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1. Introduction

There is no royal road to Löwner’s theorem in one variable. (Barry Simon counts 11, 
or perhaps 12, proofs of the one variable theorem, none of which are regarded as trivial 
[43]. Thorough treatments are given in [12,17].) However, in this manuscript we give a 
royal road to the multi-variable Löwner theorem in noncommutative function theory: to 
bootstrap from the one variable Löwner theorem itself. The purpose of the present quest 
is to give a general regime for turning one variable theorems in the intersection of classical 
complex analysis and operator theory into theorems in multiple noncommuting variables 
using a so-called “royal road theorem” built on the absolute and supreme powers of sev-
eral complex variables and convexity. We use this “royal road” to prove the analogues 
of the celebrated theorems of Löwner [26] and Kraus [28] in the multivariable setting as 
mere examples of a very general analytic technique. (The multivariable Löwner theorem 
has been established in many settings. In commuting variables, see [3,37]. In noncom-
muting variables, see [34,39], culminating in essentially the most general framework in 
[36], which we reprove here using the “royal road” as a shortcut. Convexity theorems are 
somewhat less generally developed [18,19,22,24,23,20,34].)

Matthew Kennedy gave a talk at the Fields Institute in June of 2019 on recent work 
with Kenneth Davidson on noncommutative Choquet theory [16]. Prominent in the the-
ory was the role of the matrix convex function. The merit of matrix convex functions 
was appreciated essentially on the level of classically convex functions. However, as there 
is a great gulf between positive and completely positive maps, so too should there be 
between convex and matrix convex functions, as was first discovered by Kraus [28]. In 
light of the recent progress with respect to the related topic of matrix monotonicity, it 
seemed clear here that automatic analyticity should hold, and for reasons arising more 
from complex analysis and the one variable theorem than an artisanal approach starting 
from scratch. This provided additional motivation for the current endeavor.

1.1. The classical theorems

Let f : (a, b) → R be a function. We say that f is matrix monotone if

A ≤ B ⇒ f(A) ≤ f(B)

for all A, B self-adjoint of the same size with spectrum in (a, b), where A ≤ B means 
that B − A is positive semidefinite. (The function f is evaluated via the matrix func-
tional calculus.) This evidently innocuous condition is in fact very rigid, as is codified in 
Löwner’s theorem.

Theorem 1.1 (Löwner 1934). Let f : (a, b) → R. f is matrix monotone if and only if f is 
real analytic on (a, b) and analytically continues to the upper half plane in C as a map 
into the closed upper half plane.
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For example, the functions x, log x, 
√

x, tan x, and −x−1 are all matrix monotone 
on intervals in their domains, but ex, x3, and sec x are not. Note that matrix mono-
tonicity is a geometric property; matrix monotonicity on a single interval implies matrix 
monotonicity on any interval where the function is real-valued in the real domain for 
analytic functions. Löwner’s theorem arises in many contexts, including mathematical 
physics [46,45]. Other applications are found, for example, in quantum data processing 
[4], wireless communications [25,14], matrix means [6] and systems theoretic interpola-
tion problems [5,33].

Nevanlinna [32,30] showed that all such functions on the unit interval are of the form

f(x) = a +
∫

[−1,1]

x

1 + tx
dμ(t)

for a ∈ R and μ a finite measure supported on [−1, 1]. The Nevanlinna representation 
tells us exactly how to analytically continue a function to the upper half plane.

Let f : (a, b) → R be a function. We say that f is matrix convex if

f

(
A + B

2

)
≤ f(A) + f(B)

2

for all A, B self-adjoint with spectrum in (a, b). Löwner’s student Kraus proved the fol-
lowing theorem, which is ostensibly more technical, but demonstrates the same essential 
rigidity.

Theorem 1.2 (Kraus 1937). Let f : (−1, 1) → R. f is matrix convex if and only if

f(x) = a + bx +
∫

[−1,1]

x2

1 + tx
dμ(t)

where a, b ∈ R and μ is a finite measure supported on [−1, 1]. Note that all such functions 
analytically continue to the upper half plane.

For example, x2 is matrix convex, but x4 is not.

1.2. Free noncommutative function theory

Let R be a real topological vector space. Define the matrix universe over R, denoted 
by M(R), by

M(R) =
⋃

Mn(C) ⊗R R,

n∈N
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where Mn(C) is the space of n by n matrices over C. The space M(R) is endowed with 
the disjoint union topology. Given V ⊂ M(R), denote by Vn the set V

⋂
Mn(C) ⊗ R. 

Define the Hermitian matrix universe over R, denoted by S(R), to be

S(R) =
⋃

n∈N

Sn(C) ⊗R R,

where Sn(C) denotes the space of n by n Hermitian matrices.
A set G ⊂ M(R) is defined to be a (free) domain if it satisfies the following axioms:

(1) If X ∈ Gm and Y ∈ Gm then X ⊕ Y ∈ Gn+m,
(2) X ∈ Gn ⇒ U∗XU ∈ Gn for all n by n unitaries U over C
(3) Gn is open for all n.

Let G ⊂ M(R1) be a free domain. We say a function f : G → M(R2) is a free 
function if

(1) f |Gn
maps into M(R2)n,

(2) f(X ⊕ Y ) = f(X) ⊕ f(Y ),
(3) U∗f(X)U = f(U∗XU) for all n by n unitary U over C.

(We note that whenever f is complex analytic, it satisfies a stronger version of the unitary 
relation - namely, it preserves arbitrary similarities, and therefore agrees with the notion 
of a free function appearing in other contexts [27,39,44].)

If R is a real operator system – that is, a real subspace containing 1 of self-adjoint 
elements in a C∗-algebra - then for each n there is a natural ordering on Sn(C) ⊗R, since 
matrices over R are elements of a larger C∗-algebra. (The Choi-Effros Theorem [15] gives 
that any abstract Archimedean matrix ordering in a very general sense is equivalent to 
this situation. That is, this is the most general setup.) Given A, B ∈ Sn(C) ⊗ R, we say 
A ≤ B if B − A is positive semidefinite as an element of Sn(C) ⊗ R.

Let R be a complex operator system, a complex subspace of a C∗-algebra containing 
1 which is closed under involution. Let Rsa be the set of self-adjoint elements in R. We 
overload the notation for S(R) and M(R) by defining

S(R) := S(Rsa), M(R) := M(Rsa).

Given R1 and R2 real operator systems and a domain G ⊆ S(R1), we say that a free 
function f : G → S(R2) is matrix monotone if

A ≤ B ⇒ f(A) ≤ f(B)

whenever A and B have the same size. We say a domain G ⊆ S(R1) is convex if each 
Gn is convex. For a convex domain G ⊆ S(R1), say that a free function f : G → S(R2)
is matrix convex if
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f

(
A + B

2

)
≤ f(A) + f(B)

2

for all pairs A, B ∈ G of the same size.
Define the upper half plane Π(R) = {X ∈ M(R)|Im X > 0}, where Im X = (X −

X∗)/2i, and A > B if the difference is strictly positive definite – that is, the difference 
is self-adjoint and its spectrum is a subset of (0, ∞). For a convex domain G ⊆ S(R), 
define the tube over G to be the set

T (G) = {X + iY |X ∈ G and Y = Y ∗}.

In several commuting variables, generalizations of Löwner’s theorem appear in [3,37]. 
The proofs are technical and involved, and rely heavily on commutative Hilbert space 
operator theoretic techniques arising from applications of transfer function realization 
theory from systems engineering to several complex variables as originated in [1]. The 
difficulty is a symptom of the fact that the variety of commuting tuples of matrices is full 
of holes – that is, it is not convex and, thus, unnatural for understanding monotonicity. 
By contrast, the machinery of several complex variables is apparently much more natural 
in the noncommutative setting. Noncommutative analogues of Löwner’s theorem have 
previously been established in [39,34]. The culmination of this work appears in [36], 
where the following theorem was proved in perhaps the highest level of generality that 
one should expect (although that proof relies on the commuting theorem in [3] and is 
thus “unnatural”).

Theorem 1.3 (Theorem 1.2, Pascoe [36]). Let R1 and R2 be closed real operator systems. 
Let G ⊆ S(R1) be a convex free domain. A function f : G → S(R2) is matrix monotone 
if and only if f is real analytic on G and analytically continues to Π(R1) as a map into 
Π(R2).

We give a new proof of this result as Theorem 5.1 using the “royal road”.
We note two important examples of matrix monotone functions. The Schur comple-

ment X11 −X12X−1
22 X21 gives a matrix monotone function on the set D ⊂ S(S2(C)), the 

space of block 2 by 2 self-adjoint matrices, where X−1
22 is defined [31]. Another class of 

examples is the matrix geometric means, originating in mathematical physics [41], which 
in two variables is given by the formula X1/2

1 (X−1/2
1 X2X

−1/2
1 )1/2X

1/2
1 defined on pairs 

of positive matrices in S(R2) [29,13,7].
Analogues of Kraus’s theorem are less general. One example is the so-called “butterfly 

realization” developed in [21] for noncommutative rational functions, which captures the 
essence of the classical case.

Theorem 1.4 (Theorem 3.3, Helton, McCullough, Vinnikov [21]). Let r : G ⊂ S(Rd) →
S(R) denote a noncommutative rational function on a domain G containing 0. If r is 
matrix convex near 0, then r has a realization of the form



6 J.E. Pascoe, R. Tully-Doyle / Advances in Mathematics 407 (2022) 108548
r(X) = r0 + L(X) + Λ(X)∗(1 − Γ(X))−1Λ(X)

for a scalar r0, a real linear function L, Λ affine linear, and Γ(X) =
∑

Ai ⊗ Xi for 
self-adjoint matrices Ai.

We prove the butterfly realization holds for general matrix convex functions in Corol-
lary 4.5. Our butterfly type realization considerably extends and simplifies the original 
total art in [21].

1.3. The royal road theorem

The main result of the paper is contained in Section 3. It establishes that any class 
of real free noncommutative functions which consist of locally bounded functions which 
are analytic on one-dimensional slices in a controlled way and closed under some basic 
algebraic and analytic procedures are automatically analytic. We call such a class of 
functions a sovereign class. The class of matrix monotone functions and the class of 
matrix convex functions are each sovereign classes. Once we know such functions are real 
analytic, algebraic and functional analytic techniques allow us to obtain nice formulas 
for these functions. The content of our main theorem, Theorem 3.4, states the following:

“Any function in a sovereign class is real analytic”.

1.4. Structure of the paper

In Section 2, we discuss analytic continuation in the operator system setting. In Sec-
tion 3, we describe the structure of the domain and function classes under consideration, 
the so-called sovereign functions, and show that matrix monotone and matrix convex 
functions are examples. We also prove the “royal road” theorem, the main engine of the 
machine under construction, which asserts that sovereign functions are automatically 
real analytic. In Section 4, we prove analogues of the classical Löwner and Kraus real-
izations. In Section 5, we show that, in analogy with the classical case, we can deduce 
analytic continuations from the Löwner and Kraus realizations using the machinery of 
automatic analyticity in classes of sovereign functions established in Section 3.

2. Prelude: the quantitative wedge-of-the-edge theorem

One of the key notions in the classical and several variable generalizations of the 
Löwner and Kraus theorems is that of analytic continuation - that is, typically we are 
interested in extending functions from a “real” domain to some subset of a “complex” 
set. The edge-of-the-wedge theorem (proven by Bogoliubov and treated by Rudin in a 
series of lectures [42]) is useful in showing that such a continuation exists. Extremely flex-
ible generalizations of this result to several variables, the so-called “wedge-of-the-edge” 
theorems, have appeared in [38,35]. Rather than considering the analytic continuation 
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of functions defined on a multi-variate upper half plane (the wedge) through the real 
boundary (the edge) as in the edge-of-the-wedge theorem, the wedge-of-the-edge theo-
rem concerns analytic continuation within the edge. The key lemma from [38] follows, 
which we will need to generate quantitative bounds. In this section, we prove a version 
of the wedge-of-the-edge theorem in the operator system setting.

Lemma 2.1 (Lemma 2.3, Pascoe [38]). Fix n. Fix p > 0. There are constants J, K > 0
such that for every measurable S ⊆ [0, 1]n of measure greater than p, and homogeneous 
polynomial h of degree d in n variables which is bounded by 1 on S, |h(z)| ≤ KJd‖z‖d

∞.

Such an assertion seems foolish, but it is essentially the product of Lagrange interpo-
lation, blind faith, and elbow grease.

Let R1, R2 be vector spaces. Define a (noncommutative) generalized homogeneous 
polynomial of degree d to be a (free) function on R1 such that the restriction to any 
finite dimensional space is an R2-valued (noncommutative) homogeneous polynomial of 
degree d.

Lemma 2.2. There are universal constants L, K > 0 satisfying the following. Let R be 
an operator system. Let W be the set of positive contractions in R (S(R) in the non-
commutative case). Let h be a (noncommutative) generalized homogeneous polynomial 
of degree d which is norm bounded by 1 on W . Then, for every Z ∈ R, (M(R) in the 
noncommutative case), ‖h(Z)‖ ≤ KLd‖Z‖d.

Proof. It is enough to prove the claim when ‖Z‖ = 1, as both sides are homogeneous 
of degree d. Write Z = A − B + iC − iD for positive A, B, C, D, where the norms 
of A, B, C, D are less than 2‖Z‖. The function of four variables f(x1, x2, x3, x4) =
h((x1A + x2B + x3C + x4D)/8) satisfies the preceding lemma when composed with 
any norm 1 linear functional for S = [0, 1]4, so, by the Hahn-Banach theorem, ‖h(Z)‖ =
‖f(8, −8, i8, −i8)‖ ≤ KJd8d. �

Let X ∈ M(R)n. Define the complex ball around X of radius ε, denoted BC(X, ε), 
to be

BC(X, ε) =
⋃
m

{Y ∈ M(R)mn|
∥∥X⊕m − Y

∥∥ < ε}.

Let X ∈ S(R)n. Define the real ball around X of radius ε, denoted BR(X, ε) to be

BR(X, ε) =
⋃
m

{Y ∈ S(R)mn|
∥∥X⊕m − Y

∥∥ < ε}.

The following corollary follows immediately from the preceding lemma.

Corollary 2.3 (The quantitative wedge-of-the-edge theorem). There are universal con-
stants δ, ε > 0 satisfying the following. Let R be an operator system. Let W be the set of 
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positive contractions in R (S(R) in the noncommutative case). Let hd be a sequence of 
(noncommutative) generalized homogeneous polynomials such that hd has degree d and ∑∞

d=0 ‖hd(X)‖ is bounded by 1 on W . The formula 
∑∞

d=0 hd(Z) defines a (noncommu-
tative) analytic function on BC(0, δ) which is bounded by ε.

3. Automatic analyticity in sovereign classes

Let G ⊆ M(R). We define the coordinatization of G, denoted G(n), to be the natural 
inclusion of (Gmn)∞

m=1 into M(R ⊗ Mn(C)). Given a free function f defined on G, we 
define the coordinatization of f , denoted f (n), to be the natural map on G(n) defined by 
f (n)(X) = f(X).

Let a dominion be a class of domains satisfying:

Domains: For each G ∈ , there is an operator system R such that G ⊆ S(R). (Note 
that we want to allow to be a proper class and contain domains over all operator 
systems so that we can prove theorems for functions defined over all operator systems 
simultaneously.)

Translation invariance: For all G ∈ such that G ⊆ S(R) for some operator system R
and r ∈ R, G + r ∈ .

Closure under intersection: For all G, H ∈ such that G, H ⊆ S(R) for some operator 
system R, G ∩ H ∈ .

Closure under coordinatization: If G ∈ , then G(n) ∈ .
Locality: Let G ∈ . For any X ∈ G1, there is an ε > 0 such that BR(X, ε) ⊆ G and 

BR(X, ε) ∈ .
Scale invariance: If t > 0 and G ∈ , tG ∈ .

We say that a domain G is convex if each Gn is convex. An example of a dominion is 
the class of all open convex domains, which we denote Conv.

A sovereign class is a class of functions on domains contained in a dominion 
satisfying:

Functions: For every f ∈ , there is a G ∈ and an operator system R such that 
f : G → M(R) is a free function. For all G ∈ , (G) ⊆ F (G), where (G) denotes 
the functions in on the domain G and F (G) denotes the class of free functions on 
G.

Local boundedness: Each f ∈ is locally bounded and measurable on finite dimen-
sional affine subspaces on each level. That is, if G ⊂ S(R), f ∈ (G), and V is a 
finite dimensional vector subspace of S(R)n, then f |V ∩Gn

is locally bounded and 
measurable.

Closure under localization: If f ∈ (G) and H ⊆ G and H ∈ then f |H ∈ (H).
Translation invariance: If f ∈ (G) then f(Z − r) ∈ (G + r) for every self-adjoint 

r ∈ R.
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Closure under coordinatization: If f ∈ (G), then f (n) ∈ (G(n)).
Convexity: The set of functions (G) taking values in S(R) is convex and closed under 

pointwise weak limits. (Note that this implies closure under convolution when R is 
finite dimensional in combination with the property of translation invariance.)

One-variable knowledge: Let f ∈ (G). Let A, B ∈ G1. If A ≤ B then

fAB(t) := f

(
1 − t

2 A + 1 + t

2 B

)
(−1 < t < 1)

analytically continues to the open unit disk D as a function of t.
Control: There is a map γ taking each pair (X, f), where f ∈ (G) for some G ∈

and X ∈ G, to a non-negative number or +∞ satisfying:

(1) For each ε > 0 there is a universal constant c(ε) such that infX∈BR(X0,ε)1 γ(X, f)
≤ c(ε)‖f‖BR(X0,ε)1 whenever f is defined on all of BR(X0, ε)1. (We set 
‖f‖BR(X0,ε)1 = supBR(X0,ε)1

‖f‖. The definition here is rigged so that near any 
point X there is a point with good “control”.)

(2) There is a universal positive valued function e on R+ satisfying the following. 
Write fAB(t) =

∑
antn. Then

‖an‖ ≤ γ

(
A + B

2 , f

)
e(‖B − A‖).

(Note that, if the class is closed under composition with positive, norm one, 
linear functionals λ, and γ(X, λ(f)) ≤ γ(X, f), it is sufficient to check properties 
(1) and (2) when R2 = R by the Hahn-Banach theorem.)

(3) If H ⊆ G and X ∈ H then γ(X, f |H) = γ(X, f).
(4) γ(X, f) = γ(X⊕N , f).

We consider two specific sovereign classes: monotone functions, and convex functions 
on the dominion Conv.

We define the positive-orthant norm of the n-th derivative at X, denoted ‖Dnf(X)‖+, 
to be

‖Dnf(X)‖+ = sup
‖H‖=1,H>0,m

‖Dnf(X⊕m)[H]‖,

where Dnf(X)[H] = dn

dtn f(X + tH)
∣∣
t=0. If the n-th derivative does not exist in some 

positive direction, we formally set ‖Dnf(X)‖+ = ∞.

Proposition 3.1. The matrix monotone functions on domains in Conv are a sovereign 
class.
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Proof. Monotone functions are functions. To see local boundedness, note that f(X + 1)
and f(X − 1) bound f(X + H) for all ‖H‖ < 1. That is, as

X − 1 ≤ X + H ≤ X + 1,

monotonicity implies

f(X − 1) ≤ f(X + H) ≤ f(X + 1).

The restriction of a monotone function to a convex set remains a monotone function. 
Likewise, coordinatization preserves monotonicity as does translation. That the mono-
tone functions on a domain G taking values in S(R) are a convex set follows from the 
fact that the defining inequality for monotonicity is linear.

We now consider one variable knowledge. Let A ≤ B, A, B ∈ G1. Consider the function 
fAB(t) = f(1−t

2 A + 1+t
2 B). For each positive norm one linear functional λ, we have that 

λ ◦ fAB is matrix monotone, and therefore by Löwner’s theorem

λ ◦ fAB(t) =
∑

aλ
ntn

defines a function on a neighborhood of the closed unit disk. Define

Δn(t) =
∑n

k=0(−1)n−k
(

n
k

)
fAB(kt)

tn
.

Note that

aλ
n = 1

n! lim
t→0

λ ◦ Δn(t).

Therefore,

sup
t∈[0,1]\{0}

|λ ◦ Δn(t)| < ∞,

and by the principle of uniform boundedness,

sup
t∈[0,1]\{0}

‖Δn(t)‖ < ∞.

(This is not precisely the typical formulation of the principle of uniform boundedness; see 
Corollary 6.2 in the Appendix.) Note that because Δn is bounded, fAB is (n − 1)-times 
differentiable, and therefore we merely need to show the convergence of the series 

∑
antn, 

where an = f (n)(0)/n!. Now, it suffices to show that the sequence (an)∞
n=0 is bounded. If 

not, there will be a positive linear functional such that (λ(an))∞
n=0 is unbounded, again 

by the principle of uniform boundedness, which contradicts the convergence of the series 
for λ ◦ fAB(t). Therefore, we obtain one variable knowledge.
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Let

γ(X, f) = ‖f(X)‖ + ‖Df(X)‖+ .

We will show that γ is a control function for the class of matrix monotone functions. Note 
that if λ is a positive norm one linear functional, then λ(f) is again matrix monotone. 
(Namely, λ is completely positive.) So without loss of generality, it suffices to consider 
f : G → S(R). Fix ε > 0. Suppose that BR(X, ε) is contained in the domain of f . 
Without loss of generality, 0 = X. Fix H ≥ 0 in BR(0, ε). So f(zH) has a Nevanlinna 
type representation given by

f(zH) = a0 +
∫

[−1,1]

z

tz + 1 dμ(t)

= a0 + z

∞∑
i=0

∫
tizi dμ(t).

Therefore, f(zH) = a0 +
∑∞

n=1 anzn where an =
∫

tn−1dμ(t) when n ≥ 1. Note that 
|an| ≤

∫
|t|n−1 dμ(t) ≤

∫
dμ(t) = a1 for n ≥ 1. Moreover,

f(zH) − f(−zH) = 2z
∞∑

i=0

∫
z2it2i dμ.

This shows that

‖Df(0)[H]‖ ≤ ‖f‖BR(0,ε) .

Therefore,

‖Df(0)‖+ ≤ 1
ε

‖f‖BR(0,ε) ,

and thus γ(X, f) is bounded by (1 + 1
ε ) ‖f‖BR(0,ε). That is, in the definition of control 

function, c(ε) = 1 + 1
ε . For this class, taking the infimum in property (1) is redundant. 

Property (2) follows from the fact that |an| ≤ a1 in the above argument after a change 
of variables, where the scaling factor is captured by e. The last control two properties 
follow from the definition of γ. �
Proposition 3.2. The locally bounded matrix convex functions on domains in Conv are a 
sovereign class.

Proof. Convex functions are functions. Note that we have assumed local boundedness. 
(This assumption cannot be dropped as all linear functions are convex, including the 
unbounded ones.) The restriction of a convex function to a subdomain remains convex. 
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The coordinatization of a convex function is convex, as is a translation. Convexity fol-
lows from the fact that the defining inequality for matrix convexity is linear. By the 
Kraus theorem, these functions satisfy one variable knowledge via an argument similar 
to Proposition 3.1.

Let

γ(X, f) = ‖f(X)‖ + ‖Df(X)‖+ +
∥∥D2f(X)

∥∥
+ .

Note that if λ is a positive norm one linear functional, then λ(f) is again convex. (Namely, 
λ is completely positive.) So without loss of generality, it suffices to consider f : G →
S(R). We will show that γ is a control function for the class of matrix convex functions. 
Fix ε > 0. Suppose that BR(X, ε) is contained in the domain of f . Without loss of 
generality, 0 = X. Fix H in BR(0, ε). The function f(zH) has a Kraus type representation

f(zH) = a + bz +
∫

[−1,1]

z2

tz + 1 dμ(t).

Therefore,

f(zH) = a + bz + z2
∞∑

n=0

∫
[−1,1]

tnzn dμ(t).

Writing f(zH) =
∑

aizi, we have that an =
∫

[−1,1] tn−2dμ(t) for n ≥ 2. Note that 
|an| ≤

∫
|t|n−2 dμ(t) ≤

∫
[−1,1] dμ(t) = a2 for n ≥ 2.

We have

f(zH) + f(−zH) − 2f(0) = 2z2
∞∑

n=0

∫
z2nt2n dμ(t).

This shows that

∥∥D2f(0)[H]
∥∥ ≤ 4 ‖f‖BR(0,ε) .

Therefore,

∥∥D2f(0)
∥∥

+ ≤ 1
ε2 ‖f‖BR(0,ε) .

Set M = ‖f‖BR(0,ε).
Then,

|bz| −
∣∣∣∣∣

∞∑
anzn

∣∣∣∣∣ ≤
∣∣∣∣∣bz +

∞∑
anzn

∣∣∣∣∣

n=2 n=2
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= |f(zH) − f(0)|

≤ 2M,

which gives

|b| ≤
∣∣∣∣∣z

∞∑
n=0

an+2zn

∣∣∣∣∣ + 2M

|z|

≤
∣∣∣∣∣z

∞∑
n=0

a2zn

∣∣∣∣∣ + 2M

|z|

≤
∣∣∣∣ z

1 − z

∣∣∣∣ ∣∣D2f(0)[H]
∣∣ + 2M

|z|

≤
∣∣∣∣ z

1 − z

∣∣∣∣ 4M + 2M

|z| .

Pick z = 1
2 . Then

‖Df(0)[H]‖ = ‖b‖ ≤ 8M.

Therefore,

‖Df(0)‖+ ≤ 1
ε

16M.

Thus, combining these estimates, γ is a control function with the remaining properties 
following similarly to the previous argument in Proposition 3.1. �

We note that any matrix convex function on a finite dimensional space will be con-
tinuous and thus locally bounded. Some sort of topological restriction, such as local 
boundedness, is necessary, as arbitrary linear maps on any operator system are not nec-
essarily bounded but are definitely convex, as all linear functions are convex.

Lemma 3.3. Any function in a sovereign class is real analytic at each level on each finite 
dimensional affine subspace.

Proof. Without loss of generality, we will assume R1 is finite dimensional. Fix X ∈ Gn. 
Without loss of generality, 0 = X ∈ G1 by closure under coordinatization and translation. 
Also without loss of generality, assume that BR(X, 2) ⊂ G by locality of the dominion. 
Let ϕ be a compactly supported positive smooth function on R1 such that 

∫
R1

φ(r)dr = 1. 
Define ϕα(x) = 1

m ϕ 
( 1 x

)
where m = dim R1. Consider
α α
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fα(Y ) = (ϕα ∗ f)(Y ) =
∫

R1

f(Y − r)ϕα(r)dr.

As a sovereign class of functions is closed under convolution, for any fixed ε > 0, the 
function fα will well defined on the domain BR(X, 2 − ε) for small enough α and so it 
will again be in the class on that domain. Let δ < 1 be the constant occurring in the
quantitative wedge-of-the-edge theorem. Note that

lim
α→0

‖fα‖BR(X,δ/2)1 ≤ ‖f‖BR(X,δ)1 .

Therefore, for α sufficiently small,

‖fα‖BR(X,δ/2)1 ≤ 2‖f‖BR(X,δ)1 .

For small enough α, choose Y ∈ BR(X, δ/2)1 such that

γ(Y, fα) ≤ 2c(δ/2)‖fα‖BR(X,δ/2)1 ≤ 4c(δ/2)‖f‖BR(X,δ)1 .

(Such a Y exists by control property (1)). Note that fα|BR(X,2−ε)1 is smooth at Y and 
by the one variable knowledge fα(Y + Z) =

∑∞
d=0 hd(Z) on positive contractions in R1, 

where each hd is a homogenous polynomial of degree d. By the control properties, we 
see that 

∑∞
d=0 ‖hd(Z)‖ is bounded by some M on the positive contractions as we have 

uniform bounds on the Taylor coefficients by control property (2), and therefore by the 
quantitative wedge-of-the-edge theorem, fα continues to a function bounded by Mε on 
BC(Y, δ)1. Therefore, f extends analytically and is bounded by Mε on BC(Y, δ)1 by a 
normal families argument. As BC(X, δ/2)1 ⊆ BC(Y, δ)1, we are done. �

Let G ⊂ S(R1) be a real domain. Let f : G → M(R2). Fix X ∈ Gn. We say that 
a free function f is real analytic at X if there is a δ > 0 such that for any choice of 
H1, . . . , Hk, the induced free function has a power series expansion

f(X +
∑

Hiti) =
∑

aαtα for all
∥∥∥∑

Hiti

∥∥∥ < δ.

That is, the function is real analytic on finite dimensional slices. Equivalently, f (n)(X +
Y ) =

∑
hj(Y ) is convergent on BC(X, δ) for some noncommutative generalized homo-

geneous polynomials hj .

Theorem 3.4 (The royal road theorem). Any function in a sovereign class is real analytic.

Proof. Fix X ∈ Gn. Without loss of generality, 0 = X ∈ G1 by closure under coordi-
natization and translation. Also without loss of generality, assume that BR(X, 1) ⊂ G. 
Therefore, since f is real analytic at each level by Lemma 3.3, f(X) =

∑
hd(X) for 

some noncommutative homogenous generalized polynomials hd on the set of positive 
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contractions in S(R1). Moreover, the series is bounded on smaller balls by the control 
properties (2) and (4), as we have uniform bounds on the Taylor coefficients on each 
positively oriented one dimensional slice. Thus, by the noncommutative quantitative 
wedge-of-the-edge theorem, the function f must be bounded and analytic on BC(X, δ)
for some δ > 0. This establishes the claim. �
4. Realizations and the Kraus theorem

We adopt the (by now standard) Helton convention of suppressing tensor notation for 
products of operators A and noncommutative indeterminants xi; that is, we write Axi

for A ⊗ xi.
In the following section, we will usually assume that R1 = Rd and always that R2

is contained in some concrete B(K). We will frequently use free noncommutative power 
series of the form

f(Z) =
∑

α

cαZα,

where α runs over all words in the formal noncommuting letters x1, . . . , xd, where the 
empty word will be denoted by 1. (Words are the natural multi-indices in the noncom-
mutative setting.) Various series representations can be derived via model-realization 
theory [27,9,10,2,11] with many results for the homogenous expansion.

4.1. Monotonicity

The following lemma is essentially [39, Theorem 4.16] lifted to the multi-dimensional 
output setting. The lemma establishes the positivity of certain infinite block matrices 
assembled from the coefficients of our function, which will be later used in a Gelfand-
Naimark-Segal type construction to obtain our representation formulae. Define the xi-
localizing matrices, denoted Ci, via the following formula:

Ci = [cβ∗xiα]α,β

where α, β range over all monomials. Note that in one variable, the monomials can be 
indexed by the non-negative integers, and the single localizing matrix is actually a Han-
kel matrix whose positivity was established in Nevanlinna’s solution to the Hamburger 
moment problem [32].

Lemma 4.1. Suppose that f(X) =
∑

cαXα is analytic on BC(0, 1) ⊆ S(Rd) and that 
f is matrix monotone. For each i = 1, . . . , d, the xi-localizing matrices (with operator 
entries) satisfy

Ci = [cβ∗xiα] ≥ 0
α,β
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where α, β range over all monomials.

Proof. Note

Df(X)[H] =
∑
α,β,i

cβ∗xiαXβ∗
HiX

α.

We can write

Df(X)[H] =
∑

i

(IK ⊗ KX)∗(Ci ⊗ Hi)(IK ⊗ KX)

where KX is the vector-valued free function (Xα)α. Taking Hi = vv∗, and the rest 
zero then defining a vector-valued function Kv

X(w) = (IK ⊗ (v∗Xα)α)w for v, X and 
compatible vector w, we see, by monotonicity, that Kv

X(w)∗CiK
v
X(w) ≥ 0. So it suffices 

to show that the range of Kv
X(w) = (IH ⊗ (v∗Xα)α)w is dense. It is an elementary 

exercise to show that their span is dense, say by viewing the ambient setting as a kind 
of reproducing kernel Hilbert space. (See, for example, [39, Proposition 3.9].) Therefore, 
it is sufficient to show that the range is closed under taking sums. One checks that

Kv1
X1

(w1) + Kv2
X2

(w2) = Kv1⊕v2
X1⊕X2

(w1 ⊕ w2).

So, we are done. �
Theorem 4.2. Let f be a matrix monotone function whose power series converges abso-
lutely and uniformly on BC(0, 1 + ε) ⊆ S(Rd). Let Hi be the Hilbert space equipped with 
the inner product

〈α ⊗ v, β ⊗ w〉Hi
= w∗cβ∗xiαv.

Let H = ⊕Hi and Pi be the projection onto Hi. Note that

〈α ⊗ v, β ⊗ w〉H =
∑

i

w∗cβ∗xiαv.

Define A : H → H by

A(α ⊗ v) =
∑

i

(xiα) ⊗ v,

where A is defined to be zero on the orthocomplement of the span of vectors of the form 
α ⊗ v. Let Q be the map taking k ∈ K to 1 ⊗ k ∈ H. The operator A is a bounded 
self-adjoint contraction on H, and

f(Z) = a0 − Q∗(A −
∑

PiZ
−1
i )−1Q.
i
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Proof. To see that A is self-adjoint, compute

〈A(α ⊗ v), β ⊗ w〉 =
〈∑

i

xiα ⊗ v, β ⊗ w

〉

=
∑

i

〈xiα ⊗ v, β ⊗ w〉

=
∑

i

∑
j

w∗cβ∗xjxiαv

=
∑

j

∑
i

w∗cβ∗xjxiαv

=
∑

j

〈α ⊗ v, xjβ ⊗ w〉

=
〈

α ⊗ v,
∑

j

xjβ ⊗ w

〉

= 〈α ⊗ v, Aβ ⊗ w〉 .

To see that A is contractive, we will use the fact that

‖A‖ = ρ(A) = sup
‖v‖=1

sup
α

lim inf
n→∞

‖Anα ⊗ v‖1/n
.

Write

‖An(α ⊗ v)‖2 = 〈An(α ⊗ v), An(α ⊗ v)〉

=
〈

(
∑

xi)nα ⊗ v, (
∑

xi)nα ⊗ v
〉

=
∑

|ω|=2n+1

v∗cα∗ωαv

≤
∑

ω

|v∗cωv| .

The power series converges uniformly and absolutely on the ball of radius 1, and thus 
the coefficients are uniformly bounded. This implies that ρ(A) ≤ 1.

We will now establish that APj(α ⊗ v) = xiα ⊗ v.

〈APj(α ⊗ v), β ⊗ w〉 = 〈Pjα ⊗ v, Aβ ⊗ w〉

=
〈

Pj(α ⊗ v),
∑

i

xiβ ⊗ w

〉

=
∑

〈Pj(α ⊗ v), xiβ ⊗ w〉

i
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=
∑

i

w∗cβ∗xixjαv

= 〈xjα ⊗ v, β ⊗ w〉 .

We now compute the realization to see that it agrees with f .

w∗f(Z)v =
∑

α

w∗cαvZα

= w∗c1v +
∑

i

∑
α

w∗cxiαvZxiα

= w∗c1v +
∑

i

∑
α

〈Pi(α ⊗ v), 1 ⊗ w〉 Zxiα

= w∗c1v +
∑

i

∑
α

〈Pi(AP )α(1 ⊗ v), 1 ⊗ w〉 Zxiα

= w∗c1v −
〈

(A −
∑

i

PiZ
−1
i )−1(1 ⊗ v), (1 ⊗ w)

〉
H

= w∗c1v − w∗Q∗(A −
∑

i

PiZ
−1
i )−1Qv. �

We note that, in general, noncommutative Pick functions have representations of the 
form a0 − E((A − Z−1)−1) whenever they are analytic on a neighborhood of 0 and R1 is 
a C∗-algebra, where E is a completely positive map [47,40]. The theory of such “Cauchy 
transforms” is well understood in the context of free probability [8,48].

4.2. Convexity

Lemma 4.3. Suppose that f is analytic on BC(0, 1) ⊆ S(Rd) and that f is matrix convex. 
The block matrix (with operator entries),

C = [cβ∗α]α,β ≥ 0

where α, β range over all monomials of degree greater than or equal to 1.

Proof. Note

D2f(X)[H] = 2
∑

α,β,γ,i,j

cβ∗xiγxjαXβ∗
HiX

γHjXα ≥ 0.

Under the substitution

X �→
[

X 0 ]
, H �→

[
0 Xv

∗

]
,
0 0 (Xv) 0
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and taking the 1, 1 entry of the above relation, we see that
∑

α,β,i,j

cβ∗xixjαXβ∗xivv∗Xxjα ≥ 0.

Therefore, considering the function Kv
X(w) = (IK ⊗ (v∗Xα)α)w we see again that the 

range is dense, so we are done. �
The following theorem is related to the “butterfly realization” for noncommutative 

rational functions in [21].

Theorem 4.4. Let f be a matrix convex function whose power series converges absolutely 
and uniformly on BC(0, 1 +ε) ⊆ S(Rd). Let H be a Hilbert space equipped with the inner 
product

〈α ⊗ v, β ⊗ w〉 = w∗cβ∗αv

where α, β range over all monomials with degree greater than or equal to 1 and v, w range 
over K. Define the self-adjoint operators Ti by

Ti(α ⊗ v) = xiα ⊗ v.

Let Qi be the map taking v ∈ K to xi ⊗ v ∈ H. The operators Ti are contractions and

f(Z) = a0 + L(Z) + (
∑

QiZ
∗
i )∗(I −

∑
TiZi)−1(

∑
QiZi)

for some choice of a0 and continuous linear function L.

Proof. That the realization formula is equivalent to the function when the Ti are con-
tractions is a standard algebraic manipulation. The nontrivial part of the proof, then, is 
to show that the Ti are contractive.

We proceed by a spectral radius argument as before.

‖T n
i (α ⊗ v)‖2 = 〈T n

i α ⊗ v, T n
i α ⊗ v〉

= v∗cα∗x2n
i αv.

The coefficients must be uniformly bounded, as the power series converges uniformly and 
absolutely on the ball of radius 1. This completes the proof. �

We remark that the construction of the realization is essentially canonical, and there-
fore must have maximal domain, (as opposed to our a priori assumption of a ball) as 
the realization at any point can be used to determine the realization at any other point 
on connected sets. (That is, a matrix convex function with a realization as above defined 
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on a convex domain G must have I −
∑

TiZi positive for all Z ∈ G.) Moreover, by a 
limiting argument, a matrix convex function on a domain containing 0 over a general 
operator system should be of the form:

f(Z) = a0 + L(Z) + Λ(Z∗)∗(I − Γ(Z))−1Λ(Z)

where Λ : R1 → B(K, H) and Γ : R1 → B(H) are linear maps. The boundedness of Λ
follows from the continuity of the second derivative, the continuity of Γ follows from the 
fact that the spectral radius is bounded, essentially the same argument as before. That 
is, we have the following corollary.

Corollary 4.5 (A noncommutative Kraus theorem). Let R1, R2 be real operator systems. 
Let G ⊆ S(R1) be a convex domain. Let f : G → S(R2) be a locally bounded free function 
on a convex domain G ⊆ S(R1) with B ∈ G1. The function f is matrix convex if and 
only if

f(Z + B) = a0 + L(Z) + Λ(Z∗)∗(I − Γ(Z))−1Λ(Z)

where H is a Hilbert space, L : R1 → B(K), Λ : R1 → B(K, H) and Γ : R1 → B(H) are 
completely bounded linear maps, where L and Γ are self-adjoint valued.

Proof. Without loss of generality B = 0, f(0) = 0 and Df(0) = 0. Moreover, we assume 
f has a uniformly convergent homogeneous power series on the unit ball, which exists 
by real analyticity.

Let R denote the collection of finite dimensional operator system subspaces of R1.
Fix R ∈ R. Pick a basis r1, . . . , rn. Consider the induced function g(X) = f(

∑
riXi). 

We see that

g(Z) = (
∑

QiZ
∗
i )∗(I −

∑
TiZi)−1(

∑
QiZi).

Call the representing Hilbert space HR. Now, f |R(Z) = ΛR(Z∗)(I − ΓR(Z))−1ΛR(Z). 
Taking the second derivative, we get

ΛR(H∗)∗(I − ΓR(Z))−1ΛR(H)+

ΛR(Z∗)∗(I − ΓR(Z))−1ΓR(H)(I − ΓR(Z))−1ΛR(H)+

ΛR(H∗)∗(I − ΓR(Z))−1ΓR(H)(I − ΓR(Z))−1ΛR(Z)+

ΛR(Z∗)∗(I − ΓR(Z))−1ΓR(H)(I − ΓR(Z))−1ΓR(H)(I − ΓR(Z))−1ΛR(Z).

Under the substitution

Z �→
[ 0 0 ]

, H �→
[ 0 H

]
,
0 Z H 0
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taking the 1, 1 entry we get

ΛR(H)(I − ΓR(Z))−1ΛR(H).

The geometric expansion of this formula converges uniformly and absolutely. Therefore 
for contractions, ΓR(Z)nΛR(H) is eventually contractive. Now, taking Z to be a strictly 
block upper triangular matrix with Z1, . . . , Zn ∈ BR(0, 1) on the upper diagonal, we 
see that ΓR(Z1)ΓR(Z2) . . . ΓR(Zn)ΛR(H) must be contractive for n large enough, and 
therefore the joint spectral radius of the set {ΓR(Z)|Z ∈ BR(0, 1)m} is less than or equal 
to 1 for each m.

By canonicity of the construction, if R ⊆ S, HR embeds into HS (for example we 
could have extended the basis we chose for R in our original construction to a basis for 
S.) Moreover ΛS|R = ΛR under this identification and ΓS|R = ΓR ⊕ JSR for some linear 
map JSR. So, ordering the sets in R under inclusion, we can take a direct limit to obtain 
Γ, Λ as desired. �
5. Löwner and Kraus type continuation theorems

Theorem 5.1. Let R1, R2 be real operator systems. Let G ⊆ S(R1) be a convex domain. A 
free function f : G → S(R2) is matrix monotone if and only if it analytically continues 
to the upper half plane.

Proof. We essentially follow [36], except we need not appeal to the perhaps technically 
daunting Agler, McCarthy, and Young theorem [3]. Note that it is enough to show that 
f analytically continues at each level to a Pick function – that is an analytic function 
from Π(R1)1 to Π(R2)1 - and therefore, by coordinatization, it is enough to show that 
this occurs at level 1. Moreover, it suffices to consider the case of finite dimensional R1. 
Moreover, we can assume 0 is in G.

The function f will analytically continue to a Pick function if and only if λ ◦f analyt-
ically continues to a Pick function for all positive linear functionals λ on R2. Therefore, 
it is enough to consider the case where R2 is one dimensional.

Pick Z ∈ Π(R1)1. Pick H1, . . . , Hn > 0 such that there is a point (z1, . . . , zn) ∈ Π(Rn)1
with Z =

∑
Hizi and the Hi span R1. Now, f(

∑
Hixi) is a matrix monotone function of 

x and therefore analytically continues to the upper half plane Π(Rn)1 by the realization 
formula in Theorem 4.2, which pulls back to Π(R1)1. (Note, as we choose additional Hi, 
we exhaust more and more of Π(R1)1.) �
Theorem 5.2. Let R1, R2 be real operator systems. Let G ⊆ S(R1) be a convex domain. If 
a free function f : G → S(R2) is matrix convex and locally bounded then f analytically 
continues to the tube

T (G) = {X + iY |X ∈ G and Y = Y ∗}.
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Proof. Let Z ∈ T (G). Without loss of generality, Z ∈ T (G)1. We will show that f is 
bounded on a noncommutative ball around Z.

First, write Z = X + iY . Without loss of generality, X = 0 and f is bounded and 
analytic on BC(0, 1 +ε). Pick W ∈ BC(0, 1). By the realization formula in Corollary 4.5,

f(Z) = a0 + L(Z) + Λ(Z∗)∗(I − Γ(Z))−1Λ(Z).

Therefore,

‖f(Z + W )‖ ≤ ‖a0‖ + ‖L‖ ‖Z + W‖ + 1
ε

‖Λ‖2 ‖Z + W‖2
.

This shows that f analytically continues to a neighborhood of Z, which establishes the 
claim. �
6. Appendix: the principle of uniform boundedness for closed cones

The following is a variant of the principle of uniform boundedness that works for 
closed cones instead of an entire Banach space.

Theorem 6.1. Let X be a Banach space. Let C be a closed cone. Let T be a collection of 
bounded linear operators on X. If

sup
T ∈T

‖Tc‖ < ∞

for every c ∈ C, then, there exists a constant K such that

‖Tc‖ ≤ K‖c‖

for every T ∈ T and c ∈ C

Proof. The proof is essentially the same as the classical principle of uniform boundedness.
Let

Cn = {c ∈ C| sup
T ∈T

‖Tc‖ ≤ n}.

Note each Cn is closed. Note that 
⋃

n∈N Cn = C. Therefore, by the Baire category theorem, 
there exists an N such that CN has nonempty interior. Thus, there is some B(c0, ε) ∩C ⊆
CN . If ‖c‖ = 1, we have

‖Tc‖ = 1
ε

‖T (c0 + εc) − Tc0‖

≤ 1‖T (c0 + εc)‖ + 1‖Tc0‖

ε ε
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≤ 2n

ε
.

Therefore, ‖Tc‖ ≤ 2n
ε ‖c‖. �

We use the following corollary for an operator system R which arises from applying 
the previous theorem with C the set of positive linear functionals and viewing a set 
X ⊆ R as linear functionals on linear functionals by double duality.

Corollary 6.2. Let R be a operator system. Let X ⊆ R. If

sup
X∈X

|λ(X)| < ∞

for every positive linear functional λ, then the set X is bounded.
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