2021 IEEE International Conference on Networking, Architecture and Storage (NAS) | 978-1-7281-7744-1/21/$31.00 ©2021 IEEE | DOI: 10.1109/NAS51552.2021.9605384

Towards a Proactive Lightweight Serverless Edge
Cloud for Internet-of-Things Applications

lan-Chin Wang, Shixiong Qi, Elizabeth Liri, K. K. Ramakrishnan
University of California, Riverside

Abstract—Edge cloud solutions that bring the cloud closer to
the sensors can be very useful to meet the low latency require-
ments of many Internet-of-Things (loT) applications. However,
loT traffic can also be intermittent, so running applications
constantly can be wasteful. Therefore, having a serverless edge
cloud that is responsive and provides low-latency features is a
very attractive option for a resource and cost-efficient loT
application environment.

In this paper, we discuss the key components needed to
support 10T traffic in the serverless edge cloud and identify the
critical challenges that make it difficult to directly use existing
serverless solutions such as Knative, for 10T applications. These
include overhead from heavyweight components for managing the
overall system and software adaptors for communication protocol
translation used in off-the-shelf serverless platforms that are
designed for large-scale centralized clouds. The latency imposed
by ‘cold start’ is a further deterrent.

To address these challenges we redesign several components of
the Knative serverless framework. We use a streamlined protocol
adaptor to leverage the MQTT IoT protocol in our serverless
framework for loT event processing. We also create a novel,
event-driven proxy based on the extended Berkeley Packet Filter
(eBPF), to replace the regular heavyweight Knative queue proxy.
Our preliminary experimental results show that the event-driven
proxy is a suitable replacement for the queue proxy in an loT
serverless environment and results in lower CPU usage and a
higher request throughput.

Index Terms—Internet-of-Things, serverless, edge cloud

I. INTRODUCTION

Internet-of-Things (loT) solutions have been increasingly
adopted for having universally connected sensors and actuators
that can be accessed from anywhere. loT applications that
process the sensor data, however, are subject to a number of
requirements and constraints, e.g., low latency, limited capital
expenditure and operational cost, low power, etc. An edge
cloud for loT services reduces the network latency since it can
physically be closer to the sensor devices [1]. However, the
intermittent nature of loT traffic also suggests the need for an
efficient low-cost backend to host the service on-demand. Only
using server resources when the application function is invoked
has the potential to achieve very good statistical multiplexing
and thus lower cost. Thus serverless computing is very well
suited for loT environments, due to the promise to handle
intermittent traffic. The cloud’s scalability helps support bursts
of traffic, as 10T traffic intensity can also be highly variable.

A general problem in serverless computing is the “cold
start”. This occurs when traffic arrives at the service backend
and no computing instance is ready, so the packets have

9781728 5T K09 (TR

to wait till the service is started. This results in excessive
response latency. Most cloud orchestration frameworks, in-
cluding serverless computing, can take seconds (even minutes)
to bring up a service, depending on its complexity. But,
depending on the application scenario, the acceptable delays
for 1oT applications and users can also widely vary [2]. For
example, in an loT parking management application, it may
not be a major impediment if the number of available spaces is
not updated immediately (within a second) after a vehicle exits
out of the parking space, given the frequency of car arrivals,
especially if the structure is not full. However, a delay of even
a few hundred milliseconds may result in a serious accident
in an autonomous driving application.

We focus on Knative [3], a general-purpose open-source
serverless platform with a function chaining solution that
supports loT applications. The standard Kubernetes cloud
orchestration and Knative serverless framework are built to be
more suitable for large centralized cloud environments that are
‘resource rich’. Their design approach emphasizes flexibility
and reuse of existing components and frameworks. As a result,
they can be quite inefficient for a resource-constrained edge
cloud and for use in cost-sensitive 10T applications.

Similar to most service platforms, Knative adopts HTTP
to support communication among its services. 0T devices,
due to their constrained energy resources, adopt lightweight
communication protocols, e.g., Constrained Application Pro-
tocol (CoAP) [4], Message Queuing Telemetry Transport
(MQTT) [5], to limit the overhead of protocol headers and
the amount of messaging to match the often small amount of
payload to be communicated. In this paper, we primarily
focus on the MQTT protocol and the support needed for it in
the serverless edge cloud. However, our design is broadly
applicable to other 1oT applications and protocols.

A protocol conversion from MQTT to HTTP is needed
before microservices running on Knative can process loT
traffic. This conversion is typically done through a general-
purpose MQTT-to-HTTP adaptor, e.g., an Apache Camel [6]
plugin, which is called MQTT Source [7]. This plugin is not
optimized to serve in the resource-constrained edge loT
scenario. Directly deploying this standard MQTT Source pro-
tocol adaptor to handle IoT events results in an individual
topic-specific protocol adaptor instance, since the functions
are organized on the basis of different MQTT topics. Such an
implementation incurs substantial, overhead. There is a clear
need for one single instance of the protocol adaptor to de-
multiplex requests across all the functions.

|mitggi]%c]; Univ of Calif Riverside. Downloaded on June 29,2023 at 18:39:28 UTC from IEEE Xplore. Restrictions apply.

There is additional overhead in Knative due to the sidecar
container (i.e., queue proxy). In Knative, each function in-
stance (i.e., pod) has a dedicated sidecar container to facilitate
HTTP networking of the function instance. This sidecar con-
tainer is a continuously running process throughout the pod’s
lifetime, consuming CPU resources. While it is acceptable for
web services with a high number of requests, it is less suitable
for 1oT traffic which may be infrequent and intermittent.
Further, the hardware resources available at the edge cloud
are likely to be more limited compared with centralized data
centers. Thus, the edge cloud may find it challenging to
support a large number of sensors. Moreover, service providers
may be required to cover the cost of the wasted computing
resources when supporting intermittent loT traffic.

In this paper, we address the challenge of supporting loT
applications with the typical Knative platform and present a
number of optimizations for a serverless loT framework for
an edge cloud environment. We consider the case where
each 10T sensor transmits its data using the MQTT protocol to
the Knative serverless edge cloud. This sensor data is
usually identified by a topic and is processed by services
subscribed to that topic. We enhance the Knative-Apache
Camel framework to receive MQTT traffic across all the
topics with one lightweight MQTT-to-HTTP adaptor instance
to handle all scenarios, including multiple types of sensors.

Another heavyweight component in Knative is a sidecar
called the queue-proxy, which aids in pod metric collection
for autoscaling. Instead, we propose the use of an event-driven
eProxy that runs as an eBPF program to replace the queue
proxy. To minimize cold start latency, our design proposes us-
ing traffic prediction in conjunction with a modified autoscaler
that provisions and pre-warms the function pods appropriately
before traffic arrives or ramps up.

We present evaluation results for the CPU usage and re-
quest processing delay, for different system configurations, to
supporting MQTT traffic from a synthetic traffic generator.
For comparison purposes we also show the performance with
HTTP-based loT traffic handled by Knative, to understand the
performance penalty for MQTT. We also present the results
with our event-driven ‘eproxy’ that significantly reduces the
high resource utilization in the Knative design.

Il. RELATED WORK

Mohanty et al. [8] and Li et al. [9] evaluate the perfor-
mance of open-source serverless platforms and considered the
response time and ratio of successfully received responses, etc.
to understand various design choices. Lloyd et al. [10] identify
four states of the serverless hosting infrastructure. They then
demonstrated that depending on the state, the microservices
performance can vary up to 15.

The advantages of microservices, functions on-demand, and
auto-scaling make it a promising candidate to handle the
processing needs of various types of loT traffic. However,
resource management remains a key concern and one way to
address this is to understand traffic patterns and then proac-
tively provision resources. For example, Mazhar et al. [11]

performed a measurement study in home environments and
real-world logs collected from more than 200 homes in a
metropolitan area to characterize smart home loT traffic.

I1l. OVERVIEW OF THE DESIGN

— m e e = - —— M-

loT v Resize v
devices Func%on 1 Func%on 2
[Light] [User Container [User Container]

1
1
1
1
1
1
Queue proxy 1
1
1
1
1
1

l Temp. l Queue proxy 1-1
A
1
f Scrape
(e caeway) || s |
(Humidity)
MQTT Broker — Channel
e ——
= —])) ()
Control Request ApacheCamel Func:on Kubernetes Kna:ve
flow dataflow integra:on Instances Ingress Components

Fig. 1. Knative-based serverless edge cloud for loT applications

A. Overview

Knative is an open-source Kubernetes-based serverless
platform allowing dynamic management of serverless func-
tions [3]. It facilitates cloud service provisioning and man-
agement by proactively adjusting the services deployed. In
a regular Knative-based loT serverless cloud setup, various
components coexist to support sensor data processing, as
shown in Fig. 1. We used the Apache Camel as the protocol
adaptor to convert the MQTT-based IoT data into HTTP-based
cloud events, which can then be consumed by the serverless
function chains built around the serverless middleware for
handling requests and responses.

Some challenges still exist in the Knative-based framework.
By default, the autoscaler only scales the functions after
the traffic arrives, which increases the service response time
because of queuing at under-provisioned serverless instances
or cold start latency if the system is currently operating at
‘zero-scale’ (no active function instances). We propose an
XGBoost based traffic prediction solution to minimize the
cold start latencies. In addition, there are several heavyweight
general-purpose components. The CPU processing load of
the Knative queue proxy is significant and it is continuously
running, independent of the traffic. Apache Camel, is designed
as a generic event delivery middleware. It requires a dedicated
instance to serve each MQTT topic, even if some MQTT
topics are idle most of the time, thus causing unnecessary
CPU overhead as well.

In order to implement a Knative-based IoT serverless edge
cloud, we designed a lightweight MQTT adaptor to replace
the existing design which has a high overhead for inputs
from multiple sensor types. Importantly, we design an event-
driven proxy based on eBPF replacing the continuously-
running queue proxy for each function pod, thereby reduce
the significant processing overhead.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:39:28 UTC from IEEE Xplore. Restrictions apply.

B. Predictor and Proactive Scaling

[12] shows that a simple single layer perceptron prediction
mechanism and function pre-warming helps mitigate the cold
start delay. This would allow function pods to already be
available when the actual loT traffic arrives. We designed
a low-complexity predictor to anticipate future arrivals using
an XGBoost [13] to improve this. However, this prediction
component of our design is not evaluated in this paper. We
only report results with synthetic workloads generating a
steady traffic rate. Future work includes the evaluation of this
component using multiple real-world workloads.

C. MQTT Broker and HTTP Adaptor

In Knative, the default event handling mechanism for
MQTT traffic treats each MQTT channel as an independent
event source. The Apache Camel middleware then aggregates
the messages from the MQTT broker with a dedicated MQTT
Source for each MQTT channel to transform the MQTT
requests into HTTP. We use Mosquitto [14] as the MQTT
broker to direct the data flow from the 10T sensors to the
serverless function chains. The Mosquitto broker is relatively
lightweight (as we observe in our experiments) and accepts
traffic from multiple publishers (sensors). The MQTT broker
runs continuously to provide low latency. It can also be
horizontally scaled by Kubernetes, based on the incoming
traffic rate. Although the adaptor obtains the service DNS
name/IP address, sending the message to only one subscribing
instance/function pod is handled by the Kube-proxy which
selects a specific destination pod IP in a round-robin manner.

D. Event-driven proxy (eProxy)

Since the Knative queue proxy is a major source of over-
head [12], it is not ideal for a serverless 10T environment. We
replace the Knative queue proxy (which provides a readiness
check and does the metrics collection), by other components
that collectively implement its functionality. These compo-
nents either are already working as indispensable processes
(e.g., kubelet) or have been integrated into our event-driven
eBPF program, which we call the eProxy. The kubelet, which is
one instance running on the entire host, uses HTTP probing to
check the readiness of the function instances periodically. The
eProxy is only triggered when there are incoming events (e.g.,
packets). Thus, there is no CPU overhead in the idle state
and it is perfectly suited to meet the high-efficiency
requirement of serverless |oT. The eProxy is attached to the
pod’s virtual Ethernet interface (veth) to collect metrics (e.g.,
the number of requests, the response latency). In collaboration
with the in-kernel persistent storage (i.e., an eBPF map) and
the user-space metrics exporter, the eProxy is able to report the
per-pod metrics to the control plane. In the control plane, the
autoscaler leverages the metrics and scales the pod instances
up/down as needed for the |oT service. However, dynamically
loading the eProxy code increases the startup time for a server-
less function [15], interfering with our efforts to mitigate the
cold-start latency. This requires further improvement, which is a
focus of our current work.

TABLE |
CPU OVERHEAD BREAKDOWN
Components User | Queue | Adaptor Broker | Other
cont. | Proxy
HTTP-QPROXY 6.53 7.07 NULL NULL 1.50
HTTP-EPROXY 6.07 NULL NULL NULL 1.92
MQTT-QPROXY | 6.59 | 6.19 1.92 0.83 1.24
MQTT-EPROXY 5.88 NULL 1.77 0.88 1.45

IV. EVALUATION & ANALYSIS

Due to space limitations, we primarily focus on evaluating
the eProxy, MQTT broker, and adaptor with a synthetic work-
load. The experiment setup had two physical nodes connected
by a 25 Gbps link. The workload generator was deployed on
the master node and all the loT environment building blocks,
including the service instances, MQTT broker, MQTT-to-
HTTP adapter, etc. were placed on a worker node. We ran the
experiments with two different service protocol modes: HTTP
mode and MQTT mode. Both modes work in conjunction with
two different sidecar proxy support components (i.e., Knative
queue proxy and eProxy), which results in four different modes
namely HTTP-QPROXY, MQTT-QPROXY, HTTP-EPROXY,
MQTT-EPROXY. In HTTP mode, the request generator sends
HTTP requests directly to the service instances. In MQTT
mode, the MQTT workload generator sends the requests to
the MQTT broker which then forwards them to the adapter.
The MQTT requests are converted to HTTP messages by the
MQTT-to-HTTP adaptor and then sent to the target service. We
used Apache benchmark [16] as the HTTP workload generator
and built a custom MQTT workload generator based on a Paho
Python Client [17].

Since all the loT environment building blocks were placed
together on the worker node, we measured the overall CPU
usage of the worker node to compare the resource overhead
between different modes. We also measured the delay per
request to understand the impact of MQTT and eProxy on the
datapath. The measurement experiments were performed while
varying the number of service instances. In each experiment,
we kept the request per second (RPS) at approximately 1K,
which ensured the 10T building blocks under different modes
can receive similar traffic loads. We show the CPU overhead
breakdown of individual components for different modes.

For the workload intensity we tested, for the MQTT-
QPROXY mode, as shown in Table |, the queue proxy
consumes 6.19% of the overall CPU usage, which is very
close to the user-container (6.59%). This high cost for queue
proxy makes it undesirable in a resource-constrained serverless
edge cloud. Examining the MQTT-EPROXY mode, there is
a significant reduction in total CPU usage when we replace
the queue proxy with the eProxy. As shown in Fig. 2(a),
the eProxy can save up to 37% CPU consumption compared

INote: We sought to maintain the RPS as close to the target value as
possible. The generator maintained the maximum number of outstanding
requests, sending a new request after receiving an acknowledgment from the
service. Thus, the RPS of 1K was a slight approximation, with the value
varying slightly over time.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:39:28 UTC from IEEE Xplore. Restrictions apply.

25
HTTP queue proxy HEHEE HTTP Eproxy
20 B MQTT queue proxy EEEEl MQTT Eproxy

CPU usage (%)

NN

1 2 3 4 5
of service instances

(a) CPU usage

5
HTTP queue proxy [ESE HTTP Eproxy
4 B MQTT queue proxy EEEE MQTT Eproxy

Delay per req (ms)

of service instances

(b) Delay per request

Fig. 2. CPU usage and request processing delay with varying # of instances

to the queue proxy, which is a result of the event-driven
feature of the eProxy. The CPU consumption of the eProxy
is relatively small and is captured in the slight increase of the
‘other’ column (along with the other components in the worker
node) in the MQTT-EPROXY mode row (same with the HTTP
mode). Our use of the Mosquitto broker and the Camel-
based MQTT Source adaptor appear to introduce a reasonable,
manageable overhead. Using our enhancements (improved
eProxy and adaptor), there is only a small increase difference
in CPU processing for MQTT-EPROXY compared to HTTP-
EPROXY (Fig. 2(a)). This should therefore not discourage the
use of MQTT considering the client and networking benefits
of MQTT for IoT environments.

Fig. 2(b) shows the delay per request for different exper-
iment modes. eProxy adds more base latency compared to
queue proxy for both the HTTP (0:47ms more) and MQTT (
0:99ms more) mode. However, the CPU usage reduction with
the eProxy can help considerably at higher loads when the queue
proxy will become a bottleneck and start contributing an
increasing amount of queue delay. The lightweight feature of
eProxy makes it more suitable in the serverless edge cloud,
especially for IoT. In addition, with the same sidecar proxy
configuration, MQTT mode adds more latency compared to
HTTP mode, because of the additional intermediate MQTT
components, i.e., MQTT broker and MQTT-to-HTTP adaptor.
We plan to understand why and seek to overcome this addi-
tional delay in the near future.

V. CONCLUSIONS

Serverless computing is well suited for loT environments,
where traffic can be infrequent and varying in intensity. We

discussed the key components needed to support loT traffic in
an edge cloud and present a serverless framework to support
such loT traffic. We used Knative as the base for our serverless
solution which primarily uses HTTP for client interaction.
Since |oT devices generally use lightweight protocols such as
CoAP and MQTT to reduce overhead and energy con-
sumption, we need to incorporate an MQTT broker and a
lightweight adaptor to translate MQTT requests to the HTTP
requests that are usually processed by Knative functions. To
reduce overhead, we replaced the queue proxy of Knative with
an event-driven eBPF based “eProxy”. Experimental results
showed that our eProxy is a suitable replacement for the queue
proxy and results in lower CPU usage.

ACKNOWLEDGMENTS

We thank US National Science Foundation for their gener-
ous support through grants CNS-1619441 and CNS-1763929.

REFERENCES

[1] J. Pan and J. McElhannon, “Future edge cloud and edge computing for
internet of things applications,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439-449, 2017.

[2] J. Mocnej, A. Pekar, W. K. Seah, and I. Zolotova, Network traffic
characteristics of the loT application use cases. School of Engineering
and Computer Science, Victoria University of Wellington, 2018.

[3] “Knative.” [Online]. Available: https://knative.dev

[4] C. Bormann, A. P. Castellani, and Z. Shelby, “Coap: An application
protocol for billions of tiny internet nodes,” IEEE Internet Computing,
vol. 16, no. 2, pp. 62-67, 2012.

[5] M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh, and R. Al-Hatmi,
“Internet of things: Survey and open issues of mqtt protocol,” in 2017
international conference on engineering & MIS (ICEMIS). IEEE, 2017,
pp. 1-6.

[6] “Apache Camel,” https://camel.apache.org, 2021, [ONLINE].

[71 “MQTT Source,” https://camel.apache.org/camel-kamelets/latest/mqtt-
source.html, 2021, [ONLINE].

[8] S. Mohanty, G. Premsankar, and M. diFrancesco, “An evaluation of open
source serverless computing frameworks,” in 2018 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
2018, p. 115-120.

[9] J. Li, S. G. Kulkarni, K. Ramakrishnan, and D. Li, “Understanding open

source serverless platforms: Design considerations and performance,” in

Proceedings of the 5th International Workshop on Serverless Computing,

2019, pp. 37-42.

W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,

“Serverless computing: An investigation of factors influencing microser-

vice performance,” in 2018 IEEE International Conference on Cloud

Engineering (IC2E), 2018, pp. 159-169.

M. H. Mazhar and Z. Shafig, “Characterizing smart home iot traffic in

the wild,” in 2020 IEEE/ACM Fifth International Conference on

Internet-of-Things Design and Implementation (loTDI), 2020, pp. 203—

215.

I. Wang, E. Liri, and K. K. Ramakrishnan, “Supporting 1oT Applica-

tions with Serverless Edge Clouds,” in 2020 IEEE 9th International

Conference on Cloud Networking (CloudNet). IEEE, 2020, pp. 1-4.

[13] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in

Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD ’16. ACM, August 2016,

pp. 785-794.

R. A. Light, “Mosquitto: server and client implementation of the mqtt

protocol,” in he Journal of Open Source Software 2(13), May 2017.

V. Jain, S. Qi, and K. Ramakrishnan, “Fast function instantiation with

alternate virtualization approaches,” in 2021 IEEE International Sympo-

sium on Local and Metropolitan Area Networks (LANMAN). |EEE,

2021, pp. 1-6.

“ab - Apache HTTP server benchmarking tool,” https://httpd.apache.org/

docs/2.4/programs/ab.html, 2021, [ONLINE].

“Eclipse Paho,” https://www.eclipse.org/paho/, 2021, [ONLINE].

[10]

[11]

[12]

(14]

[15]

[16]

[17

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:39:28 UTC from |IEEE Xplore. Restrictions apply.

