reproducibility and reversibility that an
optogenetic approach offers to modulating signaling inside of cells.

4. RhoA activation alters cellular tension

To directly alter mechanical activity in cells we target a RhoA GEF (e.
g. LARG, Ect2, ARHGEF11) to a membrane bound anchor (Fig. 1B).
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Fig. 2. Optogenetic approaches exhibit excellent spatial and temporal flexibility. They can be used to achieve global and spatiotemporally tunable recruitment of
proteins. (A and B) A U20S cell expressing Stargazin-mTurq2-LOV-SsrA and SspB-tagRFP is globally illuminated with blue light (405 nm) for 200 ms. While the
Stargazin distribution does not change (A, inset), the SspB-tagRFP relocalizes from the cytoplasm to the membrane (B, inset). (C) A series of images of a repre-
sentative U20S cell illuminated locally by periodic activation intervals demonstrating that recruitment is tunable. The cell was imaged with a 561 nm laser every 10 s
for the duration of the experiment. The activated region (indicated in blue in the cell schematic) was exposed to blue light of equal intensity (~ 6 mW/mm?) for
durations of 50, 250 or 500 ms prior to every acquisition during the three activation cycles respectively. Each activation cycle was 100 s long and was followed by a
200 s period of relaxation. (D) Quantification of fluorescent intensity changes in the activated and unactivated regions indicated in the cell schematic in (C).
Fluorescence intensity in the activated region increases with increasing duration of exposure (indicated above the graphs) to the activating blue light (blue line).
Simultaneously, intensity decreases in the cytoplasm outside of the activation region (black line). (E) Quantification of fluorescent intensity changes in tagRFP in
another representative cell exposed to repeated activations of equal intensity and duration, illustrating that recruitment is reproducible within a cell.

While no systematic comparison of photorecruiting GEFs has been per-
formed, different affinities in GEF-RhoA interactions will likely modu-
late the magnitude of downstream signaling (Miiller et al., 2020),
similar to titrations of light as shown in Fig. 2C-E. Regardless of choice of
GEF, activation of RhoA will result in increased actomyosin contractility
(Fig. 1A), altering both internal tension and the stresses applied to the
substrate.

4.1. Intracellular contraction

Constant cytoskeletal activity produces a basal steady state flow from
the periphery towards the cell body which is driven by actin retrograde
flow and myosin activity (Mitchison and Cramer, 1996; Mogilner and
Oster, 1996). Local activation of RhoA results in a local increase in actin
and myosin in the activation region, and the resulting contraction pulls
the cytoskeleton towards that location (Fig. 3A-C). As the RhoA acti-
vation is removed, the system relaxes elastically, flowing away from the
activated region (Fig. 3 B, right). This is more easily seen in a kymograph
of a line drawn perpendicular through the activated region (Fig. 3C). As
RhoA is activated, myosin puncta along the stress fiber flow towards the
center of the activation region from both sides, and away from the
activation region when the activation stops (Fig. 3C).

This flow and local contraction leads to the induction of strain (e.g.

stretching/compression) in different regions within the cell. As the
cartoons in the bottom of Fig. 3B illustrate, pre-activation cytoskeletal
flow is generally pointed inward. As RhoA is activated in the center of
the cell, the cytoskeleton flow increases towards the activated region
(Fig. 3B, middle). As the RhoA stimulation is removed, the cytoskeleton
reverts back to its initial tension state, flowing away from the activation
region and changing the local strain again (Fig. 3B, right). Interestingly,
by examining the spacing of the puncta along the stress fiber in the
kymograph, we see that it largely does not change (Fig. 3C). This in-
dicates that the stress fibers are largely undergoing translation and that
strain is concentrated at the focal adhesions, where the stress fibers are
being stretched, and in the activation region where they appear to be
compressed (Fig. 3B, bottom; Oakes et al., 2017). Local activation of
RhoA thus produces both positive (i.e. stretching) and negative (i.e.
compressing) strains in the cytoskeleton, offering an ideal tool to probe
protein response to these changes in local actin tension and architecture
(Oakes et al., 2017; Seetharaman et al., 2023).

4.2. Extracellular tension

In addition to changing the intracellular flow and tension within the
cytoskeleton, activation of RhoA increases the external traction stresses
the cell exerts, as the internal stresses are propagated through adhesions
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Fig. 3. Local activation of RhoA alters cell mechanics. (A) A U20S cell expressing Stargazin-mTurq2-LOV-SsrA, SspB-LARG-mScarlet and myosin RLC-3xiRFP670 is
imaged with a 561 nm laser every 10 s for 45 min. After 15 min, each acquisition was preceded by a local illumination (blue box) of 405 nm light for 250 ms at a
power of ~ 6 mW,/mm? for an additional 15 min. During activation myosin flowed into the region of activation. Finally, the local activation was stopped and the cell
was imaged only with the 561 nm light for an additional 15 min to capture the relaxation of the cell. During relaxation, myosin intensity dissipated and flowed away
from the region of activation. (B) Average flow maps of myosin showing baseline flow and induced flow in response to local RhoA activation. The flow reverses when
the stimulating light is removed. (C) A kymograph along the pink line shown in (A) illustrates that local illumination stimulates a contractile flow which reverses
when the illumination is stopped. (D) An image of vinculin in a cell expressing mApple-vinculin and the optogenetic RhoA constructs. The blue box indicates the
region of local RhoA activation. (E) A map showing the traction stresses before and during local activation of RhoA. The imaging protocol was similar to that
described in (A) and traction force microscopy was performed as described in (Oakes et al., 2017). (F) An image showing the difference in traction stresses between
the frames depicted in (E). Red areas (black arrow heads) indicate regions where traction stresses have increased, while blue areas indicate regions where forces have
decreased. Traction stresses change outside the local activation region on account of the stresses being propagated along the actin stress fibers to the focal adhesions

at the cell periphery.

to the extracellular matrix (or neighboring cells in multicellular envi-
ronments) (Valon et al., 2017; Oakes et al., 2017). We can measure these
stresses experimentally using TFM (Huang et al., 2019; Sala and Oakes,
2021) As tension takes time to build, the kinetics of force build-up are
significantly slower than the recruitment of the GEF to the membrane.
Unlike the local accumulation of myosin, the increase in traction stress is
dependent on the architecture of the cytoskeleton to propagate the
increased stress to the connected focal adhesions that are outside the
region of activation Fig. 3D; (Oakes et al., 2017). Traction stresses in-
crease primarily in locations above and below the activation region, as
intracellular forces from the activation region are propagated along the
actin stress fibers (Fig. 3E-F). While the total change in exerted forces is
relatively minor in this cell, on the order of ~ 10%, the redistribution of
stress can be much larger. This is most readily seen by comparing the
traction maps during activation and before activation (Fig. 3F), where
forces at individual regions of focal adhesions can increase/decrease by
up to 50% from their previous magnitudes. By judiciously choosing
activation regions we can therefore control the distribution of traction
stresses exerted by the cell (Oakes et al., 2017).

5. Conclusions

In summary, optogenetic manipulation of RhoA offers unparalleled
spatial and temporal control of mechanical perturbations in a cell, with
the added benefit of being fully reversible. Its general accessibility and
lack of specialized equipment also makes it an attractive approach to
alter cellular mechanics. Any lab with access to a laser scanning confocal
microscope can theoretically implement these probes. As an added
advantage, by comparing pre-activation, activation, and post-activation
responses, experiments can also be fully self-controlled to account for
the broad heterogeneity in cell morphology and expression levels of
constructs.

Optogenetics is, of course, not without its challenges. Since blue light
illumination activates LOV2 and CRY2, it is not possible to visualize
proteins in the green channel, which is often the most used marker. This
limits the number of channels, and therefore associated markers, that
can be imaged during these experiments. This approach also requires
expression of multiple constructs. While some of this can be avoided by
making stable cell lines, in our experience we have found that cells
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typically do not tolerate over-expression of the RhoA GEF LARG, for long
periods of time (Cavanaugh et al., 2020a, 2020b), although the
membrane-anchored SsrA constructs are often well-tolerated. Other
groups have had success stably expressing RhoGEF2 (Izquierdo et al.,
2018), so this might depend on cell type/organism and the chosen GEF.
Careful planning must therefore be exercised to maximize the utility of
this approach. Despite these caveats, using light to control and alter cell
mechanics inside cells opens many previously inaccessible research
avenues and offers an exciting path forward to continue exploring
mechanotransduction and mechanosensitivity in cells.
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