
Sustainable Cities and Society 95 (2023) 104582

Available online 18 April 2023
2210-6707/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A comparative techno-economic assessment of bidirectional heavy duty and 
light duty plug-in electric vehicles operation: A case study 

Jubair Yusuf a,1,*, A S M Jahid Hasan a,2, Jacqueline Garrido a, Sadrul Ula b, Matthew J. Barth a 

a Electrical and Computer Engineering Department, University of California Riverside, Riverside, CA, USA 
b College of Engineering-Center for Environmental Research & Technology, University of California Riverside, Riverside, CA, USA   

A R T I C L E  I N F O   

Keywords: 
Cost benefit 
G2V 
Heavy duty PEV 
Light duty PEV 
MIP 
Payback period 
Peak shaving 
V2G 

A B S T R A C T   

The proliferation of electric vehicles (EVs) all around the world offers both challenges and opportunities to build 
a sustainable city and transportation system. Bidirectional charging capabilities at workplace charging facilities 
(e.g., as part of a microgrid) have made the overall economic optimization more attractive on one hand, but also 
more complex on the other hand. This paper investigates the cost optimization problem for bidirectional 
charging at a workplace microgrid connected to two different buildings to determine the optimal framework for a 
combination of both heavy-duty and light-duty electric vehicles (HDEV and LDEV). A deep learning-based model 
has been developed to forecast the 15-minute solar generation and building power consumption. Real-time travel 
profile data has been used to represent the temporal uncertainty of electric vehicle charging. The cost optimi
zation problem is formulated as a Mixed Integer Programming (MIP) model which also addresses battery life 
degradation. Furthermore, a comprehensive economic analysis has been carried out to analyze the payback 
period, peak reduction, and cost savings for two different buildings at the same workplace with both on-board 
and off-board charger configurations. It has been found that HDEV is a better cost-effective solution in com
parison to LDEV in terms of energy cost reduction and payback periods. Net metering capability leads to higher 
energy savings and peak reductions in most cases.   

1. Introduction 

1.1. Motivation 

Sustainable transportation and carbon emission-free energy usage 
policies around the world have encouraged people to adopt more Plug-in 
Electric Vehicles (PEVs) for both personal and business purposes. PEV is 
becoming an integral part of smart cities due to its contribution towards 
sustainable energy goals in many countries. The infrastructure and 
technological development in the EV industry has made the influx of 
both heavy-duty and light-duty electric vehicles (HDEV and LDEV) 
possible in the U.S. States like California have a goal of deploying 5 
million zero-emission vehicles by 2025 and 250 thousand EV stations by 
2030 (Transportation Electrification, 2022). The California Public Util
ities Commission (CPUC) and other agencies have now dedicated nearly 
$1B in HDEV and LDEV charging infrastructure. The plan is to have over 

240 thousand level II EV Charging Stations (EVCS) (a power rating of 
6-7.2 kW is representative of level II EVCS) and over 10 thousand level 
III/DC Fast Charging (DCFC) EVCS (a power rating of 30-50 kW or more 
is representative of level III EVCS) by 2025 (Transportation Electrifica
tion, 2022, California Targets Nearly $400M to Fill Gaps in EV Charging 
Infrastructure, 2022). The combined implementation of HDEV and 
LDEV infrastructure will make transportation electrification easier to be 
widely implemented. 

While many pilot projects on transportation electrification usually 
focus on either HDEV or LDEV deployment, there are not many pilot 
implementations that consider both as part of the same infrastructure. 
There can be three types of EVCS available for the users’ charging 
purposes which are residential, workplace, and public, respectively. 
Both medium-duty and heavy-duty electric vehicles (MDEV and HDEV) 
have similar potential to reduce carbon emission and encourage 
emission-free shared transportation. But their EVCS deployment differs 
from the LDEVs in terms of their high-power requirements and less 
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maneuverability. Using a high energy consuming building/infrastruc
ture equipped with renewable energy and large parking spaces as a 
charging/discharging hub may solve these problems. This hub can be 
used by passenger vehicles and any HDEV using nearby routes. This will 
also reduce the overall infrastructure cost and necessary upgrades in the 
distribution system. Moreover, the coordinated operation of both will 
offer opportunities to reduce the overall operation and energy cost of the 
infrastructure. Their vehicle-to-grid operation can also help to lessen the 
adverse impacts on the grid and reduce problematic peaks. The current 
trend of renewable energy sources available in these distribution-level 
microgrids can also play an important role by charging the EVs to 
maximize renewable consumption. The DCFC infrastructure will also 
help to accommodate the HDEVs requirements while at the same time 
satisfying LDEV needs without requiring any separate infrastructure. 
While the deployment of the EVCS can make EV charging/discharging 
more convenient, their cost-benefit analyses need to be performed for 
the optimal operation of EVCS. 

EVs in general will soon become a significant percentage of the daily 
electrical peak demand and optimizing their charging/discharging 
schedule will be required to help manage peak demand. The heat waves 
of August 2020 in California caused peak electrical demand in the early 
evening with low solar production. To prevent the grid from collapsing 
completely, these situations lead to rotating blackouts due to the results 
of heat waves. The influx of EVs in the near future will challenge the 
current grid infrastructure even further since EVs are likely to be plug
ged in after the daily commute during the evening hours. The potential 
higher peaks generated from EVs need to be investigated and optimized 
before large-scale EVCS is deployed. 

1.2. Related Research Activity 

HDEV and LDEV optimal scheduling have been explored in many 
other studies. Electric buses are often considered an early example of 
HDEV implementation around the world. Electric bus charging station 
scheduling is optimized considering an energy storage system followed 
by sensitivity analysis (Pan, Wu, Feng, & Ji, 2020, Zhang, 2019). The 

daily operating cost is minimized but the battery loss model used there 
to minimize the cost is inconclusive. In (Basma et al., 2020, Beekman & 
Van Den Hoed, 2016), electric bus charging optimization is done under 
varying operating conditions. Depot charging, end-line charging, and 
opportunity charging stations are explored to minimize energy and 
battery replacement costs. The cost-benefit analysis is executed in 
(Jiang et al., 2018) to show that a trade-off between the fixed cost and 
charging cost is needed for the optimal fleet size. In-depot charging has 
an impact on overall cost minimization and in (Gormez, Haque, & Sozer, 
2021) cost optimization is carried out for an opportunity charging bus 
network. A cost optimal design strategy is also proposed for heavy-duty 
electric vehicle drivetrains (Kampker et al., 2019). While the goal of 
these studies is optimizing the energy costs for HDEVs, the opportunities 
of incorporating LDEVs using the same infrastructure, their coordinated 
operation, and reducing the payback periods are not discussed. 

Evolutionary algorithms are widely explored by Mixed Integer Pro
gramming (MIP) formulation to execute the cost-benefit analysis for 
mostly LDEVs. In (Chen et al., 2016), a mixed-integer linear program
ming (MILP) problem is formulated to compare the effectiveness be
tween the coordinated and uncoordinated charging strategies, while 
ignoring the battery degradation cost. In (Moradipari et al., 2020), a 
MILP is formulated to minimize the daily operation cost for electric bus 
fleets and the strategy is validated by Stanford University’s shuttle data. 
In (Houbbadi et al., 2018), evolutionary algorithms are used to reduce 
electricity costs and battery aging for electric buses. The optimal 
charging strategy shows improvements in both cost reduction and 
improving battery life. In (Zahedmanesh, Muttaqi, & Sutanto, 2021), a 
three-stage cooperative energy management system is proposed for a 
virtual energy hub that provides the minimum operational cost. The 
virtual energy hub only comprises an electric bus and a simplistic rep
resentation of the real test case scenarios. Moreover, the uncertainties 
are not addressed properly and are more focused on overall energy 
management. A bi-objective optimization model is proposed in (Zhou, 
Liu, Wei, & Golub, 2021) for battery-electric bus deployment and the 
trade-off between environmental fairness and resource investment. 

In (Heredia et al., 2020), an economic evaluation is carried out for 

Nomenclature 

t Time slot index 
T Total time period 
nld light duty PEV index 
nhd heavy duty PEV index 
l1 charging decision binary variable index for EV 
l2 discharging decision binary variable index for EV 
Nld Set of light duty PEVs 
Nhd Set of heavy duty PEVs 
Lch Set of charging binary variables 
Ldisch Set of discharging binary variables 
Δt Time interval 
b1 Charging decision binary variable for BESS 
d1 Discharging decision binary variable for BESS 
SOCEV State of Charge of EV 
SOCmin,EV Minimum SOC for EV 
SOCmax,EV Maximum SOC for EV 
ηch,EV EV charging efficiency 
ηdisch,EV EV discharging efficiency 
Pins,EV Instantaneous power consumption by any EV 
rm Resistance of EV motor 
Dtire Diameter of the EV tires 
ka Armature constant 
φ Magnetic flux 
mEV Total mass of the EV 

a Acceleration of EV while driving 
kaero Aerodynamic drag coefficient 
v Velocity of EV on a trip 
frl Rolling friction coefficient 
g Acceleration due to gravity 
PEV,ch Power transferred from grid to each vehicle (kW) 
PEV,disch Power transferredfrom each vehicle to grid (kW) 
PEV,ch max Maximum charging power for EV (kW) 
PEV,disch max Maximum discharging power for EV (kW) 
Pgrid Power from grid to building 
Psolar Power generated from solar 
Pbuilding Power consumption of the building 
PEV,disch,total Total Power transferred from vehicle to grid (kW) 
PEV,ch,total Total Power collected from grid to vehicle (kW) 
AEV,nld Availability matrix for light duty EV 
AEV,nhd Availability matrix for heavy duty EV 
Ce Price of energy purchased from grid ($/kWh) 
Cbattery Cost of Li-ion battery ($/kWh) 
Capinit Initial Capacity of the EV battery 
Capuseful Useful Capacity of the EV battery 
Degcalendar Calendar degradation of the EV battery 
Degcycle Cycle degradation of the EV battery 
DOD Depth of Discharge 
a1,b,c Fitting parameters for cycle degradation  
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adaptive charging algorithm implementation in 16 level-II EVCS and 1 
DCFC at the U.S. National Renewable Energy Laboratory. The study 
mainly focuses on the operation and installation cost along with the 
reduction in demand charge. The study lacks the modeling of EV and 
battery degradation. The opportunity for different EVCS, EV, and the 
payback period of the implementation were not investigated. In (Luo 
et al., 2013, Luo et al., 2013), a two-stage MILP optimization model is 
proposed for a coordinated vehicle to grid (V2G) and a case study in 
China was used to validate it. The peak load reduction is done in the first 
stage and the load fluctuation is taken care of in the second stage. In 
(Brinkel et al., 2020), a multi-objective optimization method is applied 
to find the trade-off between the cost and emission of bidirectional EV 
charging. Next, the reinforcement cost of the grid is determined. In 
(Sufyan et al., 2020), the Firefly algorithm is used to find the optimal 
system cost for EV charging coordination. 

Case studies have also been carried out to show the economic ben
efits of V2G (Koubaa et al., 2020) and reducing the waiting time for EV 
quick charging (Oda et al., 2018), and for different EV charging infra
structure subsidy policies (Yang, Zhang, & Dong, 2020). A four-stage 
optimization method has been proposed to maximize customer satis
faction for EV charging on a bidirectional EVCS equipped with renew
able energy resources (Yan, Zhang, & Kezunovic, 2019). Cost-benefit 
analyses were done in smart grid environments for frequency regula
tion by EV (David & Al-Anbagi, 2017, Tamura, 2020), EV grid 

integration (Singh & Tiwari, 2020, Bagheri Tookanlou, Marzband, Al 
Sumaiti, & Mazza, 2020, Fan & Chen, 2019), and privately owned PEV 
owners (Rodríguez-Molina, Castillejo, Beltran, & Martínez-Núñez, 
2020). Studies are also done to show electric car-sharing opportunities 
for reducing congestion and making the transportation system more 
sustainable. Innovative strategies are proposed in (Hu, Bu, & Terzija, 
2021, Fanti, Mangini, Roccotelli, & Silvestri, 2022) for voltage regula
tion and electric car relocation in a car-sharing environment. Electric car 
sharing can also help to reduce the overall electricity cost and incidental 
peaks as well (Corinaldesi, Lettner, & Auer, 2022, Cheng et al., 2020). 
EV energy management and charging scheduling systems are proposed 
to provide a secured EV management strategy (Qureshi, Alhudhaif, & 
Jeon, 2021) and energy cost reduction in public parking lots (Firouzjah, 
2022) in sustainable cities and societies. These studies aim to achieve 
two primary objectives: developing an energy management approach 
that can resist unauthorized access and maximizing profits for the 
parking lots, respectively. The idea of having an adaptive charging 
infrastructure that can host both HDEV and LDEVs is not presented in 
these studies. The summary of all the relevant works are mentioned in 
Table 1. 

1.3. Contribution and Paper Organization 

While there are many studies done that evaluate the pros and cons of 
residential and public PEV charging strategies, workplace charging 
strategies along with the coordinated HDEV and LDEV operation have 
not been widely analyzed. Moreover, as people spend a significant 
amount of time at their workplace, workplace charging strategies are 
very important from both the user and building owner’s perspective. 
Even though PEVs can perform bidirectional charging and vehicle-to- 
building operation, vehicle-to-grid services are not implemented 
widely yet. The real-time implementation of V2G is a big challenge due 
to the unavailability of the infrastructure and V2G capable vehicles. 
Hence, these strategies are yet under development and are mostly 
executed in pilot projects. All the studies discussed above have been 
mostly focused on LDEV or HDEV optimization separately. The com
bined benefits possible from operating both at the same workstation 
have not yet been explored, let alone their implementations. A 
comprehensive cost-benefit analysis considering the infrastructure and 
implementation cost is still absent in the literature which will be very 
important for the mass deployment of HDEV and LDEV in the near 
future. 

Further, all the literature discussed above lacks a comprehensive 
cost-benefit analysis to determine the optimal framework for LDEV and 
HDEV implementation in a distribution-level microgrid. One can raise 
several questions regarding the LDEV and HDEV integration at the same 
workstation: 1) How cost-efficient is HDEV implementation in com
parison to LDEV implementation and what is the optimal cost including 
both HDEV and LDEV integration? 2) How do V2G and the battery 
degradation impact the overall cost-benefit of the microgrid owner? 3) 
What happens to the optimal cost solution for different PEV owners’ 
behaviors and metering scenarios? 4) What is the payback period of 
different cost-optimal strategies? This paper tries to find answers to all 
these questions and attempts to bridge the gap in the current literature. 
The novel contributions of this paper can be summarized as follows:  

1 A comprehensive cost-benefit analysis to find out the optimal 
framework for a combined LDEV and HDEV implementation.  

2 A novel data-driven methodology to optimize the overall energy cost 
that integrates deep learning based prediction model and the PEV 
availability matrices.  

3 Analyzing net metering and charger based benefits to the microgrid 
owner.  

4 Modeling the uncertainties associated with load, solar, and PEV 
along with the battery degradation and introducing the key factors 

Table 1 
Summary of related works.  

Reference Research Focus Summary 

(Pan, Wu, Feng, & Ji, 2020,  
Zhang, 2019) 

HDEV CS 
scheduling 

Minimizing the energy 
and battery replacement 
costs 

(Basma et al., 2020, Beekman & 
Van Den Hoed , 2016) 

HDEV CS 
scheduling 

Minimizing the 
operational cost 

(Jiang et al., 2018, Gormez, 
Haque, & Sozer, 2021,  
Kampker et al., 2019) 

HDEV cost-benefit 
analysis 

Cost optimization for 
HDEV operation 

(Zahedmanesh, Muttaqi, & 
Sutanto, 2021, Zhou, Liu, Wei, 
& Golub, 2021) 

HDEV energy 
management and 
deployment 

Operational cost 
minimization and trade- 
off between 
environmental benefit 
and investments 

(Chen et al., 2016, Moradipari 
et al., 2020, Houbbadi et al., 
2018, Sufyan et al., 2020) 

LDEV charging MILP-based and Heuristic 
cost optimization 

(Heredia et al., 2020, Luo et al., 
2013, Luo et al., 2013) 

LDEV Case Studies Cost optimization for 
LDEV operation 

(Brinkel et al., 2020) Bidirectional 
LDEV charging 

Trade-off between cost 
and emission 
optimization 

(Koubaa et al., 2020, Oda et al., 
2018, Yang, Zhang, & Dong, 
2020) 

Case studies for 
Bidirectional EVs 

Economic advantages of 
V2G, quick EV charging 
and different EV 
infrastructures 

(Yan, Zhang, & Kezunovic, 
2019) 

EV customer 
satisfaction 

Optimizing bidirectional 
EVCS 

(David & Al-Anbagi, 2017,  
Tamura, 2020, Singh & 
Tiwari, 2020, Bagheri 
Tookanlou, Marzband, Al 
Sumaiti, & Mazza, 2020, Fan 
& Chen, 2019,  
Rodríguez-Molina, Castillejo, 
Beltran, & Martínez-Núñez, 
2020) 

Cost benefit 
analyses 

Frequency regulation by 
EV, EV grid integration, 
PEV owners’ benefits 

(Hu, Bu, & Terzija, 2021, Fanti, 
Mangini, Roccotelli, & 
Silvestri, 2022, Corinaldesi, 
Lettner, & Auer, 2022, Cheng 
et al., 2020) 

Electric car 
sharing 

Voltage regulation and 
cost optimization 

(Qureshi, Alhudhaif, & Jeon, 
2021, Firouzjah, 2022) 

EVCS Parking Lot 
energy 
management 

Energy security and profit 
maximization  
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for LDEV and HDEV deployment on workplace-integrated 
microgrids.  

5 Assessing the impacts of fleet size on the optimal framework 
problem. 

This paper is organized as follows: Section 2 describes the method
ology, Section 3 discusses the problem formulation and constraints, 
Section 4 includes the results and discussions, and Section 5 concludes 
the paper and discusses future work. 

2. Methodology 

As an example of implementing this analytical approach presented in 
this methodology, we consider the microgrid at the College of Engi
neering – Center for Environmental Research & Technology (CE-CERT) 
at the University of California Riverside. This microgrid incorporates 
multiple level II and one level III EV charger. One of the CE-CERT 
buildings (Building 1084) is used for administrative activities and 
another (Building 1200) is used for research activities. The CE-CERT 
microgrid consists of a 180 kW solar PV system at each building (Ula, 
Yusuf, & Hasan, 2019). The electrical load of the 1084 building follows a 
regular office load pattern whereas the electrical load of the 1200 
building is relatively larger with a more uncertain pattern which de
pends on the types and schedules of research activities. The regular work 
hours are from 8 am to 5 pm on weekdays. The current infrastructure 
allows the electric bus to be plugged into any of the buildings through an 
inverter located inside a 500 kWh stationary battery energy storage 
trailer. There are five EVCS connected to the 1084 building electrical 
distribution panel. The daily solar production in the 1084 building is 
more than the average load consumption whereas the average load 
consumption is higher in the 1200 building. 1084 building is a Tier 1 
(maximum demand < 100 kW) building and the 1200 building is Tier 4 
(maximum demand is 250-500 kW) building (Electric Rules, & Rates, 

2022). 
The LDEV with the V2G charger and the battery energy trailer, 

HDEV, and it’s designated route are shown in Fig. 1. 

2.1. Predicting Building and Solar Data 

The building load pattern depends on the occupancy along with the 
solar generation being intermittent due to weather. The energy cost is 
calculated by the electric utilities based on the 15-minute rolling 
average energy consumption. For a better estimation of energy cost, a 
15-minute ahead building load and solar prediction are done for each of 
the buildings. Statistical approaches such as ARIMA don’t provide a 
good estimation for short-term time series prediction (Yusuf, Faruque, 
Hasan, & Ula, 2019). It fails to capture the intermittent changes caused 
by the load and solar production and is more suitable to use for dai
ly/yearly prediction with a definite trend. On the other hand, Long 
Short-Term Memory (LSTM) network can capture these irregularities 
upon data availability. Hence, LSTM is applied for the 15-minute ahead 
time series prediction. This network is applied on the Keras platform 
using Tensorflow at the backend (Chollet at el, 2015). A rolling-horizon 
approach is implemented for prediction. The input data are updated for 
each time slot. 30 days of data are used for training the model initially. 
Then the 1st timestamp data of the next day is predicted. The Adam 
optimizer is used (Kingma & Ba, 2017), and the batch size (1), number of 
layers (8), and number of epochs (5000) have been tuned to find the best 
fit for the fitted model. The prediction results do not change much with a 
higher number of layers and epochs. A typical summer month data is 
used for the prediction. Fig. 2 is showing the predicted data for the 31st 

of July for both of the buildings and Table 2 is showing the error metrics 
for the prediction which shows that solar generation is predicted with a 
very low root mean square error (RMSE). The prediction is good enough 
to follow the building load pattern but the RMSE increases with a high 
load deviation for the 1200 building. 

Fig. 1. Top: HDEV Route and Bottom: LDEV with the battery energy storage trailer (left) and HDEV with the on-board charger (right).  
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2.2. Heavy Duty PEV Data 

When considering HDEV activity, we utilize data from an electric 
trolley bus that operates on a fixed route around UC Riverside. The 
battery pack used in the electric trolley is composed of 540 cylindrical 
lithium iron phosphate cells arranged in a 5P108S (5 parallel, 108 se
ries) pattern that provides 345.6 V and a capacity of 155.52 kWh 
nominal. The cells are laid out across 12 ventilated enclosures, with each 
enclosure featuring its battery management system (BMS) modules. The 
on-board charger takes in AC voltage from the utility grid and converts it 
to the necessary DC voltage to charge the battery pack. The charger is 
currently configured to charge at one of three selectable levels corre
sponding to 33, 67, and 100 A DC and allows a maximum of 40 kW 
power level. The bus has been tested along a specific route (Route 51) as 
part of the Riverside Transit Agency schedule (Riverside Transit Agency 
2022). The total route is 14.97 km long with an additional stop at 
CE-CERT. To measure the average kWh needed per kilometer, the bus is 
tested for multiple days with both loaded and unloaded conditions. The 

average energy consumption is 0.92 kWh/km and 0.72 kWh/km for 
loaded and unloaded conditions, respectively. Using the same route 
every day is similar to the schedule of school buses. It is assumed that the 
bus will complete two round trips each day as school buses do, one in the 
morning and one in the afternoon. The energy consumption per trip can 
be estimated by using the following equations that can be applied to any 
kind of route. The instantaneous power consumed by an EV is extracted 
from (Wu, Freese, Cabrera, & Kitch, 2015) and modified as follows. 

Pins,EV =

rm × D2
tire

4 × k2
a × φ2

(
mEV a + kaerov2 + frlmEV g + mEV gsinθ

)2

+v
(
kaerov2 + frlmEV g + mEV gsinθ

)
+ mEV av

(1) 

The first two terms in (1) are the power losses from motor and travel 
resistance, respectively. The last term is the power generated from ac
celeration/deceleration. The integral of this instantaneous power con
sumption throughout the whole trip will result in (2). 

Etotal per trip =

∫T

t=1

Pins,EV (t)dt (2)  

2.3. Light Duty PEV Data 

For our LDEV analysis, we consider two light-duty electric vehicles 

Fig. 2. Predicting building load and solar generation for both of the buildings.  

Table 2 
Error metrics for prediction.  

Prediction (kW) RMSE Prediction (kW) RMSE 

1084 building load 3.14 1084_solar 2.39 
1200_building_load 11.12 1200_solar 2.57  
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Fig. 3. Change in SOC per trip for both PEVs.  

Fig. 4. Initial SOC per trip for both PEVs.  
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that are available for the employees of these buildings for short to 
medium-distance travels for attending meetings. Both light-duty PEVs 
are 2013 Nissan Leaf electric vehicles that have the capability of V2G 
operation. Both have 24 kWh battery capacity with a capability of fast 
charging/discharging given that fast-charging bidirectional EV stations 
are available. The recent models of Nissan Leaf have a 40 kWh or 62 
kWh battery capacity (Nissan Leaf 2022). As 40 kWh battery capacity 
PEV is the most common one used by consumers, this is used to minimize 
the cost function. Because the travel routes and meeting times do not 
follow a regular schedule, the pattern of PEV usage is different in 
comparison to any regular commute travel profile. The diurnal energy 
requirements for any PEV largely depend on its regular activities. To 
capture the usual activities of the available PEVs, two commercial data 
loggers were used inside each vehicle. The parameters of initial 
consideration included Vehicle Speed, Charge Status, Battery Level (% 
and Wh), Battery Voltage, Battery Current, Battery Temperature, Motor 
Torque, and Motor Speed. Travel patterns and profiles have been 
generated using the available parameters in combination with GPS 
tracking of the vehicle. As the charging characteristics cannot be infer
red in real-time, hence they are translated from prior travel data and 
charging events. If any change in SOC occurred between turning on and 
off the vehicle, that can be evaluated using subsequent trip data (Yusuf 
et al., 2021). Fig. 3 shows the change in SOC per trip. Most of the trips 
involve short-distance travel for attending meetings and covering dis
tances of 9.66 to 12.87 km for a round trip, so the resulting change in 
SOC is small. The maximum change in SOC observed on a few occasions 
is 22.5%. Fig. 4 shows the initial SOC before the trips were made. A total 
of 544 trips were made with the two light-duty PEVs from Nov 2018 to 
Oct 2019. Initial SOC mostly lies between 60-80% of the total capacity of 
the available PEVs. 

3. Problem Formulation and Constraints 

3.1. Problem Formulation 

The goal is to minimize the overall cost of EV operation in any 
workplace-integrated microgrid having a similar infrastructure to this 
one. This overall cost includes the total cost of energy and battery 
degradation. 

minimize (Energy Cost + Battery Degradation Cost) (3)  

3.2. Energy Cost 

The first objective of this multi-objective problem is minimizing the 
cost of energy purchased from the grid. The total energy cost can be 
described by (4). Eq. (5) shows the sum of delivering power from the 
grid, solar, and EV is equal to the sum of power required by EV and the 
building. The total charging and discharging power by EV is calculated 
by (6) and (7). The EV SOC, charging, and discharging rates are con
strained by (8)-(11). The charging and discharging decision variables 
are binary which are imposed by (12)-(13). for ∀t ∈ T, ∀nld ∈ Nld, 
∀nhd ∈ Nhd, ∀l1 ∈ Lch, ∀l2 ∈ Ldisch, 

Energy Cost =
∑T

t=1
Pgrid(t) × Δt × Ce(t) (4)  

Pgrid(t) + PEV,disch,total(t) + Psolar(t) = PEV,ch,total(t) + Pbuilding(t) (5)  

PEV,ch,total(t) =
∑

∀nld ∈Nld

AEV,nld (t) × PEV,ch,nld (t) +
∑

∀nhd ∈Nhd

AEV,nhd (t)

× PEV,ch,nhd (t) (6)  

PEV,disch,total(t) =
∑

∀nld ∈Nld

AEV,nld (t) × PEV,disch,nld (t) +
∑

∀nhd ∈Nhd

AEV,nhd (t)

× PEV,disch,nhd (t)
(7)  

SOCEV(t) = SOCEV(t − 1)+
{(

ηch, EV × PEV,ch(t)
− PEV,disch(t)

/
ηdisch,EV

) /
Capinit

}
× Δt

(8)  

SOCmin,EV ≤ SOCEV(t) ≤ SOCmax,EV (9)  

0 ≤ PEV,ch(t) ≤ l1(t) × PEV,ch max (10)  

0 ≤ PEV,disch(t) ≤ l2(t) × PEV,disch max (11)  

l1(t) + l2(t) = 1 (12)  

l1(t), l2(t) ∈ {0, 1} (13)  

3.3. Battery Degradation Cost 

The EV battery degradation depends on multiple factors such as 
temperature and operating conditions. The battery degradation cost can 
be described by the Eq. (14) (Ahmadian et al., 2018, Guenther et al., 
2013). The impact of yearly degradation is highly dependent on the 
operating temperature and negligible in comparison to the cycle 
degradation. Hence, only cycle degradation is used to compute the daily 
battery degradation cost. 

Battery Degradation Cost =
∑T

t=1
Cbattery ×

(
Degcalendar + Degcycle

)

(
Capinit − Capuseful

) (14)  

Capuseful = 0.8 × Capinit (15)  

Degcycle = a × DOD3 + b × DOD2 + c × DOD (16) 

To make it quadratic and solve it by the off the shelf solvers like 
Gurobi (Gurobi Optimization, LLC, 2022) and improve the computation 
time, an auxiliary variable is introduced. If y′

= DOD2, then the above 
equation can be written as 

Degcycle = a1 × y′

× DOD + b × y′

+ c × DOD (17)  

3.4. Payback Period and Yearly Savings Analysis 

The parameters for cost-benefit analysis and finding out the best 
combination of LDEV and HDEV are as follows. The selection between 
HDEV and LDEV can be chosen based on the parameters mentioned 
here. These two parameters will help the owners to decide the right 
trade-off for a combination of different types of EVs. 

Payback Period =
Total Operational and Installation Cost

Yearly Savings
(18)  

Total Operational and Installation Cost

= Equipment cost + Installation cost + Annual recurring fees (19)  

Yearly Savings = 365 × Daily savings from optimized EV operation
(20)  

3.5. Optimization 

The cost function along with its constraints is a Mixed Integer Pro
gramming (MIP) and a non-convex problem. The optimization is done 
for 1-day operation that includes 24 hours of data equivalent to 96 
timestamps. The problem is solved in the Gurobi optimization solver 
with a work station having i-7 core and 16 GB RAM (Gurobi 
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Fig. 5. Case I: HDEV activities in different buildings with off-board charging; HDEV was unavailable before 8.30 and between 14:00 and 15:00.  

Fig. 6. Case I: HDEV activities in different buildings with on-board charging; HDEV was unavailable before 8.30 and between 14:00 and 15:00.  
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Optimization, LLC, 2022). 

4. Results and Discussions 

4.1. Optimal Scheduling of EVs 

4.1.1. Case I: Only HDEV is present 
The first case explores the opportunity for cost optimization by the 

electric trolley in this commercial building-integrated microgrid. The 
electric trolley is available for charging and discharging anytime outside 
the morning (before 8:30) and afternoon (between 14:00 and 15:00) 
scheduled trip times. Both 1084 and 1200 buildings are considered for 
this scenario and the cost opportunity is examined for both on-board and 
off-board charger activities. It is assumed that the on-board charger in 
the bus allows a maximum of 40 kW and the off-board charger allows a 
maximum of 100 kW for charging/discharging. Though the actual 
electric bus does not allow bidirectional charging with the on-board 
charger (40 kW), 100 kW bidirectional power transfer is possible 
through the inverter mounted on the mobile trailer. Figs. 5 and 6 show 
the grid-to-vehicle (G2V) and vehicle-to-grid (V2G) activities by the 
electric trolley on both of the buildings for different charger configu
rations, respectively. The 1084 building is enriched with surplus solar 
production during the daytime. Hence, the charging events take place 
when solar is available despite the on-peak hours (12 pm – 6 pm), and 
the bus discharges when solar goes down in the afternoon. Despite the 
capacity of charging at 100 kW rates, the HDEV charges slowly to bal
ance the net power at 1084 building with off-board configurations. 

Though the solar is abundant from 14:00-15:00, no charging takes place 
due to the unavailability of the HDEV. During the late evening hours, the 
on-board charger triggers more discharging events due to its low dis
charging capacity of 40 kW. When degradation cost is included, a higher 
Depth of Discharge (DoD) leads to higher degradation. Hence, the bus 
charging/discharging activities are lower compared to the activities 
without the effort to minimize the degradation cost. The charging/dis
charging rates are also lower when the degradation cost is included. 
Solar production in the 1200 building is not enough to compensate for 
all the building loads. More discharging events take place during the day 
and the discharging rate is also maximum. The inclusion of degradation 
cost leads to a moderate charging/discharging profile for a longer period 
to extend the battery life. 

4.1.2. Case II: Only LDEVs are present 
LDEVs are assumed to be available for energy optimization in the 

second case. It is assumed that all the LDEVs are identical and the ca
pacity of each is 40 kWh. All the off-board chargers are bidirectional and 
the maximum bidirectional capability of each charger is 30 kW. The on- 
board chargers in the LDEVs are assumed to be bidirectional and the 
power rating of 6.6 kW is representative of level II EV charging/dis
charging. The availability of LDEVs depends on the regular work 
schedules. They are unavailable during the lunch period (12- 1 pm) and 
out of work hours (after 5 pm). As Fig. 3 indicates that the maximum 
change of SOC level is 22.5 percent which only occurs rarely. In general, 
for this LDEV model with a 30 kWh/160.93 km rating, a round trip of 
41.84 km can be completed if it has a comfortable SOC level at the 

Fig. 7. Case II: LDEV activities in different buildings with off-board charging; LDEV was unavailable between 12:00 and 13:00; and after 17:00.  
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starting and wants to finish the trip with 20 percent SOC left (Fuel 
Economy 2022). So, the minimum SOC level is assumed 40 percent of 
the total capacity to allow for the completion of the return trip. 

The initial SOCs of all the LDEVs are chosen randomly and assumed 
to be 50-80% of the total SOC. The LDEVs start discharging in the early 
morning in the 1084 building. They follow the same characteristics with 

Fig. 8. Case II: LDEV activities in different buildings with on-board charging; LDEV was unavailable between 12:00 and 13:00; and after 17:00.  

Fig. 9. Case III: LDEV and HDEV activities in different buildings with net metering and off-board charging.  
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the addition of the depreciation cost but discharge at slower rates to 
reduce the total number of battery cycling. When the solar is available in 
1084 after early morning, there is no need to discharge the LDEVs. If all 
the LDEVs are connected to the 1200 building, they get charged in the 
early hours of the day when the electricity price is low to have more 
energy available for V2G activities when the electricity price is high. All 
the LDEVs take part in reducing the net load and the discharging rates 
are slower during the overall cost (energy cost+ battery degradation 
cost) optimization. For 1200 building, the maximum total discharging 
power reduces to approximately one-sixth of capable V2G in off-board 
configurations whereas the amount of reduction is nearly half for the 
on-board configurations with the inclusion of degradation cost as shown 
in Figs. 7 and 8. This shows that the V2G availability largely depends on 
the number of LDEVs in the fleets and their configurations. 

4.1.3. Case III: Both LDEV and HDEV are present 
The last case study includes both LDEVs and HDEVs for optimization 

with two scenarios: a) net metering and b) no net metering. Fig. 9 shows 
the optimal scheduling of LDEVs and HDEVs when all of them try to 
minimize the overall energy cost of two buildings. If net metering is 
available, then it is possible to optimize the net load by the LDEVs and 
HDEV. The presence of net metering helps to utilize the curtailed solar 
energy of the 1084 building. The LDEVs also discharge and utilize their 
remaining energy during the on-peak hours. The degradation cost 
constraint leads to the controlled lower discharging rates of the vehicles 
to conserve battery life. Fig. 10 shows the LDEVs and HDEV activities 
with on-board charger configurations. 

4.2. Cost Savings 

The regular energy cost without any EV is calculated for the build
ings where the Time of Use (TOU) energy rate shown in Table 3 is 
applied. The energy costs for the buildings along with the uncoordinated 
LDEV and HDEVs are also calculated. When implementing 

uncoordinated EV charging, it means that all the EVs start charging 
when they are plugged in regardless of the TOU energy rates or the 
availability of solar energy. They recharge again after any trip that 
happened during the day to make up for the used energy. Table 4 and 
Table 5 show the cost savings for off-board and on-board configurations 
in comparison to the no EV and uncoordinated EV cases, respectively. 
The electric trolley provides the maximum cost saving opportunity due 
to its availability at night time and fixed number of trips. LDEVs 
generate lower savings due to their fixed presence at the worksite and 
are unavailable after 5 pm. Net metering always provides higher savings 
in comparison to no net metering. The inclusion of degradation cost 
reduces the amount of savings. The cost savings don’t vary much and do 

Fig. 10. Case III: LDEV and HDEV activities in different buildings with net metering and on-board charging.  

Table 3 
Time of use energy cost (Electric Rules & Rates 2022).  

Time Price ($/kWh) 

Off-Peak (11 pm - 8 am) 0.0773 
Mid-Peak (8 am -12 pm), (6 pm-11 pm) 0.0898 
On-Peak (12 pm - 6 pm) 0.1104  

Table 4 
Cost savings for off-board EVSE.    

No EV and with 
Optimization 

EV Uncoordinated and 
Coordinated 

Cases Building No 
degradation 

degradation No 
degradation 

degradation 

Case 
I 

1084 73.9% 42.1% 79.3% 54.1% 
1200 7.2% 5.2% 10.4% 8.6% 

Case 
II 

1084 1.5% - 35.2% 34.3% 
1200 4.2% - 9.4% 5.4% 

Case 
III 

net 
metering 

13.2% 5.8% 21.6% 14.9% 

no net 
metering 

6.7% 4.8% 13.4% 11.7%  

Table 5 
Cost savings for on-board EVSE.    

No EV and Optimization Uncoordinated and 
Coordinated 

Cases Building No 
degradation 

degradation No 
degradation 

degradation 

Case 
I 

1084 73.9% 11.2% 79.3% 29.6% 
1200 6.8% 4.9% 10.1% 8.3% 

Case 
II 

1084 1.5% - 35.2% 34.3% 
1200 4.2% - 9.4% 5.5% 

Case 
III 

net 
metering 

12.4% 5.5% 20.9% 14.6% 

no net 
metering 

6.4% 4.5% 13.2% 11.4%  
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not depend on charger configurations (i.e., on-board or off-board). 
Higher savings are more likely in regular commercial buildings like 
1084 and net metering provides the highest cost benefit for the off-board 
charger configurations. Between 1.5% to 79.3% cost saving is possible 
depending on the EV operation strategy and overall system infrastruc
ture (building load, vehicle spec, availability of vehicles). It is noted that 
no savings are possible with LDEVs compared to no EV situation when 
degradation cost is added. 

4.3. Peak Reduction 

Table 6 shows the change in peaks for optimized operation in com
parison to uncoordinated EV charging. Off-board configuration provides 
higher peak reduction compared to on-board configurations. The 

inclusion of degradation cost leads to higher peak savings in almost all 
cases. The capability of reducing the peak in the 1200 building is lower 
for off-board chargers. Net metering provides a higher peak reduction 
for on-board or level II charging capabilities in comparison to no net 
metering available. Between 2.6% to 79.6% peak reduction is possible 
depending on the system infrastructure. 

4.4. Payback Period 

The payback period is another important parameter for the building 
owners to make decisions on EV infrastructure investments. Table 7 
shows the cost of different EVCS equipment for various charger 
configurations. 

The payback periods for all the cases are tabulated in Table 8 and 
Table 9. It is possible to reach break-even in 1.24 years in building 1200 
for case I with off-board configurations. A maximum of 9 years are 
required for case II whereas 3.88 years are needed to get the initial in
vestment back for the net metering scenario. 

On the other hand, less time is required with on-board charger 
configurations to make a profit. It takes less than a year to make a profit 
in case I and a maximum of 4 years to make a profit in case II. Almost 2 
years are needed in case III which is almost half compared to case III off- 
board configurations. 

4.5. Impacts of Fleet Size 

The size of the fleet is an important factor as well to invest in the EV 
infrastructure. Hence, the current EV penetration scenario is compared 
with 10 and 20 percent EV parking spaces penetration scenarios, 
respectively. The maximum number of EV parking spaces can be 200 for 
the size of this type of infrastructure (Parking & Loading Standards, 
2022) and the HDEV and LDEV mix ratio is considered 30 and 70 percent 
(Light-Duty Vehicles Accounted for the Majority of Transportation En
ergy Consumption, 2022). Fig. 11 shows the payback period for these 
different scenarios when net metering is available, and degradation is 
not considered. Though the payback period reduces when the penetra
tion increases, the optimal payback period can be achieved when 10 
percent of the parking spaces get penetrated with PEV. 

5. Conclusions and Future Work 

The real time implementation of smart bidirectional HDEV and LDEV 
charging strategies exemplifies both challenges and opportunities. In 
this paper, a data-driven innovative framework is introduced, followed 
by a MIP model to minimize the overall cost of two different commercial 
buildings. This framework will help the building owners to take de
cisions on necessary investments for charging infrastructures and plan 
accordingly. Later on, an extensive cost-benefit analysis was completed 
in terms of charger configurations, payback periods, energy cost savings, 
and peak reductions. For this specific case, the findings show that it is 
more economical to have an HDEV with fixed travel schedules for en
ergy savings. The least payback period is possible by deploying an HDEV 
in a large energy user building. Net metering always helps to get the 
initial investment back in a shorter period. The inclusion of degradation 
cost results in better peak reductions. This case study can be replicated 
in any university campus in the U.S. having similar settings. As this 
university campus has a large parking area, it is possible to accommo
date more HDEVs and LDEVs. Implementing the proposed framework 
for a larger setting can be used as a base case for other large commercial 
building owners. The long-term operation of this setting to explore the 
impacts of seasonality and the integration of OpenADR (Connecting 
Smart Energy to the Grid, 2022) for utilities are some of the possible 
cases worth investigating in the future. 

Table 6 
Peak reduction with optimized operation.    

Off-board On-board 

Cases Building 
Number 

No 
degradation 

degradation No 
degradation 

degradation 

Case 
I 

1084 67.2% 79.6% 16.5% 17.9% 
1200 15.2% 35.4% 12.2% 18.0% 

Case 
II 

1084 75.8% 75.8% 2.6% 2.6% 
1200 26.2% 44.7% 0.0% 15.5% 

Case 
III 

net 
metering 

34.8% 43.8% 19.5% 24.3% 

no net 
metering 

36.6% 49.6% 10.8% 15.7%  

Table 7 
Cost of EVCS Equipment (Mass DOER Electric School Bus Pilot Project Evalua
tion 2022).  

Type On-board ($) Off-board ($) 

Charging Infrastructure 25,000 60,000 
Installation per site 10,000 10,000 
Vehicle upgrades 12,000 8,000  

Table 8 
Payback Period in Years for Off-board EVSE.    

No EV and EV Uncontrolled vs Optimized 

Cases Building 
Number 

No 
degradation 

degradation No 
degradation 

degradation 

Case 
I 

1084 1.59 2.80 1.18 1.73 
1200 1.54 2.11 1.02 1.24 

Case 
II 

1084 320.25 - 8.75 8.98 
1200 10.53 - 4.43 7.65 

Case 
III 

net 
metering 

4.60 10.39 2.54 3.67 

no net 
metering 

7.34 10.20 3.38 3.88  

Table 9 
Payback Period in Years for On-board EVSE.    

No EV and EV Uncontrolled vs Optimized 

Cases Building 
Number 

No 
degradation 

degradation No 
degradation 

degradation 

Case 
I 

1084 0.96 6.31 0.71 1.90 
1200 0.97 1.35 0.63 0.77 

Case 
II 

1084 139.47 - 3.81 3.91 
1200 4.59 - 1.93 3.31 

Case 
III 

net 
metering 

2.22 5.02 1.19 1.71 

no net 
metering 

3.49 4.93 1.57 1.80  
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