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ARTICLE INFO ABSTRACT

Keywords: The proliferation of electric vehicles (EVs) all around the world offers both challenges and opportunities to build
Cost benefit a sustainable city and transportation system. Bidirectional charging capabilities at workplace charging facilities
G2V

(e.g., as part of a microgrid) have made the overall economic optimization more attractive on one hand, but also
more complex on the other hand. This paper investigates the cost optimization problem for bidirectional
MIP charging at a workplace microgrid connected to two different buildings to determine the optimal framework for a
Payback period combination of both heavy-duty and light-duty electric vehicles (HDEV and LDEV). A deep learning-based model
Peak shaving has been developed to forecast the 15-minute solar generation and building power consumption. Real-time travel
V2G profile data has been used to represent the temporal uncertainty of electric vehicle charging. The cost optimi-
zation problem is formulated as a Mixed Integer Programming (MIP) model which also addresses battery life
degradation. Furthermore, a comprehensive economic analysis has been carried out to analyze the payback
period, peak reduction, and cost savings for two different buildings at the same workplace with both on-board
and off-board charger configurations. It has been found that HDEV is a better cost-effective solution in com-
parison to LDEV in terms of energy cost reduction and payback periods. Net metering capability leads to higher
energy savings and peak reductions in most cases.

Heavy duty PEV
Light duty PEV

240 thousand level II EV Charging Stations (EVCS) (a power rating of
6-7.2 kW is representative of level II EVCS) and over 10 thousand level
I1I/DC Fast Charging (DCFC) EVCS (a power rating of 30-50 kW or more
is representative of level III EVCS) by 2025 (Transportation Electrifica-
tion, 2022, California Targets Nearly $400M to Fill Gaps in EV Charging
Infrastructure, 2022). The combined implementation of HDEV and
LDEV infrastructure will make transportation electrification easier to be
widely implemented.

While many pilot projects on transportation electrification usually
focus on either HDEV or LDEV deployment, there are not many pilot
implementations that consider both as part of the same infrastructure.
There can be three types of EVCS available for the users’ charging
purposes which are residential, workplace, and public, respectively.
Both medium-duty and heavy-duty electric vehicles (MDEV and HDEV)
have similar potential to reduce carbon emission and encourage
emission-free shared transportation. But their EVCS deployment differs
from the LDEVs in terms of their high-power requirements and less

1. Introduction
1.1. Motivation

Sustainable transportation and carbon emission-free energy usage
policies around the world have encouraged people to adopt more Plug-in
Electric Vehicles (PEVs) for both personal and business purposes. PEV is
becoming an integral part of smart cities due to its contribution towards
sustainable energy goals in many countries. The infrastructure and
technological development in the EV industry has made the influx of
both heavy-duty and light-duty electric vehicles (HDEV and LDEV)
possible in the U.S. States like California have a goal of deploying 5
million zero-emission vehicles by 2025 and 250 thousand EV stations by
2030 (Transportation Electrification, 2022). The California Public Util-
ities Commission (CPUC) and other agencies have now dedicated nearly
$1B in HDEV and LDEV charging infrastructure. The plan is to have over
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Nomenclature

t Time slot index

T Total time period

ng light duty PEV index

Npq heavy duty PEV index

L charging decision binary variable index for EV
153 discharging decision binary variable index for EV
Ny Set of light duty PEVs

Nhg Set of heavy duty PEVs

Len Set of charging binary variables

Lgisch Set of discharging binary variables

At Time interval

by Charging decision binary variable for BESS

d; Discharging decision binary variable for BESS

SOCgy  State of Charge of EV
SOCningy Minimum SOC for EV
SOCmaxev Maximum SOC for EV

Neh EV EV charging efficiency

Ndgischey BV discharging efficiency

Pins gv Instantaneous power consumption by any EV
'm Resistance of EV motor

Diire Diameter of the EV tires

ka Armature constant

7 Magnetic flux

Mgy Total mass of the EV

a Acceleration of EV while driving
Kaero Aerodynamic drag coefficient
Velocity of EV on a trip
fr Rolling friction coefficient
g Acceleration due to gravity
Pgy.ch Power transferred from grid to each vehicle (kW)

Prvaisch ~ Power transferredfrom each vehicle to grid (kW)
Prv.ch max Maximum charging power for EV (kW)
Pgy dgisch max Maximum discharging power for EV (kW)

Pgria Power from grid to building
Psolar Power generated from solar
Ppuilding  Power consumption of the building

Pgy gischtotat TOtal Power transferred from vehicle to grid (kW)
Py chioar Total Power collected from grid to vehicle (kW)
Availability matrix for light duty EV

Agyn,  Availability matrix for heavy duty EV

Ce Price of energy purchased from grid ($/kWh)

AEV-,Hld

Chaery ~ Cost of Li-ion battery ($/kWh)

Capinir Initial Capacity of the EV battery
Capusens  Useful Capacity of the EV battery
Degeqiendar  Calendar degradation of the EV battery
Deg.,.  Cycle degradation of the EV battery

DOD Depth of Discharge
al,b,c  Fitting parameters for cycle degradation

maneuverability. Using a high energy consuming building/infrastruc-
ture equipped with renewable energy and large parking spaces as a
charging/discharging hub may solve these problems. This hub can be
used by passenger vehicles and any HDEV using nearby routes. This will
also reduce the overall infrastructure cost and necessary upgrades in the
distribution system. Moreover, the coordinated operation of both will
offer opportunities to reduce the overall operation and energy cost of the
infrastructure. Their vehicle-to-grid operation can also help to lessen the
adverse impacts on the grid and reduce problematic peaks. The current
trend of renewable energy sources available in these distribution-level
microgrids can also play an important role by charging the EVs to
maximize renewable consumption. The DCFC infrastructure will also
help to accommodate the HDEVs requirements while at the same time
satisfying LDEV needs without requiring any separate infrastructure.
While the deployment of the EVCS can make EV charging/discharging
more convenient, their cost-benefit analyses need to be performed for
the optimal operation of EVCS.

EVs in general will soon become a significant percentage of the daily
electrical peak demand and optimizing their charging/discharging
schedule will be required to help manage peak demand. The heat waves
of August 2020 in California caused peak electrical demand in the early
evening with low solar production. To prevent the grid from collapsing
completely, these situations lead to rotating blackouts due to the results
of heat waves. The influx of EVs in the near future will challenge the
current grid infrastructure even further since EVs are likely to be plug-
ged in after the daily commute during the evening hours. The potential
higher peaks generated from EVs need to be investigated and optimized
before large-scale EVCS is deployed.

1.2. Related Research Activity

HDEV and LDEV optimal scheduling have been explored in many
other studies. Electric buses are often considered an early example of
HDEV implementation around the world. Electric bus charging station
scheduling is optimized considering an energy storage system followed
by sensitivity analysis (Pan, Wu, Feng, & Ji, 2020, Zhang, 2019). The

daily operating cost is minimized but the battery loss model used there
to minimize the cost is inconclusive. In (Basma et al., 2020, Beekman &
Van Den Hoed, 2016), electric bus charging optimization is done under
varying operating conditions. Depot charging, end-line charging, and
opportunity charging stations are explored to minimize energy and
battery replacement costs. The cost-benefit analysis is executed in
(Jiang et al., 2018) to show that a trade-off between the fixed cost and
charging cost is needed for the optimal fleet size. In-depot charging has
an impact on overall cost minimization and in (Gormez, Haque, & Sozer,
2021) cost optimization is carried out for an opportunity charging bus
network. A cost optimal design strategy is also proposed for heavy-duty
electric vehicle drivetrains (Kampker et al., 2019). While the goal of
these studies is optimizing the energy costs for HDEVs, the opportunities
of incorporating LDEVs using the same infrastructure, their coordinated
operation, and reducing the payback periods are not discussed.

Evolutionary algorithms are widely explored by Mixed Integer Pro-
gramming (MIP) formulation to execute the cost-benefit analysis for
mostly LDEVs. In (Chen et al., 2016), a mixed-integer linear program-
ming (MILP) problem is formulated to compare the effectiveness be-
tween the coordinated and uncoordinated charging strategies, while
ignoring the battery degradation cost. In (Moradipari et al., 2020), a
MILP is formulated to minimize the daily operation cost for electric bus
fleets and the strategy is validated by Stanford University’s shuttle data.
In (Houbbadi et al., 2018), evolutionary algorithms are used to reduce
electricity costs and battery aging for electric buses. The optimal
charging strategy shows improvements in both cost reduction and
improving battery life. In (Zahedmanesh, Muttaqi, & Sutanto, 2021), a
three-stage cooperative energy management system is proposed for a
virtual energy hub that provides the minimum operational cost. The
virtual energy hub only comprises an electric bus and a simplistic rep-
resentation of the real test case scenarios. Moreover, the uncertainties
are not addressed properly and are more focused on overall energy
management. A bi-objective optimization model is proposed in (Zhou,
Liu, Wei, & Golub, 2021) for battery-electric bus deployment and the
trade-off between environmental fairness and resource investment.

In (Heredia et al., 2020), an economic evaluation is carried out for



J. Yusuf et al.

Table 1
Summary of related works.

Reference

Research Focus

Summary

(Pan, Wu, Feng, & Ji, 2020,
Zhang, 2019)

(Basma et al., 2020, Beekman &
Van Den Hoed , 2016)

(Jiang et al., 2018, Gormez,
Haque, & Sozer, 2021,
Kampker et al., 2019)

(Zahedmanesh, Muttaqi, &
Sutanto, 2021, Zhou, Liu, Wei,
& Golub, 2021)

(Chen et al., 2016, Moradipari
et al., 2020, Houbbadi et al.,
2018, Sufyan et al., 2020)

(Heredia et al., 2020, Luo et al.,
2013, Luo et al., 2013)

(Brinkel et al., 2020)

(Koubaa et al., 2020, Oda et al.,
2018, Yang, Zhang, & Dong,
2020)

(Yan, Zhang, & Kezunovic,
2019)

(David & Al-Anbagi, 2017,
Tamura, 2020, Singh &
Tiwari, 2020, Bagheri

HDEV CS
scheduling

HDEV CS
scheduling

HDEV cost-benefit
analysis

HDEV energy
management and
deployment

LDEV charging

LDEV Case Studies

Bidirectional
LDEV charging

Case studies for
Bidirectional EVs

EV customer
satisfaction
Cost benefit
analyses

Minimizing the energy
and battery replacement
costs

Minimizing the
operational cost

Cost optimization for
HDEV operation

Operational cost
minimization and trade-
off between
environmental benefit
and investments
MILP-based and Heuristic
cost optimization

Cost optimization for
LDEV operation
Trade-off between cost
and emission
optimization

Economic advantages of
V2G, quick EV charging
and different EV
infrastructures
Optimizing bidirectional
EVCS

Frequency regulation by
EV, EV grid integration,
PEV owners’ benefits

Tookanlou, Marzband, Al
Sumaiti, & Mazza, 2020, Fan
& Chen, 2019,
Rodriguez-Molina, Castillejo,
Beltran, & Martinez-Ntnez,
2020)

(Hu, Bu, & Terzija, 2021, Fanti,
Mangini, Roccotelli, &
Silvestri, 2022, Corinaldesi,
Lettner, & Auer, 2022, Cheng
et al., 2020)

(Qureshi, Alhudhaif, & Jeon,
2021, Firouzjah, 2022)

Electric car
sharing

Voltage regulation and
cost optimization

EVCS Parking Lot
energy
management

Energy security and profit
maximization

adaptive charging algorithm implementation in 16 level-II EVCS and 1
DCFC at the U.S. National Renewable Energy Laboratory. The study
mainly focuses on the operation and installation cost along with the
reduction in demand charge. The study lacks the modeling of EV and
battery degradation. The opportunity for different EVCS, EV, and the
payback period of the implementation were not investigated. In (Luo
et al., 2013, Luo et al., 2013), a two-stage MILP optimization model is
proposed for a coordinated vehicle to grid (V2G) and a case study in
China was used to validate it. The peak load reduction is done in the first
stage and the load fluctuation is taken care of in the second stage. In
(Brinkel et al., 2020), a multi-objective optimization method is applied
to find the trade-off between the cost and emission of bidirectional EV
charging. Next, the reinforcement cost of the grid is determined. In
(Sufyan et al., 2020), the Firefly algorithm is used to find the optimal
system cost for EV charging coordination.

Case studies have also been carried out to show the economic ben-
efits of V2G (Koubaa et al., 2020) and reducing the waiting time for EV
quick charging (Oda et al., 2018), and for different EV charging infra-
structure subsidy policies (Yang, Zhang, & Dong, 2020). A four-stage
optimization method has been proposed to maximize customer satis-
faction for EV charging on a bidirectional EVCS equipped with renew-
able energy resources (Yan, Zhang, & Kezunovic, 2019). Cost-benefit
analyses were done in smart grid environments for frequency regula-
tion by EV (David & Al-Anbagi, 2017, Tamura, 2020), EV grid
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integration (Singh & Tiwari, 2020, Bagheri Tookanlou, Marzband, Al
Sumaiti, & Mazza, 2020, Fan & Chen, 2019), and privately owned PEV
owners (Rodriguez-Molina, Castillejo, Beltran, & Martinez-Nunez,
2020). Studies are also done to show electric car-sharing opportunities
for reducing congestion and making the transportation system more
sustainable. Innovative strategies are proposed in (Hu, Bu, & Terzija,
2021, Fanti, Mangini, Roccotelli, & Silvestri, 2022) for voltage regula-
tion and electric car relocation in a car-sharing environment. Electric car
sharing can also help to reduce the overall electricity cost and incidental
peaks as well (Corinaldesi, Lettner, & Auer, 2022, Cheng et al., 2020).
EV energy management and charging scheduling systems are proposed
to provide a secured EV management strategy (Qureshi, Alhudhaif, &
Jeon, 2021) and energy cost reduction in public parking lots (Firouzjah,
2022) in sustainable cities and societies. These studies aim to achieve
two primary objectives: developing an energy management approach
that can resist unauthorized access and maximizing profits for the
parking lots, respectively. The idea of having an adaptive charging
infrastructure that can host both HDEV and LDEVs is not presented in
these studies. The summary of all the relevant works are mentioned in
Table 1.

1.3. Contribution and Paper Organization

While there are many studies done that evaluate the pros and cons of
residential and public PEV charging strategies, workplace charging
strategies along with the coordinated HDEV and LDEV operation have
not been widely analyzed. Moreover, as people spend a significant
amount of time at their workplace, workplace charging strategies are
very important from both the user and building owner’s perspective.
Even though PEVs can perform bidirectional charging and vehicle-to-
building operation, vehicle-to-grid services are not implemented
widely yet. The real-time implementation of V2G is a big challenge due
to the unavailability of the infrastructure and V2G capable vehicles.
Hence, these strategies are yet under development and are mostly
executed in pilot projects. All the studies discussed above have been
mostly focused on LDEV or HDEV optimization separately. The com-
bined benefits possible from operating both at the same workstation
have not yet been explored, let alone their implementations. A
comprehensive cost-benefit analysis considering the infrastructure and
implementation cost is still absent in the literature which will be very
important for the mass deployment of HDEV and LDEV in the near
future.

Further, all the literature discussed above lacks a comprehensive
cost-benefit analysis to determine the optimal framework for LDEV and
HDEV implementation in a distribution-level microgrid. One can raise
several questions regarding the LDEV and HDEV integration at the same
workstation: 1) How cost-efficient is HDEV implementation in com-
parison to LDEV implementation and what is the optimal cost including
both HDEV and LDEV integration? 2) How do V2G and the battery
degradation impact the overall cost-benefit of the microgrid owner? 3)
What happens to the optimal cost solution for different PEV owners’
behaviors and metering scenarios? 4) What is the payback period of
different cost-optimal strategies? This paper tries to find answers to all
these questions and attempts to bridge the gap in the current literature.
The novel contributions of this paper can be summarized as follows:

1 A comprehensive cost-benefit analysis to find out the optimal
framework for a combined LDEV and HDEV implementation.

2 A novel data-driven methodology to optimize the overall energy cost
that integrates deep learning based prediction model and the PEV
availability matrices.

3 Analyzing net metering and charger based benefits to the microgrid
owner.

4 Modeling the uncertainties associated with load, solar, and PEV
along with the battery degradation and introducing the key factors
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Fig. 1. Top: HDEV Route and Bottom: LDEV with the battery energy storage trailer (left) and HDEV with the on-board charger (right).

for LDEV and HDEV deployment on workplace-integrated
microgrids.

5 Assessing the impacts of fleet size on the optimal framework
problem.

This paper is organized as follows: Section 2 describes the method-
ology, Section 3 discusses the problem formulation and constraints,
Section 4 includes the results and discussions, and Section 5 concludes
the paper and discusses future work.

2. Methodology

As an example of implementing this analytical approach presented in
this methodology, we consider the microgrid at the College of Engi-
neering — Center for Environmental Research & Technology (CE-CERT)
at the University of California Riverside. This microgrid incorporates
multiple level II and one level III EV charger. One of the CE-CERT
buildings (Building 1084) is used for administrative activities and
another (Building 1200) is used for research activities. The CE-CERT
microgrid consists of a 180 kW solar PV system at each building (Ula,
Yusuf, & Hasan, 2019). The electrical load of the 1084 building follows a
regular office load pattern whereas the electrical load of the 1200
building is relatively larger with a more uncertain pattern which de-
pends on the types and schedules of research activities. The regular work
hours are from 8 am to 5 pm on weekdays. The current infrastructure
allows the electric bus to be plugged into any of the buildings through an
inverter located inside a 500 kWh stationary battery energy storage
trailer. There are five EVCS connected to the 1084 building electrical
distribution panel. The daily solar production in the 1084 building is
more than the average load consumption whereas the average load
consumption is higher in the 1200 building. 1084 building is a Tier 1
(maximum demand < 100 kW) building and the 1200 building is Tier 4
(maximum demand is 250-500 kW) building (Electric Rules, & Rates,

2022).
The LDEV with the V2G charger and the battery energy trailer,
HDEYV, and it’s designated route are shown in Fig. 1.

2.1. Predicting Building and Solar Data

The building load pattern depends on the occupancy along with the
solar generation being intermittent due to weather. The energy cost is
calculated by the electric utilities based on the 15-minute rolling
average energy consumption. For a better estimation of energy cost, a
15-minute ahead building load and solar prediction are done for each of
the buildings. Statistical approaches such as ARIMA don’t provide a
good estimation for short-term time series prediction (Yusuf, Faruque,
Hasan, & Ula, 2019). It fails to capture the intermittent changes caused
by the load and solar production and is more suitable to use for dai-
ly/yearly prediction with a definite trend. On the other hand, Long
Short-Term Memory (LSTM) network can capture these irregularities
upon data availability. Hence, LSTM is applied for the 15-minute ahead
time series prediction. This network is applied on the Keras platform
using Tensorflow at the backend (Chollet at el, 2015). A rolling-horizon
approach is implemented for prediction. The input data are updated for
each time slot. 30 days of data are used for training the model initially.
Then the 1% timestamp data of the next day is predicted. The Adam
optimizer is used (Kingma & Ba, 2017), and the batch size (1), number of
layers (8), and number of epochs (5000) have been tuned to find the best
fit for the fitted model. The prediction results do not change much with a
higher number of layers and epochs. A typical summer month data is
used for the prediction. Fig. 2 is showing the predicted data for the 31%
of July for both of the buildings and Table 2 is showing the error metrics
for the prediction which shows that solar generation is predicted with a
very low root mean square error (RMSE). The prediction is good enough
to follow the building load pattern but the RMSE increases with a high
load deviation for the 1200 building.
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Fig. 2. Predicting building load and solar generation for both of the buildings.

Table 2
Error metrics for prediction.

Prediction (kW) RMSE Prediction (kW) RMSE

1084 building load 3.14
1200_building_load 11.12

1084_solar 2.39
1200_solar 2.57

2.2. Heavy Duty PEV Data

When considering HDEV activity, we utilize data from an electric
trolley bus that operates on a fixed route around UC Riverside. The
battery pack used in the electric trolley is composed of 540 cylindrical
lithium iron phosphate cells arranged in a 5P108S (5 parallel, 108 se-
ries) pattern that provides 345.6 V and a capacity of 155.52 kWh
nominal. The cells are laid out across 12 ventilated enclosures, with each
enclosure featuring its battery management system (BMS) modules. The
on-board charger takes in AC voltage from the utility grid and converts it
to the necessary DC voltage to charge the battery pack. The charger is
currently configured to charge at one of three selectable levels corre-
sponding to 33, 67, and 100 A DC and allows a maximum of 40 kW
power level. The bus has been tested along a specific route (Route 51) as
part of the Riverside Transit Agency schedule (Riverside Transit Agency
2022). The total route is 14.97 km long with an additional stop at
CE-CERT. To measure the average kWh needed per kilometer, the bus is
tested for multiple days with both loaded and unloaded conditions. The

average energy consumption is 0.92 kWh/km and 0.72 kWh/km for
loaded and unloaded conditions, respectively. Using the same route
every day is similar to the schedule of school buses. It is assumed that the
bus will complete two round trips each day as school buses do, one in the
morning and one in the afternoon. The energy consumption per trip can
be estimated by using the following equations that can be applied to any
kind of route. The instantaneous power consumed by an EV is extracted
from (Wu, Freese, Cabrera, & Kitch, 2015) and modified as follows.

Pinsev =

2
ire N2
m(mb‘va + KaeroV” + frimev g + mEVgsmﬁ) (€D)]

T X D

-i-v(kam,v2 + fumeyg + mEVgsinG) + mgyav

The first two terms in (1) are the power losses from motor and travel
resistance, respectively. The last term is the power generated from ac-
celeration/deceleration. The integral of this instantaneous power con-
sumption throughout the whole trip will result in (2).

T
Evuat per ip = / Pins gy (1)dt (2)

=1

2.3. Light Duty PEV Data

For our LDEV analysis, we consider two light-duty electric vehicles
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Light Duty Vehicle Change in SOC per Trip Histogram:
Over 445 Trips [Nov. 2018 to Sep. 2019
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Fig. 3. Change in SOC per trip for both PEVs.
Light Duty SOC Histogram:
Initial SOC Before 394 Trips [Nov. 2018 to Sep. 2019]
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Fig. 4. Initial SOC per trip for both PEVs.
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that are available for the employees of these buildings for short to
medium-distance travels for attending meetings. Both light-duty PEVs
are 2013 Nissan Leaf electric vehicles that have the capability of V2G
operation. Both have 24 kWh battery capacity with a capability of fast
charging/discharging given that fast-charging bidirectional EV stations
are available. The recent models of Nissan Leaf have a 40 kWh or 62
kWh battery capacity (Nissan Leaf 2022). As 40 kWh battery capacity
PEV is the most common one used by consumers, this is used to minimize
the cost function. Because the travel routes and meeting times do not
follow a regular schedule, the pattern of PEV usage is different in
comparison to any regular commute travel profile. The diurnal energy
requirements for any PEV largely depend on its regular activities. To
capture the usual activities of the available PEVs, two commercial data
loggers were used inside each vehicle. The parameters of initial
consideration included Vehicle Speed, Charge Status, Battery Level (%
and Wh), Battery Voltage, Battery Current, Battery Temperature, Motor
Torque, and Motor Speed. Travel patterns and profiles have been
generated using the available parameters in combination with GPS
tracking of the vehicle. As the charging characteristics cannot be infer-
red in real-time, hence they are translated from prior travel data and
charging events. If any change in SOC occurred between turning on and
off the vehicle, that can be evaluated using subsequent trip data (Yusuf
et al., 2021). Fig. 3 shows the change in SOC per trip. Most of the trips
involve short-distance travel for attending meetings and covering dis-
tances of 9.66 to 12.87 km for a round trip, so the resulting change in
SOC is small. The maximum change in SOC observed on a few occasions
is 22.5%. Fig. 4 shows the initial SOC before the trips were made. A total
of 544 trips were made with the two light-duty PEVs from Nov 2018 to
Oct 2019. Initial SOC mostly lies between 60-80% of the total capacity of
the available PEVs.

3. Problem Formulation and Constraints
3.1. Problem Formulation

The goal is to minimize the overall cost of EV operation in any
workplace-integrated microgrid having a similar infrastructure to this
one. This overall cost includes the total cost of energy and battery
degradation.

minimize (Energy Cost+ Battery Degradation Cost) 3
3.2. Energy Cost

The first objective of this multi-objective problem is minimizing the
cost of energy purchased from the grid. The total energy cost can be
described by (4). Eq. (5) shows the sum of delivering power from the
grid, solar, and EV is equal to the sum of power required by EV and the
building. The total charging and discharging power by EV is calculated
by (6) and (7). The EV SOC, charging, and discharging rates are con-
strained by (8)-(11). The charging and discharging decision variables
are binary which are imposed by (12)-(13). for Vt € T, Vny € Ny,
Vipg € Npg, VI € Lep, V2 € Laisch,

T
Energy Cost = ZPg,;d(t) X Ar x C,(1) )

=1

Pgr[d(t) + PEV,d[sch.mtal(l) + Psolar(t) = PEV,ch.Imal(t) + Pbu[lding(t) (5)

Py chtoral (1) = Z Agvuy () X Peyenm, (1) + Z Agvm, (1)

Vg €Nl Vg E€Npa

X Ppy chmg (1) (6)
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PEV,d[.scI1,lr)Iz1I(t) = Z AEVJlM (t) X PEV.dixfh,n,d (t) + Z AEV,nM (t)

Vnig €N Vi ENpa
X Pry dischmy (7)
@)

SOCey(t) = SOCey (t = 1)+{ (e, v X Prv.en(t) 8)
— Pey gisen () /ﬂdisch,Ev) / Cap,-,,,,} x At
SOCuingy < SOCey(t) < SOCauciv ©)
0< PEV,Ch(t) < (t) X Pry.ch max (10)
0< PEV‘,ﬁg(';,(t) < (t) X PEv gisch max an
WD) + b0 =1 a2
L(1), (1) € {0, 1} as)

3.3. Battery Degradation Cost

The EV battery degradation depends on multiple factors such as
temperature and operating conditions. The battery degradation cost can
be described by the Eq. (14) (Ahmadian et al., 2018, Guenther et al.,
2013). The impact of yearly degradation is highly dependent on the
operating temperature and negligible in comparison to the cycle
degradation. Hence, only cycle degradation is used to compute the daily
battery degradation cost.

r De, .+ Deg,,
Battery Degradation Cost = Z Chattery X ( S catendar Beyete )

14

=1 (Capinit - Capu.\'eﬁd)
Capusepu = 0.8 X Capinir 15)
Degeyere =a x DOD®* + b x DOD* + ¢ x DOD (16)

To make it quadratic and solve it by the off the shelf solvers like
Gurobi (Gurobi Optimization, LLC, 2022) and improve the computation
time, an auxiliary variable is introduced. If y = DOD?, then the above
equation can be written as

Degeye =al Xy x DOD+ bxy +c¢ x DOD a7

3.4. Payback Period and Yearly Savings Analysis

The parameters for cost-benefit analysis and finding out the best
combination of LDEV and HDEV are as follows. The selection between
HDEV and LDEV can be chosen based on the parameters mentioned
here. These two parameters will help the owners to decide the right
trade-off for a combination of different types of EVs.

Total Operational and Installation Cost

Payback Period = - (18)
Yearly Savings
Total Operational and Installation Cost
= Equipment cost + Installation cost + Annual recurring fees (19)
Yearly Savings = 365 x Daily savings from optimized EV operation
(20)

3.5. Optimization

The cost function along with its constraints is a Mixed Integer Pro-
gramming (MIP) and a non-convex problem. The optimization is done
for 1-day operation that includes 24 hours of data equivalent to 96
timestamps. The problem is solved in the Gurobi optimization solver
with a work station having i-7 core and 16 GB RAM (Gurobi
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Fig. 5. Case I: HDEV activities in different buildings with off-board charging; HDEV was unavailable before 8.30 and between 14:00 and 15:00.
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g. 6. Case I: HDEV activities in different buildings with on-board charging; HDEV was unavailable before 8.30 and between 14:00 and 15:00.
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Fig. 7. Case II: LDEV activities in different buildings with off-board charging; LDEV was unavailable between 12:00 and 13:00; and after 17:00.

Optimization, LLC, 2022).
4. Results and Discussions
4.1. Optimal Scheduling of EVs

4.1.1. Case I: Only HDEV is present

The first case explores the opportunity for cost optimization by the
electric trolley in this commercial building-integrated microgrid. The
electric trolley is available for charging and discharging anytime outside
the morning (before 8:30) and afternoon (between 14:00 and 15:00)
scheduled trip times. Both 1084 and 1200 buildings are considered for
this scenario and the cost opportunity is examined for both on-board and
off-board charger activities. It is assumed that the on-board charger in
the bus allows a maximum of 40 kW and the off-board charger allows a
maximum of 100 kW for charging/discharging. Though the actual
electric bus does not allow bidirectional charging with the on-board
charger (40 kW), 100 kW bidirectional power transfer is possible
through the inverter mounted on the mobile trailer. Figs. 5 and 6 show
the grid-to-vehicle (G2V) and vehicle-to-grid (V2G) activities by the
electric trolley on both of the buildings for different charger configu-
rations, respectively. The 1084 building is enriched with surplus solar
production during the daytime. Hence, the charging events take place
when solar is available despite the on-peak hours (12 pm - 6 pm), and
the bus discharges when solar goes down in the afternoon. Despite the
capacity of charging at 100 kW rates, the HDEV charges slowly to bal-
ance the net power at 1084 building with off-board configurations.

Though the solar is abundant from 14:00-15:00, no charging takes place
due to the unavailability of the HDEV. During the late evening hours, the
on-board charger triggers more discharging events due to its low dis-
charging capacity of 40 kW. When degradation cost is included, a higher
Depth of Discharge (DoD) leads to higher degradation. Hence, the bus
charging/discharging activities are lower compared to the activities
without the effort to minimize the degradation cost. The charging/dis-
charging rates are also lower when the degradation cost is included.
Solar production in the 1200 building is not enough to compensate for
all the building loads. More discharging events take place during the day
and the discharging rate is also maximum. The inclusion of degradation
cost leads to a moderate charging/discharging profile for a longer period
to extend the battery life.

4.1.2. Case II: Only LDEVs are present

LDEVs are assumed to be available for energy optimization in the
second case. It is assumed that all the LDEVs are identical and the ca-
pacity of each is 40 kWh. All the off-board chargers are bidirectional and
the maximum bidirectional capability of each charger is 30 kW. The on-
board chargers in the LDEVs are assumed to be bidirectional and the
power rating of 6.6 kW is representative of level II EV charging/dis-
charging. The availability of LDEVs depends on the regular work
schedules. They are unavailable during the lunch period (12- 1 pm) and
out of work hours (after 5 pm). As Fig. 3 indicates that the maximum
change of SOC level is 22.5 percent which only occurs rarely. In general,
for this LDEV model with a 30 kWh/160.93 km rating, a round trip of
41.84 km can be completed if it has a comfortable SOC level at the
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Fig. 8. Case II: LDEV activities in different buildings with on-board charging; LDEV was unavailable between 12:00 and 13:00; and after 17:00.

(a) without degradation and net metering (b) with degradation and net metering

P evl charge
P_ev2_charge
P_ev3 _charge
P_evd_charge
P_ev5 charge
P evl discharge
P_ev2_discharge
P_ev3_discharge
P_ev4_discharge
P_ev5_discharge
P_bus_charge
P_bus_discharge

25+
0.8

N
(=]

0.6

0.4

Ly
o

Normalized Power (kW)
-
v

Normalized Power (kW)

0.2
0.5-

0.0

08:20 11:06:40 13:53:20 16:40 19:26:40 22:13:20 0.0° 08:20 11:06:40 13:53:20 16:40
Time Time

Fig. 9. Case III: LDEV and HDEV activities in different buildings with net metering and off-board charging.
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starting and wants to finish the trip with 20 percent SOC left (Fuel The initial SOCs of all the LDEVs are chosen randomly and assumed
Economy 2022). So, the minimum SOC level is assumed 40 percent of to be 50-80% of the total SOC. The LDEVSs start discharging in the early
the total capacity to allow for the completion of the return trip. morning in the 1084 building. They follow the same characteristics with

10
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(b) with degradation and net metering
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Fig. 10. Case III: LDEV and HDEV activities in different buildings with net metering and on-board charging.

Table 4
Cost savings for off-board EVSE.

Table 3

Time of use energy cost (Electric Rules & Rates 2022).
Time Price ($/kWh)
Off-Peak (11 pm - 8 am) 0.0773
Mid-Peak (8 am -12 pm), (6 pm-11 pm) 0.0898
On-Peak (12 pm - 6 pm) 0.1104

No EV and with EV Uncoordinated and

the addition of the depreciation cost but discharge at slower rates to
reduce the total number of battery cycling. When the solar is available in
1084 after early morning, there is no need to discharge the LDEVs. If all
the LDEVs are connected to the 1200 building, they get charged in the
early hours of the day when the electricity price is low to have more
energy available for V2G activities when the electricity price is high. All
the LDEVs take part in reducing the net load and the discharging rates
are slower during the overall cost (energy cost+ battery degradation
cost) optimization. For 1200 building, the maximum total discharging
power reduces to approximately one-sixth of capable V2G in off-board
configurations whereas the amount of reduction is nearly half for the
on-board configurations with the inclusion of degradation cost as shown
in Figs. 7 and 8. This shows that the V2G availability largely depends on
the number of LDEVs in the fleets and their configurations.

4.1.3. Case III: Both LDEV and HDEV are present

The last case study includes both LDEVs and HDEVs for optimization
with two scenarios: a) net metering and b) no net metering. Fig. 9 shows
the optimal scheduling of LDEVs and HDEVs when all of them try to
minimize the overall energy cost of two buildings. If net metering is
available, then it is possible to optimize the net load by the LDEVs and
HDEV. The presence of net metering helps to utilize the curtailed solar
energy of the 1084 building. The LDEVs also discharge and utilize their
remaining energy during the on-peak hours. The degradation cost
constraint leads to the controlled lower discharging rates of the vehicles
to conserve battery life. Fig. 10 shows the LDEVs and HDEV activities
with on-board charger configurations.

4.2. Cost Savings

The regular energy cost without any EV is calculated for the build-
ings where the Time of Use (TOU) energy rate shown in Table 3 is
applied. The energy costs for the buildings along with the uncoordinated
LDEV and HDEVs are also calculated. When implementing

11

Optimization Coordinated
Cases  Building No degradation  No degradation
degradation degradation
Case 1084 73.9% 42.1% 79.3% 54.1%
I 1200 7.2% 5.2% 10.4% 8.6%
Case 1084 1.5% - 35.2% 34.3%
I 1200 4.2% - 9.4% 5.4%
Case net 13.2% 5.8% 21.6% 14.9%
111 metering
no net 6.7% 4.8% 13.4% 11.7%
metering
Table 5

Cost savings for on-board EVSE.

No EV and Optimization Uncoordinated and

Coordinated
Cases  Building No degradation ~ No degradation
degradation degradation
Case 1084 73.9% 11.2% 79.3% 29.6%
I 1200 6.8% 4.9% 10.1% 8.3%
Case 1084 1.5% - 35.2% 34.3%
I 1200 4.2% - 9.4% 5.5%
Case net 12.4% 5.5% 20.9% 14.6%
111 metering
no net 6.4% 4.5% 13.2% 11.4%
metering

uncoordinated EV charging, it means that all the EVs start charging
when they are plugged in regardless of the TOU energy rates or the
availability of solar energy. They recharge again after any trip that
happened during the day to make up for the used energy. Table 4 and
Table 5 show the cost savings for off-board and on-board configurations
in comparison to the no EV and uncoordinated EV cases, respectively.
The electric trolley provides the maximum cost saving opportunity due
to its availability at night time and fixed number of trips. LDEVs
generate lower savings due to their fixed presence at the worksite and
are unavailable after 5 pm. Net metering always provides higher savings
in comparison to no net metering. The inclusion of degradation cost
reduces the amount of savings. The cost savings don’t vary much and do
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Table 6
Peak reduction with optimized operation.
Off-board On-board
Cases  Building No degradation  No degradation
Number degradation degradation
Case 1084 67.2% 79.6% 16.5% 17.9%
I 1200 15.2% 35.4% 12.2% 18.0%
Case 1084 75.8% 75.8% 2.6% 2.6%
I 1200 26.2% 44.7% 0.0% 15.5%
Case net 34.8% 43.8% 19.5% 24.3%
111 metering
no net 36.6% 49.6% 10.8% 15.7%
metering
Table 7

Cost of EVCS Equipment (Mass DOER Electric School Bus Pilot Project Evalua-
tion 2022).

Type On-board ($) Off-board ($)
Charging Infrastructure 25,000 60,000
Installation per site 10,000 10,000
Vehicle upgrades 12,000 8,000

Table 8
Payback Period in Years for Off-board EVSE.

No EV and EV Uncontrolled vs Optimized
Cases  Building No degradation  No degradation
Number degradation degradation
Case 1084 1.59 2.80 1.18 1.73
I 1200 1.54 2.11 1.02 1.24
Case 1084 320.25 8.75 8.98
I 1200 10.53 - 4.43 7.65
Case net 4.60 10.39 2.54 3.67
111 metering
no net 7.34 10.20 3.38 3.88
metering
Table 9

Payback Period in Years for On-board EVSE.

No EV and EV Uncontrolled vs Optimized
Cases  Building No degradation ~ No degradation
Number degradation degradation
Case 1084 0.96 6.31 0.71 1.90
I 1200 0.97 1.35 0.63 0.77
Case 1084 139.47 3.81 3.91
I 1200 4.59 1.93 3.31
Case net 2.22 5.02 1.19 1.71
111 metering
no net 3.49 4.93 1.57 1.80
metering

not depend on charger configurations (i.e., on-board or off-board).
Higher savings are more likely in regular commercial buildings like
1084 and net metering provides the highest cost benefit for the off-board
charger configurations. Between 1.5% to 79.3% cost saving is possible
depending on the EV operation strategy and overall system infrastruc-
ture (building load, vehicle spec, availability of vehicles). It is noted that
no savings are possible with LDEVs compared to no EV situation when
degradation cost is added.

4.3. Peak Reduction
Table 6 shows the change in peaks for optimized operation in com-

parison to uncoordinated EV charging. Off-board configuration provides
higher peak reduction compared to on-board configurations. The

12
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inclusion of degradation cost leads to higher peak savings in almost all
cases. The capability of reducing the peak in the 1200 building is lower
for off-board chargers. Net metering provides a higher peak reduction
for on-board or level II charging capabilities in comparison to no net
metering available. Between 2.6% to 79.6% peak reduction is possible
depending on the system infrastructure.

4.4. Payback Period

The payback period is another important parameter for the building
owners to make decisions on EV infrastructure investments. Table 7
shows the cost of different EVCS equipment for various charger
configurations.

The payback periods for all the cases are tabulated in Table 8 and
Table 9. It is possible to reach break-even in 1.24 years in building 1200
for case I with off-board configurations. A maximum of 9 years are
required for case II whereas 3.88 years are needed to get the initial in-
vestment back for the net metering scenario.

On the other hand, less time is required with on-board charger
configurations to make a profit. It takes less than a year to make a profit
in case I and a maximum of 4 years to make a profit in case II. Almost 2
years are needed in case III which is almost half compared to case III off-
board configurations.

4.5. Impacts of Fleet Size

The size of the fleet is an important factor as well to invest in the EV
infrastructure. Hence, the current EV penetration scenario is compared
with 10 and 20 percent EV parking spaces penetration scenarios,
respectively. The maximum number of EV parking spaces can be 200 for
the size of this type of infrastructure (Parking & Loading Standards,
2022) and the HDEV and LDEV mix ratio is considered 30 and 70 percent
(Light-Duty Vehicles Accounted for the Majority of Transportation En-
ergy Consumption, 2022). Fig. 11 shows the payback period for these
different scenarios when net metering is available, and degradation is
not considered. Though the payback period reduces when the penetra-
tion increases, the optimal payback period can be achieved when 10
percent of the parking spaces get penetrated with PEV.

5. Conclusions and Future Work

The real time implementation of smart bidirectional HDEV and LDEV
charging strategies exemplifies both challenges and opportunities. In
this paper, a data-driven innovative framework is introduced, followed
by a MIP model to minimize the overall cost of two different commercial
buildings. This framework will help the building owners to take de-
cisions on necessary investments for charging infrastructures and plan
accordingly. Later on, an extensive cost-benefit analysis was completed
in terms of charger configurations, payback periods, energy cost savings,
and peak reductions. For this specific case, the findings show that it is
more economical to have an HDEV with fixed travel schedules for en-
ergy savings. The least payback period is possible by deploying an HDEV
in a large energy user building. Net metering always helps to get the
initial investment back in a shorter period. The inclusion of degradation
cost results in better peak reductions. This case study can be replicated
in any university campus in the U.S. having similar settings. As this
university campus has a large parking area, it is possible to accommo-
date more HDEVs and LDEVs. Implementing the proposed framework
for a larger setting can be used as a base case for other large commercial
building owners. The long-term operation of this setting to explore the
impacts of seasonality and the integration of OpenADR (Connecting
Smart Energy to the Grid, 2022) for utilities are some of the possible
cases worth investigating in the future.
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