
20
22

 IE
EE

 3
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 N
et

w
or

k
Pr

ot
oc

ol
s

(IC
N

P)
 |

 9
78

‐1
‐6

65
4‐

82
34

‐9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

N
P5

58
82

.2
02

2.
99

40
26

1

Synergy: A SmartNIC Accelerated 5G Dataplane
and Monitor for Mobility Prediction

Sourav Panda, K. K. Ramakrishnan, Laxmi N. Bhuyan
University of California, Riverside, CA

Abstract—The 5G user plane function (UPF) is a critical inter-
connection point between the data network and cellular network
infrastructure. It governs the packet processing performance of
the 5G core network. UPFs also need to be flexible to support
several key control plane operations. Existing UPFs typically run
on general-purpose CPUs, but have limited performance because
of the overheads of host-based forwarding.

We design Synergy, a novel 5G UPF running on SmartNICs
that provides high throughput and low latency. It also supports
monitoring functionality to gather critical data on user sessions
for the prediction and optimization of handovers during user
mobility. The SmartNIC UPF efficiently buffers data packets
during handover and paging events by using a two-level flow-state
access mechanism. This enables maintaining flow-state for a very
large number of flows, thus providing very low latency for control
and data planes and high throughput packet forwarding. Mobility
prediction can reduce the handover delay by pre-populating state
in the UPF and other core NFs. Synergy performs handover
predictions based on an existing recurrent neural network model.
Synergy’s mobility predictor helps us achieve 2.32× lower
average handover latency.

Buffering in the SmartNIC, rather than the host, during
paging and handover events reduces packet loss rate by at
least 2.04×. Compared to previous approaches to building pro-
grammable switch-based UPFs, Synergy speeds up control plane
operations such as handovers because of the low P4-programming
latency leveraging tight coupling between SmartNIC and host.

I. INTRODUCTION

The emergence of 5G promises high speed and low latency,
enabling a wide range of innovative applications like Internet
of Things (IoT), augmented/virtual reality, etc. At the crux of
the 5G data plane in the packet processing core of the cellular
network is the User-Plane Function (UPF) which serves as
the interconnect point between the mobile infrastructure and
the data network [1]. At the UPF, complex rules have to be
followed for forwarding and tunneling. It processes packets
belonging to different sessions with different priorities, includ-
ing the need for shaping and policing the traffic. Additionally,
the UPF must perform flow-state dependent processing, such
as when a mobile device goes idle (to save battery energy)
and the UPF has to be aware of the idle/active transitions of
individual mobile devices (also called User Equipment, or UE).
Similarly, when a UE is mobile, a handover is performed for the
UE to have its radio network association change from one
(source) base station to another (target) base station. For these
situations, the UPF has to be aware of the state of the UE
(hence the flow’s state) which potentially requires the UPF to
buffer packets until the UE is ready to receive data.

Implementing 5G core (5GC) NFs [2] on general-purpose
CPU cores (we refer to as ‘host’), including the UPF, can

978-1-6654-8234-9/22/$31.00 ©2022 IEEE

limit throughput and increase latency, especially when the
number of CPU cores for the UPF is limited. Overheads,
such as context switches, interrupts, PCIe transactions, data
serialization and de-serialization, packet copy, etc. contribute
to constraining the performance [3]. Since the 5GC supports a
large number of UEs connected to multiple base stations,
facilitating a wide range of critical applications and services
[4], achieving high performance for the 5GC is key. Utilizing
network acceleration to implement 5GC NFs can substantially
improve throughput.

*&RUH

J1% 1 5) $ 8 6) 3&) 8 ' 0 8 3) +RVW

1 6 6) $ 0) 6 0) 8 ' 5 +RVW

&RQWURO3ODQH 'DWD3ODQH 'DWD

8 (7UDIILF 8 3) 1HWZRUN

J1% V1,& 0RQLWRULQJ V1,&

Fig. 1: Synergy 5GC Architecture

Another avenue for network acceleration is using
programmable switches. While programmable switches
(P4Switch) for the 5GC data plane packet processing show
promise [5], they have two drawbacks. First, P4Switches do
not have large buffers or the ability to hold packets as
required by the 5GC’s UPF [5]. To overcome this feature gap,
[5] buffers packets in the host using a buffering microservice.
Secondly, the limited amount of memory on a P4Switch (e.g., in
the order of 100MB SRAM [6]) limits its ability to support flow
state tracking, even though it can forward traffic at very high
rates [3]. This impedes its ability to maintain flow state and
conduct monitoring for a large number of flows.

In this work, we implement Synergy, a 5G UPF on a
SmartNIC (sNIC), as shown in Fig. 1. Not only does it
provide network acceleration to outperform host-based UPFs,
but it can effectively carry out state tracking and buffering
unlike programmable switches [3]. With the sNIC having
memory of the order of GBs, packets can be buffered and
flow state can be effectively retained on the sNIC. The P4
programmability [7] on the sNIC also enables handling various
packet processing tasks. Furthermore, the CPU cores being just a
PCIe transaction away provides for a tight coupling between the
UPF on the sNIC and the other NFs of the 5G ecosystem
running on host CPUs. Synergy is publicly available at [8].

Beyond implementing the core functions for a UPF on the
sNIC to be compliant with the 3GPP specification [9], [10],
we focus on two significant additional capabilities. The first is
to support a responsive buffering capability in the UPF, since
it impacts the idle-active and handover latency. Instead of
buffering packets in the source 5G base station (gNB) during

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:28:35 UTC from IEEE Xplore. Restrictions apply.

handover (as in Sec. 9.2.3.2.2 in [11]), ‘Smart buffering’ of
packets within the UPF has been proposed as a way of reduc-
ing the latency in L25GC [12] and CleanG [13]. This avoids
the hairpin routing from source gNB to target gNB through
the 5GC, and the associated latency. Synergy implements
packet buffering in the sNIC UPF while ensuring packets are
delivered in order. However, no change to the 3GPP control
protocol messages are needed. Buffering at the source gNB
(especially for small cells) may also be unattractive from a
cost standpoint. Synergy is built on top of 3GPP compliant
5GC implementations L25GC [12] and Free5GC [2].

The sNIC can buffer most of the packets locally as opposed
to the host so that it can rapidly respond to UE state changes
and retain high packet throughput. We show that the packet
loss rate during handovers reduces by 2.04× (§IV-D) when
buffering within the sNIC instead of the buffering within the
host. Compared to other sNIC-based flow state management
approaches such as DeepMatch [14] and SmartWatch [3] that
can also be used in UPF processing, Synergy achieves at least
1.40× lower packet loss rate because it reduces the flow state
access latency (§IV-D). Our solution Synergy improves packet
processing rate and latency during control-plane events such as
handover and paging. We introduce a two-level flow caching
mechanism that reduces flow state access times by at least 15%
compared to UPF built over the flow management technique
of SmartWatch [3] (§IV-B). Synergy increases its capacity by
44× , to support up to 12 million flows (§III-B2) compared to
UPF built with the flow management technique of DeepMatch.

Mobility prediction helps in pre-populating and updating
state on the 5GC NFs, thereby reducing the handover latency.
In order to accommodate mobility predictions, we modify
the sNIC packet processing pipeline to parse and monitor
the control plane traffic in the sNIC. Control plane messages
contain location [15] that can be monitored for mobility pre-
diction. Synergy leverages intelligent algorithms for effectively
predicting mobility events. 5G uses a control/user plane split
(CUPS)-based architecture [16]. In this work, we propose
running the control plane NFs on the host and the userplane
on the sNIC. Since the sNIC and host are just separated by
a PCIe transaction, it leads to very low programming latency.
This allows us to push table modification more quickly as
required for handovers and paging. Synergy parses control
plane packets destined for control plane NFs running on
the host and updates the flow state maintained in the sNIC.
Feeding the monitored data to a mobility predictor helps
achieve 2.32× lower average handover latency compared to
not performing mobility prediction. Our paper makes the
following contributions:

• We implement a 3GPP compliant 5G UPF on a highly
parallel sNIC.

• Design a responsive buffering scheme on the sNIC to
improve packet processing efficiency.

• Extend the monitoring functionality on the sNIC and use
it towards mobility prediction.

• Evaluate our platform against real-world traces as well as
simulation-generated traces.

A. 5G Preliminaries
II. BACKGROUND

Majority of the cellular ‘services’ are provided by the
core network, which is responsible for connecting UEs to
the Data Network (typically the Internet or an IP network).
The user accesses network services via a cellular base station
(gNB) using a mobile device that we refer to as the User
Equipment (UE). Some subcomponents of the core network
(as shown in Fig. 1) are the Access and Mobility Function
(AMF), Service Management Function (SMF), and User Plane
Function (UPF). The AMF is responsible for authenticating
the UE, connectivity, and mobility management. The Packet
Forwarding Control Protocol (PFCP) is used by the SMF to
configure the UPF data forwarding behaviour and user
policies [9], [10]. The control plane must setup a unique tunnel
endpoint identifier (TEID) to tunnel dataplane traffic between
the gNB and UPF using GTP [5]. The datapath from the gNBs of
the Radio Access Network (RAN) to the Data Network
(Internet) is provided by the User Plane Function (UPF). It
performs packet processing for user flows and includes support
for UE mobility, buffering for idle UEs, traffic accounting, and
QoS based on rules configured by the control plane [5].

Traffic Classification: Each uplink or downlink packet
must be matched to a UE and its associated traffic class by the
UPF based on a set of Packet Detection Rules (PDRs) [17]. A
PDR may match the UE’s IP address, the tunnel headers
(uplink packets), the packet’s five-tuple, or the domain name of
the remote end-point. The matching PDR determines how the
UPF then processes the packet. The control plane installs,
changes, and removes PDRs when a UE attaches, moves to
another gNB, goes idle or detaches [5].

Mobility and packet forwarding: As a UE moves, it may
connect to a new gNB. The UPF applies a Forwarding Action
Rule (FAR) identified by the PDR to place the appropriate
tunnel header for DL packets forwarded to the right gNB. The
FAR for DL traffic specifies the tunnel header field and gNB IP
address. Generally, a FAR specifies a set of actions to apply to
the packet, including tunneling, forwarding, buffering, and
notifying the control plane. FARs are installed and removed
when a UE attaches or detaches, respectively, and the DL FAR
changes when the UE is handed off to a new gNB, goes idle, or
is woken up [5], [18].

Buffering for idle UEs: Battery optimizations seek to have
UEs go idle as soon, and for as long as possible. When a UE
goes idle, the UPF buffers DL traffic destined to a UE until it
wakes up to send or receive packets. When traffic first arrives,
the UPF alerts the control plane, which then interacts with the
gNB to wake up the UE. Once the UE wakes up, the UPF
transmits the buffered DL traffic and resumes normal
forwarding, ensuring packets are delivered in-order [5], [13].

Handover procedure: During a handover procedure, when
a UE connects to a new gNB, the user typically experiences
added delay and possibly data loss. The handover operation
can take up to 130 milliseconds to complete [12]. This can
severely affect data plane traffic. Further, UE handover oper-
ations may be more frequent because of the smaller cell sizes

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:28:35 UTC from IEEE Xplore. Restrictions apply.

o
p

e
ra

ti
o
n

and emerging applications such as connected vehicles [19].
These require completing handovers as quickly as possible.
Along with the many control message exchanges [20], the 5G
handover involves data packets being buffered at the source
gNB. When the UE synchronizes with the target gNB these
packets are re-routed to the target gNB, through the 5GC,
using ‘hairpin’ routing. In Synergy we delegate this buffering
task to the UPF, avoiding the hairpinning.

B. Requirements for Synergy
Requirement: Synergy aims to accelerate UPF performance

while still being feature-rich, allowing the operator to dynam-
ically update rules.

Network Acceleration: Achieving high performance for
the UPF can be enabled by network acceleration, since hash
computations, encapsulation, and state management are not
impeded by interrupt processing, context switches, PCIe trans-
action delays, and expensive packet copies on the host. We
design Synergy to achieve high performance, compared to a
state-of-the-art host-based 5GC like Free5GC [2], with the
dataplane (UPF) implemented using the DPDK [21] libraries.

UPF Programmability: The UPF must dynamically update
FARs and PDRs along with their priorities (see §II-A). These
translate to P4 table updates that need to be programmed
into a switch or an sNIC if the UPF runs on one of these.
Platforms based on programmable switches can handle on
average 1200 new table rules per second [22]. Since rules
will have to be pushed when the UE goes idle, encounters
mobility, attaches or detaches the network, the 1200 rules/sec.
will limit how many control plane events can occur in the 5GC
(which may support multiple gNBs). P4Switch-based UPFs
are being considered [5] because of the potential for higher
dataplane throughput. Synergy can outperform them from the
perspective of responsiveness and lower control plane latency.

Optimized UPF Buffering: Buffering is required for idle-
active transitions. Furthermore, we also delegate the buffering
task from the gNB to the UPF for mobility management. We
advocate this implementation change to reduce computation
and memory overhead on gNBs (especially small cells).

Requirement: Synergy aims to monitor the control plane
traffic to predict future mobility events and reduce the control
plane overheads incurred during handover.

Accommodate mobility predictions: Predicting mobility
using off-the-shelf neural networks can speedup the handover
process by prepopulating state at the 5GC. This speedup
directly benefits the end-user experience. Since prepopulating
state will also lead to more memory and computation overhead
on the UPF, we incorporate a probabilistic data structure to
minimize the throughput impact of mobility prediction.

Control Plane-UPF colocation: By co-locating control
plane NFs on the same host as the UPF (e.g, on sNIC), we
ensure control plane messages also traverse the same sNIC
where the UPF is running. In doing so, we monitor control
plane traffic, such as Location Request/Response to update
the data structures stored in the sNIC and ultimately use it for
mobility prediction.

C. Related Work
1) 5G UPF Designs: Several cellular dataplanes have been

implemented that perform PDR matching and FAR actions. A
P4Switch based UPF was introduced in [5] to improve data
plane throughput. Free5GC [2] is an open-source 3GPP
compliant kernel-based implementation, which consists of a
UPF running on the host. Furthermore, DPDK-based software-
UPF solutions [23] have also been introduced that seek to get
rid of kernel overheads.

2) Monitoring at the Cellular Core: Monitoring of cellular
networks has been explored before. NG-Scope [24] facilitates
accurate and millisecond-granular capacity estimation updates
for the cellular network. This allows the congestion controller
and the upper layer applications to adjust their system parame-
ters, such as send rate or video resolution, with the underlying
network condition. NG-Scope performs network telemetry at
UEs, but could potentially be supported at gNBs [24].

3) Buffering Optimizations: Prior work for buffering pack-
ets in the 5GC [2], [23], often leads to high packet loss
compared to a sNIC-based UPF solution like Synergy, pri-
marily due to the slower processing at the host (§IV-A).
Even P4Switch-based solutions resort to buffering on the host
because of the lack of support for it in the P4Switch [5].

EMEM_BULK

IMEM_BULK

CLS

EMEM_DMA

0 200 400 600
cycles

Fig. 2: Memory Latency sNIC

III. DESIGN

A. sNIC Preliminaries
We design the 5G UPF to operate on a Netronome Agilio

LX 2×40 GbE sNIC, which has 8GB DDR3 memory and 96
highly threaded flow processing cores, referred to as Micro-
Engines (MEs). User code runs on up to 81 MEs distributed on
seven islands and each ME has a private code store that can
hold 8K instructions. MEs are 32-bit 1.2 GHz RISC-based
cores that have 8 thread contexts [14]. Switching contexts
takes 2 cycles and threads must explicitly yield execution as
the thread scheduling is non-preemptive. The sNIC can be
programmed in both Micro-C, which is an extended subset of
C-89, and P4 [3]. P4 code parses the uplink and downlink
traffic arriving at the UPF. P4-defined match-action tables,
populated by the control plane at run-time, determine actions to
apply to the packet based on the parsed headers [14].

Memory Hierarchy: MEs have access to large, shared
global memories (8 GB) and small local memories (4 KB
capacity) that are fast but require programmer management
[14]. Table I shows the memory hierarchy on the 40 GbE sNIC
[14], in terms of capacity and usage. Fig. 2 shows the memory
latency for write operations. As expected, CLS being closer to
the ME has lower write latency overhead compared to EMEM
and IMEM bulk write operations (4 Bytes). We do not evaluate
CTM because that is used to store packet payloads as they

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:28:35 UTC from IEEE Xplore. Restrictions apply.

0.25

0.75

cd
f

P
la

tf
o
rm

' 0 $ ' 0 $

are being processed. Since EMEM is composed of SRAM and
DRAM, where the SRAM acts as a cache to DRAM, EMEM
writes would result in a longer tail than IMEM that solely
consists of SRAM. The EMEM DMA operation depicts the
latency to copy MTU-sized packets (1500 bytes) from CTM to
EMEM, which is crucial to packet buffering.

TABLE I: sNIC Memory Hierarchy

Memory Capacity Usage
Code Store (CS) 8 K Instrs. Code instructions
Local Memory (LM) 4 KB Registers
Cluster Local Scratch (CLS) 64 KB Local to island. Shared

across multiple MEs
Cluster Target Memory (CTM) 256 KB Local to island. Shared

across multiple MEs
Internal Memory (IMEM) 4 MB Global Memory (SRAM)

External Memory (EMEM) 8 GB Global Memory (SRAM
+ DRAM)

B. Leveraging sNIC Architecture

1.00
Platform (Actions)

Host (Buffering)

0.50 Host (Buffer Draining)
sNIC (Buffering)

sNIC (Buffer Draining)
0.00

0 5 10 15 20 25 30 35 40
Time to Buffer and Drain packets (microsec)

Fig. 3: Latency to Buffer/Drain Packets

1) Motivation to buffer packets in sNIC: We leverage the
buffering mechanism we develop on the UPF to improve the
performance of handover and paging. As explained in §II-C,
the sNIC is more efficient for packet processing compared to
host-based systems. However, others have taken the approach
of just buffering the packets on the host while carrying out the
rest of the features on a P4Switch [5]. The host has substantial
memory compared to the sNIC to buffer packets. However, by
buffering packets in the sNIC, we can store and drain packets
much faster than would be possible when buffering on the
host. We now carry out an experiment that compares the
buffering and packet draining latency on the sNIC and host.
This experiment uses a host-based DPDK implementation to
efficiently buffer packets by holding on to the rte mbuf
[25]. For the sNIC implementation, we use a sNIC provided
instruction (i.e., pktdma ctm to mu) to buffer the packet by
DMA’ing it to EMEM (DRAM) memory. For releasing the
packet, in the host implementation, the packet is pushed to the
NIC for transmission and its memory released. To drain the
packet in sNIC, we use the sNIC instruction (i.e., pktdma
mu to ctm) to DMA packets from EMEM to send it over the
network. Fig. 3 shows that it takes 20× the latency to
individually buffer and drain packets in the host when
compared to performing the same operations on the sNIC. The
reason for this is that a host-buffered packet would involve
DMA in and out of the host memory, traversing the PCIe bus.
On the other hand, a sNIC-buffered packet only causes the
packet to be DMA’d from one sNIC memory to another (e.g.,
CTM and EMEM). This allows us to achieve a much higher

throughput for handover/paging with the sNIC, compared to
processing and buffering in the host.

On the sNIC, we load a P4 match action table for PDR
matching. However, the capacity of this table is only 64K
entries [26], forcing us to resolve P4 table misses on the host.
Other platforms such as T4P4S [27] and NetFPGA [28] that
are based on other vendors have similar capacity constraints
for individual P4 tables [26], especially when there is wildcard
matching, as is required in the UPF. Since this limited-capacity
P4 table will likely only store active flows, a DL packet for a
UE device that is currently in an inactive state will most
likely miss the P4 table and consequently be resolved on the
host. In order to prevent this for most flows, we must have a
data structure that is distinct from the P4 table of much
larger capacity to maintain state for a large pool of flows,
including inactive flows. This data structure to store flow state is
declared and allocated in Micro-C. We refer to it as the ‘flow
table’ while the P4 match action tables (e.g., not Micro-C) are
referred to as ‘P4 table’. In general, the packet will be
processed by the P4 and Micro-C pipeline in the sNIC. This
flow table can also help with monitoring control plane
communication, which we discuss later. In order to construct
the flow table, we design our own data structure and select
appropriate update procedures implemented in Micro-C.

DMA
SmartWatch Others

EMEM
Flow Table

DeepMatch IMEM
Flow Table

0 200 400 600 800 1000 1200
Average Time spent (ns)

Fig. 4: Time spent to buffer packets in sNIC

2) Optimizing flow state access on sNIC: The UPF per-
forms several state-dependent activities such as monitoring,
handover, paging, and traffic shaping. Furthermore, to de-
termine which memory location to store the packet in, and to
transmit the packet, we need to track the flow state. For
buffering, we draw inspiration from SmartWatch [3] and
DeepMatch [14], in order to fully leverage the sNIC memory
hierarchy. Since we seek to buffer packets for hundreds of
UE sessions, each with at least thousands of packets within
the sNIC, packets will have to be buffered in EMEM (§III-A)
because of its large DRAM capacity. Next, we will evaluate the
time spent to buffer packets when SmartWatch and DeepMatch
maintain flow state to buffer packets in the sNIC.

)ORZ)ORZ)ORZ

0 (6WDWH , 0 (0 0 (6WDWH 6 5 $ 0 0 (
6WDWH

, 0 (0
3DFNHW 3DFNHW (0 (0 3DFNHW

&70 (0 (0 &70 ' 5 $ 0 &70 ' 0 $ (0 (0

'HHS0DWFK 6PDUW:DWFK +\EULG

Fig. 5: Hybrid Memory Architecture

Fig. 4 shows the average delay caused by packet DMA,
IMEM/EMEM flow table operations, and others (e.g., instruc-
tions, local memory) for SmartWatch and DeepMatch. It can
be seen that EMEM flow table lookup contributes significantly
toward SmartWatch’s processing latency. This is because the

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:28:35 UTC from IEEE Xplore. Restrictions apply.

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

10

La
te

n
cy

 (
m

ic
ro

se
c)

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6

Lo
ss

 R
a
te

90th percentile bulk write operation on EMEM is 2.182×
higher than IMEM due to the external DRAM as shown in
Fig. 2. But, SmartWatch has 44× higher total capacity than
DeepMatch (which only uses the IMEM). Even after allocating
memory to buffer the contents of 262K 1500B packets in
EMEM, we still were able to allocate a flow table of 12 million
flow records on the EMEM (e.g., SmartWatch), compared to
just 295K flow records in IMEM (e.g., DeepMatch).

For Synergy we propose a hybrid of these two approaches
where the IMEM acts as a cache to the flow table stored in
EMEM, operating under our programmatic control. We use an
LRU replacement policy to evict flow records from the SRAM
IMEM to the DRAM EMEM. We refer to this as our “Hybrid
approach”. The intuition is that, by having a cache hierarchy,
we can reduce the average memory access time compared to
SmartWatch, while increasing the memory capacity compared
to DeepMatch. The intent is to have the working set of flows in
the IMEM, so that they can be accessed faster, but retain the
ability to fetch flow state from EMEM if there is a miss in the
IMEM. We strive to minimize misses that require searching
EMEM for flow state. Since our program explicitly places
recently used flow records in IMEM that is entirely in SRAM,
we do not have to rely on the sNIC’s SRAM auxiliary cache’s
policy for the EMEM DRAM (as part of the EMEM design),
since this may get polluted as we explain further below. Fig. 5
shows the memory architecture of DeepMatch, SmartWatch,
and our Hybrid approach. DeepMatch stores the entire flow
table in SRAM. SmartWatch stores the entire table in DRAM,
but the sNIC controls what flow records are cached in SRAM.
In the rest of the paper, we will refer to DeepMatch and
SmartWatch’s flow management techniques as “SRAM only”
and “DRAM w/aux. cache”, respectively. The Hybrid approach
lets the programmer control the placement of flow records in
SRAM and DRAM, which is adopted by Synergy for the sNIC
UPF. Synergy is general and is applicable for many other sNIC
architectures that provide onboard SRAM and DRAM [29].
While this flow replacement policy is novel, the lockless flow
update scheme and how we DMA the state to the host have
been leveraged from our previous work [3].

3) Utilizing the limited number of sNIC DMA engines: We
use sampling to select whether the host NF or sNIC should
buffer the packet. If it is in the sNIC, we find the appropriate
memory location to buffer the packet in the sNIC EMEM.
We utilize the pktdma ctm to mu instruction provided by
the Netronome sNIC to use the internal DMA to move the
packet from one memory to another. On the other hand, if the
packet is to be buffered on the host, we forward the packet to
a dedicated virtual port to DMA to the host. A buffering
service NF accesses the packet in the host memory. Buffering
tasks are delegated from the sNIC to the host as needed. Even
though a limited amount of buffering activity occurs on the
host, the state tracking remains within the sNIC, including the
trigger to release packets buffered in the host NF.

For buffering workloads that the sNIC sees a drop in
throughput for large packet sizes due to a hardware limit of 16
outstanding DMA requests per CTM [14]. For packet sizes

larger than 1024 bytes, we observe the EMEM DMA operation
to take at least 2.15× more latency, on average, compared to
processing 512 byte packet streams. Let the number of
outstanding DMA requests in a CTM to the EMEM, per 1 sec
measurement interval, be Θctm . In Synergy, when Θctm > 10,
we sample 10% of new buffering tasks so that they can be done
on the host (i.e., for new handovers or if a device goes idle)
instead of the sNIC. The sNIC maintains the required flow
state, with the host just buffering the packet. With this, the
DMA engines between the sNIC and host are used instead of
the bottlenecked DMA engines between the CTM and EMEM.
Fig. 6 provides justification for this parameter setting. As
shown in Fig. 6(a), setting the sampling rate less than 0.3
ensures most packets are processed with low latency when
buffered. A sampling rate of 0.3 results in 2.35× higher
average latency compared to that at a sampling rate of 0.1 (at
0.1, more packets are processed in the sNIC instead of the host).
Fig. 6(b) shows that setting the max. outstanding DMA requests
above 10 causes the packet loss to increase by at least 1.87×
because the queuing delay in the sNIC increases.

Design Summary: We introduced an efficient buffering
mechanism in the sNIC UPF to be used during handover and
paging. Furthermore, we have designed ways to reduce the
time to access flow state which is important for speeding up
state-dependent processing such as handovers, paging, tunnel-
ing, traffic shaping, and monitoring. In Synergy, monitoring is
used for mobility prediction as described next.

20 0.4
Sampling Rate

0.3 0.0 0.2
0.1

0.2

0

Sampling Rate Max Outstanding Req

((a)) Latency vs. Sampling Rate ((b)) Loss vs. Max outstanding DMA

Fig. 6: Parameter Setting for sNIC host load balancing

C. Integrating Mobility Prediction Models
1) Monitoring control plane events: The Location Report-

ing Control procedure is to allow the AMF to request the
gNB node to report the UE’s current location, or the UE’s
last known location with timestamp [15]. Since the AMF is
colocated on the same host as the sNIC running the UPF in
Synergy, those packets go through the sNIC before being
delivered to the AMF. As location reports arrive at the sNIC,
we parse the packet and update the same flow state that we had
maintained for paging and handover purposes. This ensures
that packets are parsed and the data structures updated with
similar low processing and memory overhead as data plane
packets. Since the prediction model uses location to make
predictions, we use location reports. However, there are other
models that use channel quality as features, such as the cause
field within the “handover-required” message from source
gNB to AMF (Section 4.9.1.3 in [30]), which is triggered by
the source gNB based on measurement reports [31].

2) sNIC Design for Mobility Prediction: Handovers occur
when the base station signal strength for a UE decreases.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:28:35 UTC from IEEE Xplore. Restrictions apply.

A
cc

u
ra

cy

K

PHPBUHDG%\WH

This occurs often as a result of mobility. Time to complete
control plane operations (e.g. mobility handoff, service estab-
lishment) directly impacts the delay experienced by end-user
applications [32]. Furthermore, with 5G, the control traffic is
expected to increase rapidly due to a shift to smaller cell
sizes, which will likely cause more mobility handoffs [32].
Mobility prediction allows the network operator to pre-install
the network state in the core networking elements,
minimizing the delay experienced by end-user applications
due to frequent handovers. Fortunately, vehicular mobility is a
highly correlated process due to roadways, which can be
effectively exploited by the gNBs-reported measurement of the
radio signal strength from their connected mobile users [33].

0.75
Correct target

0.50 gNB prediction

Incorrect target
0.25 gNB prediction

0.00
1 2 4 8 16 32

Look Ahead Time (Seconds)

Fig. 7: Prediction Accuracy

We use a SUMO-based [34] vehicular mobility dataset [35]
for subsequent experiments. For our experiments, we use the
mobility predictor introduced in [36] since it is decentralized
and shown to be highly accurate [33], [36]. Their technique
uses neural networks to predict the next gNB by making use of
the angle of arrival, which is derived from the vehicle and gNB
coordinates. At each point in time, a vehicle (UE) connects
with the gNB providing the best communication conditions,
measured in terms of path loss [36].

As vehicles move, the UE attaches and detaches to various
gNBs. We call the gNB the UE is attached to as the serving
gNB. Throughout the duration when the UE is attached to a
serving gNB, we collect UE location samples. All these
collected location samples are used as a feature vector to
determine the next serving gNB. The predictor uses a Gated
Recurrent Unit-based Recurrent Neural Network (RNN) and
returns a soft prediction, in the form of a probability vector
for the next serving gNB. The prediction accuracy improves as
the UE moves closer to get to the next gNB and as more
samples are fed to the RNN model [37]. Fig. 7 shows the
rate of correct and incorrect mobility predictions for the target
gNB in the simulation, where the error bars represent the
standard deviation observed across gNBs. Predictions made 1
to 5 sec prior to a handover have the highest accuracy. Correct
predictions will make sure that the handover is accelerated due
to the prepopulated state. Fewer mispredictions will ensure
less compute and memory resources are wasted in the 5GC. If
we make a prediction every 5 sec, the number of predictions is
manageable and the accuracy is reasonably high. Unfortu-
nately, in real-time, we do not know whether the UE is 5 sec or
more seconds away from handover. Therefore, we will have to
expire the predictions every 5 sec, increasing the memory and
processing overhead as more flows are programmed.
Therefore, we have a probabilistic data structure on the sNIC to
ensure that we minimize these memory operations.

@A JPI?IGJJH DGO@MŸ ˆ0(&RGH &/60HPRU\

Ó¾†M@OÓ»S
 JMDDI¼‰‰ K
CDÓC<NCAPI>ODJIDŸAGJRF@T
M@OwÓH@HM@<?ÃŸGJJH DGO@M¡CD† ¢̂ ™™
@OPMIM@OÕ» K «
A JPI?IGJJH DGO@MŸ ˆ
C@>FM@?D>ODJI<=G@Ÿ

%ORRP)LOWHUV

Fig. 8: Bloom Filter Architecture

3) sNIC Prediction Table Lookup Optimizations: We take
the N2Handover codebase [38] and divide it into two phases
corresponding to prediction and handover. The prediction
phase is primarily concerned with pre-populating state to
accelerate the end-to-end handover latency while the handover
phase is carried out as the final step when the UE actually
moves to the new gNB. When a DL packet arrives at a UPF,
destined to a UE that does not have the required state to
process the packet, the UPF in Synergy is responsible for
buffering the packet. The packet is buffered until the state is
propagated across the control-plane NFs and then all the
buffered packets are drained and forwarded to the UE.

Next, we try to minimize the overhead related to checking
for mobility predictions. As each EMEM access for prediction
table lookup can take as much as 416 ns, this will severely
degrade throughput. This is because predictions will likely
reside in EMEM DRAM as they have not been accessed
before, precluding the sNIC from caching the prediction in
EMEM SRAM. Furthermore, we do not explicitly store the
prediction in IMEM as the volume of predictions can be high.
To solve this problem we use lightweight Bloom Filters [39]
hosted on the CLS for prediction. We store the prediction in
CLS because it is at least 3 × to 10× faster than accessing
IMEM and EMEM (see Fig 2), respectively. A Bloom filter is a
data structure designed to determine, rapidly and memory-
efficiently, whether an element, in this case a prediction, is
present in a set. We use 8 parallel Bloom Filters, for
predictions made every 625 millisec, that are arranged in
memory such that one mem read8 (e.g., 1 Byte) can access all
parallel Bloom Filters at the same hash index. Fig. 8 shows the
code running in the ME to determine whether to check
handover predictions for a UE when we miss on the EMEM
and IMEM for its flow record. Although Bloom Filters have
some false positives, our design seeks to minimize the penalty,
and the space savings outweighs this drawback [40].

On replaying the SUMO trace [35] on our testbed, we see on
average 22.34% packets every second, missing on the IMEM
and EMEM flow table. Those packets are checked against the
Bloom Filter before visiting the prediction table. The Bloom
Filter is non-invertible, meaning we cannot retrieve the predic-
tion from the Bloom Filter. There are three outcomes: 1) the
prediction is found in the Bloom Filter, and then also found in
the prediction table (True positive), 2) the prediction is found in
the Bloom Filter, but not found in the prediction table (False
positive), and 3) the prediction is not found in the Bloom Filter
(True negative). In the case of true positives, the required
state to process the packet in the sNIC is retrieved from the
prediction table. As a consequence, the packet gets processed

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:28:35 UTC from IEEE Xplore. Restrictions apply.

«

«
' 0 $

)LOWHU

,VODQG

5HDG5

H:ULWHV
:

1%
,

,Q
JU

H
VV

1%
,

(JU
H

V
V

in the sNIC, not suffering the long latency processing costs of
the host. In the case of true negative, no further cycles are
wasted searching the prediction table (416-1666 ns) once the
Bloom Filter lookup completes. Lastly, false positives that
occur for less than 1.5% of packets that visit the Bloom Filter
result in wasted cycles searching the prediction table without
retrieving the required state for processing the packet. In the
event of true negatives and false positives, the packet will have to
be forwarded to the host for processing.

D. Bringing it all together
1) Overall: In this section, we describe the Synergy ar-

chitectural design for the 5G UPF within the sNIC (shown
in Fig 9) to speed up the PDR lookup, allow for dynamic
adaptation of the packet processing pipeline, and ensure that
the mobility predictions do not impede processing throughput.
A packet first arrives at the network-bound interface (NBI)
ingress and is transferred to the CTM memory. The packet
is served by one of the packet processing MEs in a run-
to-completion manner. This processing includes both the P4
pipeline and additional Micro-C program(s). We adapt the
Hybrid approach introduced in §III-B2 for updating flow state
to achieve the highest throughput. The IMEM hosts the cache
of the flow table while the EMEM memory hosts the flow
table and prediction table. The per-island CLS hosts the Bloom
Filter that is used for the very efficient probabilistic check if
there are any pre-populated flow records based on mobility
prediction. The EMEM also hosts the buffer where packets
will be stored when a UE is idle or has an ongoing handoff.
Once the packet is processed, it will be sent out of NBI egress.

2) Minimizing Handover Latency: Handover latency di-
rectly influences the end-user experience. To reduce it, we
carry out mobility prediction and prepopulate the state within
the control plane NFs and UPF. We evaluate the benefit of this
in §IV-F. To achieve this, the host-sNIC interface incorporates
several features: 1) ring buffers in the EMEM can export
flow records to the host; 2) the host updates P4 table entries
and data structures hosted in EMEM including the prediction
table; 3) the sNIC can forward packets to the host using
an SR-IOV virtual port. As described in §III-C1 we monitor
control plane packets and update the flow state with the UE
location information within the sNIC. This efficiently gets
exported to the host via DMA. The tight coupling between
the sNIC and host ensures that we provide the features to
the prediction model running on the host quickly. The host
programs the sNIC to update the P4 pipeline for handling
packets of different sessions. By having the sNIC be just a
PCI transaction away, we are able to push rules to the sNIC
at lower latency. This allows us to reduce handover delays
(see §IV-F) Lastly, for situations where Synergy cannot fully
process the packet within the sNIC, the packet is forwarded
to the host with minimal overhead instead of over the local
data center network.

3) Speedup Flow Lookup to improve throughput: Slow flow
lookups directly reduce the throughput of the UPF, despite
the parallelism offered by the 80 MEs, each with 8 thread

contexts. Slower flow lookups as a result of the higher memory
access latency, are difficult to overcome even by switching to
another thread’s context causing the drop in throughput [14].
Furthermore, the capacity of the flow table has to be high
otherwise flow table misses will also lead to long latencies
because of host processing. We evaluate the benefit of the
design options in §IV-A. Synergy is publicly available at [8].

/RFDO , 0 (0
0HPRU\

&DFKH
RI)ORZ

0 (0 (0 (7DEOH (0 (0
0 (0 (0 ()ORZ

7DEOH

& /6 &70
%XIIHU

%ORRP
3NW 3UHGLFWLRQ

7DEOH

Fig. 9: Synergy Architecture

Fig. 10 shows the logical packet processing pipeline. When
a packet arrives, we first find its flow state by computing a
hash index and searching buckets at that hash index in IMEM
and then EMEM memories. If we find the flow in IMEM
(lower latency), we update the flow state and fetch the packet
metadata as necessary. This may include state indicating the
UE is idle or in an ongoing handover, requiring buffering. If
we miss on the IMEM, we check the EMEM, where if we find
the flow record, we swap the least recently used flow record
in IMEM (LRU) with the flow that we hit in the EMEM.
If the packet is to be buffered, we DMA the packet payload
to EMEM. Next, we perform wildcard matching in the P4
table based on the Service Data Flow traffic filter (e.g., source-
destination IP or port), UE IP, and TEID and then execute the
corresponding action. If there is no P4 table hit, we check
if there is a simple action to be carried out based on packet
metadata (e.g., tunneling without wildcard matching). If yes,
we carry out the action and clone the packet to the host so
that it can subsequently update the P4 match action table;
otherwise, we simply forward the packet to the host and let
the UPF on the host process the packet. The P4 table also
specifies meters to configure the average rate, burst size, and
policing of the traffic. This is configured dynamically by the
operator during runtime and executed by the target sNIC. If
the traffic exceeds the configured rate and buffers overflow, we
utilize the function ‘netro meter drop red [41]’ provided by
the Netronome sNIC to drop traffic exceeding the limits.

4) Deployment Strategy: We define a 5GC instance as one
complete set of control plane NFs and the UPF that can
fully-process uplink and downlink packets. We ensure that the
affinity [42] of the control plane NFs and UPF for a 5GC
instance are accounted for in placing them on the same host
server (node). There may be multiple 5GC instances within a
data center to handle increased traffic loads. In Synergy, the
load is balanced by assigning new UE sessions to the
appropriate 5GC instance by an orchestrator. A UEs session is
assigned to a 5GC instance for the period the UE maintains its
attachment to the 5GC. Thus, the state does not have to be
moved between 5GC instances. We believe that the number of

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:28:35 UTC from IEEE Xplore. Restrictions apply.

, 0 (0
+LW"

+LW"

/ 5 8

%ORRP

/ 5 8

8SGDWH

7DEOH
+

WR

/ 5 8

, 0 (0

XVLQJ
HWD"

KRVW+RVW

(0 (0

<HV

<HV

P

+LW"

60

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

CPU cores available on the node supporting the 5GC instance is
sufficient to handle the control plane load from the set of UEs
generating the dataplane load handled by the sNIC. If the
control plane load does go up, vertical scaling by adding CPU
cores for a particular overloaded control plane NF can relieve
the bottleneck at the NF. This deployment strategy is similar to
that of L25GC [12].

%HJLQ

8SGDWH 3DFNHW%XIIHULQJ

)ORZVWDWH SNWPHWD 0RELOLW\,GOH$FWLYH

LQ,0(0 IURP
1R 6ZDS PHPRU\

%XIIHU '0$WR
, 0 (0 0RQLWRULQJ 3DFNHW" (0 (0
(0(0

+ L W
)ORZ6WDWH

1R 1R

(YLFW)ORZ (YLFW,0(0 WR 3 <HV &DUU\RXW
(0 (0 / 5 8 (0 (0 / 5 8 +LW" $FWLRQ

1R
6LPSOH

)LOWHU+LW" DFWLRQ <HV

3UHG <HV 3UHGLFWLRQ

1R
7DEOH ,0(0

LW 1R &DUU\RXW$FWLRQ

0RELOLW\
1R 1HZ)ORZDW +DQGOHDW DQG&ORQHSNWWR

3UHGLFWLRQ / 5 8 33LSHOLQH

(QG

Fig. 10: Synergy Flow Chart

5) Security: As the node may support other third-party
NFs, we seek to provide isolation between different groups of
mutually trusting NFs. We use the notion of security domains
introduced in NetVM [43]. Host NFs developed by the same
vendor are allowed to share a private memory pool. But, that
cannot be accessed by a different application on the same node.
A DPDK primary process creates a private shared memory
pool with an associated distinct file prefix, implemented as
hugepages in the Linux file system. Each security domain uses
the file prefix for the huge page it access to, which is provided to
it by the primary DPDK process [44]. Location reports are
encrypted to maintain user privacy. The crypto module of our
target sNIC device [45] decrypts these location reports. The
required keys are provided to the sNIC by the NF that is co-
located on the same host.

6) Limitations: Due to Synergy’s buffering and monitoring
capabilities, the throughput achieved with Synergy is not as
high as what is achievable with P4Switch [5]. Currently, the
orchestrator in Synergy load balances UE sessions over 5GC
instances. The load on the control plane NFs is likely
dominated by the number of UE sessions. The load on the
UPF potentially needs to consider the UE flow characteristics,
but we anticipate a conservative allocation would help avoid
the UPF from being overloaded. This is left as future work.

7) General applicability of sNIC design: Here we study
the generality of our UPF implementation on the Netronome
Agilio LX sNIC [46], and the potential for adoption with
other sNICs, such as the Bluefield MBF1L516A ESNAT and
LiquidIO OCTEON TX2DPU sNICs. All three sNICs have a
multi-core architecture. Although the Bluefield and LiquidIO
sNICs have fewer CPU cores (e.g., MEs) compared to the
Netronome Agilio LX, they operate at a faster clock rate (at
least 2.2 GHz instead of 1.2 GHz for Netronome Agilio

LX). All their memory architectures have three levels. In the
Netronome sNIC the three levels correspond to CLS, then
EMEM SRAM along with IMEM, and the last-level being the
EMEM DRAM. The last level cache and L1 cache have similar
access times for all three architectures. The L2 access time is
25.6 ns in Bluefield vs. at least 50 ns with Netronome and
LiquidIO. Atomic primitives are supported in all architectures
along with programmability using GNU in Bluefield, GCC in
Liquidio, and Micro C/P4 in Netronome [3], [29]. Given the
similarity of the architectures and capabilities, Synergy should
in principle be portable to any of the other sNICs.

IV. EVALUATION

Testbed: We evaluate the effectiveness of Synergy on our
local testbed consisting of Linux servers (kernel 4.4.0-142),
each with 10 Intel Xeon 2.20GHz CPU cores, 256GB memory,
and Netronome Agilio LX 2 × 40 GbE sNICs with 8GB DDR3
memory and 96 highly threaded flow processing cores.

Traces: We use two traces. A real-world trace [47] and a
SUMO-based vehicular mobility dataset [35]. The real-world
5G trace dataset is collected from an Irish mobile operator.
This dataset contains timestamps, coordinates, gNB id, bitrate,
and channel quality indicator. The dataset is collected with a
UE streaming videos and downloading files with the user in
a vehicle driving on city streets. The second is a dataset with
700k vehicle trips across 247 gNBs. It provides the gNB,
timestamp, and vehicle coordinates. At each point in time, the
UE connects with the gNB providing the best communication
conditions, measured in terms of path loss [36].

70

Host UPF (1 Core, 10-GbE) Host UPF (4 Core, 40-GbE)

Host UPF (1 Core, 40-GbE) Synergy (10-GbE)
50 Host UPF (2 Core, 40-GbE) Synergy (40-GbE)

40

30

20

10

0
200 400 600 800 1000

Packet Size (Bytes)

Fig. 11: Tunneling Throughput
A. Benefit of Network Acceleration

Fig 11 shows the throughput achieved for PDR matching
and finding the associated FAR rules for DL packets (i.e.,
finding and inserting GTP [48] tunnel header) using the trace
introduced in [47]. Here we compare the throughput between
Synergy and a host UPF implemented in DPDK. We see the
host achieves lower throughput with small packet sizes be-
cause of the overhead of processing higher number of packets.
For large packet sizes the host can match Synergy’s throughput
only after dedicating four CPU cores to it. Otherwise, the
throughput with one core is 3.85× lower on average than
Synergy. Therefore, Synergy significantly reduces the number
of CPU cores required for the primary 5G UPF tasks.

B. Interference of Buffering on sNIC Flow State Access
The faster the flow state can be retrieved and updated, the

higher is the achievable packet processing rate. Here we show
why Synergy achieves the lowest latency in comparison to
“SRAM only” and “DRAM w/aux. cache” alternatives (see

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:28:35 UTC from IEEE Xplore. Restrictions apply.

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

L
o
ss

 R
a
te

L
o
ss

 R
a
te

T
h
ro

u
g

h
p

u
t

(G
b

p
s)

B
u
ff

e
ri

n
g

Synergy

1400

A
v
e
ra

g
e
 L

a
te

n
cy

 (
n
s)

DRAM w/

S R A M o n l y

40

30

20

10

S y n e r g y

0.8

0.6

0.4

0.2

0 . 8 D R A M w / a u x . c a c h e H o s t U P F

1.0

0.8

0.6

0.4

0.2

1 core 2 cores 4 cores 8 cores

40

30

20

10

0
0 500 1000 1500

Packet Size (Bytes)

0.0
0 1 2 4 8
Number of Host Cores for Buffering

0.0
0 1 2 3

Buffering Duration (seconds)

0
0 500 1000 1500

Packet Size (Bytes)

((a)) Standalone buffering in sNIC ((b)) Buffering w/ sNIC-host vs. cores ((c)) sNIC-host vs. buffering-duration ((d)) sNIC UPF, all buffering at host

Fig. 12: Throughput & loss rate w/ UPF buffering strategies. Sensitivity measured on pkt size, host cores, and buffering duration

III-B2). Recall “SRAM only” and “DRAM w/aux. cache”
are derived from the SmartWatch and DeepMatch designs,
respectively. For the host UPF, we use Free5GC [2], with
UPF implemented on top of DPDK [21]. We first evaluate the
packet latency observed for packet buffering with a workload
having up to 200K flows, which is below the total SRAM
size in all three alternatives. We try two variants, one with
buffering (e.g., DMA to EMEM DRAM) enabled and the
other with it disabled. As shown in Fig. 13(a), with buffering at
the sNIC, Synergy has a similar performance as “SRAM
only” because the small number of flows fit in IMEM. On the
other hand, compared to “DRAM w/aux. cache”, the 99
percentile latency is 1.38× lower in Synergy’s approach when
buffering is enabled. This is because in Synergy the DMA of
packet payload from CTM to EMEM does not pollute the
flow table stored in SRAM. For Synergy the programmer
controls the flow records in IMEM SRAM while in “DRAM
w/aux. cache”, the sNIC control the flow records stored in
the SRAM cache of EMEM, making it vulnerable to cache
pollution. With buffering disabled, “DRAM w/aux. cache”
and Synergy perform the same as there is no cache pollution
caused by DMA operations. Next, we increase the number of
active users by manipulating the trace. The average latency to
buffer packets is shown in Fig. 13(b). The “SRAM only”
approach has higher latency when the number of active users
exceeds IMEM capacity as it has a lot of misses due to its
limited capacity of flow records. Synergy achieves at least
15% lower access time compared to “DRAM w/aux. cache”
due to more memory accessed from IMEM SRAM instead of
the EMEM DRAM. Synergy’s approach of programmatic flow
record placement along with the large capacity DRAM
ensures it is the most scalable among the three approaches.

C. Standalone host and sNIC buffering
In this section, we first evaluate the attainable throughput

with Synergy. Fig. 12(a) shows that Synergy’s throughput is,
on average, 1.38× and 1.57× higher compared to “DRAM
w/aux. cache” and “SRAM only”, respectively. This is because
of the lower memory access time for flow records (see §IV-B).
We observe the throughput to first increase with packet size
and then decrease beyond 1024 bytes per-packet size. Smaller
packets are penalized more by the additional per-packet pro-
cessing needed to update and maintain flow state [14]. On the
other hand, when the packet size is larger than 1024 bytes we
see a drop in throughput as occupancy of the DMA engines
becomes the bottleneck (see III-B3).

1800

SRAM only
1600 SRAM only aux. cache

Synergy
No DRAM w/

aux. cache

1200

1000

Yes 800

600

0 1000 2000 3000 0.0 0.2 0.4 0.6 0.8 1.0
Latency (ns) Number of active users 1e6

((a)) Latency Distribution ((b)) Latency wrt users

Fig. 13: Buffering Performance
Fig. 12(d) shows the throughput using the Synergy ap-

proach, but instead of buffering packets in the sNIC, they are
buffered in a microservice in the host with variable number of
CPU cores. A similar (although not using the sNIC) approach
was adopted in a P4Switch-based UPF [5]. However, as seen in
Fig. 12(d), even after performing the packet processing task on
the sNIC and just buffering on the host, it requires 8 CPU cores to
yield comparable throughput as Synergy (see Fig. 12(a)). The
lack of network acceleration and having to DMA packets to
host memory across the sNIC-host PCIe bus as opposed to
between sNIC memories leads to poor throughput even with
four host CPU cores. However, the throughput with packet size
1024 Bytes is not high enough on the sNIC (see Fig. 12(a)).
Due to the limitations mentioned above, we introduced the
sNIC host combination and load balancing the buffering task
between them as described in §III-B3.
D. Buffering Performance on Synergy

Now we show the packet loss observed for buffering during
handover events when using a real-world trace [47]. The
sNIC runs a UPF, including the buffering function. We also
implement a DPDK program to carry out some buffering tasks
in the host as explained in §III-B3. Fig. 12(b) shows the packet
loss rate during handovers while varying the number of host
CPU cores, implementing just the buffering functionality, with
a testbed consisting of a sNIC UPF (see §III-B3). With 2 CPU
cores, Synergy achieves the same loss rate as “SRAM only”
and “DRAM w/aux. cache” when they use 4 CPU cores. It
does so because of lower flow state access latency (see §IV-B).
Therefore, Synergy’s packet processing pipeline requires about
half the number of CPU cores as “SRAM only” and “DRAM
w/aux. cache” or one-fourth the number of UPF host cores
(e.g., PDR matching, buffering, etc) to get a similar loss rate.

Next, we show the packet loss rate vs. the buffering duration
using the case of having two CPU cores running a DPDK

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:28:35 UTC from IEEE Xplore. Restrictions apply.

H
a
n
d
o
v
e
r

D
e
la

y
(M

ill
is

e
c)

C
D

F

B
lo

o
m

 F
ilt

e
r

M
e
m

o
ry

H
a
n
d
o
v
e
r

D
e
la

y
(M

ill
is

e
c)

300 Baseline
1.0

State Prepopulated 0.8

200 0.6

0.4
100

0.2

Event
Correct
Prediction

No/Miss
Prediction

Overall

No Bloom
1500

Filter 1250

IMEM 1000

750
EMEM

500

CLS 250

Synergy

P4Switch

0
0.25 0.75 0.9 0.99 0.999

0.0
0

Quantile
100 200 300 400

Latency (millisec)
0 10 20 30 40

Throughput (Gbps) w/ 256B pkts

0
2000 4000 6000 8000 10000

Number of Active Users

((a)) Speedup via state prepopulation ((b)) Synergy latency distribution ((c)) Throughput Analysis ((d)) sNIC/P4Switch P4-based UPF

Fig. 14: Impact of mobility prediction, fast programmability, and sNIC memory hierarchy on handover performance

program to buffer packets. The remaining UPF processing is
done by the sNIC. Common control plane events such as
handover and the paging cycle [49] take 135 ms and 1.28
seconds, respectively. The paging cycle is the duration after
which the UE wakes up from idle mode to read the paging
messages. Varying the buffering duration will cause different
number of packets in the UPF to be buffered, increasing the
overhead. Fig. 12(c) shows that Synergy is the most tolerant
with respect to the duration of buffering because of lower
access time and higher capacity, having the lowest loss rate.

E. Handover Performance
First, we show the control plane handover latency when the

state is prepopulated by mobility prediction in all the control
plane NFs vs. baseline latency for the handover procedure
without any mobility prediction. This has been measured on
Free5GC with DPDK [2] 5GC implementation. We observe
that prepopulating state through mobility prediction provides
an average speedup of 2.73×. Mispredictions are equivalent to
no prediction, as the state will not be populated using the
correct target gNB. This would cause the process to have to go
through the entire control plane handover procedure. For this
experiment, we used a vehicular mobility trace [35]. Fig. 14(b)
demonstrates that by utilizing handover prediction, we can
achieve 3.78× lower median handover latency for correctly
predicted mobility events as opposed to mispredictions and no
predictions (i.e., baseline). Considering all mobility events, in-
cluding mispredictions and correction predictions (i.e., Overall
curve in Fig. 14(b)), we see a 3.49× lower median handover
latency compared to baseline.

Lastly, we evaluate the throughput achieved with and with-
out the Bloom Filter optimizations running in the sNIC against a
256 byte packet stream. Fig. 14(c) shows the throughput for
various Bloom Filter allocation strategies. When we do not
allocate a Bloom Filter, the sNIC looks up the prediction table
for each and every packet that misses on EMEM and IMEM
flow table, causing the throughput to drop to less than 18 Gbps.
However, with the Bloom Filter, we check the prediction table
only when the prediction is found in the Bloom Filter. By
allocating the Bloom Filter in EMEM or IMEM the throughput
drops by at least 5 Gbps compared to line rate. This is because in
either case, significant cycles are still spent looking up the
Bloom Filter in IMEM and EMEM respectively (Fig. 2).
Finally, by allocating the Bloom Filter in CLS, as is done in
Synergy, we achieve line rate for this experiment. This is
because the read-accesses of the Bloom Filter allocated in CLS
are at least 3 × to 10× faster than accessing IMEM and

EMEM (Fig. 2). However, since the CLS memory is local to
each island, we must replicate the Bloom Filter in each island as
packets of a flow can be processed in any island. But this
longer Bloom Filter update procedure overhead does not fall in
the packet datapath and does not degrade throughput.
F. Programming Overheads

Finally, we evaluate the impact of the overhead of program-
ming the sNIC on end-user handover experience. The longer
the host takes to push rules into the sNIC in response to a
handover event, the longer packets will have to be buffered
before they can be forwarded. This contributes to handover
delay. We compare Synergy against the P4Switch approach.
Both P4Switch and sNIC-based UPF platforms have P4 tables
and data structures that will have to be updated by the host. To
emulate the P4Switch, we consider a limit of 1200 new flows
per second, as in [22], using the same values for P4 table
and rule updates as with the sNIC UPF. Fig. 14(d) shows the
handover delay with respect to the number of active users in a
SUMO-based vehicular mobility trace [35]. We observe that
Synergy attains 2.11× lower handover delay on average. This is
because the sNIC, according to our experiments, can yield up
to 6.6× higher programming rate as the control plane NFs and
the UPF are colocated on the same host.

V. CONCLUSION

Synergy is a SmartNIC-based UPF, a key 5GC component,
that leverages the tight coupling of the SmartNIC and the
host. It provides network acceleration, programmability, and
monitoring for mobility prediction. Mobility and paging events
have much better performance because a majority of packets
are buffered within the SmartNIC, outperforming host and
programmable switch-based approaches in terms of latency
and packet loss. This is in part due to Synergy’s two-level
structure for flow table maintenance, which increases the
scale while reducing latency. Synergy further reduces handover
latency by pre-populating state in the control plane NFs.
This is done by monitoring control plane traffic that flows to
control plane NFs colocated on the same node. For mobility
prediction, we maintain a Bloom Filter to judiciously access
the prediction table, increasing the packet processing rate in
the SmartNIC UPF. Efficient programming of SmartNIC flow
tables allows us to manipulate actions and associated priorities
rapidly, reducing the handover delay.

VI. ACKNOWLEDGEMENT

We sincerely thank the US NSF for their generous support
through grants CRI-1823270 and CSR-1763929. We thank our
shepherd Dr. Arvind Narayanan and the anonymous reviewers
for their suggestions and comments.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:28:35 UTC from IEEE Xplore. Restrictions apply.

¨ ¨ ´ ´

REFERENCES

[1] “Our high-performing core network.” [Online]. Available: https:
//www.iplook.com/products/5gc-upf

[2] “free5gc.” [Online]. Available: https://www.free5gc.org/
[3] S. Panda, Y. Feng, S. G. Kulkarni, K. K. Ramakrishnan, N. Duffield,

and L. N. Bhuyan, “Smartwatch: Accurate traffic analysis and flow-
state tracking for intrusion prevention using smartnics,” in Proceedings
of the 17th International Conference on Emerging Networking
EXperiments and Technologies, ser. CoNEXT ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 60–75. [Online].
Available: https://doi.org/10.1145/3485983.3494861

[4] B. W. M. F. A. S. R. H. O. C. Mitziu Echeverria, Zeeshan Ahmed,
“Phoenix: Device-centric cellular network protocol monitoring using
runtime verification,” in The Network and Distributed System Security
Symposium (NDSS). Springer, 2021.

[5] R. MacDavid, C. Cascone, P. Lin, B. Padmanabhan, A. ThakuR, L.
Peterson, J. Rexford, and O. Sunay, A P4-Based 5G User Plane
Function. New York, NY, USA: Association for Computing
Machinery, 2021, p. 162–168. [Online]. Available: https://doi.org/10.
1145/3482898.3483358

[6] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 15–28. [Online].
Available: https://doi.org/10.1145/3098822.3098824

[7] “P4 programming language.” [Online]. Available: https://p4.org/
[8] “Synergy opensource code.” [Online]. Available: https://github.com/

spand009/Synergy
[9] “3gpp ts23.501 section 4.2: Architecture reference

model.” [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3144

[10] “3gpp ts23.502: System architecture for the 5g system
(5gs).” [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3145

[11] “5g nr 3gpp.” [Online]. Available: https://www.etsi.org/deliver/etsi ts/
138300 138399/138300/15.08.00 60/ts 138300v150800p.pdf

[12] V. Jain, H.-T. Chu, S. Qi, C.-A. Lee, H.-C. Chang, C.-Y. Hsieh, K.
Ramakrishnan, and J.-C. Chen, “L25gc: A low latency 5g core
network based on high-performance nfv platforms,” ser. SIGCOMM ’22,
2022.

[13] A. Mohammadkhan, K. K. Ramakrishnan, and V. A. Jain,
“Cleang—improving the architecture and protocols for future cellular
networks with nfv,” IEEE/ACM Transactions on Networking, vol. 28,
no. 6, pp. 2559–2572, 2020.

[14] J. Hypolite, J. Sonchack, S. Hershkop, N. Dautenhahn, A. DeHon,
and J. M. Smith, “Deepmatch: Practical deep packet inspection
in the data plane using network processors,” in Proceedings
of the 16th International Conference on Emerging Networking
EXperiments and Technologies. New York, NY, USA: Association
for Computing Machinery, 2020, p. 336–350. [Online]. Available:
https://doi.org/10.1145/3386367.3431290

[15] “Ng application protocol.” [Online]. Available:
https://www.etsi.org/deliver/etsi\ ts/138400\ 138499/138413/15.
00.00\ 60/ts\ 138413v150000p.pdf

[16] J. Zhao, S. Ni, L. Yang, Z. Zhang, Y. Gong, and X. You, “Multiband
cooperation for 5g hetnets: A promising network paradigm,” IEEE
Vehicular Technology Magazine, vol. 14, no. 4, pp. 85–93, 2019.

[17] 3GPP, “Packet detection rule specification,” https://www.etsi.org/deliver/
etsi\ ts/129200\ 129299/129244/15.05.00\ 60/ts\ 129244v150500p.
pdf, 2021, [ONLINE].

[18] ——, “LTE; 5G; Interface between the Control Plane and the User
Plane nodes,” 3rd Generation Partnership Project (3GPP), Technical
Specification (TS) 29.244, 09 2019, version 15.7.0.

[19] “How do 5g small cells work and where are they located?” [Online].
Available: https://www.lifewire.com/5g-cell-towers-4584192

[20] “Control plane messages.” [Online]. Available:
https://www.etsi.org/deliver/etsi\ ts/129200\ 129299/129244/15.
05.00\ 60/ts\ 129244v150500p.pdf

[21] L. Foundation, “Data plane development kit (DPDK),” 2015. [Online].
Available: http://www.dpdk.org

[22] J. Xing, Q. Kang, and A. Chen, “NetWarden: Mitigating network covert
channels while preserving performance,” in 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Aug. 2020,
pp. 2039–2056. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/xing

[23] A. Bose, D. Maji, P. Agarwal, N. Unhale, R. Shah, and M. Vutukuru,
“Leveraging programmable dataplanes for a high performance 5g
user plane function,” in 5th Asia-Pacific Workshop on Networking
(APNet 2021), ser. APNet 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 57–64. [Online]. Available:
https://doi.org/10.1145/3469393.3469400

[24] Y. Xie and K. Jamieson, “Ng-scope: Fine-grained telemetry for
nextg cellular networks,” CoRR, vol. abs/2201.05281, 2022. [Online].
Available: https://arxiv.org/abs/2201.05281

[25] “Rte mbuf.” [Online]. Available: https://doc.dpdk.org/api/rte\ \ mbuf\
 8h.html

[26] H. Harkous, M. He, M. Jarschel, R. Pries, E. Mansour, and W. Kellerer,
“Performance study of p4 programmable devices: Flow scalability and
rule update responsiveness,” in 2021 IFIP Networking Conference (IFIP
Networking), 2021, pp. 1–6.

[27] P. Voros, D. Horpacsi, R. Kitlei, D. Lesko, M. Tejfel, and S. Laki,
“T4p4s: A target-independent compiler for protocol-independent packet
processors,” in 2018 IEEE 19th International Conference on High
Performance Switching and Routing (HPSR), 2018, pp. 1–8.

[28] “Netfpga-sume.” [Online]. Available: https://www.xilinx.com/products/
boards-and-kits/1-6ogkf5.html

[29] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading distributed applications onto smartnics using ipipe,” in Pro-
ceedings of the ACM Special Interest Group on Data Communication,
2019, pp. 318–333.

[30] “Handover required 3gpp.” [Online]. Available:
https://www.etsi.org/deliver/etsi ts/123500 123599/123502/15.02.
00 60/ts 123502v150200p.pdf

[31] “Measurement reports.” [Online]. Available: https:
//www.etsi.org/deliver/etsi\ ts/138100\ 138199/138133/15.02.00\
60/ts\ 138133v150200p.pdf

[32] M. Ahmad, S. U. Jafri, A. Ikram, W. N. A. Qasmi, M. A.
Nawazish, Z. A. Uzmi, and Z. A. Qazi, “A low latency and
consistent cellular control plane,” in Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for
Computer Communication, ser. SIGCOMM ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 648–661. [Online].
Available: https://doi.org/10.1145/3387514.3406218

[33] F. Meneghello, D. Cecchinato, and M. Rossi, “Mobility prediction via
sequential learning for 5g mobile networks,” in 2020 16th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), 2020, pp. 1–6.

[34] “Simulation of urban mobility.” [Online]. Available: https://www.
eclipse.org/sumo/

[35] “Vehicular mobility trace.” [Online]. Available: http://kolntrace.project.
citi-lab.fr/

[36] I. Labriji, F. Meneghello, D. Cecchinato, S. Sesia, E. Perraud, E. C.
Strinati, and M. Rossi, “Mobility aware and dynamic migration of mec
services for the internet of vehicles,” IEEE Transactions on Network
and Service Management, vol. 18, no. 1, pp. 570–584, 2021.

[37] M. Abdel-Nasser and K. Mahmoud, “Accurate photovoltaic power
forecasting models using deep lstm-rnn,” Neural Comput. Appl.,
vol. 31, no. 7, p. 2727–2740, jul 2019. [Online]. Available:
https://doi.org/10.1007/s00521-017-3225-z

[38] “Handover code free5gc.” [Online]. Available: https://github.com/
free5gc/free5gc/blob/main/test/registration\ test.go#L1717

[39] L. L. Gremillion, “Designing a bloom filter for differential file access,”
Commun. ACM, vol. 25, no. 9, p. 600–604, sep 1982. [Online].
Available: https://doi.org/10.1145/358628.358632

[40] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: A Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485 – 509,
2003. [Online]. Available: https://doi.org/

[41] “Netronome metering.” [Online]. Available: https://github.com/
open-nfpsw/meters lab/blob/master/meter lab.p4#L114

[42] S. Panda, K. K. Ramakrishnan, and L. N. Bhuyan, “pmach: Power and
migration aware container scheduling,” in 2021 IEEE 29th International
Conference on Network Protocols (ICNP), 2021, pp. 1–12.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:28:35 UTC from IEEE Xplore. Restrictions apply.

[43] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High
performance and flexible networking using virtualization on commodity
platforms,” in 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14). Seattle, WA: USENIX Association,
Apr. 2014, pp. 445–458. [Online]. Available: https://www.usenix.org/
conference/nsdi14/technical-sessions/presentation/hwang

[44] “Dpdk multi processor support.” [Online]. Available: https://doc.dpdk.
org/guides/prog guide/multi proc support.html

[45] “Crypto module nfp.” [Online]. Available: https://github.com/
Netronome/nic-firmware

[46] “Agilio lx 2x40gbe smartnic.” [Online]. Available: https://www.
netronome.com/media/documents/PB Agilio LX 2x40GbE-7-20.pdf

[47] D. Raca, D. Leahy, C. J. Sreenan, and J. J. Quinlan, “Beyond
throughput, the next generation: A 5g dataset with channel and
context metrics,” in Proceedings of the 11th ACM Multimedia Systems
Conference, ser. MMSys ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 303–308. [Online]. Available:
https://doi.org/10.1145/3339825.3394938

[48] “Gtp v1 header.” [Online]. Available: https://www.etsi.org/deliver/etsi\
 ts/129200\ 129299/129281/15.03.00\ 60/ts\ 129281v150300p.pdf

[49] “Default paging cycle.” [Online]. Available: http://www.techtrained.
com/paging-procedure-lte/

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:28:35 UTC from IEEE Xplore. Restrictions apply.

