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Broadcasting single-qubit and multiqubit entangled states: Authentication, cryptography,
and distributed quantum computation
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Quantum entanglement assisted with measurements provides various pathways to communicate information
to parties within a network. In this work, we generalize a previous broadcasting protocol and present schemes
to broadcast product and multipartite entangled quantum states, where in the latter case the sender can remotely
add phase gates or abort distributing the states. We first focus on the broadcasting of product quantum states in a
network, and generalize the basic protocol to include an arbitrary basis rotation and allow for multiple receivers
and senders. We show how to add and delete senders from the network. The generalization also includes the case
where a phase to be applied to the broadcast states is not known in advance but is provided to a sender encoded
in another quantum state. Applications of broadcasting product states include authentication and three-state
quantum cryptography. In the second part, we study the distribution of a single multiqubit state shared among
several receivers entangled with multiqubit phase gates, which includes the graph states as an example. We show
that by coordinating with the sender, the receivers can assist in performing remote, distributed measurement-
based quantum computation with the Pauli-X basis measurement alone. As another application of this, we discuss
the distribution of the multiqubit Greenberger-Horne-Zeilinger state.
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I. INTRODUCTION

In a quantum network, quantum information, encoded in
the form of qubits or perhaps qudits, can be sent between users
either by sending the qubits directly or making use of shared
entanglement (such as in the teleportation protocol) [1–4]. If
the same information is to be sent to a number of different
users, the no-cloning theorem presents a constraint on one’s
ability to do so for general quantum states. Despite this, sev-
eral schemes for broadcasting quantum information have been
investigated, but they typically require one entanglement bit
(ebit) per qubit for each receiving party [5–8].

An alternative, if one has knowledge of the state to be
distributed, is a version of remote state preparation [9–13]. For
sending states to a single receiver, remote state preparation has
a smaller classical communication cost than teleportation. If
one goes a step further and restricts the set of states to be sent,
then it can be adapted for broadcasting quantum information
[14,15]. The protocol in Ref. [14] made use of dark states,
while that in Ref. [15] used entangled Dicke states.

In Ref. [15] we showed how qubit states of the form
eiθα|0〉 + e−iθβ|1〉, where α and β are fixed but θ can be
varied by the sender, can be simultaneously sent to a number
of different receivers. Let us briefly summarize how this works
for two receivers, and refer to this as the basic broadcast
protocol (BBP). Alice prepares a state consisting of one qutrit
and two qubits in the form

|� (1,2)〉abc = α2|0〉a|00〉bc + β2|1〉a|11〉bc
+αβ|2〉a(|01〉bc + |10〉bc) (1)

and transmits the two qubits to Bob and Charlie separately.
One can regard this state as the starting point shared among
Alice, Bob, and Charlie. Note that superscript (1,2) denotes
that we have one sender and two receivers. Later we general-
ize this to |� (M,N )〉 when we consider the case with M senders
and N receivers.

Alice then applies the operator Ua(θ ) to her qutrit, where
Ua|0〉a = e2iθ |0〉a, Ua|1〉a = e−2iθ |1〉a, and Ua|2〉a = |2〉a. She
then measures her qutrit in the basis

|u0〉a = 1√
3

(|0〉a + |1〉a + |2〉a)

|u1〉a = 1√
3

(e2π i/3|0〉a + e−2π i/3|1〉a + |2〉a)

|u2〉a = 1√
3

(e−2π i/3|0〉a + e2π i/3|1〉a + |2〉a), (2)

and sends the result of her measurement ma (which can be
0, 1, or 2) to Bob and Charlie. Each of them applies a cor-
rection operator, which depends on ma, to their respective
qubit. Specifically, for ma = 0, there is no correction needed.
For ma = 1, Bob and Charlie each apply UC , with UC |0〉a =
e−iπ/3|0〉a, UC |1〉a = e−iπ/3|1〉a; for ma = 2, they apply U−1

C
instead. The resulting state of Bob and Charlie is the same
qubit state at stated in the beginning, i.e., eiθα|0〉 + e−iθβ|1〉.

The procedure is both a restriction and an extension of
remote state preparation. It is a restriction, because the set of
transmitted states is not the entire qubit space, since α and
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β are fixed. It is an extension because the states are sent to
multiple receivers. In Ref. [15], we also showed how a value
of θ unknown to the sender, but encoded in a quantum state,
can be sent probabilistically to multiple receivers. Here, we
would like to extend those results and generalize our BBP.
First, we will show how Alice can apply a more general set
of operations to the remote qubits. Rather than eiθ |0〉〈0| +
e−iθ |1〉〈1| she can apply eiθ |s0〉〈s0| + e−iθ |s1〉〈s1|, where
〈s0|s1〉 = 0. Next, we will show how to incorporate multiple
senders into the procedure, and how senders can be added
or deleted from the network. We will then look further into
the situation when Alice does not know θ , which is encoded
into a quantum state she receives. There are both probabilistic
and approximate procedures that allow her to transfer the
general unknown θ into the qubits held by Bob and Char-
lie. Additionally, we will provide two more applications of
these protocols: the first application enables the generation of
sequences that can be used for the purpose of authentica-
tion, and the second is a three-state quantum key distribution
(QKD) procedure.

Furthermore, as an extension of our BBP, we also consider
distributing a single multiqubit state shared among several re-
ceivers, including the previous product broadcast qubit states
extended by additional multiqubit entangling phase gates and
general stabilizer states (such as graph states [16]). We ex-
plain how some of these multipartite entangled states can be
distributed in two different ways. It turns out that in both
methods, the sender can teleport phases chosen after the dis-
tribution to receivers. The latter method especially enables a
remote, distributed measurement-based quantum computation
(MBQC) [17,18], with the sender performing axis adaptation
and receivers performing only X -basis measurement. Fur-
thermore, we describe how the Greenberger-Horne-Zeilinger
(GHZ) state [19] can be distributed.

The structure of the remaining paper is as follows. In
Sec. II, we extend the protocol and show that Alice can
apply more general operations to the remote qubits. We
then explain the generalization to the protocol with multiple
senders. In Sec. III, we discuss the application of protocol
where Alice sends unknown phases to receivers. We then
discuss applications to the authentication and the three-state
QKD. In Sec. IV, we explain our method to broadcast a
distributed stabilizer state. In Sec. V, we discuss applica-
tions of distributed stabilizer states. Section VI is devoted to
conclusions.

II. EXTENSIONS OF BROADCASTING SCHEME
FOR SINGLE-QUBIT STATES

In this section, we present a couple of generalizations of
our BBP. First, we extend it to the case where the basis in the
broadcast state can be arbitrary. Then, we generalize the BBP
to multiple senders and multiple receivers.

A. Extension of BBP with general single-qubit unitaries

Consider the following scenario. Alice possesses two
qubits, both of which are in the state |ψ〉, which she may
or may not know. She wants to transmit qubits to Bob and
Charlie in the rotated basis, (eiθ |s0〉〈s0| + e−iθ |s1〉〈s1|)|ψ〉,

FIG. 1. Circuit for producing the state in Eq. (3). The top line is
a qutrit, initially in the state |0〉, and the bottom two lines are qubits.
The operation T is applied to the qubits at the output.

where she can vary the phase angle θ at a later time. Here,
{|s0〉, |s1〉} is an orthonormal qubit basis. Let T be the unitary
operator that maps the {|0〉, |1〉} basis to the {|s0〉, |s1〉} ba-
sis, that is, T | j〉 = |s j〉 for j = 0, 1, and suppose that |ψ〉 =
μ|s0〉 + ν|s1〉. Alice first applies T−1 to each of her qubits and
subjects them to the circuit in Fig. 1. The top line is a qutrit,
and the bottom two lines are the two qubits. The gates labeled
V are controlled-shift gates, where V is the shift, in which
the control is a qubit and the target a qutrit. If the control
is in the state |0〉, nothing happens to the target, and if the
control is in the state |1〉, thenV is applied to the qutrit, where
V | j〉 = |( j − 1)mod 3〉 for j = 0, 1, 2, and the subtraction is
modulo 3. She then applies T ⊗ T to the qubits at the output
of the circuit. The resulting state is

μ2|0〉a|s0, s0〉bc + ν2|1〉a|s1, s1〉bc
+μν|2〉a(|s0, s1〉bc + |s1, s0〉bc). (3)

The qubits are then sent to Bob and Charlie, and at a later
time Ua(θ ) can be applied to the qutrit as in the original
protocol. After that, the qutrit is then measured and Bob and
Charlie perform any necessary correction procedures accord-
ing to Alice’s measurement outcome.

B. Extension to multiple senders

In this part, we are generalizing our BBP to the case of
multiple senders and multiple receivers.

1. Example: Two senders and two receivers

To begin with, we now study the example of two senders
and two receivers. We have two Alices, Alice 1 and Alice
2, who are the senders, and Bob and Charlie, who are the
receivers. Alice 1 and Alice 2 have qutrits, and Bob and
Charlie have qubits. We start with the entangled two-qutrit
and two-qubit state

|� (2,2)〉 = α2|0〉a1 ⊗ |0〉a2 ⊗ |00〉bc
+αβ|1〉a1 ⊗ |1〉a2 ⊗ (|01〉bc + |10〉bc)

+β2|2〉a1 ⊗ |2〉a2 ⊗ |11〉bc, (4)

which can be prepared locally, e.g., by Alice 1, and then
distribute the corresponding qutrit and qubits to others. Alice
1 applies the operator U1(θ1) to her qutrit, where

U1(θ1)|0〉a1 = eiθ1 |0〉a1, U1(θ1)|1〉a1 = |1〉a1,

U1(θ1)|2〉a1 = e−iθ1 |2〉a1. (5)
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Alice 2 applies U2(θ2) to her qutrit, and it has the same action
as U1 except with θ1 replaced by θ2. We find that

[Ibc ⊗U1(θ1) ⊗U2(θ2)]|� (2,2)〉
= α2ei(θ1+θ2 )|0〉a1 ⊗ |0〉a2 ⊗ |00〉bc

+αβ|1〉a1 ⊗ |1〉a2 ⊗ (|01〉bc + |10〉bc)

+β2e−i(θ1+θ2 )|2〉a1 ⊗ |2〉a2 ⊗ |11〉bc. (6)

Both Alice 1 and Alice 2 now measure their qutrits in the
{|u j〉 | j = 0, 1, 2} basis, where

|uj〉 = 1√
3

2∑
l=0

e2π il j/3|l〉. (7)

If Alice 1 gets j and Alice 2 gets k, then the resulting joint
state of Bob and Charlie is

|� (2,2)〉 U1(θ1 ),U2(θ2 )−−−−−−−→
measure

|	( j,k)〉, (8)

where

|	( j,k)〉 = [αei(θ1+θ2 )/2|0〉b + βe−2π i( j+k)/3e−i(θ1+θ2 )/2|1〉b]
⊗ [αei(θ1+θ2 )/2|0〉c + βe−2π i( j+k)/3e−i(θ1+θ2 )/2|1〉c].

(9)

If Alice 1 and Alice 2 tell Bob and Charlie what their mea-
surement results were, then Bob and Charlie can each apply
a unitary operator to their qubits to remove the phase factor
e−2π i( j+k)/3. Thus, Bob and Charlie each receive a qubit that
contains contributions from both Alice 1 and Alice 2. The
procedure can be adapted so that only one Alice determines
the sent qubits. For example, if Alice 2 does not applyU2(θ2),
then θ2 = 0, and the sent qubits are determined only by Alice
1. However, to send these qubits to Bob and Charlie, the
cooperation of Alice 2 is required; she has to measure her
qutrit and send the result to Bob and Charlie.

2. General case: M senders and N receivers

This procedure can be extended to the case of M senders
and N receivers. We start with a state consisting of M qudits
with N + 1 levels and N qubits

|� (M,N )〉 =
N∑

k=0

αkβN−k

(
N
k

)1/2
⎛⎝ M∏

j=1

|k〉a j
⎞⎠|k;N − k〉. (10)

Here |k〉a j is the state of the qudit of Alice j, and |k;N − k〉 is
an N-qubit state, which is a normalized completely symmetric
state in which k of the qubits are in the state |0〉 and N − k are
in the state |1〉,

|k;N − k〉 ≡
(
N
k

)−1/2

Symmetrize
{ |0 · · · 0︸ ︷︷ ︸

k

1 · · · 1〉︸ ︷︷ ︸
N−k

}
. (11)

These N-qubit states are also known as Dicke states. Each
Alice j has one of the qudits, and each of the receivers has one
of the qubits. Alice j can now choose an angle θ j by applying

the operator Uaj to her qudit, where

Uaj (θ j )|k〉a j = ei(2k−N )θ j |k〉a j . (12)

The resulting state is

M∏
j=1

Uaj |� (M,N )〉 =
N∑

k=0

⎛⎝α

M∏
j′=1

eiθ j′

⎞⎠k⎛⎝β

M∏
j′′=1

e−θ j′′

⎞⎠N−k

×
(
N
k

)1/2 M∏
j3=1

|k〉a j3 |k;N − k〉. (13)

Each Alice j now measures her qudit in the basis

|un〉 = 1√
N + 1

N∑
k=0

e2π ink/(N+1)|k〉, (14)

where n = 0, 1, . . .N . If Alice j obtains the result |unj 〉 the
unnormalized N qubit state is

|� (M,N )〉 Uj (θ j )⊗M

−−−−→
measure

|	n̄〉,

|	n̄〉 =
N∏
l=1

(
αei

∑M
j=1 θ j e−2π i(

∑M
j=1 n j )/(N+1)|0〉l

+ βe−i
∑M

j=1 θ j |1〉l
)
, (15)

where n̄ = (n1, n2, . . . , nM ). Each Alice then broadcasts the
result of her measurement, and each of the parties applies
the correction operator Un̄ to their qubit, where Un̄|0〉 =
exp[2π i(

∑M
j=1 n j )/(N + 1)]|0〉 and Un̄|1〉 = |1〉. This will

result in each party possessing the state αei
∑M

j=1 θ j |0〉 +
βe−i

∑M
j=1 θ j |1〉.

If only one sender is to send a message, that sender per-
forms the corresponding unitary operation, and the others do
nothing. However, all senders do have to measure their qudits
and broadcast their results in order to complete the procedure.

3. Adding senders to the network: M → M + 1

It is possible to add senders if one of the original senders
shares a fully entangled state with them. The purpose of this
subsection is to present a procedure to generate |� (M+1,N )〉
from |� (M,N )〉 (M � 1). Suppose we start with the state

|� (M,N )〉 ⊗ 1√
N + 1

N∑

=0

|
〉aM ′ |
〉a(M+1). (16)

Qudits aM and aM ′ are both held by Alice M, and a(M + 1)
is held by the person we want to add as the additional sender,
Alice M + 1. Alice M sends them through a controlled-shift
gate (written as CXc,t ), with aM as the control and aM ′ as
the target. The controlled-shift gate acts as |k〉aM |
〉aM ′ →
|k〉aM |
 + k〉aM ′ , where the addition is modulo N + 1. Alice
M now measures aM ′ in the computational basis. If she gets
| j〉aM ′ ,

CXaM,aM ′

(
|� (M,N )〉 ⊗ 1√

N + 1

N∑

=0

|
〉aM ′ |
〉a(M+1)

)
measure−−−−→

N∑
k=0

αkβN−k

(
N
k

)1/2 M∏
j=1

|k〉a j ⊗ | j − k〉a(M+1) ⊗ |k;N − k〉. (17)
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Alice M sends the result of her measurement to Alice M +
1, who can now apply a local unitary operator to map | j −
k〉a(M+1) → |k〉a(M+1), then the resulting state is |� (M+1,N )〉.

A sender can delete herself by simply measuring her
qutrit, and sending the result of the measurement to Bob1,
Bob2, ...BobN , who can then each apply a unitary operator to
remove the phase factor resulting from the measurement by
the deleting party.

III. FURTHER GENERALIZATION AND APPLICATIONS
OF BROADCASTING SINGLE-QUBIT STATES

Here, we give several applications of broadcasting single-
qubit states. The first is an extension to send an unknown
phase encoded in a quantum state. The second is an applica-
tion of our broadcasting protocol to authentication. The last is
an application to quantum key distribution using three states.

A. Sending unknown phases

Let us return to the case of one sender, Alice, who wants
to send Bob and Charlie a state with an unknown phase. This
was studied in Ref. [15]. There Alice had one qutrit, which
is entangled with the qubits of Bob and Charlie. The phase θ

was encoded in the qutrit state

|	〉d = 1√
3

(e2iθ |0〉d + |1〉d + e−2iθ |2〉d ). (18)

A combination of a unitary operation and measurement al-
lowed Alice to send the state eiθα|0〉 + e−iθβ|1〉, where, as
usual, α and β are fixed, to Bob and Charlie with a probability
of 1/3.

Here we would like to improve on that result using a
different encoding of the angle to boost the probability of
success. First, we will show that if θ is in the set {πk/K | k =
0, 1, . . . ,K − 1} and encoded in a K-level system, where K is
fixed, we can send the state eiθα|0〉 + e−iθβ|1〉 to Bob and
Charlie with certainty at the expense of using an encoding
state of higher dimension. In this case, the encoding states are
orthogonal, so Alice could simply measure them in an appro-
priate basis (i.e., the Fourier basis) to determine the angle they
encode, and then apply an appropriate unitary operator to her
qutrit. Below, however, we will use a different strategy, which
we can then extend to the case of a general angle. This in
general succeeds with probability (K − 2)/K , improving our
previous protocol for K > 3, and it becomes deterministic for
the above special values of θ .

1. Sending unknown restricted angle

Here we discuss the case with two receivers and demon-
strate that Alice can send an angle unknown to her, but
encoded in a state (with a label d). The case with N receivers
will be given in Appendix A.

We start with the state

(α2|0〉a|v0〉bc + αβ|1〉a|v1〉bc + β2|2〉a|v2〉bc)

× 1√
K

⎛⎝K−1∑
j=0

e2π ik j/K | j〉d
⎞⎠. (19)

Alice has a qutrit a, Bob and Charlie have qubits b and
c, respectively, and the angle 2πk/K is encoded by a K-
dimensional qudit d , which has been sent to Alice. Here
|v0〉bc = |00〉bc, |v1〉bc = |01〉bc + |10〉bc, and |v2〉bc = |11〉.
Alice does not know what the angle is. She applies a
controlled-shift operation to the ad system, with a as the
control, which acts as | j〉a|k〉d → | j〉a|k + j〉d , where the ad-
dition is modulo K . This results in the following state:

1√
K

⎡⎣α2|0〉a|v0〉bc
⎛⎝K−1∑

j=0

e2π ik j/K | j〉d
⎞⎠

+αβ|1〉a|v1〉bc
⎛⎝K−1∑

j=0

e2π ik j/K | j + 1〉d
⎞⎠

+β2|2〉a|v2〉bc
⎛⎝K−1∑

j=0

e2π ik j/K | j + 2〉d
⎞⎠⎤⎦. (20)

Using the identity

K−1∑
j=0

e2π ik j/K | j + l〉d = e−2π ikl/K
K−1∑
j=0

e2π ik j/K | j〉d , (21)

the above state becomes

e−2π ik/K [(αeiπk/K )2|0〉a|v0〉bc + αβ|1〉a|v1〉bc

+ (βe−iπk/K )2|2〉a|v2〉bc] 1√
K

⎛⎝K−1∑
j=0

e2π ik j/K | j〉d
⎞⎠.

(22)

If Alice now performs the steps to send qubit states to Bob
and Charlie, they will both receive αeiπk/K |0〉 + βe−iπk/K |1〉.
Note that the state that encoded the angle is not affected by
this procedure, and it can be sent to another Alice, who can
use it to transmit the encoded angle to an additional Bob and
Charlie.

2. Sending unknown general angle

Let us now consider a general angle θ . We begin with the
state

(α2|0〉a|v0〉bc + αβ|1〉a|v1〉bc + β2|2〉a|v2〉bc)

× 1√
K

(
K−1∑
k=0

eikθ |k〉d
)

. (23)

Now Alice applies the controlled-shift operation as before.
Suppose that she measures her qutrit in the {|uj〉 | j = 0, 1, 2}
basis [see Eq. (2)] and obtains |u0〉 (if she obtains either of
the other two basis elements, Bob and Charlie apply their
correction operations to remove unwanted phase factors). The
resulting bcd state is

|w0〉bc|0〉d + |w1〉bc|1〉d + |w2〉bc × 1√
K

(
K−1∑
k=2

eikθ |k〉d
)

.

(24)
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Here, we have

|w0〉bc = α2|v0〉bc + αβei(K−1)θ |v1〉bc + β2ei(K−2)θ |v2〉bc,
(25)

|w1〉bc = α2eiθ |v0〉bc + αβ|v1〉bc + β2ei(K−1)θ |v2〉bc, (26)

|w2〉bc = α2|v0〉bc + αβe−iθ |v1〉bc + β2e−2iθ |v2〉bc
= (α|0〉b + βe−iθ |1〉b) ⊗ (α|0〉c + βe−iθ |1〉c).

(27)

At this point, if Alice wants to adopt a probabilistic protocol,
the most obvious thing for her to do is to measure the d system
in the basis {|k〉d | k = 0, 1, . . . ,K − 1}. If she obtains k = 0
or 1, |w0〉 and |w1〉 are entangled between Bob and Charlie
and cannot be corrected locally to the desired broadcast states.
If, instead, she obtains anything except k = 0, 1, the protocol
has succeeded, i.e., Bob and Charlie obtain the state |w2〉bc,
and this happens with a probability of (K − 2)/K , indepen-
dent of θ . This procedure, however, destroys any information
about the phase remaining in the d state. We discuss improve-
ments that allow us to reuse the encoding state to some extent
in Appendix A.

B. Authentication

Sequences of symbols that disagree in every place could
find application in authentication protocols [20]. Alice can
authenticate herself to Bob by providing elements of her se-
quence to him, and he can check that what Alice sent disagrees
with his sequence in every place. The use of checking se-
quences for elements that were not sent, that is, the sequence
of states sent and the sequence of measurement results dis-
agree, has been used in digital signature schemes [21]. If there
are more than two parties, then disagreeing sequences can be
used to anonymously send messages or to authenticate votes.
Suppose we have three parties, Alice, Bob, and Charlie, and
they possess sequences of four symbols that disagree in all of
their places. Bob wants to send a message to Alice but does
not want her to know from whom it came. He attaches part
of his sequence to the message and sends it to Alice. Alice
can then verify that the message came from Bob or Charlie,
but not which one. In a voting scenario, each voter will have
a sequence, and the authority, who counts the votes, will as
well. Each voter sends their vote accompanied by their se-
quence. The authority can check that each sequence disagrees
with his in all places, which authenticates the votes, and he
will not know which sequence came from which voter. One
quantum method of generating such sequences was provided,
for example, by Cabello [22], using a supersinglet quantum
state.

Here we will show how three random sequences of three
symbols can be generated. These sequences have the property
that the sequences held by Bob and Charlie disagree in every
place with the sequence held by Alice, but they do not nec-
essarily disagree with each other. It is also the case that Bob
does not know Charlie’s sequence and vice versa. The basis of
this procedure is provided by the trine and antitrine states of a

TABLE I. An example of how to generate keys for authentication
from the broadcast states.

Slot 1 2 3 4 5 6

State Alice broadcasts |ψ1〉 |ψ2〉 |ψ1〉 |ψ0〉 |ψ1〉 |ψ2〉
Bob’s outcome |ψ̄2〉 |ψ̄1〉 |ψ̄0〉 |ψ̄2〉 |ψ̄2〉 |ψ̄0〉
Charlie’s outcome |ψ̄0〉 |ψ̄1〉 |ψ̄2〉 |ψ̄2〉 |ψ̄0〉 |ψ̄0〉

qubit. Define the trine states for a qubit to be

|ψ0〉 = 1√
2

(|0〉 + |1〉)

|ψ1〉 = 1√
2

(e2π i/3|0〉 + e−2π i/3|1〉)

|ψ2〉 = 1√
2

(e−2π i/3|0〉 + e2π i/3|1〉), (28)

and, similarly, the antitrine states to be

|ψ̄0〉 = 1√
2

(|0〉 − |1〉)

|ψ̄1〉 = 1√
2

(e2π i/3|0〉 − e−2π i/3|1〉)

|ψ̄2〉 = 1√
2

(e−2π i/3|0〉 − e2π i/3|1〉). (29)

This is a rotated version of the usual trine and antitrine states,
but these are the ones that are most useful in the kind of
procedure we have been discussing. Note that

〈ψ j |ψk〉 = 〈ψ̄ j |ψ̄k〉 = − 1
2 ( j 	= k), (30)

〈ψ̄ j |ψ j〉 = 0. (31)

We now consider the positive-operator valued measure
(POVM) based on the antitrine states with measurement oper-
ators given by

Aj =
√

2

3
|ψ̄ j〉〈ψ̄ j |,

2∑
j=0

A†
jA j = I, (32)

and the probability of obtaining result j in the state ρ is
Tr(ρA†

jA j ). Bob and Charlie will measure their qubits using
this POVM and use the results to generate their sequences.

To generate the sequences, Alice sends a qubit in one of the
trine states to Bob and Charlie using the original broadcast
procedure. Bob and Charlie measure their qubits using the
antitrine POVM and use their measurement results as the
elements of their sequences. Both Bob and Charlie will obtain
results different from what Alice sent. For example, if Alice
sent |ψ0〉, then Bob can obtain 1 or 2, and Charlie can obtain
1 or 2. Bob does not know Charlie’s result and Charlie does
not know Bob’s, and their results can be the same or different.
(The probability of being the same decays exponentially with
the size of the sequence.) However, their results will differ
from what Alice sent. Thus, Bob and Charlie can separately
establish a sequence that can be used for authentication with
Alice. We provide one example in Table I. If there are two
Alices, as in Sec. II B 1, the qubits received by Bob and
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TABLE II. An example of the PBC three-state QKD protocol. In the original design [23], Bob performs a randomly chosen two-outcome
projective measurement and this can be replaced by a POVM defined by the antitrine states.

Time 1 2 3 4 5 6 7 8 9 10

State Alice broadcasts: |ψ j〉 |ψ1〉 |ψ2〉 |ψ1〉 |ψ0〉 |ψ1〉 |ψ2〉 |ψ0〉 |ψ0〉 |ψ2〉 |ψ1〉
Bob’s measurement {|ψ
〉, |ψ̄
〉} 1 1 0 2 1 1 1 2 0 1
Outcome |ψ1〉 |ψ̄1〉 |ψ0〉 |ψ̄2〉 |ψ1〉 |ψ̄1〉 |ψ1〉 |ψ̄2〉 |ψ̄0〉 |ψ1〉
Alice announces not (k) 0 1 1 2 1
Bob successfully infers |ψ j〉 � � No No �
j → k 2 → 0 0 → 1 2 → 1
Shared bit 0 0 1

Charlie will depend on the angles chosen by both of them. In
particular, the angle will be the sum of the angles chosen by
Alice 1 and Alice 2. In order to authenticate Bob or Charlie,
the Alices would have to cooperate.

We note that in the case with two receivers and a single
sender, Alice simply needs to set α = β = 1/

√
2 and θ = 0

in the BBP, then one of the trine states is generated by ran-
dom phases that come from her measurement. One can also
consider the direct broadcast of the trine states to N receivers,
where Alice would make use of α, β, and U (θ ), and com-
municate her measurement result to let receivers correct the
unwanted phases.

C. Three-state QKD

Phoenix, Barnett, and Chefles (PBC) [23] proposed a three-
state QKD protocol by using the three states in Eq. (28). The
sender, Alice, will randomly choose one of the three states to
send to the receiver, Bob, who then randomly chooses one of
the three measurement bases

{|ψ j〉, |ψ̄ j〉} ( j = 0, 1, 2) (33)

to measure the received qubit. We first describe their protocol
(Alice and a single Bob), and it will then be obvious that our
broadcasting protocol allows Alice to establish separate secret
keys with two Bobs.

First, if Bob’s measurement outcome corresponds to |ψ j〉,
then he announces the failure of this round. Otherwise, Alice
announces one of the states in Eq. (28) that she did not send.
Suppose Bob measures in the basis labeled by j = 1 and Alice
announces that she did not send j = 1, then there is nothing
Bob can infer, as his measurement outcome |ψ̄1〉 basically
confirms this. The useful case is that the state Alice announces
has a different label than Bob’s measurement basis label. For
example, if she announces that she did not send j = 0, then
Bob can infer that she must have sent |ψ j=2〉 and we can
label this event as (sent label, state not sent) = (2,0). Then
we use the rule that from the first index to the second index,
if there is a +1 hop (mod 3), then it is assigned a 0. On the
other hand, if Alice announces that she did not send j = 2,
then Bob can infer the state Alice sent has the label j = 0,
and the event is labeled as (0,2), which requires +2 to get
from 0 to 2 modulo 3, and hence this corresponds to a 1.
We illustrate the convention of assigning 0 or 1 in Fig. 2.
In Table II, we provide an example of the PBC protocol.
Doing the above for a long sequence k of repetitions, one can
establish a secret key of an expected length k/3. Note that Bob

can use a POVM defined by { 2
3 |ψ̄ j〉〈ψ̄ j |, j = 0, 1, 2}, then one

gains a factor of 3/2 and the expected key length is k/2. In our
protocol, Alice can broadcast to two Bobs randomly but in the
same state. Namely, we use the broadcast state |� (1,2)〉 with
α = β = 1√

2
and θ = 0, then two Bobs have one of the trine

states. However, the two Bobs may have different choices of
projective measurement bases, or in the case of POVM they
may have different POVM outcomes. From the PBC protocol,
it is obvious that Alice and each Bob share a different secret
key. (The two Bobs may also share a smaller subset of the
key.)

Obviously, we can have more than two receivers, in which
case we use |� (1,N )〉 to distribute the same state to N receivers.
Instead of random phases arising from Alice’s measurement,
Alice can make use of either U (θ ) or the preset param-
eters α, β to choose which trine state to be sent, and let
receivers correct the unwanted phases from the measurement
e2πn j/(N+1) (n = 0, ..,N).

IV. BROADCASTING A DISTRIBUTED STABILIZER STATE

In this section, we discuss different ways of broadcasting
a distributed stabilizer state |ψ〉, where S|ψ〉 = |ψ〉 for any S
being a product of Pauli operators of a group G that does not
contain −I . The sender(s) has the choice of distributing the
state or aborting the mission. We will mostly focus on graph
states as an illustration, to which cluster states are special

FIG. 2. Encoding of secret keys in PBC QKD. The numbers
within each circle represent the label j of a trine state |ψ j〉 [Eq. (28)].
One reads the pair of labels j: the label of the sent state (which either
Alice knows herself or Bob infers from his measurement), k: the label
of the state not sent (as announced by Alice), and see if the arrow
“ j → k” flows counterclockwise or clockwise, which encodes “0”
and “1,” respectively.
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cases. Moreover, all stabilizer states are locally equivalent to
graph states [24]. A graph state is defined in terms of a graph
that consists of a set of vertices V and a set of edges E such
that the stabilizer is of the form Kv = Xv

⊗
〈u,v〉∈E Zu with

v ∈ V . (Note that we have used the symbol K for a graph-state
stabilizer instead of S, as this is the convention in the lit-
erature.) Since Kv = (

∏
〈u,v〉∈E CZv,u)†Xv (

∏
〈u,v〉∈E CZv,u), the

graph state |ψG〉 is given by

|ψG〉 = UCZ |+〉⊗|V |, UCZ =
∏

〈u,v〉∈E
CZu,v. (34)

One of the approaches we discuss can be used for states that
are not stabilizer states.

A. Distribution of graph states (I)

The approach in this section works for graph states and
other nonstabilizer states, such as hypergraph states and other
states for which the key entangling part consists of only
phases.

Let us first consider the simplest example of distributing a
graph state, extending the setup in the Introduction. Namely,
we have Alice (sender) and two Bobs (receivers), and in the
end, the two receivers will share two qubits which comprise
two-qubit graph state (V = {v1, v2}). We consider a state to be
shared by the three players, which is proportional to

|0〉a|0, 0〉b1,b2 + |1〉a(|0, 1〉 + |1, 0〉)b1,b2 + |2〉a|1, 1〉b1,b2 .

(35)

This state is a special broadcast state with α = β = 1√
2

and
can be created by Alice locally. For the graph state distri-
bution, Alice applies a phase gate so that the state is now
proportional to

|0〉a|0, 0〉b1,b2 + |1〉a(|0, 1〉 + |1, 0〉)b1,b2 − |2〉a|1, 1〉b1,b2 .

(36)

She distributes the corresponding qubits to the two Bobs,
respectively. Then Alice measures her qutrits in the basis {| j̃〉},

| j̃〉 = 1√
3

∑
k=0,1,2

e2π i jk/3|k〉 ( j = 0, 1, 2). (37)

The resulting state for two receivers is

(|0, 0〉 + e−2π i j/3(|0, 1〉 + |1, 0〉) − e−4π i j/3|1, 1〉)b1,b2

= CZb1,b2 (|0〉 + e−2π i j/3|1〉)b1 (|0〉 + e−2π i j/3|1〉)b2 . (38)

We note that the extra phase e−2π i j/3 commutes with the CZ
operator, so it is locally correctable by each receiver if Alice
informs them of the measured value of j, as in the previous
broadcasting case.

If Alice decides to abort the protocol instead, she should
change her measurement basis to {|0〉, |1〉, |2〉}. This may
leave behind an entangled state shared among Bobs.

Generalization to graphs with N vertices is straightforward.
In order to distribute a graph state with a general graph
connectivity, the CZ gate should be applied locally by Alice
before the distribution of physical qubits. In this scenario, we
prepare

∣∣� (1,N )
CZ

〉 = N∑
k=0

(
N
k

)1/2

|k〉aUCZ |k;N − k〉, (39)

where UCZ is the product of CZ gates that generates the graph
state with the desired connectivity. After the measurement by
Alice (assuming the result is j), receiver Bobs obtain the state

∣∣� (1,N )
CZ

〉 measure−−−−→
N∑

k=0

(
N
k

)1/2

e−2π i jk/NUCZ |k;N − k〉

= UCZ (|0〉 + e−2π i j/N |1〉)⊗N . (40)

The resulting state is the graph state (34), up to a correctable
phase e−2π i j/N .

In general, any state that can be generated by applying
a multiqubit phase gate (such as a product of CZ gates
or CCZ gates) on product states can be distributed using
this strategy. This class of quantum state includes graph
states [16], hypergraph states [25], and other short-range
entangled states, including symmetry-protected topological
(SPT)-ordered states [26,27], where the phases in the last case
come from the cocycles associated with the symmetric phase.

We can generalize the result in Eq. (15) so we have mul-
tiple senders who add phases after distribution. We write the
multiqubit phase gate as Uphase, then using

∣∣� (M,N )
phase

〉 = N∑
k=0

αkβN−k

(
N
k

)1/2 M∏
j=1

|k〉a jUphase|k;N − k〉

(41)

and letting Alices apply the additional phase gate, the follow-
ing entangled state is distributed among receivers:

∣∣� (M,N )
phase

〉 Uj (θ j )⊗M

−−−−→
measure

Uphase

N∏
l=1

(
αei

∑M
j=1 θ j e−2π i(

∑M
j=1 n j )/(N+1)|0〉l + βe−i

∑M
j=1 θ j |1〉l

)
(42)

correct−−−→ Uphase

N∏
l=1

(
αei

∑M
j=1 θ j |0〉l + βe−i

∑M
j=1 θ j |1〉l

)
. (43)

B. Broadcasting a stabilizer state

Here we describe another protocol to “broadcast” a sin-
gle stabilizer state distributed among multiple receivers. For
simplicity, we consider an N-qubit stabilizer state, for which

there are N independent stabilizer generators {Sk}. (One can
consider fewer stabilizer generators to encode a distributed
logical state.) In this case, Alice will need 2N qubits, where
the first N qubits, all initialized in |+〉, serve as a control set
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that involves the action of control Sk’s to the corresponding
qubits in the second group, whose qubits are conveniently
initialized all in |+〉 as well. Given that each Sk is a product of
single Pauli operators, the control-Sk gate is decomposed into
a product of two-qubit control-Pauli gates. Then Alice sends
the qubits in the second group to the desired receivers, Bobs.

The resultant state before any measurement by Alice can
be rewritten as

|ψ〉 =
N∏

k=1

1√
2

(|0〉k ⊗ I + |1〉k ⊗ Sk′ )
N∏

k′=1

|+〉k′ . (44)

If Alice intends to distribute the stabilizer state, then she
performs measurement on her remaining N qubits in the X
basis. The outcomes represent the action (I ± Sk )/2 that is
performed or equivalently the value of the stabilizer opera-
tors Sk = ±1. She can find out the correcting Pauli product
and inform the appropriate parties to make their correction
operation.

On the other hand, if she intends to abort the mission,
she simply measures all her qubits in the Z basis. The mea-
surement outcomes represent whether the corresponding Sk
operator was applied or not, and regardless of the outcomes,
all Bobs then share a product state.

1. Distribution of graph states (II)

In the remainder of this section, we focus on graph
states, as a special case of the general stabilizer states. We
consider qubits initialized as the 2|V | product of |+〉, i.e.,∏

v∈V |+〉v
∏

v′∈V |+〉v′ , where the qubit v will be associated
with the stabilizer operator Kv′ = Xv′

∏
〈u′,v′〉∈E Zu′ and the

symbol ′ denotes qubits that will be distributed to Bobs. After
applying all the control-Kv′ gates (which can be decomposed
into a product of CX and CZ gates),

|ψ〉 =
∏
v∈V

1√
2

⎛⎝|0〉v ⊗ I + |1〉v ⊗ Xv′
∏

〈u′,v′〉∈E
Zu′

⎞⎠ ∏
w′∈V

|+〉w′ .

(45)

Denoting the outcome of the Pauli-X measurement for the v

qubit of Alice being s(v) ∈ {0, 1}, the resulting state after the
measurement is given by

∏
v∈V

1

2

⎡⎣1 + (−1)s(v)Xv′
∏

〈u′,v′〉∈E
Zu′

⎤⎦ ∏
w′∈V

|+〉w′ , (46)

and this state is a graph state shared by Bobs up to by-product
operators, (∏

v∈V
Zs(v)

v

)
|ψG〉B, (47)

where |ψG〉B denotes the graph state with s(v) = 0. Note that
the operator acting on the product state in Eq. (46) is a projec-
tor. If the measurement outcome is ideal [i.e., s(v) = 0 for all
v ∈ V ], Bobs obtain the state projected to the desired subspace
with Kv = 1 for all v ∈ V , which is the graph state |ψG〉.
If there appear outcomes s(v) = 1, then one can apply the
Pauli-Z operator at corresponding v′ to correct the eigenvalue

FIG. 3. An example of graph state distribution. The graph in this
example consists of three vertices, v ∈ {1, 2, 3}, and the graph state
is distributed. The graph state |ψG〉 is stabilized by X1Z2, Z1X2Z3, and
Z2X3.

of the stabilizer. In Fig. 3, we give an example of a graph state
whose graph consists of three vertices.

2. Rotated graph states

The previous discussion on sending phases motivates us
to devise a method to teleport phase gates in the setup with
the graph states. If one wishes to encode a phase θ acting
on a vertex v held by a Bob, we can, for example, add an
additional gate teleportation to the graph state prepared with
the procedure above. Let us say Alice wants to send a phase
gate eiθZ to the vertex u ∈ V . Then Alice prepares another
supplemental qubit in |+〉uA and couples it with uB viaCZuA,uB .
After distributing all Bobs’ qubits, Alice measures her supple-
mental qubit with the basis

Mθ = {e−iθX |s〉|s = 0, 1}. (48)

Then by virtue of the gate teleportation, the unitary gate
(Z )seiθZ is induced at uB, which acts on the graph state. One
can easily generalize this procedure with a different phase gate
for each vertex. In the end, the following state is distributed:(∏

v∈V
eiθvZv

)
|ψG〉, (49)

up to Z by-product operators that depend on Alice’s measure-
ment outcomes. We elaborate on more details of our scheme
in Appendix D.

V. APPLICATIONS OF DISTRIBUTED
STABILIZER STATES

A. Distribution of GHZ state

A distributed GHZ state has applications such as quantum
secret sharing [28]. The GHZ state can be obtained from a
star-graph state and applying a Hadamard gate to every qubit
but the one at the center of the star [16]. For example, one
can assign Alice to the central qubit, and other qubits are
possessed by Bobs. After that, all Bobs apply Hadamard, then
Bobs and Alice share a GHZ state. In Appendix C, we present
an alternative way to distribute a GHZ state.
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FIG. 4. (Left top) Measurement pattern to realize the single-qubit
SU (2) rotation gate. R(α, β, γ ) represents the Euler rotation. (Left
bottom) Measurement pattern to realize the controlled-NOT gate.
The information flows from left to right as we sequentially measure
qubits in order. The number above each ball represents the angle θ

in the measurement basis {eiθZ |+〉, eiθZ |−〉}. (Right) The brickwork
state. One tiles up the blocks depicted on the left to concatenate the
unitaries sequentially. See Refs. [33,34] for details.

B. Distributed MBQC with X alone by receivers

Quantum network may allow for distributed quantum com-
putation on physically separate devices [29–32], which is
potentially useful when computational resources in each local
quantum device are limited. Below, we describe how the phase
rotation gate teleported from Alice can be used by Bob to per-
form MBQC [17,18]. With her ability to send phase rotation
gates, Alice and Bob can work together to perform the uni-
versal MBQC, for which Alice controls the adaptation of the
measurement axis (by the rotation) and Bob always performs
measurement in the same basis, X . This allows a universal
gate set to be implemented. We also point out in Appendix B
that Alice can remove a vertex from the graph possessed by
Bob by appropriately choosing her measurement basis.

The universal MBQC can be achieved on an appropriate
graph state—the brickwork state—and measurements with
the rotated basis, B = {eiθZ |+〉, eiθZ |−〉} [18,33,34]. Namely,
appropriately choosing the angle θ in the basis B, one can
achieve single-qubit SU (2) rotation gates and the controlled-
NOT gate (see Fig. 4). As we discussed in Sec. IV, Alice can
send a phase gate eiθvZv to Bob’s qubits, thus the universal
MBQC can be performed on the Bob’s graph state with the
X basis measurement alone by Bob. Bob needs to inform his
measurement outcomes to Alice so she knows the by-product
operators from the former measurements acting on his graph
state, and she can decide if she needs to teleport eiθvZv or

e−iθvZv to perform the desired rotation (see Fig. 5). We delegate
the technical details to Appendix D.

VI. CONCLUSION

We extended our results for the broadcasting of quantum
states to multiple receivers to now include the possibility of
multiple senders. It is possible to add and delete senders from
the network, and procedures for doing so were discussed.
We also provided further results on sending states with an
unknown phase. In this case, the phase is provided to the
sender encoded in a quantum state. We showed how the en-
coding state can be reused, and, for a general phase, how each
use degrades the information contained in it. We went on to
give two applications of our broadcasting protocol, including
authentication and three-state quantum cryptography.

We have considered the distribution of graph states in two
different ways. The first method generalizes the state that
is originally used for broadcasting product states, by sup-
plementing multiqubit phase gates that entangle the product
states. This applies beyond graph states, including hypergraph
states and nontrivial, fixed-point symmetry-protected topo-
logically ordered states. Another way to broadcast a graph
state is to implement projection controlled by the sender. The
sender Alice can decide the structure of the graph by choosing
her measurement basis appropriately, and she can also send
additional phase gates that act on the graph state. We have also
discussed applications of the distribution of the graph state;
the distribution of the GHZ state and the remote, distributed
universal quantum computation done by the distributed re-
ceivers with the X basis measurement alone and by the sender
who controls the (adaptive) rotation. The latter is in the same
the reverse of the blind quantum computation; here the server
is outsourcing computational tasks to third parties, without
them having the possibility of knowing the computation.
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APPENDIX A: MORE ON SENDING UNKNOWN PHASES

1. Sending unknown restricted angle to N receivers

Let us start with the state

|� (1,N )〉 ⊗ 1√
K

⎛⎝K−1∑
j=0

e2π ik j/K | j〉d
⎞⎠. (A1)

As we did for the case with N = 2 (Bob, Charlie) in the main
text, Alice applies the controlled-shift gateCXa,d , which gives
us

N∑

=0

α
βN−


(
N



)1/2

|
〉a|
;N − 
〉

× 1√
K

K−1∑
j=0

e2π i jk/K | j + 
〉d . (A2)

By shifting the summed index j by 
, we obtain

N∑

=0

(e−2π ik/Kα)
βN−


(
N



)1/2

|
〉a|
;N − 
〉

⊗
⎛⎝ 1√

K

K−1∑
j=0

e2π i jk/K | j〉d
⎞⎠. (A3)

Alice measures her qudit in the Fourier basis, then each re-
ceiver obtains the following state after the correction of phases
induced by Alice’s measurement:

e−2π ik/Kα|0〉 + β|1〉. (A4)

2. Reusing the encoding state with general angle

In the main text, we discussed methods to send unknown
angle θ encoded in a state d to Bob and Charlie. In the case
with a general angle, we showed that Alice can measure the
encoding state d with the computational basis, and with a
probability (K − 2)/K the procedure succeeds, but the en-
coding state will be destroyed. In this section, we discuss
alternatives so we can reuse the encoding state.

A better procedure is the following. Define

Q2 =
K−1∑
k=2

|k〉d〈k|. (A5)

Alice measures Q2, which has eigenvalues 0 and 1, on the d
system, and if she obtains 1, which she does with probability
(K − 2)/K , the procedure has succeeded, and the resulting d
state is (1/

√
K − 2)

∑K−1
k=2 eikθ |k〉d . This state does not con-

tain as much information about the phase as the original state,
but it still contains quite a bit. It could be passed on to a second
Alice, who can then use it in the same protocol for a different
Bob and Charlie. The subsequent success probability will be

reduced to (K − 4)/(K − 2) corresponding to eigenvalue 1 of

Q4 =
K−1∑
k=4

|k〉d〈k|. (A6)

An alternative is for Alice not to measure the d system, and
this will leave Bob and Charlie with approximate versions of
the desired state. In this case the d state can be reused, though
it will have been altered somewhat by its first use. In order to
see what Bob and Charlie have, we can form a density matrix
from the state in Eq. (24) and trace out c and d to obtain Bob’s
state (Charlie’s state is identical). The result is

ρb = K − 2

K
(αeiθ/2|0〉 + βe−iθ/2|1〉)

× (α∗e−iθ/2〈0| + β∗eiθ/2〈1|)
+ 1

K
[2|α|2|0〉〈0| + 2|β|2|1〉〈1|

+αβ∗eiθ (1 + e−iKθ )|0〉〈1|
+α∗βe−iθ (1 + eiKθ )|1〉〈0|]. (A7)

Note that the size of the error is of order 1/K .
As noted, the state encoding the phase can be reused. In

order to see how much it has been changed by one use, we
can calculate the fidelity of the reduced density matrix of the d
system after one use, ρd , which can be found by tracing b and
c out of Eq. (24), to the original encoding state, |	(θ,K )〉 =
(1/

√
K )

∑K−1
k=0 eikθ |k〉d . We find that

F = 〈	(θ,K )|ρd |	(θ,K )〉

= 1 − 4|β|2(1 − cosKθ )
1

K2
(K − 2 + |α|2), (A8)

so that the error induced by the first use is of order 1/K . If
the d state is now sent on to a new Alice, whom we shall call
Alice′, who then uses it to send the angle to Bob′ and Charlie′,
the resulting bcb′c′ density matrix is of the form

ρbcb′c′ = K − 4

K
ρprod + ρnoise, (A9)

where ρprod is the density matrix corresponding to the
product state (eiθ/2α|0〉bc + e−iθ/2β|1〉bc)(eiθ/2α|0〉b′c′ +
e−iθ/2β|1〉b′c′ ), and ρnoise is an incoherent superposition of
four states and is of size (operator norm) of order 1/K . If
exp(iKθ ) = 1, then ρnoise = (4/K )ρprod. For large K , this
procedure will provide both sets of Bob and Charlie with
good approximations of the desired state. Further uses will
degrade the encoding state further, and add more noise to
the transmitted states. A more extensive analysis of the
degradation of phase information stored in a quantum state
with use is given in Ref. [35].

APPENDIX B: REDUCTION OF GRAPH BY Z
MEASUREMENTS

Alice can decide to disconnect vertices from the graph,
even after the distribution of qubits to Bob. (We assign |+〉⊗|V |
for Alice and |0〉⊗|V | for Bob instead.) Suppose the original
graph consists of vertices v ∈ V and edges e ∈ E , but Alice
wishes to reduce it to a graph that is made of vertices V R ⊂ V
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FIG. 6. An example of reduction of a graph. V =
{1, 2, 3, 4, 5, 6}, E = {12, 13, 23, 34, 35, 36, 46, 56}, VR =
{1, 2, 3, 4, 5}, ER = {12, 13, 23, 34, 35}, V̄ = {6}, Ē = {36, 56, 46}.

and edges ER ⊂ E . We denote V̄ = V \V R and Ē = E\ER

(see Fig. 6).
Alice measures her qubits that correspond to V R with the

X basis and those to V̄ with the Z basis. Then Bob obtains⎛⎝∏
v∈V R

1 + (−1)s(v)Kv

2

∏
u∈V̄

Ks(u)
u

⎞⎠ ∏
v∈V R

|0〉v
∏
u∈V̄

|0〉u

=
⎛⎝∏

v∈V R

1 + (−1)s(v)Kv

2

⎞⎠ ∏
v∈V R

|0〉v
∏
u∈V̄

|s(u)〉u, (B1)

with Kv = Xv

∏
〈u,v〉 Zu, which is the graph-state stabilizer op-

erator Sv . Now we write the stabilizers for the reduced graph
as

KR
v = Xv

∏
〈w,v〉∈ER

Zw (v ∈ V R). (B2)

Then defining ∏
〈u,v〉∈Ē

(−1)s(u) ≡ (−1)t (v) (B3)

with t (v) = 0, 1, the resultant state is given by⎛⎝∏
v∈V R

1 + (−1)s(v)+t (v)KR
v

2

⎞⎠ ∏
v∈V R

|0〉v
∏
u∈V̄

|s(u)〉u. (B4)

This is a graph state with the graph (VR,ER) and the product
state for the rest of the qubits.

APPENDIX C: ALTERNATIVE WAY
TO DISTRIBUTE GHZ

Here we consider the distribution of a N-qubit GHZ-
like state. We consider a graph state given by vertices
V = {1, 2, ..., 2N} and edges E = {〈1, 2〉, 〈2, 3〉, ..., 〈2N −
1, 2N〉, 〈2N, 1〉}. Namely, this is a one-dimensional pe-
riodic chain labeled by integers. We use the quantum
circuit described in Sec. IV B to generate the broadcast-
ing state Eq. (45). However, this time the difference is that
among the target qubits, the odd part Vo = {1, 3, ..., 2N −
1} is distributed among receivers, while the even part Ve =
{2, 4, ..., 2N} is kept by Alice. Note that Alice also keeps her
qubits that control the stabilizer operators acting on Bobs’
qubits, so that she has |V | + |Ve|(= |V | + |V |/2) qubits. After
Alice performs her measurement on her control qubits, due to

the projection, Alice and Bobs share the graph state stabilized
by

Z2n−1X2nZ2n+1|ψG〉 = |ψG〉 (C1)

Z2nX2n+1Z2n+2|ψG〉 = |ψG〉 (C2)

up to ±1 signs. Now, Alice measures the even partVe with the
X basis. Because the new stabilizer conditions from Eq. (C1)
become

Z2n−1X2nZ2n+1 = (−1)s2nZ2n−1Z2n+1 = 1 (C3)

and the global symmetry X1...X2n+1...X2N+1 = 1 derived from
the condition Eq. (C2) remains, the state shared by receivers
is now a GHZ-type state [19] up to bit flips. This technique
was given in, for example, Ref. [36].

APPENDIX D: SOME TECHNICAL DETAILS
ON DISTRIBUTED REMOTE MBQC

The aim of this section is to give readers some details
of distributed remote MBQC. We will focus on explanation
of our method, and along the way we give basic ingredients
commonly known in the field of MBQC. The original idea
of using the brickwork state for the blind universal quantum
computation was from Ref. [33]. Readers may find it helpful
to look at Refs. [34,37] for pedagogical introduction to MBQC
on the brickwork state.

1. Rotated graph state and measurement

Consider a graph state depicted in Fig. 4
(left). We label the ten qubits using an ordered
set V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} from top left,
top right, bottom left, to bottom right. The pairs
(1, 2) (2, 3) (3, 4) (4, 5) (6, 7) (7, 8) (8, 9) (9, 10) are
entangled with the CZ gate in the horizontal direction. The
pairs (3,8) and (5,10) are entangled with the CZ gate in the
vertical direction as well. We denote the set of these edges
as Ebw. The initial information is encoded at (1,6) qubits (the
leftmost pair) as |ψ〉1,6. The brickwork state in this setup is
written as

|ψbw〉 :=
∏

〈u,v〉∈Ebw

CZu,v (|ψ〉1,6 ⊗ |+〉⊗V \{1,6}). (D1)

Alice possesses a copy of ten qubits to teleport XY -plane
rotations. We label them by the subscript A, while the qubits
of the brickwork state possessed by Bob will be labeled by
the subscript B. Consider a state (which is the state after the
projection with the stabilizers and corrections by Bob in our
broadcast protocol)

|�〉AB =
∏
v∈V

CZvA,vB

(|ψbw〉B ⊗ |+〉⊗V
A

)
. (D2)

Now consider measurements by Alice with the basis
{e−iθX |0〉, e−iθX |1〉}. Writing the measurement outcome at
v as sv ∈ {0, 1} and the angle as θv , the postmeasurement
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state is(⊗
v∈V

〈sv|eiθvXv

)
A

|�〉AB ∝
(∏

v∈V
Zsv

v eiθvZv

)
|ψbw〉B

=: |ψbw(θ ; s)〉 (D3)

up to a normalization constant.
Now we move on to consider Bob’s measurements with

the basis {|t̃〉|t = 0, 1} with |0̃〉 = |+〉 and |1̃〉 = |−〉. As the
building block of MBQC, we note that for a pair of states
entangled with CZ ,

1〈̃t |Zs
1e

iθZ1CZ1,2|ψ〉1 ⊗ |+〉2 = 1√
2

(HeiθZZt+s)2|ψ〉2. (D4)

This involves a teleportation and a rotation gate. The Pauli
Zt+s depends on the measurement outcomes and is an example
of by-product operators. The set of unitary gates for MBQC is
obtained by sequentially applying this formula to the rotated
brickwork state |ψbw(θ ; s)〉. It is convenient to define wv =
tv ⊕ sv ∈ {0, 1} (⊕ : Z2 sum) for v ∈ V .

2. CNOT gate

We look at the measurement pattern for the controlled-
NOT (CNOT) gate. We measure qubits in V except 5 and
10, where the output state will be defined. (The expression
|ψbw(θ ; s)〉 contains teleported phase gates acting on 5 and
10. They are used in subsequent steps in MBQC, where the
output state induced at 5 and 10 is seen as a new input state.
In the present analysis, we simply ignore them when we look
at derived unitaries.) We set

θi = 0 (i = 1, 2, 4, 6, 8),

θ9 = α, θ3 = β, θ7 = γ . (D5)

Using the formula, we get the following unitary acting on
|ψ〉5,10:

CZ (HZw4 ⊗ HeiαZZw9 )(HeiβZZw3 ⊗ HZw8 )

CZ (HZw2 ⊗ HeiγZZw7 )(HZw1 ⊗ HZw6 ). (D6)

Here, in (P ⊗ Q), P acts on qubit 5, Q on qubit 10. It is equal
to

±(Xw2+w4Zw1+w3+w9 ⊗ Xw7+w9Zw4+w6+w8 )

× exp[i(−1)w2βZ ⊗ I] exp[i(−1)w2+w6+w8αZ ⊗ X ]

× exp[i(−1)w6γ I ⊗ X ]. (D7)

The set of Pauli operators in front of rotation gates is an
example of by-product operators in MBQC. It is always prop-
agated to the front of unitaries we wish to simulate, and the
set of parameters such as (α, β, γ ) are chosen based on the
preceding measurement outcomes.

To be more precise, if we regard the ten-qubit brickwork
state as a block in the middle of MBQC, the “initial” state
|ψ〉1,6 also carries by-product operators from former MBQC
steps. Thus, we write the state defined at 1,6 as |ψ〉1,6 =
(Xx1Zz1 ⊗ Xx6Zz6 )|ψ ′〉1,6. Then the state after the set of

measurements will be

±(Xw2+w4+x1Zw1+w3+w9+z1

⊗ Xw7+w9+x6Zw4+w6+w8+z6 )

× exp[i(−1)w2+x1βZ ⊗ I]

× exp[i(−1)w2+w6+w8+x1+z6αZ ⊗ X ]

× exp[i(−1)w6+z6γ I ⊗ X ]|ψ ′〉5,10. (D8)

Now, let us choose the parameters as follows:

α = (−1)w2+w6+w8+x1+z6 × −π

4
,

β = (−1)w2+x1 × π

4
,

γ = (−1)w6+z6 × π

4
. (D9)

Then we obtain the unitary

exp

[
− π i

4
(I − Z5)(I − X10)

]
= CX5,10 (D10)

with the by-product operators and a constant phase in front.
We note that the parameters can be always set as in (D9)

because all the measurement outcomes wi (as well as xi, zi) are
obtained before the step to implement the parametric rotation.
For example, we have results of measurements tv, sv (as well
as xi, zi) at {1, 2, 3, 6, 7, 8} before the measurement with α at
9. It is clear that in order for Alice to properly choose θi to be
sent, she needs to know the preceding measurement outcomes
by Bobs, which we denoted tv , so she can construct wv = sv ⊕
tv combined with her sv .

3. Single-qubit rotation gate

With the measurement pattern with θ4 = θ9 = 0, we find
the following unitary:

±(Xw2+w4+x1Zw1+w3+w9+z1 ⊗ Xw7+w9+x6Zw4+w6+w8+z6 )

× (exp[i(−1)x1θ3Z] exp[i(−1)w1+z1θ2X ] exp[i(−1)x1θ1Z]

⊗ exp[i(−1)x6θ8Z] exp[i(−1)w6+z6θ7X ] exp[i(−1)x6θ6Z]).

(D11)

Choosing the parameters as

θ1 = (−1)x1α, θ2 = (−1)w1+z1β, θ3 = (−1)x1γ (D12)

θ6 = (−1)x6γ ′, θ7 = (−1)w6+z6β ′, θ8 = (−1)x6α′,
(D13)

we obtain the single-qubit ration gate

R(α, β, γ ) = eiγZeiβX eiαZ (D14)

acting on 5 and 10 as R(α, β, γ ) ⊗ R(α′, β ′, γ ′).
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