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Using Neural Networks to Predict Microspatial
Economic Growth'

By ARMAN KHACHIYAN, ANTHONY THOMAS, HUYE ZHOU, GORDON HANSON,
ALEX CLONINGER, TAJANA ROSING, AND AMIT K. KHANDELWAL*

We apply deep learning to daytime satellite imagery to predict changes
in income and population at high spatial resolution in US data. For
grid cells with lateral dimensions of 1.2 km and 2.4 km (where the
average US county has dimension of 51.9 km), our model predictions
achieve R* values of 0.85 to 0.91 in levels, which far exceed the accu-
racy of existing models, and 0.32 to 0.46 in decadal changes, which
have no counterpart in the literature and are 3—4 times larger than for
commonly used nighttime lights. Our network has wide application for
analyzing localized shocks. (JEL C45,R11, R23)

Spatial economic analysis evaluates how localized shocks—for example, infra-
structure projects (Redding and Turner 2015), factory openings (Greenstone,
Hornbeck, and Moretti 2010), and natural disasters (Boustan et al. 2020)—affect
the geographic distribution of economic activity. Standard approaches match admin-
istrative or survey data to the geospatial structure of these shocks. Because data tend
to be released infrequently (e.g., decadally for censuses) and for relatively coarse
spatial units (e.g., counties or metro areas), this method is suitable for assessing
long-run economic impacts at a broad spatial scale (e.g., Faber 2014; Baum-Snow
et al. 2017). By contrast, assessing the impact of shocks at the neighborhood level
across all cities nationally would be infeasible with conventional data in most
countries.

Satellite imagery offers a path forward. Recent work leverages nighttime light
intensity to study regional economies where conventional data are sparse (see, e.g.,
Donaldson and Storeygard 2016). Although night lights can detect changes in eco-
nomic activity across cities, states, and countries, they are problematic at smaller
spatial scales. High luminosity in city centers may saturate satellite sensors, leading
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to top coding, while surface reflectance may cause light to bleed across space,
making urban footprints appear artificially large. Aggregating imagery addresses
these problems but dampens spatial variation. To increase granularity, recent work
in remote sensing and computer science uses convolutional neural networks (CNNs)
to predict outcomes from multispectral daytime satellite imagery at high spatial
resolutions. This research detects cross-sectional variation in spending and wealth
for villages in Africa (Jean et al. 2016) and poverty rates across a diverse sample of
cities (Babenko et al. 2017; Piaggesi et al. 2019). In related work on 1 km grid cells
in the United States, Rolf et al. (2021) develop a “task-agnostic” learning approach
to predict a broad set of localized outcomes.

This paper makes two advances over the existing literature. First, we implement a
CNN to predict changes in local economic activity from changes in high-resolution
daytime satellite imagery. We achieve high predictive accuracy in the cross section,
as others have done, and in predicting localized outcomes in the time series, which
has not been the focus of previous work. Second, we demonstrate that our approach
far outperforms nighttime lights at predicting changes at fine spatial scales.!

For inputs in model training, we use multispectral imagery from Landsat; for
labels, we use household income and population for census blocks in the US Census
and American Community Survey (ACS). Working in the data-rich US setting, we
are able to train a CNN from scratch using hundreds of thousands of images and
training labels. Matching census data with Landsat to construct square images with
side lengths of 1.2 km or 2.4 km, we predict levels and changes in income and pop-
ulation.? In the test set, model predictions achieve R? values of greater than 0.85 in
levels and 0.32 in time differences, which compare to R? values for predictions in
levels of 0.42 for income and 0.75 for population in Rolf et al. (2021). There are no
estimates in the literature to benchmark our predictions of changes in local income
and population.

Methodologically, we advance the scale and specificity at which machine learn-
ing is used to predict local changes in economic activity. Rather than beginning
with image features generated by existing models for prediction—which is the stan-
dard practice of transfer learning—we train and tune CNN models for all urbanized
pixels in the contiguous United States from the ground up. This computationally
demanding approach allows us to detect the low-level image features (i.e., shapes,
shades, edges, clusters) that are informative for predicting income and population
beyond those that have proven useful in other image tasks (Rosenstein et al. 2005).

Our approach complements Rolf et al. (2021), who aim for generality rather than
specificity in predicting outcomes from satellite imagery. They use a layer of ran-
domly initialized filters—based on sampling a small patch from the imagery—to
extract features from the raw images. These features are then used to predict out-
comes of interest. Their process requires little training, is undemanding computa-
tionally, and is suitable to predicting many outcomes but may not be well tuned to

! Given their wide use in spatial analysis, night lights are a natural benchmark for comparison. See, for exam-
ple, Chen and Nordhaus (2011); Henderson, Storeygard, and Weil (2012); Gennaioli et al. (2013); Michalopoulos
and Papaioannou (2014); Storeygard (2016); Bruederle and Hodler (2018); Henderson et al. (2018); Hjort
and Poulsen (2019); and Jedwab and Storeygard (2022). In the policy domain, the World Bank has produced a
quarterly dataset, Light Every Night, which records localized nighttime light intensity from 1992 to 2020.

2For comparison, in 2010 US census blocks had an average size of 0.9 km x 0.9 km.
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specific prediction tasks. Our approach, while highly intensive in training and com-
putation, is bespoke for predicting local changes in income and population.

Our model and code can be used to impute high-frequency outcomes in between
the periodic data drawn from large-scale surveys, to train models with imagery
where census data exist but are sparse, and to predict levels and changes in income
and population for spatially disaggregated units where census data are unavailable
entirely.® We conclude with a discussion of potential applications.

I. Data and Methods
A. Imagery and Label Data

For satellite imagery, we use daytime surface reflectance detected by the US
Geological Survey (USGS) Landsat 7 satellite, which has seven spectral bands
(three visible, two near-infrared, one thermal, and one mid-infrared), covers the
earth’s surface biweekly, and has a spatial resolution of 30 m. Using Google Earth
Engine (Gorelick et al. 2017), we construct annual composites of surface reflectance
for the May—August median of cloud-free images each year.*

To avoid populating the data with a large number of images covering uninhabited
areas, we limit the sample to Landsat pixels corresponding to urbanized US census
block groups.® We first rank block groups according to population density in 2000
and identify those in descending rank order that collectively comprised 85 percent
of the continental US population in that year. We then draw a 1 mile buffer around
these block groups and include all images within the buffer in our sample. Following
this procedure, our data cover 93 percent of the continental US population in 2000.
We construct individual images from Landsat imagery as squares. We test two image
sizes, one with 2.4 km sides and one with 1.2 km sides (see Figure 1).° Smaller
images, which increase the spatial resolution of the ultimate predictions, may be
more useful in some applications but may also be more challenging to model as they
have fewer pixels, and therefore less information available, per image.

Labels for the analysis are constructed from the US Census for 2000, 2010, and
2020 and the ACS five-year samples for 2005-2009, 2008-2012, and 2015-2019,
all extracted from Manson et al. (2020). From each sample, we use population by
census block and total personal income, for residents ages 15 years and older, by
census block group.” Because income data are only published at the block group
level, we interpolate income from block groups to blocks according to the population

30ur code, model, and output are available at https://github.com/thomas9t/spatial-econ-cnn.git. This reposi-
tory includes scripts and computed weights that can be used to augment or extend our modeling approach. It also
includes data and instructions for direct applications using our generated income and population measures.

#Using summer months averts irregularities due to persistent clouds or snow.

3 Census blocks (600 to 3,000 residents) are the smallest geographic unit in the census; block groups are the next
smallest unit. In 2000 there were 211,267 block groups, with a mean of 39 blocks per group. We exclude census
blocks in which more than 10 percent of the population was living in group quarters in 2000.

SThe 2.4 km and 1.2 km images have pixel dimensions of 80 x 80 (6,400 pixels) and 40 x 40 (1,600 pixels).

7 Personal income includes wages and salaries, tips and bonuses, proprietor’s income, government cash trans-
fers, interest and rental income, and retirement benefits. In-kind government transfers, capital gains, and revenue
from property sales are not included (Manson et al. 2020). All values are in 2012 US dollars.
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FIGURE 1. GEOGRAPHIC AREA OF CENSUS AND IMAGE UNITS

Notes: This figure shows the geographic area covered by various census geographic units alongside our constructed
images. Horizontal black dashes display the median area for each geographic unit; gray vertical lines show the
range from the tenth percentile of area to the ninetieth percentile of area for each geography. Note that the y-axis
is a log-scale of area.

distribution across blocks within groups.® We further interpolate income and pop-
ulation from census blocks to images based on the geographic overlap between the
two.

B. Convolutional Neural Networks for Spatial Economic Analysis

Although images are an information-rich medium, their unstructured and
high-dimensional nature make them difficult to use with conventional learning algo-
rithms, such as lasso regression. The ability of CNNs to learn structure from data
has revolutionized image processing (LeCun, Bengio, and Hinton 2015). A CNN
consists of a sequence of layers, each of which implements a parameterized nonlin-
ear transformation of its inputs. The inputs to the first layer are raw images—in our
case, seven-dimensional images from Landsat. The output of the first layer is used
as input by the second layer and so on. The transformation implemented by each
layer is typically either a convolution or pooling operation (Goodfellow, Bengio,
and Courville 2016), which can be visualized by sliding a rectangular window
(e.g., 3 x 3 x 7) over the input image. At each position, an inner product is per-
formed, which aggregates the pixel values in the window into a single number. The
output of either a convolution or a pooling operation is another image in which the
pixels are these aggregated values.® After a sequence of convolutional and pooling

8Because block population is unavailable in the ACS data, we use the 2010 population to interpolate 2007
income from block groups to blocks and similarly use the 2020 population to interpolate 2017 income.

9In a convolutional layer, the window contains coefficients used to compute a weighted sum of the pixel values
within each window via convolutional filtering. The CNN learns these weights to identify a feature of the image.
By applying a sequence of transformations that learn features at increasingly coarse spatial scale, CNNs are able to
represent complex spatial relationships between pixels in an image. In a pooling layer, we condense all pixel values
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layers, the transformed image passes through a fully connected layer, which is a
nonlinear regression that maps the image features extracted by the convolutional and
pooling layers to a predicted outcome. The parameters of the model are fit using a
gradient-based optimization algorithm known as stochastic gradient descent, which
minimizes the MSE over labeled training examples.

In our context, a CNN extracts economic information that is latent in spectral
data. Asphalt, cement, gravel, soil, water, vegetation, and other materials vary in
their reflectance intensity across the light spectrum (e.g., De Fries et al. 1998). The
presence of these materials varies enormously within an urban area: more vegetation
and loose soil in green spaces; more asphalt and cement around motorways; more
steel and wood, together with concrete, in houses and buildings (Zha, Gao, and Ni
2003). The shapes of these materials exhibit similarly wide variation: irregular edges
in green spaces; intermittent grids of grass and roofing material in suburbs; larger
rectangular clusters in apartment complexes and shopping malls; and compact,
interconnected grids in urban centers (Ural, Hussain, and Shan 2011; Pesaresi et al.
2016). It is this complexity that makes a neural network powerful—the network
learns the mapping of materials and shapes to the level of economic activity and
changes in materials and shapes to changes in economic activity. As an empirical
regularity, the features learned by the network are often organized into a hierarchy
of complexity (Zeiler and Fergus 2014), in which early layers learn to identify sim-
ple features, such as edges or basic shapes, and subsequent layers learn to compose
these simple features into complex objects, such as office buildings, industrial parks,
and suburban developments.

The predicted values that our analysis generates will be subject to error. In regres-
sion analysis, measurement error in the outcome variable does not generate bias in
estimating treatment effects if this error is uncorrelated with the treatment being
studied.!® Because treatments may be correlated with initial levels of economic
development, we wish to eliminate any correlation between prediction errors and
initial conditions. To do so, we include controls for local economic characteristics in
the initial time period (as measured in census data) in our CNN models.'! An added
virtue of this approach is that it may improve model accuracy, thereby reducing
the scope for prediction errors to contaminate analysis that uses our predictions as
outcome variables in the first place. Implementing our approach, we find minimal
correlations between prediction errors and initial conditions in our data.'?

within the window to a single number—typically the maximum pixel value within the window. Pooling differs from
convolution primarily in that it does not require any learned weights. Pooling serves to reduce the size of the image,
which lowers the computational burden of subsequent layers and helps make the features detected by convolutions
robust to small spatial transformations.

9For example, if the assigned treatment (a new highway) had a strong positive correlation with the measure-
ment error in the outcome (larger positive deviations between actual and predicted population or income near the
highway), this would lead to an overestimate of the true treatment effect.

1 A full list of variables included can be found in online Appendix Table 1.

12 The largest correlation coefficient for the income differences model in the test set is 0.057 (for employment in
hospitality services), and the median correlation is 0.002. See online Appendix Table 1 for details.
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C. Training, Tuning, and Testing Procedure

CNNs contain a large number of tunable parameters—known as hyper-
parameters—which control the model architecture and optimization process
(e.g., the dimension of convolution filters, number of channels produced by
each convolution layer, strength of regularization on weights, and step size
used by the optimization algorithm). CNNs are prone to overfitting, in which
a model generates accurate predictions on the data used to fit parameters but
fails to generalize on out-of-sample data. To obtain accurate estimates of the
model’s out-of-sample performance and to determine the best values for hyper-
parameters, we follow standard practice in empirical machine learning by par-
titioning our data into three disjoint subsets for training, validation, and testing
(Hastie, Tibshirani, and Friedman 2001). The training set is used to fit model
parameters, and the validation set is used to estimate the out-of-sample error
for a given set of hyperparameters. The final model is obtained by selecting the
hyperparameters that yield the lowest prediction error in the validation set. The
test set is used to obtain an estimate of out-of-sample error for the final model.
Ideally, we would repeat this partitioning many times to obtain an estimate of
the distribution of out-of-sample error. However, this is infeasible at our data
scale.

Models are trained to minimize the MSE of the prediction using the Adam
optimizer (Kingma and Ba 2017). When training models in levels, we pool train-
ing data for the years 2000 and 2010 and train a single model to predict outcomes
in this combined sample. An alternative approach would be to specialize models
in levels to a particular year. However, this method led to greater overfitting,
where training on pooled data resulted in only modest losses in accuracy. We tune
hyperparameters for the learning rate (step size and decay rate) and strength of
L2-regularization on weights. The training images are randomly augmented to
prevent overfitting (cropping, flipping, and zooming). We stop the optimization
process after 200 epochs or if the R? on the validation set fails to increase for
50 epochs. In the latter case we retain the weights that maximize the validation
R?. Further details are in the online Appendix.

To obtain reliable estimates of out-of-sample performance, the training, valida-
tion, and test sets must be disjoint. To construct these subsets, we partition the full
set of images meeting our inclusion criteria into contiguous urban areas. We ran-
domize selection into training, validation, and test sets at the level of the urban
area, rather than the level of the image. Maintaining a disjoint split of the images
removes the possibility of data leakage between the training and testing sets (which
may result if we allowed images from the two sets to be adjoining). This procedure
leads to a total of 4,710 urban regions, which are each randomly assigned to either
the train (roughly 50 percent), validation (roughly 20 percent), or test (roughly
30 percent) sets. An image receives the subset designation of the urban region it
is contained by, where we discard images located on borders between urban areas
(e.g., images on the border between Minneapolis and Saint Paul, which are separate
urban areas). Online Appendix Figure 3 shows the distribution of images into each
of these subgroups.
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II. Results
A. CNN Model Performance

Baseline Results.—Here, we present our main results on the predictive power of
CNNS . Table 1, panel A reports R values for model accuracy, again in levels (2000
and 2010) and time differences (2000 to 2010) for 2.4 km images; Table 1, panel
B repeats the results for 1.2 km images. Our smaller images are close in dimension
to the 1 km images that Piaggesi et al. (2019) and Rolf et al. (2021) use in their
machine-learning approaches to model, respectively, poverty levels and levels of
average income and population density in US data. We report performance in the
training, validation, and test sets, with and without incorporating initial conditions
in model training.'? For models in levels, we report results for a single model trained
to predict both years; performance in each year separately is very similar (see online
Appendix Table 5).

Beginning with larger images in Table 1, panel A, we first consider model per-
formance for outcomes in levels. For income and population, and with initial condi-
tions, the R? in the test set are 0.90 and 0.91, respectively. Without initial conditions,
performance deteriorates moderately, with the R 2 falling by 0.05 to 0.07. Comparing
these results to those for smaller image sizes in Table 1, panel B, the R? for income
and population are 0.85 and 0.86 with initial conditions and 0.09 to 0.11 lower with-
out them. The weaker performance of smaller relative to larger images is expected.
For smaller images, the network must form predictions based on a smaller number
of underlying pixels, which tends to undermine accuracy.

Turning to our predictions for changes over 2000-2012, for 2.4 km images, the
R? for income and population growth rates in the test set are 0.40 and 0.46, respec-
tively, with initial conditions and 0.37 to 0.42 without them. For 1.2 km images,
model performance is again somewhat weaker. The R? is 0.32 to 0.36 with initial
conditions and 0.27 and 0.30 without them.

Comparing our results for 1.2 km images to those for 1 km grid cells in Rolf et al.
(2021), we achieve higher performance for both population density (our R? of 0.86
versus theirs of 0.72) and income (our R? of 0.85 versus theirs of 0.42). We note
that whereas our model is trained from scratch for the express purpose of predicting
income and population, their model is constructed for the general purpose of pre-
dicting many possible outcomes and therefore may sacrifice accuracy for any spe-
cific quantity. Because we are unaware of any prior work that uses CNNs to predict
changes in income or population at spatial resolutions similar to our image sizes, we
have no benchmark for comparison in the literature for these results.'*

13The complete set of initial conditions, all measured for the year 2000, are at the county level, log popula-
tion, log personal income, and the shares of employment in business services, nonbusiness services, and industrial
production; and at the census block level, population shares for individuals who are female, ages 25-54, Black,
non-Hispanic white, Hispanic, living in group quarters, and employment shares for two-digit manufacturing indus-
tries, business services, and nonbusiness services (US Census Bureau 2020).

4In online Appendix Table 2, we report results for log income per capita. In levels for 2000 and 2010 and with
initial conditions, we achieve R in the test set of 0.65 for 2.4 km imagery and 0.61 for 1.2 km imagery; in changes
for 20002010 and with initial conditions, we achieve R? in the test set of 0.07 for both 2.4 km and 1.2 km imagery.
Differencing population from income, which removes much of the systematic variation in economic activity from
the data, appears to complicate extracting information from satellite imagery.
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TABLE 1—R? VALUES FOR BASELINE MODELS OF LARGE AND SMALL IMAGES

2000 and 2010 levels 2000 to 2010 difference

Train Valid Test Train Valid Test
Panel A. National 2.4 km imagery
Income
With initial conditions 0.9254 0.8934 0.9018 0.4863 0.4126 0.3962
Without initial conditions 0.8625 0.8289 0.8374 0.4951 0.3960 0.3702
Population
With initial conditions 0.9611 0.9029 0.9132 0.5410 0.4839 0.4573
Without initial conditions 0.9187 0.8636 0.8684 0.7004 0.4496 0.4202
Panel B. National 1.2 km imagery
Income
With initial conditions 0.8957 0.8620 0.8543 0.3819 0.3061 0.3216
Without initial conditions 0.7969 0.7597 0.7494 0.2959 0.2609 0.2690
Population
With initial conditions 0.9101 0.8716 0.8600 0.4217 0.3401 0.3559
Without initial conditions 0.7841 0.7612 0.7492 0.3924 0.3051 0.3036

Notes: The table shows R? values computed on each subset of the images with 2.4 km and 1.2 km sides. The total
sample size of spatially unique images in training, validation, and test subsets is 112,932 for larger images and
320,880 for smaller images. Income measures the log of total personal income, while population is the log of total
population. 2000 and 2010 levels represent a model predicting levels for images in the two years together, while
the difference columns show the result predicting the change from 2000 to 2010. Initial conditions included in the
model are gender and racial composition, employment shares, and county-level population and income, all mea-
sured in 2000. The results show high accuracy in predicting both levels and differences in income and population;
there is not strong evidence of overfitting in the training set. Model fit is consistently lower on the sample of smaller
images; hence, we prioritize the sample of 2.4 km imagery as our baseline analysis sample.

To evaluate overfitting, we compare predictive accuracy across training, valida-
tion, and test sets. Focusing on the time difference models and on results in valida-
tion versus training sets, the R % for income growth in 2.4 km images falls minimally
by 0.02 from the validation to the test set with initial conditions and by 0.03 without
initial conditions; the change in R? is slightly larger for population growth. For
1.2 km images, the R? either rises or changes minimally from the validation to the
test set, both for income and population and with or without initial conditions. With
cross-validation, overfitting in our model training does not appear to be manifest.

Model Prediction Errors.—To evaluate prediction errors in our model, Figure 2
shows scatterplots of model-predicted values and actual values for log income and
population in levels and time differences. In the models for levels, the data are
tightly packed around the 45-degree line, indicating that the model accurately cap-
tures log income and population across the entire distributions of each. The results
for growth rates in the second row show that the prediction of differences is more
challenging. The model captures much of the variation for images in which values
are growing but tends to overpredict growth in images for which values are flat or
declining, especially for income. The asymmetry in errors for positive and negative
growth rates—for income, in particular—may be a result of the slow depreciation
of physical capital. Whereas in expanding regions income growth may lead directly
to new construction, in declining regions income loss may result in the change or
removal of structures over longer time horizons.

To see whether our prediction errors are associated with initial economic con-
ditions, we compute the correlation of our prediction errors with initial industry
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FIGURE 2. MODEL PREDICTIONS AGAINST ACTUAL VALUES

Notes: Levels models include data from both 2000 and 2010. Extreme outliers are omitted from this figure to allow
visualization of the central tendency in the data.

employment shares and demographic characteristics. These correlations are all below
0.1 and mostly well below 0.02, as seen in online Appendix Table 1. Estimating a
regression of prediction errors on fixed effects for each urban area in the sample, the
fixed effects absorb 11 percent or less of the variation in the errors, as seen in the last
row of online Appendix Table 1. Online Appendix Figures 4A and 4B further show
no systematic variation in prediction accuracy across geographic regions. In all,
there appears to be little covariation between prediction errors and initial economic
conditions in our sample. !>

B. Comparison with Night Light Intensity

Given the growing use of night lights to detect GDP, as discussed above, we next
compare our CNN performance to how well night lights predict levels and changes
in economic activity. In Figure 1, we regress log income or log population on log
night light intensity, first in levels for the years 2000 and 2010 pooled in a single
regression, and then in changes over the 2000-2010 time period. The geographies

5n the online Appendix, we follow recent literature on interpreting neural network predictions by evaluating
saliency maps, which indicate which pixels in an image most influence network prediction.
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FIGURE 3. NIGHT LIGHT PREDICTIVE ACCURACY BY GEOGRAPHY

Notes: This figure shows the linear fit of log income and log population on log night lights for given geographic
units, where measures are in values per km?. Night light intensity is a spatial sum of DMSP-OLS average visible
light in both 2000 and 2010. The regression for each geography is conducted with population weights. Results show
that night lights are a powerful predictor of population and income in large geographies, but their effectiveness in
smaller geographies is limited.

studied range from US states to census blocks and include our 1.2 km and 2.4 km
images. To normalize the size of spatial units, we express all values per km2.

Figure 3 summarizes the results by presenting the R values for each OLS regres-
sion. In the regressions in levels for larger geographies, night lights are a strong
predictor of economic activity, consistent with previous research (Gennaioli et al.
2013; Donaldson and Storeygard 2016). For income levels in 2000 and 2010, where
results for population are very similar, R levels are stable across larger spatial units,
at 0.67 for states, 0.66 for commuting zones, and 0.71 for counties. Jumping from
counties to our 2.4 km images, the R? drops to 0.57 and drops further to 0.50 for our
1.2 km images. Even at roughly the neighborhood level—the 1.2 km images—night
lights are strongly positively correlated with the level of economic activity.

Yet, our CNN trained on daylight imagery substantially outperforms night lights
in cross-sectional data. Referring to our baseline CNN results in Table 1, the CNN
trained on daylight satellite imagery with initial conditions yields an R? for log
income that is 0.33 higher for 2.4 km images (0.90 versus 0.57) and 0.35 higher for
1.2 km images (0.85 versus 0.50); improved accuracy for log population is similar.

The contrast between night lights and our CNN model is even greater when pre-
dicting changes in income or population. For 2000-2010 income changes—where
results for population are again similar—R? values are 0.10 for night lights using
2.4 km images, compared to 0.40 in our CNN with initial conditions (or 0.37 without
them), and 0.06 for night lights using 1.2 km images, compared to 0.32 in our CNN
with initial conditions (or 0.27 without them).'® At the neighborhood dimension of

16 Consistent with previous literature, we find that night lights have sizable predictive power for long-run
income changes in larger geographies, achieving R? values of 0.45 for states and 0.25 for counties.
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our 1.2 km images, changes in night lights have weak predictive power for changes
in economic activity.!”

C. Robustness Exercises

We examine the robustness of our results to changes in the satellite imagery and
machine-learning methods used in the analysis.

Performance with RGB Only.—We consider the effect of limiting the Landsat
imagery used for training to the visible spectrum (i.e., the red, green, and blue
(RGB) channels). The non-RGB bands in our imagery more than double the size
of the data and therefore significantly increase training complexity. It is therefore
useful to examine whether the added modeling complexity of using non-RGB data
is justified.

Online Appendix Table 3 compares test accuracy on models trained with RGB
bands alone and those trained with all seven Landsat bands. For levels models with
initial conditions, we find a modest benefit of adding the four non-RGB bands: the
R? rises by 0.04 for both log income and log population. The gain is larger for
difference models: including the additional nonvisible Landsat bands raises the R>
by 0.06 for log income and by 0.11 for log population. For predicting log growth
in income and population, having more complete spectral imagery is of substantial
value in predictive accuracy.

Performance of 30 m (Low) versus 15 m (High) Resolution Imagery.—The res-
olution of satellite imagery is a key determinant of the information observable in a
fixed image region. The USGS Landsat 7 imagery we use has a native 30 m reso-
lution. Governments and private companies are working to produce more resolute
images. DigitalGlobe, for instance, collects and sells satellite imagery with 30 cm
resolution, where a single 30 m pixel contains 10,000 30 cm pixels. Although such
high-resolution data promise massive advances in information content, these gains
are counterbalanced by similarly massive increases in computational complexity.

To provide a partial evaluation of the gains to prediction from having higher
resolution imagery, we compare model performance when doubling the resolu-
tion of daytime satellite imagery from 30 m to 15 m. To perform this comparison,
we construct 15 m Landsat imagery using panchromatic sharpening, as described
and used in Jean et al. (2016). This process restricts the Landsat spectral bands
to the RGB wavelengths. The results, which appear in online Appendix Table 4,
contrast the accuracy of CNN models trained on 1.2 km images for 30 m versus
15 m pan-sharpened RGB bands. To reduce computational complexity, we limit the
images used in model training to those in the mid-Atlantic and southeast United
States, as shown in online Appendix Figure 3. Results on test samples indicate
that using the higher resolution imagery leads to no meaningful improvement in fit
across model specifications. For all models, increases in R 2 are less than 0.005. This

17 This lack of predictive power for night lights may be due to the fact that the resolution of 1.2 km images is
close to that of the 1 km pixels for which raw night light imagery is available. At the pixel level, perhaps unsurpris-
ingly, changes in night lights have little information about income or population growth.
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finding suggests that modestly higher resolution imagery is unlikely to offer large
improvements in a network’s ability to learn relevant features for out-of-sample
prediction at a fixed geographic scale. However, we cannot speak to the possible
model accuracy if substantially higher resolution imagery were coupled with the
computational resources to conduct a similar exercise.

D. Out-of-Sample Predictions

A primary application of our model is to use income and population predictions
as outcomes for analyses occurring over periods in which census data are coarse
or unavailable. We offer examples of such analyses in Section IV and guidance on
implementing them in the online Appendix. To evaluate the accuracy of our predic-
tions in out-of-sample time periods, we train and tune a modified model in which
we allocate 70 percent of our images to training and 30 percent to validation. In this
case, we evaluate model performance in periods outside of 2000 and 2010, rather
than in a dedicated set of test images as in our baseline models. To estimate accuracy
in periods as far from our sample period as possible, we use 2020 for population and
2017 for income.'®

Table 2 shows the accuracy of these models when used to predict log population
and log income in each period for our larger 2.4 km images. We find in-period accu-
racy similar to our baseline model, at 0.90-0.94 for levels predictions and 0.49-0.51
for time differences (when including initial conditions). This approach also per-
forms well in predicting out-of-sample levels: the R 2 for the levels models including
initial conditions is 0.92 for 2020 population and 0.89 for 2017 income. There is
little loss in accuracy for predictions in levels when we extend beyond our sample
period.

For the more challenging task of predicting out-of-sample changes, we achieve
an R? of 0.20 for the change in log population over 2010-2020, approximately half
of the accuracy seen in our baseline results in the in-sample period holdout test set.
However, the income model is unable to outperform the true mean (i.e., R* = 0)
when forecasting income changes over 2007-2017. Performance improves mark-
edly when we instead set our base period to be the in-sample year of 2000 and let
the end period extend seven to ten years beyond the sample. R values are 0.50 for
the 2000-2020 population change and 0.42 for the 2000-2017 income change (with
initial conditions), which are similar to results for the 2000-2010 sample period.

Lower performance in predicting changes, particularly for income over
2007-2017, may be related to the sluggish recovery to the Great Recession, which
may have dampened changes in the visible properties of economic growth. During
this period, falling unemployment drove economic growth, a type of cyclical adjust-
ment for which our CNN may be poorly suited. A second explanation is lower
quality label data in the out-of-sample periods, particularly for income. Because
block-level population is only available in decennial census years, we use the 2010
and 2020 population distributions to disaggregate 2007 and 2017 income, respec-
tively, from block groups to blocks. The resulting noise may be more problematic

18 Block population for 2020 is from the Census Redistricting Data Files; income for 2017 is from the 2015-2019
ACS and imputed to blocks using the 2020 population.
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TABLE 2—MODEL R? FOR NATIONAL 2.4 KM IMAGERY IN OUT-OF-SAMPLE PERIODS

In-sample period Out-of-sample period
Population 2000, 2010  2000-2010 2020 2010-2020  2000-2020
With initial conditions 0.9356 0.5132 0.9193 0.1963 0.4967
Without initial conditions 0.8806 0.5030 0.8737 0.1702 0.5106
Income 2000, 2010 2000-2010 2017 2007-2017  2000-2017
With initial conditions 0.9043 0.4910 0.8928 —0.0432 0.4193
Without initial conditions 0.8463 0.4331 0.8302 —0.0999 0.3731

Notes: The table shows R? values computed on all images with 2.4 km sides. The sample size of spatially unique
images in training and validation subsets is 112,932. Income measures the log of total personal income, while pop-
ulation is the log of total population. The columns delineate fit in the training period and in the out-of-sample peri-
ods, both in terms of levels and differences. Because our imagery panel concludes in 2019, predictions on 2019
imagery are evaluated against the actual 2020 population and 2009-2019 change predictions against 2010-2020
population change. Initial conditions included in the model are gender and racial composition, residential employ-
ment shares, and county-level population and income, all measured in the initial period (2000 for demographics,
2004 for employment).

over a ten-year period than over the longer periods tested, explaining the difference
in accuracy. Because this label quality issue coincides with recessionary years, we
are unable to disentangle the two explanations.

We conclude from the results in Table 2 that when evaluated against high-quality
label data, our approach shows strong potential for producing accurate predictions
in out-of-sample periods. The results also indicate that this approach is likely to be
most effective when predicting changes over long time horizons and in periods that
do not include large business cycle fluctuations.

III. Discussion

Remotely sensed data have the potential to transform spatial economic analysis.
Because much of these data are in the public domain, the cost of working at fine
geographic scales is now low. We show that applying convolutional neural networks
to daytime satellite imagery predicts microspatial changes in income and population
at a decadal frequency. An immediate application is to use predictions of income or
population at these spatial scales as outcomes in analysis. Our method can also be
used to impute income and population between census years for the United States, to
extend to other high-income countries where the relationship between multispectral
imagery and economic activity is likely to be similar, and to initialize layers for
training CNNs in other contexts, thereby reducing computational costs. Khachiyan
(2021), for example, uses our output to examine the within-county impacts of the
US fracking boom.

A related area that would benefit from such data is the study of place-based
policies, such as subsidies to firms that invest in designated areas. Justifying these
policies hinges on whether new investments have positive spatial spillovers (Kline
and Moretti 2014; Gaubert, Kline, and Yagan 2021). Using our model, researchers
could evaluate spillovers at much finer spatial scales than is feasible with public
data. Estimating the welfare consequences of place-based policies relies further on
addressing their nonrandom location and timing. With our model, researchers could
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examine preexisting trends and control for spatial-temporal shocks at much finer
resolutions (e.g., county-year levels) than is possible in conventional data (in which
the county-year may be the unit of analysis).

Another application is the evaluation of transport infrastructure, which has seen
major recent advances (Redding 2020). Satellite-based measures of income and
population would allow researchers to evaluate specific projects, such as intracity
bus lanes or subway lines, at the neighborhood level across many cities. Such gran-
ularity would permit refined tests of economic theory, such as whether transport
links lead to more agglomeration in larger nodes (via home market effects) or less
agglomeration in intermediate nodes (due to agglomeration shadows). Although
researchers have obtained granular information from smartphone data (e.g., Akbar
et al. 2018; Kreindler and Miyauchi 2021) and private transport platforms (e.g.,
Hall, Palsson, and Price 2018), there may be nonrandom selection of users who
supply these data (e.g., taxi riders in New York City may differ from taxi riders in
Phoenix). Satellite imagery offers the equivalent of administrative-level data that is
consistent across space and time.

A further application is the analysis of natural disasters. Floods, earthquakes,
wildfires, and tornadoes tend to have highly localized impacts (Dell, Jones,
and Olken 2014). Our model allows analysts to trace the consequences from point
of impact to neighboring communities and to broader metro areas. Such disaggre-
gation is important not just for the academic task of evaluating shock transmission
across space but for policymakers who, after disasters occur, require tools to assess
where need is likely to be acute.

Finally, our results suggest paths for future work developing predictive models
from satellite imagery. First, the model does not perform as well in the shorter fre-
quency out-of-sample prediction exercise, although this could be due to business
cycles. Addressing this issue could leverage further the ability to use higher-frequency
changes in images to predict economic growth. Second, our model is trained on US
data, and future work could explore how well model parameters perform in other
countries.
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