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ABSTRACT

The advent of 5G networks has attracted a flurry of measurement
studies to understand their performance in various settings. Un-
fortunately, carrying out an in-depth measurement study of 5G is
both laborious and costly. The measurement samples cover only
limited points in a (potentially large) coverage area of one or more
5G towers/base stations. In this paper, we tackle the following basic
question: given a collection of 5G “signal” measurements collected
in limited locations in a target 5G coverage area, can we infer or
extrapolate 5G “signals” at other locations within the area that
we do not have samples? We propose a novel learning paradigm
based on graph neural networks (GNNs), dubbed 5GNN, which
captures both the “local” and “global” patterns of the underlying
spatial correlation of 5G signals based on the measured data points.
This paradigm is guided by insights from the physical characteris-
tics of 5G networks. We conduct comprehensive experiments and
evaluations using both synthetic and real-world datasets, which
are collected and processed by ourselves with professional tools.
Compared with baseline models using existing GNNs, 5GNN is
superior and can reduce the estimation errors for the signal impu-
tation task and channel quality regression task by up to 12.8% and
9.2%, respectively.
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1 INTRODUCTION

Emerging 5G networks are expected to usher in a plethora of new
applications such as augmented/virtual/mixed reality, autonomous
driving, Internet of Things (IoT), and digital twins that require
either ultra-high bandwidth, ultra-low latency, or both. Unfortu-
nately, 5G radio signals, especially, mmWave high band radio sig-
nals, are known to be highly sensitive to various environmental
factors, as having been shown in recent measurement studies of
commercial 5G networks [14, 15]. Understanding and predicting
5G performance dynamics are therefore crucial not only to manage
and improve 5G networks, but also enable applications to better
leverage the potentials of 5G services.

Measurement Challenges. An important way to understand
5G network performance is through detailed “in-the-field” test-
ing and measurements. While commercial 5G operators may con-
duct “proprietary” measurement studies, the data collected is of-
ten kept private. Recently, a number of academic research teams
have embarked on large-scale measurement studies of commer-
cial 5G networks with publicly released datasets, notable examples
include [4, 6, 8, 15, 17]. Besides gaining a deeper understanding
of emerging 5G network performance, an important goal of such
studies is to provide datasets to enable the development of machine
learning algorithms for predicting 5G network performance (see,
e.g., [8, 14]). While such “in-the-field” measurement studies are
vitally crucial, they face a number of challenges. (1) The measure-
ment process is labor-intensive and costly. Collecting one hour of
valuable data requires more hours of data collection efforts. (2) Due
to the inherent nature of measurement studies, data can only be col-
lected in limited numbers of locations in a target (potentially large)
geographical coverage area. (3) While the datasets thus collected
are of enormous value to both the research community and indus-
try, training machine learning models using the collected datasets
alone can introduce biases, due to the limited coverage.

5G Measurement Extrapolation Problem and Our Solution
— 5GNN. We apply machine learning to tackle the following 5G
measurement extrapolation problem: Given a collection of 5G “signal”
measurements collected in limited locations in a target 5G coverage
area, can we infer or extrapolate 5G “signals” at other locations
within the area that we do not have samples? Here we use the term
“signals” as a generic term to refer to any 5G network metrics of
interest (not merely actual radio signals per se). We formulate this
problem formally in §2. We propose a novel paradigm based on
graph neural networks (GNNs), dubbed 5GNN - extrapolating 5G
measurements through GNN. While our paradigm shares the basic
spirit of GNNs in that it takes advantage of spatial correlations,
5GNN augments existing GNN models by explicitly taking into
account local and global spatial patterns of 5G signals. This design
is based on insights from the physical characteristics of 5G networks.
Take mmWave high band 5G radio as an example. There are strong
“local” factors such as local signal waveform variations, noise, and
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Table 1: Key Statistics of Real-World Datasets

Scenario Public Square
Total area covered | 8,000 m?
Technologies 4G-lowBand/midBand; 5G-highBand

Total 200k+ with 100ms sampling rate
Signal strength imputation
Channel quality regression

Data samples

Tasks

interference; there are also strong “global” phenomena such as radio
signal propagation, attenuation, fading, and path losses often vary
drastically along different paths, with manifest shapes and patterns
(cf. Fig.4 & Fig.5).

We conduct extensive evaluations on both synthetic datasets
using DeepMIMO [19] and real-world datasets via our measure-
ment campaigns of commercial 5G networks. Table 1 lists the key
statistics of the collected datasets (see more details in §4.1 and §4.2).
The evaluation results show that 5GNN consistently outperforms
existing GNN-based models (see §4.4).

We summarize our key contributions below:

o To the best of our knowledge, we are the first to explicitly
address the 5G measurement extrapolation problem, and argue for
the need to account for both local and global dependencies in 5G
signal and feature maps.

e We propose a new learning paradigm, 5GNN, which captures
both the local and global spatial patterns. The comprehensive exper-
iments involve six other state-of-art methods and are conducted on
both synthetic and real-world datasets, where our 5GNN reduces
the error rates (up to) 12.8% and 9.2% on the signal imputation task
and channel quality regression task, respectively.

e We conduct field experiments to collect the commercial 5G
network data for this study. We make our code and the unique 5G
dataset publicly available to contribute to the research community !

2 OVERVIEW

We first formulate the 5G measurement extrapolation problem. We
then briefly discuss the limitations of existing GNN models when
applied to 5G measurements.

Consider a 5G coverage area of interest. Let y denote the 5G
signal, e.g., 5G signal strength or CQI (channel quality index), that
we are interested in capturing and predicting, which is a function
® of a set of “factors” or feature vectors X that we can collect
or measure, namely, y = ®(X). Geometrically, we can view the
5G signals y as a (hypersurface) function ® defined on a mani-
fold M (see Fig. 1). We want to learn ® by sampling N points in
the target 5G coverage area. The samples dataset is denoted by
Dobs = {pl.Obs := (¢, Xi, Yi) € M}fio, where ¢; is the geographical
coordinates of location i, and x; and y; correspond to the feature
vector and 5G signal at location i. We aim to approximate the 5G
signal function ® defined on the manifold M via a neural network
fo using the sampled dataset. We refer to this learning problem as
the 5G measurement extrapolation problem: Once we have learned
®, we can extrapolate and predict the 5G signal y; at any other
location j.

IThe datasets and codes are hosted on https://github.com/StrongWeiUMN/5GNN
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Figure 1: Overview of 5GNN.

Limitations of Existing Graph Neural Networks (GNNs). As
pointed out in the introduction, 5G signals have strong (yet likely ir-
regular) spatial dependencies. Hence it is natural to consider GNNs.
“Standard” GNNs assume that an underlying graph (or an ensem-
ble of graphs) is given, and each node in the graph is associated
with a feature vector and a node signal (“label”). Message-passing
is invoked at each layer to train a GNN model for either a node
classification/regression task or graph classification/regression task.
In our 5G measurement extrapolation problem, while each sample
location is a point in an underlying geographical area, the “edges”
are not explicitly given. The conventional approach in dealing with
this issue is to either directly use the geographical proximity or use
the node feature vectors to construct a k-nearest-neighbor (kNN)
graph. For example, the authors in [2] first employ a kernel func-
tion to construct a sequence of “local” kNN graphs based on the
coordinate distance and then combine GNN and kriging to perform
graph regression to learn and predict node labels. In contrast, the
authors in [12] first iteratively and randomly sample a set of data
points in the training dataset to construct a “global” kNN graph and
then apply a GNN model for node label prediction as a node regres-
sion task. These approaches suffer the limitations that they cannot
effectively learn either the global dependence or local patterns that
are inherent in our 5G measurement extrapolation problem.

Our Solution. We borrow ideas from differential geometry, where
a manifold is defined and constructed by "patching together" a
collection of local (coordinate) charts. Therefore, we learn the 5G
signal manifold by first (i) constructing "local charts" that best
approximate the 5G signals in each local neighborhood Nbr(i)
of the sampled data points by adapting to the local variations,
patterns, and "smoothness" properties in the 5G feature vectors
and signals; and then (ii) patching together the "local charts" into
a global manifold by taking into account the global dependencies
and shapes in the 5G signal manifold, see Fig. 1 for an illustration.
A sequence of local graphs and a global graph (defined on the local
charts) are learned and constructed separately but trained jointly,
as expounded in the next section.

3 5GNN: 5G GRAPH NEURAL NETWORK

We now present our proposed 5G Graph Neural Network (5GNN)
paradigm for the 5G measurement extrapolation problem, which is
schematically depicted in Fig. 1. It operates in three stages: 1) local
embedding, 2) global embedding and 3) joint graph neural network
training, as will be discussed in more details below. In both stage 1)
and stage 2), we apply a GNN model such as GCN [11], GIN [25],
GraphSAGE [7] for local and global embedding. Such a GNN model
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is referred to as a baseline. In other words, our paradigm can work
with any existing GNN model, but augment it by separately con-
structing but jointly learning local and global embeddings.

Stage 1: Local embedding. In the first stage we aim to learn
a local ("smooth") embedding of data points lying within a local
neighborhood by capturing the local variation and patterns in the
local 5G feature map and signal. Formally, for a target location p;
referred to as a center node, we sample the k-nearest neighboring lo-
cations/nodes from the training dataset DS, i.e., {pj }ferr(i). We
further convert the local set into a (local) graph using the following
kernel function:

_d(Cj,Ck)

1
A, =ex
p( 202

L= ) )
cg 0 0|« center node
HYi = ¢j Xj yj|«< neighbor node 2)

where Ali ¢ REFDX(K+1) and H are the adjacency matrix and
feature matrix corresponding to the center node p;, respectively.
The distance function, d(-, -), calculates the distance of each node
pair, and o is the length scale of the kernel. We apply a GNN model
(denoted as GNN') on the local set corresponding to the center
node p; to learn a local embedding (local chart):

zi = F(GNN (Al Hly) 3)

where the F(-) denotes the flatten function, which flattens the
matrix into a vector. This process is repeated for each center node.

Stage 2: Global embedding. Given the local embeddings (local
charts) constructed in Stage 1, we aim to approximate the (global)
5G signal manifold by patching together the local charts in an
appropriate manner. This is done by taking into account the global
dependencies and shapes of the 5G signal manifold, e.g., radio
signals propagate and attenuate along certain directions or sectors
in the space that are shaped by where 5G towers concentrate their
transmitting power as well as the confluent effects of the objects in
the environment that reflect, refract or absorb radio waves. More
specifically, we build a global kNN graph A9 over all the local charts,
and apply a GNN model (denoted as GNNY) to learn the global
embedding:

Z =GNNY(AY, Z) 4
y = MLP([Z]|Z]) ()

where Z = [z¢, 21, .... zN]" is the feature matrix of the global graph,
and GNN is supposed to learn the correlation among local charts.
The operator "||" means concatenating, which represents the skip
connection of neural networks.

Stage 3: Joint Local and Global GNN Training. We jointly
train the local and global GNN models constructed in Stage 1 and
Stage 2 to learn the local and global embedding simultaneously in an
iterative fashion. The training process is summarized in Algorithm
1. For the inference, we will use all the data points, i,e, set batch size
B = Nyps + Nynknown- The backbone GNN can be any off-the-shelf
model. Moreover, the neighbor sampling and graph construction
can be done in the data pre-processing stage or pre-fetched by the
CPU, parallel with the GPU’s calculation.
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Algorithm 1 5GNN

1: Input: Rounds r = {1,..., R}, Batch size B, Learning rates 7,
Number of neighbors K, Measured dataset D°s

2: Initialize: Parameters 6

3. forr =1toRdo

4 Sample a batch of points {p;; pi ~ Z)"bs}?:1

5 for each p; in the batch do
6: Sample the k neighbors of p; from D°bs
7 Construct local graph A% and HY (3-4)
8 Compute the local embedding z; (5)
9: end for
10: Construct kNN graph over the batch {pi}?: 1
11: Predict the label Ypred = [y1, .. yB] (6-7)
12: Compute the loss gradient V.L(Y,req: Yyrue) (1)
13: Update the parameters: § <— 0 —n = V.L (2)
14: end for

15: Return: 0

4 EXPERIMENTS AND EVALUATIONS

We first provide more details about our measurement campaigns
and the datasets in this section. Then we describe the baseline
models, introduce the experiment setup, and finally discuss results.

4.1 Measurement Campaigns

We describe our measurement campaigns through the measurement
location, operators, and methodology as below.

Location and Operators: We conduct comprehensive measure-
ment campaigns to collect the signal and radio channel dataset in
a public square near a large football stadium in downtown Min-
neapolis, as shown in Fig. 2. Due to the potential high demand for
mobile networking, the mobile operator Verizon deploys diverse
radio bands and multiple base stations in this area, including 5G-
highBand (band-n261-28GHz) 2, 4G-midBand (band-n66-2.1GHz),
and 4G-lowBand (band-n13-0.7GHz).

Methodology: The setup of measurement tools is shown in Fig.
3. We take the leading flagship smartphones (Samsung Galaxy S21
Ultra 5G) as our user-equipments (UE) and tether them to the laptop
by USB cables. To access the Qualcomm chipset Diag and physical
layer information, we adopt a professional software tool named
Accuver XCAL [1], running on the laptop and UEs. We also set up
an external GPS to retrieve precise geo-locations and a power bank
for sustainable power supply. We equip those devices when we are
walking to collect radio information.

To ensure the UEs (especially their 5G data plane) are always in
the activated mode for the accurate and continuous data collection,
we let UEs send the User Datagram Protocol (UDP) data packages to
our university server at 5 Mbps via the commercial cellular network.

4.2 Datasets

Following the above descriptions, we collect the commercial 5G
signal/channel dataset. Besides, we simulate the ideal signal data
through DeepMIMO [19] to complement the real-world one. The
details of datasets are described as follows.

2The 5G high band is also known as mmWave in literature. For simplicity and consis-
tency, we use the former one below.
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Figure 2: Meas. campaign. Figure 3: Meas. tools.

Table 2: Fields of signal strength imputation task.

Longitude; Latitude
Angle: the orientation angle of UE
y | BRSRP: filtered beam reference signal received power [dBm]

Table 3: Fields of channel quality regression task.

Longitude; Latitude

Angle: the orientation angle of UE

ss-RSRP: synchronize signal reference signal received power [dBm]
ss-RSRQ: synchronize signal reference signal received quality [dB]
¢si-RSRP [SSBRI]: CSI reference signal received power [dBm)]

X | csi-RSRP [CRI]: CSI reference signal received power [dBm]

SINR: signal to interference & noise ratio [dB]

Pathloss: reduction in power density as signal propagates [dB]
BLER: block error rate [%]

y | CQL channel quality indicator

Real-world datasets: We extract raw data from the XCAL database
with a 100ms sampling rate, filter out the outliers, and aggregate the
different routes based on the coordinates. Finally, we get a total of
200k+ valid data records, including three different bands mentioned
above. For the deep learning tasks (i.e., signal strength imputation
task and channel quality regression task), the features and label are
summarized in the Table 2 and Table 3, respectively.

Simulated datasets: We use DeepMIMO simulator [19], which
adopts the predefined channel model by 3GPP, to generate the ideal
signal/channel dataset. Specifically, we generate datasets under
the configuration of a similar environment to our public square
(i.e., outdoor scenario) with different frequencies (i.e., 3.4GHz and
28GHz) and name them as DeepMIMO_Mid and DeepMIMO_High.

4.3 Evaluation Setup

We introduce the baseline models, implementation, and hyper-
parameter settings below.

Model Comparison: We evaluate and compare our proposed
5GNN paradigm with several state-of-art machine learning models.
For the baseline GNN models, we consider three representative
GNN models (GCN [11], GraphSAGE [7], and GIN [25]) that have
been widely used for graph learning tasks. As stated in Section 2,
unlike conventional graph learning problems, the "graphs” in the
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5G measurement extrapolation problem are not explicitly speci-
fied, but must be "inferred" or constructed by mining the spatial
correlations in the underlying datasets. For this, we consider two
state-of-the-art approaches that are developed for "geography in-
ference" problems and discussed in Section 2: 1) the KCN (local)
graph regression approach developed in [2], and 2) the PEGNN
node regression approach developed in [12]. Similar to our 5GNN
paradigm, these two approaches can also be combined with var-
ious GNN models. We denote them as P1 ("Paradigm 1") and P2
("Paradigm 2") respectively in Table 2 and Table 3.

In addition to above (augmented) GNN-based models, we also
consider the Universal Kriging (UK), a widely-used classical statistics-
based method, also known as the Gaussian process [20, 21].
Hyperparameter settings: For all experiments, we normalize
the dataset using the min-max scaler and split it into the training-
validation-test set with a 0.25 : 0.25 : 0.50 ratio. The models are
trained using the Adam optimizer [10] with its default configuration
and a batch size of 128. We set 2 hidden layers with 128 hidden
units and set the neighbor size as 10 for all the baselines. We also
adopt the normalizing layers to avoid the data distribution shift
and speed up convergence. We ensure each model is sufficiently
trained by setting a big epoch number of 250 and saving the model
with the best performance on the validation set. Lastly, we repeat
all experiments three times and report the best results.
Implementation: The whole project involves about 5,000 lines
of Python codes, including data processing and machine learning
model modules. The UK model uses PyKrige library [13], and all
of the GNN-based models are built based on PyTorch Geometry
library [5]. All data processing and numerical experiments are
run on our workstation, equipping AMD Ryzen Threadripper PRO
3995WX CPU and three NVIDIA RTX A6000 GPUs.

4.4 Imputation and Regression Tasks

Table 4 and Table 5 report the results of signal strength imputation
task and channel quality regression task, respectively.

Compared with the other graph-based learning paradigms, 5GNN
is consistently superior and reduces errors up to 12.8% on the im-
putation task and 9.2% on the regression task. The improvements
on the commercial 5G dataset with GCN and GIN models are the
most significant. It may be because (1) 5G high band has salient
local and global spatial characteristics, as discussed in Sec. 2. And
our 5GNN can explicitly consider them. (2) GraphSAGE’s training
strategy involves some extra built-in sampling steps, which may
increase the difficulty for 5GNN to construct the underlying global
manifold. Due to the page limitation, we leave the question of how
the learning paradigm affects different baselines to future work.

Meanwhile, 5GNN also outperforms the Kriging methods on the
imputation task, a widely believed hard task since only coordinates
are involved for prediction [2, 12]. It is worth noting that 5GNN
reduces up to 25.3% error rates on the 5G high band, while the
other graph-based learning methods fail to consistently beat the
statistical-based Kriging methods.

Overall, those results validate that 5GNN is a better choice than
other state-of-art methods in signal imputation and channel quality
regression tasks by efficiently capturing the local and global spatial
correlations (e.g., interference, signal shape, and attenuation) of the
radio signals.
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Table 4: Results of signal imputation task. We use RMSE and MAE metrics for evaluations. For each GNN baseline, We compare
the three paradigms and report the results in a tuple (P1, P2, 5GNN). In this table, as well as in Table 3, for each experimental
setting/dataset, the best results obtained using a specific GNN baseline are underlined. The best results across all GNN baseline

models and paradigms are emphasized in bold.

Datasets Metrics | UK GCN GraphSAGE CIN

P1 P2 5GNN P1 P2 5GNN P1 P2 5GNN

. RMSE | 0.0465 | 0.0584 0.0451 0.0440 | 0.0559 0.0438  0.0437 | 0.0531 0.0458 0.0436
DeepMIMO_Mid — —

MAE | 0.0342 | 0.0444 0.0334 0.0320 | 0.0423 0.0315 0.0315 | 0.0410 0.0344 0.0316

DeepMIMO_High RMSE | 0.0767 | 0.0722 0.0720 0.0701 | 0.0723 0.0696 0.0690 | 0.0722 0.0719 0.0703

- MAE | 0.0584 | 0.0552 0.0550 0.0535 | 0.0552 0.0524 0.0519 | 0.0555 0.0545 0.0537

4G_Signal Low RMSE | 0.1250 | 0.1216 0.1129 0.1076 | 0.1039 0.1018 0.1020 | 0.1223 0.1130 0.1071

- - MAE | 0.0915 | 0.0955 0.0864 0.0784 | 0.0771 0.0758 0.0745 | 0.0964 0.0874 0.0787

4G_Signal Mid RMSE | 0.0899 | 0.0943 0.0849 0.0806 | 0.0887 0.0796 0.0795 | 0.0939 0.0851 0.0816

- - MAE | 0.0684 | 0.0740 0.0662 0.0616 | 0.0688 0.0603 0.0603 | 0.0735 0.0663 0.0622

5G_Signal High RMSE | 0.1588 | 0.1598 0.1453 0.1366 | 0.1218 0.1194 0.1187 | 0.1574 0.1457 0.1361

- - MAE | 0.1201 | 0.1297 0.1156 0.1015 | 0.0889 0.0863  0.0855 | 0.1260 0.1157 0.1009

Table 5: Results of channel quality regression task.
. GCN GraphSAGE GIN

Datasets | Metrics | UK | p, P2 sGNN| P1 P2 SGNN | P1 P2 5GNN

4G_COI Low RMSE | 0.1840 | 0.1813 0.1710 0.1611 | 0.1754 0.1594 0.1605 | 0.1809 0.1712 0.1602

- MAE | 0.1430 | 0.1460 0.1365 0.1259 | 0.1416 0.1234 0.1252 | 0.1472 0.1370 0.1247

4G_CQI_Mid RMSE | 0.1435 | 0.1336 0.1328 0.1328 | 0.1310 0.1278 0.1276 | 0.1345 0.1364 0.1329

- - MAE 0.1092 | 0.1042 0.1053 0.1017 | 0.1029 0.0982 0.0972 | 0.1045 0.1076 0.1015

5G_CQI High RMSE | 0.1926 | 0.1730 0.1724 0.1643 | 0.1751 0.1645 0.1629 | 0.1748 0.1726 0.1638

MAE | 0.1516 | 0.1455 0.1417 0.1287 | 0.1469 0.1279 0.1279 | 0.1493 0.1422 0.1292

(a) DeepMIMO_Mid.
Figure 4: Visualized results of the signal imputation.

(b) 5G mmWave.

@

@

v

(a) Ground truth.

v

(b) Predicted results.

Figure 5: Visualized results of CQI regression.

4.5 Visualization of Radio Maps

To better understand 5GNN, we visualize the results of the above
two tasks, as shown in Fig. 4 and Fig. 5.

Fig. 4a shows the reconstructed DeepMIMO scenario, where
we can see that 5GNN learns the local and global spatial patterns.
Fig. 4b is the result of signal strength imputation for the entire
public square based on the measured data (small black dots in the
figure), where zone A and some parts of zone C have good signal
coverage. According to the environment description in Fig. 2, it is
because zone A is the line of sight area, and those parts of zone C
enjoy signal reflection by the buildings. Fig. 5 shows the result of
COQI regression. We can see the predicted results are close to the
ground truth.

In summary, we can conclude that the proposed method can
generate the radio map efficiently based on the few measured data
points, thus assisting future measurements.

4.6 Discussions on Running Time

Now we discuss the algorithm’s running time to demonstrate the
feasibility of applying 5GNN to assist in real-time measurement. For
simplicity, we take the 5G_Signal_High dataset and GCN baseline
as an example. For comparison fairness ®, we use 64 vCPU cores for
UK, but 8 vCPU cores with 1 GPU for other GCN-based methods.
The results are reported in Table 6, where we mark three learning
paradigms as GCN-P1, GCN-P2, and GCN-5GNN as above.

3We consider the computing resources that can be purchased from AWS [3] with
almost the same amount of money.
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Table 6: Results of running time. For GCN-based methods,
we report (1) average running time of one epoch and (2) the
number of epochs for training to convergence.

Training Time Inference Time

UK 182.4 s 0.135 ms/sample
GCN-P1 0.39 s/epoch 45 epochs 0.006 ms/sample
GCN-P2 0.18 s/epoch 42 epochs 0.178 ms/sample

GCN-5GNN | 0.29 s/epoch 46 epochs 0.183 ms/sample

We can observe that different methods have different running
time characteristics. The 5GNN is competitive and can satisfy real-
time demands, considering each measurement run usually takes
tens of minutes. We leave further algorithm considerations (e.g.,
incremental learning, transfer learning, etc) and integrate 5GNN
(as an API) into the measurement system to future work.

5 RELATED WORK

We briefly discuss and contrast our work with related works.
Radio Propagation Modeling: There has been a large literature on
applying machine learning to radio channel propagation modeling
(see, e.g., [23, 24]). While they often take into account the specific
physical characteristics of radio bands and channels (which provide
value insights to our work), the goal of such studies differ from
ours. They also make various assumptions. e.g., knowledge of tower
location and transmission power, which are often not available
when conducting measurements. In contrast, 5GNN is a tower-
information-free, data-driven, and learning-based approach.
Spatial Imputation and Graph Neural Networks: Machine
learning methods, especially, GNNs, have been applied to vari-
ous "geography-related” problems [2, 12, 22] such as weather fore-
casting, road traffic prediction where "spatial imputation" is em-
ployed [2, 16]. As discussed in §2, they often do not explicitly take
into account local vs. global factors and patterns inherent in the
problem domain and data.

In addition to the above papers, we also recommend two surveys
[9, 18], which elaborate on other opportunities for applying GNN
to wireless communication networks.

6 CONCLUSION

To the best of our knowledge, this is the first work that explicitly
addresses the 5G measurement extrapolation problem to improve
measurement efficiency. We advocate an Al-assisted approach for
scaling 5G network measurements and propose 5GNN. Inspired
by ideas from differential geometry, 5GNN augments GNNs by
explicitly accounting for local and global factors and patterns in
5G signal maps. Evaluation results using both synthetic and real-
world 5G measurement datasets show 5GNN outperforms existing
state-of-the-art models. We believe that the general paradigm of
5GNN is also applicable to many other problem domains.
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