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1. Introduction

There is no royal road to Léwner’s theorem in one variable. (Barry Simon counts 11,
or perhaps 12, proofs of the one variable theorem, none of which are regarded as trivial
[43]. Thorough treatments are given in [12,17].) However, in this manuscript we give a
royal road to the multi-variable Loéwner theorem in noncommutative function theory: to
bootstrap from the one variable Léwner theorem itself. The purpose of the present quest
is to give a general regime for turning one variable theorems in the intersection of classical
complex analysis and operator theory into theorems in multiple noncommuting variables
using a so-called “royal road theorem” built on the absolute and supreme powers of sev-
eral complex variables and convexity. We use this “royal road” to prove the analogues
of the celebrated theorems of Lowner [26] and Kraus [28] in the multivariable setting as
mere examples of a very general analytic technique. (The multivariable Lowner theorem
has been established in many settings. In commuting variables, see [3,37]. In noncom-
muting variables, see [34,39], culminating in essentially the most general framework in
[36], which we reprove here using the “royal road” as a shortcut. Convexity theorems are
somewhat less generally developed [18,19,22,24,23,20,34].)

Matthew Kennedy gave a talk at the Fields Institute in June of 2019 on recent work
with Kenneth Davidson on noncommutative Choquet theory [16]. Prominent in the the-
ory was the role of the matrix convex function. The merit of matrix convex functions
was appreciated essentially on the level of classically convex functions. However, as there
is a great gulf between positive and completely positive maps, so too should there be
between convex and matrix convex functions, as was first discovered by Kraus [28]. In
light of the recent progress with respect to the related topic of matrix monotonicity, it
seemed clear here that automatic analyticity should hold, and for reasons arising more
from complex analysis and the one variable theorem than an artisanal approach starting
from scratch. This provided additional motivation for the current endeavor.

1.1. The classical theorems
Let f: (a,b) = R be a function. We say that f is matrix monotone if
A< B= f(A) < f(B)

for all A, B self-adjoint of the same size with spectrum in (a,b), where A < B means
that B — A is positive semidefinite. (The function f is evaluated via the matrix func-
tional calculus.) This evidently innocuous condition is in fact very rigid, as is codified in
Loéwner’s theorem.

Theorem 1.1 (Lowner 1934). Let f : (a,b) — R. f is matriz monotone if and only if f is
real analytic on (a,b) and analytically continues to the upper half plane in C as a map
into the closed upper half plane.
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I are all matrix monotone

For example, the functions z, logx, \/x, tanz, and —z~
on intervals in their domains, but e®, 22, and secz are not. Note that matrix mono-
tonicity is a geometric property; matrix monotonicity on a single interval implies matrix
monotonicity on any interval where the function is real-valued in the real domain for
analytic functions. Lowner’s theorem arises in many contexts, including mathematical
physics [46,45]. Other applications are found, for example, in quantum data processing
[4], wireless communications [25,14], matrix means [6] and systems theoretic interpola-
tion problems [5,33].

Nevanlinna [32,30] showed that all such functions on the unit interval are of the form

J=at / T 0
[~1,1]

for a € R and p a finite measure supported on [—1,1]. The Nevanlinna representation
tells us exactly how to analytically continue a function to the upper half plane.
Let f: (a,b) — R be a function. We say that f is matrix convex if

F(A52) < M)

for all A, B self-adjoint with spectrum in (a, b). Lowner’s student Kraus proved the fol-
lowing theorem, which is ostensibly more technical, but demonstrates the same essential
rigidity.

Theorem 1.2 (Kraus 1937). Let f : (—1,1) = R. f is matriz convex if and only if

2

1+t

f(z) =a+bxr+ / du(t)

[7171]

where a,b € R and p is a finite measure supported on [—1,1]. Note that all such functions
analytically continue to the upper half plane.

For example, x2 is matrix convex, but z* is not.
1.2. Free noncommutative function theory

Let R be a real topological vector space. Define the matrix universe over R, denoted

by M(R), b

neN



4 J.E. Pascoe, R. Tully-Doyle / Advances in Mathematics 407 (2022) 108548

where M,,(C) is the space of n by n matrices over C. The space M(R) is endowed with
the disjoint union topology. Given V' C M(R), denote by V,, the set VM, (C) ® R.
Define the Hermitian matrix universe over R, denoted by S(R), to be

S(R) = |J S.(C) @r R,

neN

where S, (C) denotes the space of n by n Hermitian matrices.
A set G C M(R) is defined to be a (free) domain if it satisfies the following axioms:

() X eGrandY € Gy, then X @Y € Gpam,
(2) X e G, =U*XU € G, for all n by n unitaries U over C
(3) G, is open for all n.

Let G C M(R;) be a free domain. We say a function f : G — M(Ry) is a free
function if

(1) flg, maps into M(Rz2)n,
(2) f(X@Y)=f(X)a f(Y),
(3) U*f(X)U = f(U*XU) for all n by n unitary U over C.

(We note that whenever f is complex analytic, it satisfies a stronger version of the unitary
relation - namely, it preserves arbitrary similarities, and therefore agrees with the notion
of a free function appearing in other contexts [27,39,44].)

If R is a real operator system — that is, a real subspace containing 1 of self-adjoint
elements in a C*-algebra - then for each n there is a natural ordering on S,,(C)® R, since
matrices over R are elements of a larger C*-algebra. (The Choi-Effros Theorem [15] gives
that any abstract Archimedean matrix ordering in a very general sense is equivalent to
this situation. That is, this is the most general setup.) Given A, B € S,,(C) ® R, we say
A < B if B — A is positive semidefinite as an element of S, (C) ® R.

Let R be a complex operator system, a complex subspace of a C*-algebra containing
1 which is closed under involution. Let Ry, be the set of self-adjoint elements in R. We
overload the notation for S(R) and M(R) by defining

S(R) = S(Rsq), M(R) := M(Rsa).

Given R; and Rj real operator systems and a domain G C S(R;), we say that a free
function f : G — S(R2) is matrix monotone if

A< B= f(A) < f(B)

whenever A and B have the same size. We say a domain G C S(R;) is convex if each
G, is convex. For a convex domain G C S(R;), say that a free function f : G — S(Rz2)
is matrix convex if
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f<AJ2rB> < f(A);rf(B)

for all pairs A, B € G of the same size.

Define the upper half plane II(R) = {X € M(R)|[Im X > 0}, where Im X = (X —
X*)/2i, and A > B if the difference is strictly positive definite — that is, the difference
is self-adjoint and its spectrum is a subset of (0,00). For a convex domain G C S(R),
define the tube over G to be the set

T(G)={X+i¥|XeGandY =Y"}.

In several commuting variables, generalizations of Lowner’s theorem appear in [3,37].
The proofs are technical and involved, and rely heavily on commutative Hilbert space
operator theoretic techniques arising from applications of transfer function realization
theory from systems engineering to several complex variables as originated in [1]. The
difficulty is a symptom of the fact that the variety of commuting tuples of matrices is full
of holes — that is, it is not convex and, thus, unnatural for understanding monotonicity.
By contrast, the machinery of several complex variables is apparently much more natural
in the noncommutative setting. Noncommutative analogues of Lowner’s theorem have
previously been established in [39,34]. The culmination of this work appears in [36],
where the following theorem was proved in perhaps the highest level of generality that
one should expect (although that proof relies on the commuting theorem in [3] and is
thus “unnatural”).

Theorem 1.3 (Theorem 1.2, Pascoe [36]). Let Ry and Ry be closed real operator systems.
Let G C S(Ry) be a convex free domain. A function f : G — S(R2) is matriz monotone

if and only if f is real analytic on G and analytically continues to II(R1) as a map into
TI(Ry).

We give a new proof of this result as Theorem 5.1 using the “royal road”.

We note two important examples of matrix monotone functions. The Schur comple-
ment X1 —X12X2}1X21 gives a matrix monotone function on the set D C §(S2(C)), the
space of block 2 by 2 self-adjoint matrices, where X{; is defined [31]. Another class of
examples is the matrix geometric means, originating in mathematical physics [41], which
in two variables is given by the formula X11/2(Xl_1/2XQX1_1/2)1/2)(11/2 defined on pairs
of positive matrices in S(R?) [29,13,7].

Analogues of Kraus’s theorem are less general. One example is the so-called “butterfly
realization” developed in [21] for noncommutative rational functions, which captures the
essence of the classical case.

Theorem 1.4 (Theorem 3.3, Helton, McCullough, Vinnikov [21]). Let v : G C S(R?) —
S(R) denote a noncommutative rational function on a domain G containing 0. If r is
matriz convex near 0, then r has a realization of the form
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r(X) =70+ LX)+ AX)*(1 -T(X))tA(X)

for a scalar 1o, a real linear function L, A affine linear, and T'(X) = Y A; ® X; for
self-adjoint matrices A;.

We prove the butterfly realization holds for general matrix convex functions in Corol-
lary 4.5. Our butterfly type realization considerably extends and simplifies the original
total art in [21].

1.3. The royal road theorem

The main result of the paper is contained in Section 3. It establishes that any class
of real free noncommutative functions which consist of locally bounded functions which
are analytic on one-dimensional slices in a controlled way and closed under some basic
algebraic and analytic procedures are automatically analytic. We call such a class of
functions a sovereign class. The class of matrix monotone functions and the class of
matrix convex functions are each sovereign classes. Once we know such functions are real
analytic, algebraic and functional analytic techniques allow us to obtain nice formulas
for these functions. The content of our main theorem, Theorem 3.4, states the following:

“Any function in a sovereign class is real analytic”.

1.4. Structure of the paper

In Section 2, we discuss analytic continuation in the operator system setting. In Sec-
tion 3, we describe the structure of the domain and function classes under consideration,
the so-called sovereign functions, and show that matrix monotone and matrix convex
functions are examples. We also prove the “royal road” theorem, the main engine of the
machine under construction, which asserts that sovereign functions are automatically
real analytic. In Section 4, we prove analogues of the classical Léwner and Kraus real-
izations. In Section 5, we show that, in analogy with the classical case, we can deduce
analytic continuations from the Léwner and Kraus realizations using the machinery of
automatic analyticity in classes of sovereign functions established in Section 3.

2. Prelude: the quantitative wedge-of-the-edge theorem

One of the key notions in the classical and several variable generalizations of the
Lowner and Kraus theorems is that of analytic continuation - that is, typically we are
interested in extending functions from a “real” domain to some subset of a “complex”
set. The edge-of-the-wedge theorem (proven by Bogoliubov and treated by Rudin in a
series of lectures [42]) is useful in showing that such a continuation exists. Extremely flex-
ible generalizations of this result to several variables, the so-called “wedge-of-the-edge”
theorems, have appeared in [38,35]. Rather than considering the analytic continuation
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of functions defined on a multi-variate upper half plane (the wedge) through the real
boundary (the edge) as in the edge-of-the-wedge theorem, the wedge-of-the-edge theo-
rem concerns analytic continuation within the edge. The key lemma from [38] follows,
which we will need to generate quantitative bounds. In this section, we prove a version
of the wedge-of-the-edge theorem in the operator system setting.

Lemma 2.1 (Lemma 2.3, Pascoe [38]). Fiz n. Fiz p > 0. There are constants J, K > 0
such that for every measurable S C [0,1]" of measure greater than p, and homogeneous
polynomial h of degree d in n variables which is bounded by 1 on S, |h(z)| < KJ4||z||%.

Such an assertion seems foolish, but it is essentially the product of Lagrange interpo-
lation, blind faith, and elbow grease.

Let Ry, Ry be vector spaces. Define a (noncommutative) generalized homogeneous
polynomial of degree d to be a (free) function on R; such that the restriction to any
finite dimensional space is an Rs-valued (noncommutative) homogeneous polynomial of
degree d.

Lemma 2.2. There are universal constants L, K > 0 satisfying the following. Let R be
an operator system. Let W be the set of positive contractions in R (S(R) in the non-
commutative case). Let h be a (noncommutative) generalized homogeneous polynomial
of degree d which is norm bounded by 1 on W. Then, for every Z € R, (M(R) in the
noncommutative case), ||h(Z)|| < KL||Z|".

Proof. It is enough to prove the claim when || Z|| = 1, as both sides are homogeneous
of degree d. Write Z = A — B + iC — iD for positive A, B,C, D, where the norms
of A,B,C,D are less than 2||Z||. The function of four variables f(z1,z2,23,24) =
h((z1A + 29B + x3C + x4D)/8) satisfies the preceding lemma when composed with
any norm 1 linear functional for S = [0, 1], so, by the Hahn-Banach theorem, ||h(2Z)|| =
| £(8, 8,48, —i8)|| < KJI8¢. O

Let X € M(R),. Define the complex ball around X of radius ¢, denoted B¢ (X, ¢),
to be

Be(X,e) = {Y € M(R)pn | X Y| <&}

Let X € S(R)y. Define the real ball around X of radius ¢, denoted Br(X,¢) to be

Br(X,e) = | J{Y € S(R)mal || X®™ - Y| < £}

The following corollary follows immediately from the preceding lemma.

Corollary 2.3 (The quantitative wedge-of-the-edge theorem). There are universal con-
stants 6, > 0 satisfying the following. Let R be an operator system. Let W be the set of



8 J.E. Pascoe, R. Tully-Doyle / Advances in Mathematics 407 (2022) 108548

positive contractions in R (S(R) in the noncommutative case). Let hg be a sequence of
(noncommutative) generalized homogeneous polynomials such that hy has degree d and
Yoo lha(X)|] is bounded by 1 on W. The formula > o ha(Z) defines a (noncommu-
tative) analytic function on B (0,06) which is bounded by €.

3. Automatic analyticity in sovereign classes

Let G C M(R). We define the coordinatization of G, denoted G™, to be the natural
inclusion of (Gun)5e_q into M(R ® M, (C)). Given a free function f defined on G, we
define the coordinatization of f, denoted f(™), to be the natural map on G defined by
F(X) = f(X).

Let a dominion X be a class of domains satisfying:

Domains: For each G € N, there is an operator system R such that G C S(R). (Note
that we want to allow X to be a proper class and contain domains over all operator
systems so that we can prove theorems for functions defined over all operator systems
simultaneously.)

Translation invariance: For all G € X such that G C S(R) for some operator system R
andre R, G+relX.

Closure under intersection: For all G, H € Y such that G, H C S(R) for some operator
system R, GNH € .

Closure under coordinatization: If G € X, then G(™ e |X.

Locality: Let G € . For any X € Gy, there is an € > 0 such that Br(X,e) C G and
Br (X,E) S M

Scale invariance: If t > 0 and G € X, tG € X.

We say that a domain G is convex if each G, is convex. An example of a dominion is
the class of all open convex domains, which we denote Conv.

A sovereign class is a class of functions § on domains contained in a dominion [X
satisfying:

Functions: For every f € ¢, there is a G € X and an operator system R such that
f:G— M(R) is a free function. For all G € N, $(G) C F(G), where §(G) denotes
the functions in § on the domain G and F(G) denotes the class of free functions on
G.

Local boundedness: Each f € ¢ is locally bounded and measurable on finite dimen-
sional affine subspaces on each level. That is, if G C S(R), f € ¢(G), and V is a
finite dimensional vector subspace of S(R),, then flyng, is locally bounded and
measurable.

Closure under localization: If f € ¢$(G) and H C G and H € | then f|g € $(H).

Translation invariance: If f € ¢(G) then f(Z —r) € $(G + r) for every self-adjoint
rec R
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Closure under coordinatization: If f € §(G), then (") € ¢(G™).

Convexity: The set of functions ¢(G) taking values in S(R) is convex and closed under
pointwise weak limits. (Note that this implies closure under convolution when R is
finite dimensional in combination with the property of translation invariance.)

One-variable knowledge: Let f € $(G). Let A, B € G;. If A < B then

fanty = £ (L4 B ) ci<isy

analytically continues to the open unit disk D as a function of ¢.
Control: There is a map v taking each pair (X, f), where f € ¢(G) for some G € X
and X € G, to a non-negative number or +oo satisfying:

(1) For each e > 0 there is a universal constant c(e) such that inf y ¢ g, (x,,), 7(X, f)
< c@)fllBr(xo.e), Whenever f is defined on all of Br(Xo,e)1. (We set
| £l B (X0.6)1 = SUPBy (xo,6), If]l- The definition here is rigged so that near any
point X there is a point with good “control”.)

(2) There is a universal positive valued function e on R satisfying the following.
Write fag(t) = >  ant™. Then

A+ B
ool < (25207 ) el -

(Note that, if the class is closed under composition with positive, norm one,
linear functionals A, and (X, A(f)) < (X, f), it is sufficient to check properties
(1) and (2) when Ry = R by the Hahn-Banach theorem.)

(3) If HC G and X € H then v(X, flu) =v(X, f).

(4) v(X, f) =~v(XEN ).

We consider two specific sovereign classes: monotone functions, and convex functions
on the dominion Conv.

We define the positive-orthant norm of the n-th derivative at X, denoted | D" f(X)]|+,
to be

ID"f(X)|l+ = sup  |[D"f(X¥™)[H]|,
| H||=1,H>0,m

where D" f(X)[H] = 4~ f(X + tH If the n-th derivative does not exist in some

i )’t:O'
positive direction, we formally set || D™ f(X)||+ = oo.

Proposition 3.1. The matriz monotone functions on domains in Conv are a sovereign
class.
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Proof. Monotone functions are functions. To see local boundedness, note that f(X + 1)
and f(X — 1) bound f(X + H) for all ||H| < 1. That is, as

X—-1<X+H<X+1,
monotonicity implies
JX -1 <f(X+H) < f(X+1).

The restriction of a monotone function to a convex set remains a monotone function.
Likewise, coordinatization preserves monotonicity as does translation. That the mono-
tone functions on a domain G taking values in S(R) are a convex set follows from the
fact that the defining inequality for monotonicity is linear.
‘We now consider one variable knowledge. Let A < B, A, B € G;. Consider the function
1—

fas(t) = F(3E A+ L B). For each positive norm one linear functional A, we have that

Ao f4p is matrix monotone, and therefore by Lowner’s theorem

No fap(t) = apt"
defines a function on a neighborhood of the closed unit disk. Define

_ Sheo 0" () fam )

A" (t) m .
Note that
a) = llim)\oA"( )
" nliso '
Therefore,
sup  [Ao A"(t)] < oo,
te[0,1]\{0}

and by the principle of uniform boundedness,

sup  ||AL(8)]] < oc.
te[0,1]\{0}

(This is not precisely the typical formulation of the principle of uniform boundedness; see
Corollary 6.2 in the Appendix.) Note that because A,, is bounded, f45 is (n — 1)-times
differentiable, and therefore we merely need to show the convergence of the series »  a,t",
where a,, = f("(0)/n!. Now, it suffices to show that the sequence (a,,)3%, is bounded. If
not, there will be a positive linear functional such that (A(a,))S2, is unbounded, again
by the principle of uniform boundedness, which contradicts the convergence of the series
for Ao f45(t). Therefore, we obtain one variable knowledge.
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Let

V(X ) = IO+ IIDFOI -

We will show that - is a control function for the class of matrix monotone functions. Note
that if A is a positive norm one linear functional, then A(f) is again matrix monotone.
(Namely, A is completely positive.) So without loss of generality, it suffices to consider
f: G — S(R). Fix ¢ > 0. Suppose that Bgr(X,¢) is contained in the domain of f.
Without loss of generality, 0 = X. Fix H > 0 in Br(0,¢). So f(zH) has a Nevanlinna
type representation given by

z
tz+1 du(t)

f(zH) = ao + /

[_111]
=ag + zZ/tlzl du(t).
i=0

Therefore, f(zH) = ag + Y., anz™ where a, = [t" *du(t) when n > 1. Note that
lan| < [1t]" 1 du(t) < [ du(t) = ar for n > 1. Moreover,

f(zH) — f(—zH) = 2z2/z2it2i du.
i=0
This shows that

IDfO)H] < 1/l g 0,6 -

Therefore,

1
DO < 2 IFll e 0,6 »

and thus (X, f) is bounded by (1+ 1) 11l g (0,)- That is, in the definition of control
function, c(¢) = 1 + 1. For this class, taking the infimum in property (1) is redundant.
Property (2) follows from the fact that |a,| < a1 in the above argument after a change
of variables, where the scaling factor is captured by e. The last control two properties
follow from the definition of v. O

Proposition 3.2. The locally bounded matriz convex functions on domains in Conv are a
sovereign class.

Proof. Convex functions are functions. Note that we have assumed local boundedness.
(This assumption cannot be dropped as all linear functions are convex, including the
unbounded ones.) The restriction of a convex function to a subdomain remains convex.
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The coordinatization of a convex function is convex, as is a translation. Convexity fol-
lows from the fact that the defining inequality for matrix convexity is linear. By the
Kraus theorem, these functions satisfy one variable knowledge via an argument similar
to Proposition 3.1.

Let

VX, ) = X))+ IDFX) + [ D2 FEO] -

Note that if A is a positive norm one linear functional, then A(f) is again convex. (Namely,
A is completely positive.) So without loss of generality, it suffices to consider f : G —
S(R). We will show that + is a control function for the class of matrix convex functions.
Fix € > 0. Suppose that Bgr(X,e) is contained in the domain of f. Without loss of
generality, 0 = X. Fix H in Br(0, ). The function f(zH) has a Kraus type representation

2

f(zH) =a+bz+ / du(t).

[_111]

tz+1

Therefore,

f(zH):aererzQi / t" 2" du(t).

n:O[iLl]

Writing f(zH) = ) a;z;, we have that a, = f[fl,l] t"=2dpu(t) for n > 2. Note that
lan| < []t]"2du(t) < Jio1y du(t) = az for n > 2.
We have

fGH) + f(—2H) = 2f(0) = 22 i / 1 dp().
=
This shows that
D2 FO)H]|| < 411 £l 5y (0.6 -
Therefore,
1025 0)], < 25 11l g 00

Set M = || fll gy (0.¢)-
Then,

[bz] — <

o0
§ anzn
n=2

o0
bz + Z anz"
n=2
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= [f(zH) = £(0)]
<2M,

which gives

= 2M
|b| S zZan+gz" +W
n=0
oo
2M
< n —_—
< zZagz + |z|
n=0
z 9 2M
< O H -
< |7 | [P roE)| +
< z +2M
“|1-z |2|

Pick z = % Then
[Df(O)[H]|l = [|b]] < 8M.

Therefore,

1
IDFO)], < Z16M.

Thus, combining these estimates, v is a control function with the remaining properties
following similarly to the previous argument in Proposition 3.1. O

We note that any matrix convex function on a finite dimensional space will be con-
tinuous and thus locally bounded. Some sort of topological restriction, such as local
boundedness, is necessary, as arbitrary linear maps on any operator system are not nec-
essarily bounded but are definitely convex, as all linear functions are convex.

Lemma 3.3. Any function in a sovereign class is real analytic at each level on each finite
dimensional affine subspace.

Proof. Without loss of generality, we will assume R; is finite dimensional. Fix X € G,,.
Without loss of generality, 0 = X € G by closure under coordinatization and translation.
Also without loss of generality, assume that Bg(X,2) C G by locality of the dominion.
Let ¢ be a compactly supported positive smooth function on Ry such that le o(r)dr = 1.
Define ¢, (x) = %(p (£x) where m = dim R;. Consider
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Fal¥) = (e DY) = [ SO = 1)ialr)ebr
Ry

As a sovereign class of functions is closed under convolution, for any fixed € > 0, the
function f, will well defined on the domain Bg(X,2 — ¢) for small enough « and so it
will again be in the class on that domain. Let § < 1 be the constant occurring in the
quantitative wedge-of-the-edge theorem. Note that

lm [ follBex.6/2)0 < 1 lBa(x0):-

Therefore, for a sufficiently small,

| follBr(x.5/2), < 2l fllBg(x.5),-

For small enough «, choose Y € Br(X,d/2); such that

VY, fa) <2c(6/2) || fallBr(x.,6/2), < 4c(0/2)[f B (x.6),

(Such a Y exists by control property (1)). Note that fu|pg(x,2—c), is smooth at ¥ and
by the one variable knowledge fo(Y + Z) = Y37, ha(Z) on positive contractions in Ry,
where each hg is a homogenous polynomial of degree d. By the control properties, we
see that Y07 [|ha(Z)|| is bounded by some M on the positive contractions as we have
uniform bounds on the Taylor coefficients by control property (2), and therefore by the
quantitative wedge-of-the-edge theorem, f, continues to a function bounded by Me on
B¢ (Y, 6)1. Therefore, f extends analytically and is bounded by Me on B¢ (Y, )1 by a
normal families argument. As B¢ (X,6/2)1 € Bc(Y, )1, we are done. O

Let G C S(R;1) be a real domain. Let f : G — M(Rs). Fix X € G,,. We say that
a free function f is real analytic at X if there is a § > 0 such that for any choice of
Hy,..., Hy, the induced free function has a power series expansion

f(X + ZHltl) = Zaata for all HZHiti

That is, the function is real analytic on finite dimensional slices. Equivalently, f (")(X +

< 4.

Y) =3 h;(Y) is convergent on Bc(X,d) for some noncommutative generalized homo-
geneous polynomials h;.

Theorem 3.4 (The royal road theorem). Any function in a sovereign class is real analytic.

Proof. Fix X € G,,. Without loss of generality, 0 = X € G; by closure under coordi-
natization and translation. Also without loss of generality, assume that Bgr(X,1) C G.
Therefore, since f is real analytic at each level by Lemma 3.3, f(X) = > hq(X) for
some noncommutative homogenous generalized polynomials hy on the set of positive
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contractions in S(R;). Moreover, the series is bounded on smaller balls by the control
properties (2) and (4), as we have uniform bounds on the Taylor coefficients on each
positively oriented one dimensional slice. Thus, by the noncommutative quantitative
wedge-of-the-edge theorem, the function f must be bounded and analytic on B¢ (X, )
for some ¢ > 0. This establishes the claim. O

4. Realizations and the Kraus theorem

We adopt the (by now standard) Helton convention of suppressing tensor notation for
products of operators A and noncommutative indeterminants x;; that is, we write Ax;
for A ® x;.

In the following section, we will usually assume that Ry = R? and always that R
is contained in some concrete B(K). We will frequently use free noncommutative power
series of the form

f(Z) = anzav

where « runs over all words in the formal noncommuting letters 1, ..., x4, where the
empty word will be denoted by 1. (Words are the natural multi-indices in the noncom-
mutative setting.) Various series representations can be derived via model-realization
theory [27,9,10,2,11] with many results for the homogenous expansion.

4.1. Monotonicity

The following lemma is essentially [39, Theorem 4.16] lifted to the multi-dimensional
output setting. The lemma establishes the positivity of certain infinite block matrices
assembled from the coefficients of our function, which will be later used in a Gelfand-
Naimark-Segal type construction to obtain our representation formulae. Define the ;-
localizing matrices, denoted C;, via the following formula:

Ci = [Cﬂ*xia]a,g

where «, 8 range over all monomials. Note that in one variable, the monomials can be
indexed by the non-negative integers, and the single localizing matrix is actually a Han-
kel matrix whose positivity was established in Nevanlinna’s solution to the Hamburger
moment problem [32].

Lemma 4.1. Suppose that f(X) = . caX® is analytic on Bc(0,1) C S(R?) and that
f is matriz monotone. For each i = 1,...,d, the x;-localizing matrices (with operator
entries) satisfy

Ci = [Cﬂ*wia]a,g 20
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where a, B range over all monomials.
Proof. Note

Df(X)[H] = Z CproaX® H; X

a,B,i

We can write

DF(X)[H] = (Ix ® Kx)*(C; © Hy)(Ix ® Kx)

(2

where Ky is the vector-valued free function (X®),. Taking H; = vv*, and the rest
zero then defining a vector-valued function K% (w) = (Ix @ (v*X%)q)w for v, X and
compatible vector w, we see, by monotonicity, that K% (w)*C; K% (w) > 0. So it suffices
to show that the range of K% (w) = (Iy ® (v*X%))w is dense. It is an elementary
exercise to show that their span is dense, say by viewing the ambient setting as a kind
of reproducing kernel Hilbert space. (See, for example, [39, Proposition 3.9].) Therefore,
it is sufficient to show that the range is closed under taking sums. One checks that

K3 () + K3, (w2) = KRS, (1 © )
So, we are done. O

Theorem 4.2. Let f be a matriz monotone function whose power series converges abso-
lutely and uniformly on Bc(0,1+¢) C S(R?). Let H; be the Hilbert space equipped with
the inner product

<a & v, ﬁ & w>’}-[1 = w*cﬁ*xioﬂ)'
Let H = &H,; and P; be the projection onto H,;. Note that

<a ®v,B® w>7—[ = Zw*cﬁ*xiav~

?

Define A:H — H by
Ala®v) = Z(mia) ® v,

where A is defined to be zero on the orthocomplement of the span of vectors of the form
a®v. Let @ be the map taking k € K to 1 ® k € H. The operator A is a bounded
self-adjoint contraction on H, and

f(Z)=a0—Q* (A=) PZ")'Q
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Proof. To see that A is self-adjoint, compute

(Ala @), B w) = <sza®v /3®w>
:Z@ia@v,ﬁ@w)
S
A

:Z<a®v,x]ﬂ®w>
J

= <a®v,2xj5®w>
J
=(a®v, AR w).
To see that A is contractive, we will use the fact that
1/n

|A|l = p(A) = sup supliminf |A"a @ v|

"U‘:l o n—o0

Write
A" (0 @ )| = (A™(@ ® v), A" (@ ® v))
= <(Z ) "a® v, (Z z)"a® v>
= Z v Corwal

|w|=2n+1

< Z [v*e,v].
w

The power series converges uniformly and absolutely on the ball of radius 1, and thus
the coeflicients are uniformly bounded. This implies that p(A) < 1.
We will now establish that AP;(a ® v) = z;ja ® v.

(APj(a®v), B ®@w) = (Pja® v, Af ® w)

< (o ®v) leﬂ®w>

= (@), z:6 @ w)
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= Zw*%*zimﬂv
i
= (z;a®v,fRQw).

We now compute the realization to see that it agrees with f.
Z)v = Zw*cavZo‘
w*crv + Z Z Wy a0
wclv—i—zz (@), 1l ®w) 27
wev+ Y Y (P(AP)*(1®v),1 @ w) Z*
i«
—w*clv<A ZPZ M ®w), (1®w)>

=wciv —w'Q*(A— ZHZZI)_lQU- O

H

We note that, in general, noncommutative Pick functions have representations of the
form ag — E((A— Z~1)~1) whenever they are analytic on a neighborhood of 0 and R; is
a C*-algebra, where F is a completely positive map [47,40]. The theory of such “Cauchy
transforms” is well understood in the context of free probability [8,48].

4.2. Converzity

Lemma 4.3. Suppose that f is analytic on Bc(0,1) C S(R?) and that f is matriz convex.
The block matrix (with operator entries),

C= [Cﬁ*‘l]a,ﬁ >0
where «, B range over all monomials of degree greater than or equal to 1.
Proof. Note

D*f(X)H] =2 > cpraye,aX” HXTH;X* > 0.
a,3,7,i,j

Under the substitution
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and taking the 1,1 entry of the above relation, we see that

Z cﬂ*mwjaXﬁ*va*ija > 0.
a,B,i,j

Therefore, considering the function K% (w) = (Ix ® (v*X%),)w we see again that the
range is dense, so we are done. O

The following theorem is related to the “butterfly realization” for noncommutative
rational functions in [21].

Theorem 4.4. Let f be a matriz convezr function whose power series converges absolutely
and uniformly on Bc(0,1+¢) C S(RY). Let H be a Hilbert space equipped with the inner
product

(@0, 8@ w) =w cgrq

where a, B range over all monomials with degree greater than or equal to 1 and v, w range
over IC. Define the self-adjoint operators T; by

Ti(a®v) = 2,0 @ v.
Let Q; be the map taking v € K to x; @ v € H. The operators T; are contractions and

F(Z)=ag+ L(Z)+ (Y _QuZ) (I =Y TZ) (Y QiZ)
for some choice of ag and continuous linear function L.

Proof. That the realization formula is equivalent to the function when the T; are con-
tractions is a standard algebraic manipulation. The nontrivial part of the proof, then, is
to show that the T; are contractive.

We proceed by a spectral radius argument as before.

ITP (@@ o) = (TPa @ v, Tha @)
= V" Cara2n -

The coefficients must be uniformly bounded, as the power series converges uniformly and
absolutely on the ball of radius 1. This completes the proof. 0O

We remark that the construction of the realization is essentially canonical, and there-
fore must have maximal domain, (as opposed to our a priori assumption of a ball) as
the realization at any point can be used to determine the realization at any other point
on connected sets. (That is, a matrix convex function with a realization as above defined



20 J.E. Pascoe, R. Tully-Doyle / Advances in Mathematics 407 (2022) 108548

on a convex domain G must have I — > T;Z,; positive for all Z € G.) Moreover, by a
limiting argument, a matrix convex function on a domain containing 0 over a general
operator system should be of the form:

f(Z) = a0+ L(Z) + M(Z*)"(I - T(Z)) " A(Z)

where A : Ry — B(K,H) and I : Ry — B(H) are linear maps. The boundedness of A
follows from the continuity of the second derivative, the continuity of I" follows from the
fact that the spectral radius is bounded, essentially the same argument as before. That
is, we have the following corollary.

Corollary 4.5 (A noncommutative Kraus theorem). Let Ry, Ry be real operator systems.
Let G C S(Ry) be a convex domain. Let f : G — S(Rz2) be a locally bounded free function
on a conver domain G C S(Ry) with B € G1. The function f is matriz conver if and

only if
f(Z+B)=ao+ L(Z) + MZ*)"(I - T(Z))"'N(Z)

where H is a Hilbert space, L : Ry — B(K), A: Ry — B(K,H) and T : Ry — B(H) are
completely bounded linear maps, where L and I' are self-adjoint valued.

Proof. Without loss of generality B =0, f(0) =0 and D f(0) = 0. Moreover, we assume
f has a uniformly convergent homogeneous power series on the unit ball, which exists
by real analyticity.
Let R denote the collection of finite dimensional operator system subspaces of Rj.
Fix R € R. Pick a basis ry, ..., r,. Consider the induced function g(X) = f(3_r:X,).
We see that

9(2) =@z (1= _T:Z) " (O QiZi).

Call the representing Hilbert space Hg. Now, f|r(Z) = Ar(Z*)(I — Tr(Z)) 'ARr(2).
Taking the second derivative, we get

Ar(H*)*(I =Tgr(Z))"'Ar(H)+

AR(Z*) (I =Tr(Z))"'Cr(H)I —Tr(Z)) ' Ap(H)+

AR(H*)*(I =Tr(2)) "' Tr(H)(I - Tr(Z))" Ar(Z)+

Ar(Z*)*(I =TRr(Z))'Tr(H)(I —Tr(2))"'Tr(H)(I —Tr(Z))"'Ar(2).

Under the substitution
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taking the 1,1 entry we get
Ar(H)(I =Tr(Z))"'Ar(H).

The geometric expansion of this formula converges uniformly and absolutely. Therefore
for contractions, I'r(Z)"Ar(H) is eventually contractive. Now, taking Z to be a strictly
block upper triangular matrix with Z1,...,Z, € Bgr(0,1) on the upper diagonal, we
see that T'r(Z1)Tr(Z2)...Tr(Z,)Ar(H) must be contractive for n large enough, and
therefore the joint spectral radius of the set {I'r(Z)|Z € Br(0,1),,} is less than or equal
to 1 for each m.

By canonicity of the construction, if R C S, Hr embeds into Hg (for example we
could have extended the basis we chose for R in our original construction to a basis for
S.) Moreover Ag|g = Ag under this identification and I's|g = T'r @ Jsg for some linear
map Jsg. So, ordering the sets in R under inclusion, we can take a direct limit to obtain
I',A as desired. O

5. Lowner and Kraus type continuation theorems

Theorem 5.1. Let Ry, Ry be real operator systems. Let G C S(R1) be a conver domain. A
free function f : G — S(Rgy) is matriz monotone if and only if it analytically continues
to the upper half plane.

Proof. We essentially follow [36], except we need not appeal to the perhaps technically
daunting Agler, McCarthy, and Young theorem [3]. Note that it is enough to show that
f analytically continues at each level to a Pick function — that is an analytic function

from II(Rq)1 to II(R2), - and therefore, by coordinatization, it is enough to show that
this occurs at level 1. Moreover, it suffices to consider the case of finite dimensional R;.
Moreover, we can assume 0 is in G.

The function f will analytically continue to a Pick function if and only if Ao f analyt-
ically continues to a Pick function for all positive linear functionals A on Ry. Therefore,
it is enough to consider the case where Ry is one dimensional.

Pick Z € TI(Ry);. Pick Hy, ..., H,, > 0such that there is a point (z1, ..., z,) € II(R™),
with Z = Y H;z; and the H; span R;. Now, f(> H;x;) is a matrix monotone function of
2 and therefore analytically continues to the upper half plane II(R™); by the realization
formula in Theorem 4.2, which pulls back to II(R;);. (Note, as we choose additional H;,
we exhaust more and more of II(R;1);.) O

Theorem 5.2. Let Ry, Ry be real operator systems. Let G C S(Ry) be a convex domain. If
a free function f : G — S(Ra) s matriz convexr and locally bounded then f analytically
continues to the tube

TG)={X+Y|Xe€GandY =Y"}.
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Proof. Let Z € T(G). Without loss of generality, Z € T(G);. We will show that f is
bounded on a noncommutative ball around Z.

First, write Z = X + 4Y. Without loss of generality, X = 0 and f is bounded and
analytic on B¢ (0,1+¢). Pick W € B¢ (0, 1). By the realization formula in Corollary 4.5,
F(Z) = ay + L(Z) + MZ*)" (I - T(2))"A(Z).

Therefore,

1
1F(Z + W) < llaoll + ILI1Z + W+ Z[IAI7 12 + WP

This shows that f analytically continues to a neighborhood of Z, which establishes the
claim. 0O

6. Appendix: the principle of uniform boundedness for closed cones

The following is a variant of the principle of uniform boundedness that works for
closed cones instead of an entire Banach space.

Theorem 6.1. Let X be a Banach space. Let C be a closed cone. Let T be a collection of
bounded linear operators on X. If

sup || T¢| < o0
TeT

for every c € C, then, there exists a constant K such that
[Tc| < K]

for every T €T and ceC

Proof. The proof is essentially the same as the classical principle of uniform boundedness.
Let

Cn ={ceCClsup ||Tc| <n}.
TeT
Note each C, is closed. Note that | J,,.y Cn = C. Therefore, by the Baire category theorem,
there exists an N such that Cy has nonempty interior. Thus, there is some B(cg,e)NC C

Cn. If ||c]| = 1, we have

1
1Tl = ZIIT(co + ec) = Teol|

1 1
< g||T(Co +eo)| + g”TCoH
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2n

S_
9

Therefore, ||T¢|| < 2?”||c|| o

We use the following corollary for an operator system R which arises from applying
the previous theorem with C the set of positive linear functionals and viewing a set
X C R as linear functionals on linear functionals by double duality.

Corollary 6.2. Let R be a operator system. Let X C R. If

sup |[AMX)| < o0
Xex

for every positive linear functional A, then the set X is bounded.
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