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Abstract. Given a pair of self-adjoint-preserving completely bounded maps
on the same C∗-algebra, say that ϕ ≤ ψ if the kernel of ϕ is a subset of
the kernel of ψ and ψ ◦ ϕ−1 is completely positive. The Agler class of a
map ϕ is the class of ψ ≥ ϕ. Such maps admit colligation formulae, and,
in Lyapunov type situations, transfer function type realizations on the
Stinespring coefficients of their Wittstock decompositions. As an applica-
tion, we prove that the support of an extremal Wittstock decomposition
is unique.
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1. Introduction

First, we recall the following theorem.

Theorem 1.1 (Nevanlinna–Pick interpolation theorem). Let z1, . . . , zn ∈ D and
λ1, . . . , λn ∈ C. There is an analytic function f : D → D such that f(zi) = λi

if and only if the matrix
[

1−λiλj

1−zizj

]
i,j

is positive semidefinite.
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See [2] for a comprehensive reference on Pick interpolation. Importantly,
the elementary so-called “lurking isometry argument” gives that such an f is
of the form

f(z) = a + b∗z(1 − Dz)−1c

where [
a b∗

c D

]

is a unitary operator. Such a formula is often called a transfer function real-
ization.

Let M,N be C∗-algebras. Given map ϕ : M → N we define the n-th
induced map ϕ(n) : Mn(M) → Mn(M) by entrywise evaluation as

ϕ(n)([mij ]ij) = [ϕ(mij)]ij .

We say that ϕ is completely bounded if ϕ(n) are uniformly bounded linear
maps. We call ϕ real if ϕ(H)∗ = ϕ(H∗). We say that ϕ is completely positive if
each ϕ(n) takes positive semidefinite elements to positive semidefinite elements.

Let X ∈ Mn(C). Define the Lyapunov map LX(H) = H − X∗HX.

Theorem 1.2 (Nevanlinna–Pick interpolation theorem: Lyapunov formulation).
Let Z ∈ Mn(C) be a strict contraction and Λ ∈ Mn(C). There is an analytic
function f : D → D such that f(Z) = Λ if and only if LΛ ◦L−1

Z is a completely
positive map.

We give a proof of the above theorem which demonstrates our technique
in Sect. 5.1. For a comprehensive generalized reference to this well-known
approach, see [5,6].

Some work shows that if Z is a matrix with zi on the diagonal and Λ
with λi on the diagonal, the corresponding Choi matrix is exactly the matrix
arising in the classical Nevanlinna–Pick interpolation theorem. The formula-
tion of the problem in terms of complete positivity of some induced map is a
powerful idea which has led to broad generalizations in noncommuting vari-
ables, especially in terms of the work of Ball–Groenwald–Malakorn [5,6] and
subsequent developments [7–9,11].

We seek to understand the lurking isometry argument and consequent
transfer function realization type objects as fundamental rather than coin-
cidental. That is, we analyze the relationship between two real completely
bounded maps ϕ and ψ such that ψ ◦ ϕ−1 is completely positive. This frame-
work captures much of operator theoretic interpolation theory arising from
generalizations of Nevanlinna–Pick interpolation. The Stinesping theorem on
factorization of completely positive maps envelops some of the core ideas of
operator theory as special cases, including the GNS construction, Choi’s theo-
rem, and the Sz.-Nagy dilation theorem [15,16]. The induced Stinespring type
theorem likewise envelops and extends Nevanlinna–Pick type interpolation the-
orems and related realization machinery.
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2. Stinespring Factorization, Wittstock Decompostion, and
Support

The Stinespring factorization theorem [17] states that any completely positive
map ϕ : M → B(H) is of the form

ϕ(H) = V ∗π(H)V

where π : M → B(L) is a representation of a C*-algebra M on a Hilbert space
L and V : H → L is a bounded linear operator. We say two representations
are equivalent if they are unitarialy similar. We say π1 is a subrepresentation
of π2 if π2 is equivalent to representation of the form π1 ⊕ π3.

Given π1 and π2 representations, we say π1 and π2 are totally orthogonal,
denoted π1 ⊥ π2, if there does not exist a subrepresentation of π1 which
is equivalent to a subrepresentation of π2. The notion of total orthogonality
gives a generalization of Schur’s lemma which holds even in the absence of a
notion of irreducibility.

Observation 2.1. Let π1 and π2 be representations of some C∗-algebra M. If
π1 ⊥ π2 and A is an operator such that π1(m)A = Aπ2(m) for all m ∈ M
then A = 0.

We say suppπ1 ⊆ suppπ2 if there does not exist a subrepresentation of
π1 which is totally orthogonal to π2. We say suppπ1 = suppπ2 if suppπ1 ⊆
suppπ2 and suppπ2 ⊆ suppπ1. We call the symbol supp π the support of π.
If ϕ is a completely positive map, we define the suppϕ to be the support of
the corresponding representation in its minimal Stinespring factorization.

The Wittstock decomposition theorem [14,18] states that any completely
bounded map is in the span of the completely positive maps.

Thus, any real completely bounded map ϕ can be decomposed as

ϕ = ϕ+ − ϕ−.

We call such a Wittstock decomposition extremal if there does not exist a
completely positive δ such that ϕ+ − δ and ϕ− − δ are completely positive. An
extremal Wittstock decomposition is similar to the Hahn-Jordan decomposi-
tion of measures, though an extremal Wittstock decomposition is not always
unique.

However, we prove that the support of a Wittstock decomposition is
unique in the following sense.

Theorem 2.2 (Wittstock support theorem). Let M be a C∗-algebra. Suppose
ϕ : M → B(H) is a real completely bounded map. Given two extremal Wittstock
decompositions

ϕ = ϕ+ − ϕ− = φ+ − φ−,

we have that

suppϕ+ = suppφ+, supp ϕ− = suppφ−.
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We prove Theorem 2.2 at the end of Sect. 3. Related uniqueness state-
ments about generalized Stinespring representations have been recently ob-
tained by Christensen in [10, Theorem 3.1], who shows that maps of the
form ϕ(H) = W ∗π(H)V have support uniqueness with respect to π under
controllability-observability minimality type assumptions. Haagerup’s theme
of decomposable maps is at least superficially related (see [16]), although there
does not appear to be a direct connection. Our results show that in an extremal
Wittstock decomposition, one cannot introduce extraneous representations.

3. The Agler Order and Colligations

Let M,N , Ñ be C∗-algebras. Let ϕ : M → N and ψ : M → Ñ be real
completely bounded maps. We say that ϕ ≤ ψ in the Agler order if:
(1) kerϕ ⊆ ker ψ,
(2) the induced map γ = ψ ◦ ϕ−1 is completely positive.

We say ϕ is Archimedian if its range contains a strictly positive element.
The Agler order captures the various Agler models used for Nevanlinna–

Pick interpolation in the Schur–Agler, Herglotz–Agler, Pick–Agler classes and
so on, codifying the Lyapunov formulation taken in [5–9,11]. For example, tak-
ing ϕ(H) = H −X∗HX,ψ(H) = Y ∗H +HY, we have that ϕ ≤ ψ corresponds
to there being an analytic function from the disk to the right half plane (a Her-
glotz function) taking X to Y. (Similarly for noncommutative and commutative
multivariable analogues, cf. [1,12].) The case ϕ(H) = (X∗H−HX)/2i, ψ(H) =
Y ∗H − HY/2i similarly corresponds to the existence of a Nevanlinna model
for a Pick function as in [13]. The Agler order abstracts away the domain and
range conditions, and interpolation interpretation for the more basal underly-
ing condition of induced complete positivity.

Let M,N , Ñ be C∗-algebras where N , Ñ are concrete. Let ϕ : M → N
and ψ : M → Ñ be real completely bounded maps. We say that ϕ 	 ψ in the
concrete Agler order if there exists an operator Γ such that Γ∗ϕ(H)Γ = ψ(H).

We note, if ϕ is Archimedian, that ϕ ≤ ψ (in the Agler order) if and only
if for every representation π of Ñ there exists a representation π̂ of N such
that π̂ ◦ ϕ 	 π ◦ ψ.

Suppose ϕ and ψ are real completely bounded maps into concrete C∗-
algebras. We say ψ is ϕ-colligatory if for all Wittstock decompostions

ϕ = ϕ+ − ϕ−,

ψ = ψ+ − ψ−,
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given Stinespring factorizations

ψ+ = Ψ∗
+π1Ψ+,

ψ− = Ψ∗
−π2Ψ−,

ϕ+ = Φ∗
+π3Φ+,

ϕ− = Φ∗
−π4Φ−,

there is a partial isometry

U =
[
A B
C D

]

and operator Γ such that[
Ψ−
Φ+Γ

]
=

[
A B
C D

] [
Ψ+

Φ−Γ

]
,

where

ranU = span
⋃

H∈M
ran

[
π2(H)Ψ−
π3(H)Φ+Γ

]

and

ran U∗ = span
⋃

H∈M
ran

[
π1(H)Ψ+

π4(H)Φ−Γ

]
,

and [
A B
C D

] [
π1

π4

]
=

[
π2

π3

] [
A B
C D

]
.

Note that, if Φ+ − DΦ− is invertible, then

Ψ− = [A + BΦ−(Φ+ − DΦ−)−1C]Ψ+.

We call such an expression a ϕ-transfer function realization. We call U the
colligation operator.

We prove the following concrete result.

Theorem 3.1. Let ϕ and ψ be real completely bounded maps on some C∗-
algebra M mapping into concrete C∗-algebras.

The following are equivalent:
(1) ϕ 	 ψ in the concrete Agler order,
(2) ψ is ϕ-colligatory.

Proof. Take Wittstock decompostions

ϕ = ϕ+ − ϕ−,

ψ = ψ+ − ψ−,

and Stinespring factorizations
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ψ+ = Ψ∗
+π1Ψ+,

ψ− = Ψ∗
−π2Ψ−,

ϕ+ = Φ∗
+π3Φ+,

ϕ− = Φ∗
−π4Φ−.

Since ψ = Γ∗ϕΓ, we see that

Ψ∗
+π1Ψ+ − Ψ∗

−π2Ψ− = Γ∗ [
Φ∗

+π3Φ+ − Φ∗
−π4Φ−

]
Γ

Rearranging, we get

Ψ∗
+π1Ψ+ − Γ∗Φ∗

−π4Φ−Γ = Γ∗Φ∗
+π3Φ+Γ + Ψ∗

−π2Ψ−

Evaluating at W ∗V gives

Ψ∗
+π1(W ∗V )Ψ++Γ∗Φ∗

−π4(W ∗V )Φ−Γ=Ψ∗
−π2(W ∗V )Ψ−+Γ∗Φ∗

+π3(W ∗V )Φ+Γ.

So,

Ψ∗
+π1(W )∗π1(V )Ψ+ + Γ∗Φ∗

−π4(W )∗π4(V )Φ−Γ

is equal to

Ψ∗
−π2(W )∗π2(V )Ψ− + Γ∗Φ∗

+π3(W )∗π3(V )Φ+Γ.

Factoring, we get that for vectors v, w,〈[
π1(V )Ψ+

π4(V )Φ−Γ

]
v,

[
π1(W )Ψ+

π4(W )Φ−Γ

]
w

〉
=

〈[
π2(V )Ψ−
π3(V )Φ+Γ

]
v,

[
π2(W )Ψ−
π3(W )Φ+Γ

]
w

〉
.

So, there is a partial isometry

U =
[
A B
C D

]

and Γ such that [
Ψ−
Φ+Γ

]
=

[
A B
C D

] [
Ψ+

Φ−Γ

]
,

where

ranU = span
⋃

H∈M
ran

[
π2(H)Ψ−
π3(H)Φ+Γ

]

and

ran U∗ = span
⋃

H∈M
ran

[
π1(H)Ψ+

π4(H)Φ−Γ

]
,

and [
A B
C D

] [
π1

π4

]
=

[
π2

π3

] [
A B
C D

]
.

�

We see the immediate corollary for the Agler order.
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Corollary 3.2. Let ϕ and ψ be real completely bounded maps on some C∗-
algebra M mapping into C∗-algebras N , Ñ . Suppose ϕ is Archimedian. The
following are equivalent:

(1) ϕ ≤ ψ in the Agler order,
(2) For every representation π of Ñ there exists a representation π̂ of N such

that π ◦ ψ is π̂ ◦ ϕ-colligatory.

Say a real completely bounded map ϕ is of Lyapunov type if it admits a
Wittstock decomposition ϕ = π − ϕ− where π is a representation and ϕ− is
strictly completely contractive.

Note that any ϕ of Lyapunov type is a fortiori Archimedian.

Corollary 3.3. Let ϕ and ψ be real completely bounded maps on some C∗-
algebra M mapping into concrete C∗-algebras. Suppose ϕ is of Lyapunov type.
The following are equivalent:

(1) ϕ 	 ψ in the concrete Agler order,
(2) ψ is ϕ-colligatory,
(3) ψ has a ϕ-transfer function realization.

Observation 3.4. We also note that if πi =
[
π̂i

π̃i

]
such that supp π̂i ⊥ supp π̃j ,

then the colligation operator factors as
⎡
⎢⎢⎣

Â B̂

Ã B̃

Ĉ D̂

C̃ D̃

⎤
⎥⎥⎦ .

Thus,

π ◦ ψ± = ψ̂± + ψ̃±

where supp ψ̂± ⊥ supp ψ̃±, and

π̂ ◦ ϕ± = ϕ̂± + ϕ̃±

where supp ϕ̂± ⊥ supp ϕ̃± and, letting ϕ̂ = ϕ̂+ − ϕ̂− and ψ̂ = ψ̂+ − ψ̂−,

ϕ̂ 	 ψ̂, ϕ̃ 	 ψ̃.

Proof of Theorem 2.2. We consider the case of the positive supports. The neg-
ative case is similar.

Let ϕ have two Wittstock decompositions

ϕ = ϕ+ − ϕ− = Ψ+ − Ψ−,

and Stinespring factorizations
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ψ+ = Ψ∗
+π1Ψ+,

ψ− = Ψ∗
−π2Ψ−,

ϕ+ = Φ∗
+π3Φ+,

ϕ− = Φ∗
−π4Φ−.

By Theorem 3.1, there is a colligation operator such that
[
π2Ψ−
π3Φ+

]
=

[
A B
C D

] [
π1Ψ+

π4Φ−

]

Write

πi =
[
π̂i

π̃i

]

where

suppπ1 ⊥ supp π̃i.

Note that there is no π̃1; that is, π̂1 = π1. By Observation 3.4, factor the
colligation operator as

⎡
⎢⎢⎣

π̂2Ψ̂−
π̃2Ψ̃−
π̂3Φ̂+

π̃3Φ̃+

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Â B̂

B̃

Ĉ D̂

D̃

⎤
⎥⎥⎦

⎡
⎣

π1Ψ+

π̂4Φ̂−
π̃4Φ̃−

⎤
⎦ .

So, we have that
[
π̃2Ψ̃−
π̃3Φ̃+

]
=

[
0 B̃

0 D̃

] [
0

π̃4Φ̃−

]
.

Hence, by Theorem 3.1, we see that

−Ψ̃−
∗
π̃2Ψ̃− = Φ̃+

∗
π̃3Φ̃+ − Φ̃−

∗
π̃4Φ̃−.

If Φ̃+
∗
π̃3Φ̃+ 
= 0, taking ϕ+ − Φ̃+

∗
π̃3Φ̃+ and ϕ− − Φ̃+

∗
π̃3Φ̃+ witnesses the

nonextremality of the Wittstock decomposition.

4. Truncating Irrelevant Representations and the Commutant
Coefficient Theorem

The following proposition shows that one can choose a natural tensored rep-
resentation in the Stinespring representation of a (homomorphic) noncommu-
tative conditional expectation. Given N ⊆ B(H) we use N ′ to denote the
commutant of N , the set of elements in B(H) which commute with every el-
ement of N . We say a C∗-algebra is unital if it has a multiplicative identity.
Given a sub-C∗-algebra N of a larger C*-algebra M, we say N is unitally
included in M if the multiplicative identity in N is the same as for M.
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Proposition 4.1. Let M ⊆ B(L) be a unital C∗-algebra. Let N be a sub-C∗-
algebra unitally included in M such that M is generated by N and N ′. Let π :
N → B(H). Let E : H → L such that E∗nE = π(n). There is a representation
π̂ : M → B(H⊗K), a unit vector e0 ∈ K and a partial isometry P : L → H⊗K
with range containing all vectors of the form v ⊗ e0 such that

E∗mE = (I ⊗ e∗
0)π̂(m)(I ⊗ e0),

Pm = π̂(m)P,

and

π̂|N = π ⊗ I.

Proof. Consider the minimal Stinespring representation of the map ϕ(m) =
E∗mE = F ∗π̃(m)F for some isometry F. We will show that the restriction of
π̃ to N is unitarily equivalent to a representation of the form⊕

α∈A

P ∗
απ(n)Pα (4.1)

for some isometries Pα which reduce π, where at least one Pα is unitary and A
is an index set. Then, by a Hilbert hotel argument we would be done by pairing
up incomplete representations with their orthogonal complements. Specifically,
let G be an infinite dimensional Hilbert space with dimension greater than or
equal to that of the representation π̃. Taking π̃ ⊗ IG , we see at least dimension
G complete copies of π and at most the same cardinality of incomplete copies,
which is unitarily equivalent to a direct sum of complete copies. (One could
do it inductively by taking the missing part of a given representation from the
next complete copy, using part of it to complete the representation. The point
is that in this process there is always a next complete copy to take from.)

We will show that given m ∈ N ′ and L0 containing H such that N has
the desired form and L0 
= mH+L0 then there is a larger L1 such that N has
the desired form. Let m̂ = PL⊥

0
mPH Note nm = mn. So, since L0 reduces n,

nm̂ = m̂n.

Thus, m̂∗nm̂ = m̂∗m̂n = nm̂∗m̂. Letting P = m̂(m̂∗m̂)†1/2. So P ∗nP =
P ∗

ran m̂∗nPran m̂∗ . Note P ∗
ran m̂∗nPran m̂∗ is a subrepresentation of π.

So there is a minimal L such that L = mH + L for all m and L reduces
N . If fact, L is exactly the minimal reducing subspace for M containing H.

�
Let π be a representation of a C∗-algebra M. Call a complete bounded

map ψ π-pure if

ψ = Ψ+
∗(I ⊗ π)Ψ+ − Ψ−∗(I ⊗ π)Ψ−.

We see the following immediate corollary of the above representation theorem.
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Corollary 4.2. Let ϕ and ψ be real completely bounded on some C∗-algebra M.
Assume ψ is π-pure. The following are equivalent:
(1) ϕ ≤ ψ in the Agler order,
(2) There exists a representation π̂ such that π̂ ◦ ϕ is π-pure and ψ is π̂ ◦ ϕ-

colligatory.

The compatibility of representations is important in infinite dimensional
noncommutative interpolation problems, where there is some work to show the
abstract technique here gives a bona fide solution (see, for example, the last
section of [11]).

5. Examples from Interpolation Theory

We now sketch several examples of applications of our theory, most of which
essentially constitute semidefinite reformulations of classical techniques. How-
ever, the final subsection gives an intriguing class of interpolation problems
that don’t fit into either complex analysis nor into free noncommutative func-
tion theory, but are certainly worthy of comprehensive further study.

5.1. Nevalinna–Pick Interpolation in a Lyapunov Formulation

The following example demonstrates how our method works in the classical
case.

Given ‖X‖ ≤ 1, the Lyapunov map LX is invertible, and

L−1
X (H) =

∞∑
n=0

X∗nHXn.

Define the operator

ΛXY = LY ◦ L−1
X .

Theorem 1.2 says that ΛXY must be completely positive for the corresponding
interpolation problem to be solvable.

As an example, consider the choice of matrices

X =

⎡
⎢⎣

z1

. . .
zn

⎤
⎥⎦ , Y =

⎡
⎢⎣

λ1

. . .
λn

⎤
⎥⎦

Computing the explicit form of L−1
X , we get

L−1
X (H) =

∞∑
n=0

⎡
⎢⎣

z1

. . .
zn

⎤
⎥⎦

∗n

(hij)i,j

⎡
⎢⎣

z1

. . .
zn

⎤
⎥⎦

n

=
(

hij

1 − zizj

)

i,j
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Plugging in Y to LY gives

LY (H) = H −

⎡
⎢⎣

λ1

. . .
λn

⎤
⎥⎦

∗

H

⎡
⎢⎣

λ1

. . .
λn

⎤
⎥⎦ ,

and so

ΛXY (H) = LY ◦ L−1
X (H) =

(
hij

1 − λiλj

1 − zizj

)

i,j

. (5.1)

In this case, the positivity condition becomes

H = (hij) ≥ 0 ⇒
(

hij
1 − λiλj

1 − zizj

)

i,j

≥ 0,

which recovers the Pick condition
(

1 − λiλj

1 − zizj

)

i,j

≥ 0.

That is, we have recast classical Nevanlinna–Pick interpolation as a question
about completely positive maps.

5.1.1. Lurking Isometries. When ΛXY is a completely positive map, the Stine-
spring theorem allows us to write ΛXY by

ΛXY (H) = Γ∗π(H)Γ

where π : Mn(C) → B(H) is a representation.

Note 5.1. In this special case where H ∈ Mn(C), we know the homomor-
phisms. There are no closed ideals. All representations of Mn(C) are the same.
So write

π(H) = I ⊗ H

Since

LY ◦ L−1
X (H) = ΛXY (H),

we can calculate

LY (H) = ΛXY ◦ LX(H)

H − Y ∗HY = Γ∗π(H − X∗HX)Γ

H + Γ∗π(H)Γ = Y ∗HY + Γ∗π(X∗HX)Γ.

After setting H = W ∗V (and conjugation by α, β), we get

W ∗V + Γ∗π(W ∗)π(V )Γ = Y ∗W ∗V Y + Γ∗π(X)∗π(W ∗)π(V )π(X)Γ.
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This is the setup for the so-called lurking isometry argument. That is,

there exists U =
[
A B
C D

]
so that

[
A B
C D

] [
V

π(V )Γ

]
=

[
V Y

π(V )π(X)Γ

]
, (5.2)

where U is a partial isometry (that is, (U∗U)2 = U∗U).
Furthermore,[

A B
C D

] [
V

π(V )

]
=

[
V

π(V )

] [
A B
C D

]
.

Note that A, B, C, D factor as A = Â ⊗ I, B = B̂ ⊗ I, and so on.
Now set V = I. Then (5.2) becomes

[
Y
Γ

]
=

[
A B
C D

] [
I

π(X)Γ

]

leading to the equations

Y = A + Bπ(X)Γ

Γ = C + Dπ(X)Γ.

Eliminating Γ gives the (Schur-Agler) transfer function realization

Y = A + Bπ(X)(1 − Dπ(X))−1C, (5.3)

which points to the existence of an interpolating function in terms of complete
positivity. (c.f. [3,4,11])

5.2. Two Variable Commutative Nevanlinna–Pick Interpolation

Let X1,X2 be commuting matrices. Define

ϕ = LX(H) =
[
H

H

]
−

[
X∗

1HX1

X∗
2HX2

]

and

ψ = LY (H) = H − Y ∗HY.

This setup gives the 2-variable commutative Nevanlinna–Pick interpolation
theorem. Similarly, as in [11], our method works on more general semi-algebraic
sets in the general noncommutative case.

5.3. Partial Nevanlinna–Pick Interpolation

Let

ϕ = H − X∗HX

and

ψ = w∗Hw − v∗Hv.
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Notice that ψ is scalar-valued, and so positivity of ψ ◦ ϕ−1 implies com-
plete positivity in this case. In the notation of this section, we have Ψ+ = w
and Ψ− = v, as well as Φ+ = I and Φ− = X. By Theorem 3.3 we get the
transfer function formulation

v = [A + BX(I − DX)−1C]w

= f(X)w

using the usual Schur-Agler representation f(X) = A + BX(I − DX)−1C.
If we make the definitions

X =

⎡
⎢⎣

z1

. . .
zn

⎤
⎥⎦ , w =

⎡
⎢⎣

1
...
1

⎤
⎥⎦ , v =

⎡
⎢⎣

λ1

...
λn

⎤
⎥⎦ ,

the problem becomes to look at the existence of a function f so that f(zi) =
λi. The technique here generalizes to other settings of solving f(X)v = w,
including noncommutative Nevanlinna–Pick interpolation.

5.4. Commutant Coefficient Interpolation

Let M be a C∗-algebra. Consider LX(H) = H − X∗HX as a map from M
to itself for some X ∈ M. We see by Corollary 4.2 that if LX ≤ LY and X is
strictly contractive, then

Y = A + B(I ⊗ X)(1 − DX)−1C = A +
∑

BDnCXn+1.
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