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Abstract

We develop a fully data-driven model of anisotropic finite viscoelasticity using neural ordinary differential equations as
building blocks. We replace the Helmholtz free energy function and the dissipation potential with data-driven functions that
a priori satisfy physics-based constraints such as objectivity and the second law of thermodynamics. Our approach enables
modeling viscoelastic behavior of materials under arbitrary loads in three-dimensions even with large deformations and large
deviations from the thermodynamic equilibrium. The data-driven nature of the governing potentials endows the model with
much needed flexibility in modeling the viscoelastic behavior of a wide class of materials. We train the model using stress—strain
data from biological and synthetic materials including human brain tissue, blood clots, natural rubber and human myocardium
and show that the data-driven method outperforms traditional, closed-form models of viscoelasticity.
© 2023 Elsevier B.V. All rights reserved.

Keywords: Viscoelasticity; Neural ordinary differential equations; Data-driven mechanics; Tissue mechanics; Nonlinear mechanics;
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1. Introduction

The traditional approach to modeling the mechanics of materials has been the use of expert-constructed closed-
form constitutive equations. However, there are a large number of such models and no consensus on the best choice
for any material. For example, Dal et al. [1] list 44 different hyperelastic constitutive material models for elastomers
alone and, similarly, there are several examples of viscoelastic models for rubbers and polymers [2]. Furthermore,
closed-form models inherently restrict the type of behaviors that can be described, often rendering them incapable
of accurately capturing the response of many materials. Both of these problems can be solved with the help of
data-driven methods as has been demonstrated various times for the case of hyperelasticity [3—7], but remains an
ongoing area of investigation for dissipative phenomena such as viscoelasticity.
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The past few years have witnessed a rapid adoption of data-driven methods in constitutive modeling of materials.
Initially some studies used feed-forward fully-connected neural networks (FFNNs) to predict the derivatives of strain
energy with respect to invariants of deformation. Liu et al. [5] enforced convexity of strain energy with respect to
the elements of the Green strain tensor by adding loss terms that ensure the Hessian matrix of the strain energy
is positive semi-definite. Other studies [8,9] used the monotonicity of stress as an alternative criterion to enforce
the same class of convexity. However, polyconvexity is the more physically relevant criterion. We have previously
enforced polyconvexity of the strain energy through the loss function [4]. All of these studies enforced the desired
constraint in the weak sense using specially designed loss functions that penalize deviations from convexity. Later,
methods were developed using input convex neural networks (ICNNs) [10] and neural ordinary differential equations
(NODEs) [11] to satisfy convexity conditions a priori [3,12—14]. A parallel approach to constitutive modeling of
hyperelasticity has been the automated discovery of constitutive laws from a large catalog of existing closed-form
expressions [15-18].

In comparison, adoption of data-driven methods in viscoelasticity has been slow. Some forms of viscoelasticity
models were developed for specific use cases, but no general, physics-informed, fully data-driven model of finite
viscoelasticity has been developed so far, to the best of our knowledge. For example, Salahshoor and Ortiz [19]
took a model-free data-driven approach to viscoelasticity in the frequency domain to simulate wave propagation in
viscoelastic solids. Wang et al. [20] recently proposed a method of numerically approximating the solution of time-
dependent ODEs and PDEs over long temporal domains using Physics Informed Deep Operator Neural Networks
(PI DeepONets). The DeepONets are trained with a distribution of initial conditions and predict the solution of the
ODE/PDE:s in a short time interval. This solution is then used as the initial conditions for the next time interval. The
authors of [21] use artificial neural networks to approximate the relationship between stress and strain increments
in the discretized form of a viscoelastic constitutive law. And in [22] the stress update algorithm is replaced entirely
by recurrent neural networks (RNNs). However, the use of such approaches in large scale simulations would require
additional safeguards because, in general, when the relationship between stress and strain is approximated using
plain, unconstrained artificial neural networks (including the recurrent unit in an RNN) the positive dissipation of
energy is not guaranteed, resulting in possible violations of the second law of Thermodynamics. An approach to
achieve physics-informed viscoelasticity models is to represent the viscoelastic response as a Prony series with
many terms and identify the most relevant parameters [23], or to do sparse systems identification on a large library
of models [24].

The lethargy in adoption of data driven methods in viscoelasticity can largely be attributed to two major
challenges in developing fully data-driven, flexible, but physically realistic models of viscoelasticity: (i) the
difficulties associated with ensuring dissipation of energy is non-negative and, (ii) high computational costs
associated with optimizing the parameters of such models.

In this study we develop a fully data-driven model of anisotropic finite viscoelasticity using neural ordinary
differential equations (NODEs). We adopt the framework of variational finite viscoelasticity from [25] as the
mathematical foundation of the model and use the method of [26] to extend it to the anisotropic case. We propose
NODE-based functions for the governing potentials: Helmholtz free energy function, the creep potential, and a
NODE-based evolution equation for the fiber stress. We show that some appropriate convexity conditions on the
creep potential can guarantee that the dissipation of energy is positive. We leverage prior knowledge accumulated in
the field of hyperelasticity to design automatically convex data-driven creep potential functions using NODEs. The
method provided in [25] for solving the evolution equation involves the use of a predictor—corrector algorithm, which
is computationally costly and unstable when combined with gradient-based optimization algorithms, which are the
mainstays of data-driven methods. We reformulate the problem as a system of ordinary differential equations (ODEs)
thereby bypassing the iterative approach of the predictor—corrector algorithm. The Helmholtz free energy function
is polyconvex with respect to the deformation gradient by construction [3]. We train the model with experimental
data from biological and synthetic materials including brain tissue samples, blood clots, natural rubber and human
myocardium. A brief overview of this approach is shown in Fig. I.

2. Materials and methods
2.1. Theory of finite viscoelasticity

We assume that the material of interest consists of an isotropic matrix and a finite number of embedded fibers
that endow the material with different mechanical behavior in certain directions, resulting in an overall anisotropic
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Fig. 1. Overview of the proposed method to construct data-driven constitutive models of finite viscoelasticity that automatically satisfy
objectivity, polyconvexity and the dissipation inequality. The governing potentials ¥ g, ¥ngg and @ are constructed using neural differential
equations (NODESs) to satisfy physics-based constraints a priori. The constitutive model can be used to compute stress histories for arbitrary
deformation gradients and rates of deformation.

behavior. To model this phenomena, we use the parallel multiplicative decomposition of the deformation gradient
into elastic and inelastic parts (denoted by subscripts (-), and (-);, respectively) for both the matrix and the fibers
(denoted by superscripts () and ()7, respectively)

F = FYFY = FFFf (1)
We additively split the Helmholtz free energy function into isotropic matrix and anisotropic fiber parts, both of
which are further additively split into equilibrium (EQ) and non-equilibrium (NEQ) portions

W= UY,(C) + UE(C) + T, (CY) + W0 (C) @

where C = F'F is the right Cauchy—Green deformation tensor and C¥ = FM'F¥ and CF = FF'FF are the
corresponding elastic counterparts for matrix and fiber, respectively. The matrix free energy functions are isotropic
by construction and only depend on the isotropic invariants of C and C,, whereas the fiber functions are anisotropic
and depend explicitly on deformation pseudo-invariants associated with fiber directions V defined in the reference
configuration.
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2.2. Helmholtz free energy
The construction of the free energy function is based on the NODE approach from our previous publication [3].

2.2.1. Matrix phase
We express the two free energy functions % and ¥} o as the sum of an isochoric and a volumetric part

W, (C) = WR(C) + Wpy () 3)

Ungo(Co) = Ut o(CH + UiE (1) “)
where J = detF, J¥ = detF and C and C¥ are the isochoric parts of C and C¥, respectively

C=J"7?cC ®)

Cl =uy7rcy. (6)

We require that the two free energy functions Wé”Q and %’\,”EQ be objective and polyconvex in F and F¥ respectively.
To this end, we express the W};é and W,’\;EQ in terms of isotropic polyconvex invariants of C and C¥ [27],
respectively, and adopt an additive split into two independent functions

UEG(C) = Wil b) = Weoa(h) + Prga(h) )

Uigo(C) = Uit (. I5) = Wnpoa () + ¥nega(ls) (®)
with

I, = tr(C) ©)
~ _ _ 1 - _
L=1"-3V3with I, = 5 (I = () (10)
I¢ = tr(CMy) (1n
re 7eN\3/2 . re 1 reN2 ~M\2
I; = (I5)*? = 3v/3 with I§ = 5 (7 = w(©?) . (12)

Then, to guarantee polyconvexity of Wgg and Wygg it is sufficient to require that the functions Ygg 1, ¥Yro,2,
u'/g”Q’, YNEQ,1, ... be convex and non-decreasing. Or equivalently, it is sufficient for d ¥gg 1/ aly, 0 Yeo2 /8i2 be
monotonic and non-negative. We use NODEs to approximate the functions 9 ¥gg /0 I, d Uegp2/0 fz, such that they
are monotonic and non-negative as explained in Section 2.6.

2.2.2. Fiber phase
The Helmholtz free energy function of the fiber phase can be expressed in terms of anisotropic pseudo-invariants
of the deformation. In this study we use the following form for ¥}, o and vl o

Vio(C) = Vio(la) (13)
chEQ(Cf) = WZI;EQ(I;:) (14)
with
IL,=C:M (15)
C:M
Le=cFm (16)

where M = V ® V is the structure tensor defined in terms of material fiber direction vector V. In general, the
fiber direction vector can be an arbitrary vector in 3D space. However, for many biological tissues the vector can
reasonably be assumed to lie in a plane, especiall¥ if plane stress or strain deformations are considered, resulting
in a 2D vector of the form V = [cos 6 sinf O] with 6 the material fiber direction. This assumption simplifies
the computations for the fiber phase since it does not contribute to the out-of-plane response. As in the matrix case,
we use NODE:s to approximate the derivative functions 9 W, /814, 8 ¥z /914,
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2.3. Dissipation inequality

The constitutive equations have to satisfy the entropy inequality, which is equal to the internal dissipation
inequality in the case of isothermal processes

1 . .
ES:C—WEO an

with § = 20 ¥ /9C the second Piola—Kirchhoff stress. It can be shown that substitution of (2) into (17) leads to [26]

ov 8 v
0 Lew 00
aC"t 2 Z)Ci
The two terms in (18) correspond to the dissipation of energy in the matrix and the fiber. We require that the
two terms be non-negative individually. This corresponds to the assumption that the dissipation mechanisms in the
matrix and the fiber are independent of each other, resulting in two separate criteria

—CF (18)

v 1.
— . -CM>p 19
acM "2~ (19)
ov 1.

—2——:=CF>o0. 20
acr 271 = (20)

2.4. Evolution law for the matrix phase

The inequality of (19) can be more conveniently written in spatial form as [25]
1
~TNEg 5 (£ = 0 Q1)

where T NEQ = =2FM (9 W NEQ/ dCM)FM is the Kirchhoff stress of the non-equilibrium part of the deformation, Z(-)
denotes the Lie derivative and b = FMFM " is the left Cauchy—Green deformation tensor of the elastic part of the
matrix deformation. Eq. (21) implies the need of a constitutive equation that specifies the time evolution of b¥.
One option is to introduce a scalar valued function @, known as the creep potential, which defines the evolution
equation for the matrix phase

09

-
aNEQ

Substituting (22) to (21) and carrying out the double contraction results in

Z Z(rNEQx, >0 (23)

i=1 j=1 d(z NEQ)”

— —(.ZbM)bM '

(22)

We require that this inequality be satisfied for each (7%, o)ij independently, i.e.,
T 09
ITNEQ)i G~
Iz NEQ)lJ
09

>0 (no sum) Vi, j €{1,2,3} (24)

—r—— > 0 when (tANlEQ)U >0 and (25)
3(TNEQ)ij
a9
B(TAN/IEQ)U
Thus, it can be seen that to satisfy the dissipation inequality (17) it is sufficient to ensure

< 0 when (T} 0)ij <0 (26)

1. & is a convex function of T4/ EQ
2. arg minr%EQ ¢ =0 (i.e., P attains its global minimum at Ty, = 0)
but the principle of objectivity of stress introduces a third requirement

3. @ is an objective function of Tyrg, i.e. PRy, R") = &(z} ) for all proper orthogonal tensors R
5
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2.4.1. Convex and objective creep potentials
We are interested in finding convex and objective functions @ : Sym**® — R such that arg minr%EQ ® =0.

Here Sym**? denotes the space of symmetric 3 x 3 tensors. One approach to this problem is to make & a function
of the invariants g; of T}y, which in turn can be expressed in terms of its eigenvalues, 7.

D(TNpo) = D(g1(T1. 2. T3), &2(T1. T2, T3). .. ) 27)

Some examples of functions g;() include 7, 72, 7| + 72, I{, (11’)2, I3, ..., where ij (j = 1,2, 3) are the principal
invariants of T},

From the fundamentals of convex functions of multiple variables [28] we know that a composition of functions
f = h(gx)) = h(g(x), g2(x), ...) is convex in x if

1. gi:R" > R,i=1,2,...,k are convex in each argument
2. h :R¥ — R is convex and non-decreasing in each argument

This indicates that for @ to be a convex function of T4, o We must ensure that ® is convex and non-decreasing
and g; are convex in r% go- Some suitable examples of such g;() functions are:

o The first principal invariant, I{ = tr(r"N” EQ) and its square (/f )2

° (IIT)2 —oal; where 0 <o <3 and I] = tr(cof(t%EQ)) is the second principal invariant of Tygg
e The largest eigenvalue 7; of T4 EO

e —13 where T3 is the smallest eigenvalue of T, 0

e Sum of k largest eigenvalues

Il = (T%IEQ)II + (T%EQ)zz + (I%EQ)33 is linear in elements of T ygo and therefore its convexity is obvious. Proofs
of convexity of (/])* and (I])* — aI] are given in Appendix A. For the proofs of the other functions given here,
or more examples of convex functions the readers are referred to [28].

In this study we adopt an additive form for @ and use the first three of the functions listed above, i.e. g =
I, 8 = (Ilf)2 and g3 = (Il’)2 — 31;. With this, (27) becomes

(TN po) = PiIT) + D(UDD) + S3(U])* - 313). (28)

This form of @ is sufficient for most practical applications. In fact it can be shown that the creep potential used
in [25] consists of just a linear combination of g, = (I} )? and g3 = (I { )2 — 317, which is a special case of the
class of creep potentials we can capture with NODEs.

Finally, for the requirement on the global minimum we have

arg min &( ¥, ) = arg min (&51(15 )+ Bo((I7)?) + D5((ITY — 31;)) -0 (29)
T%EQ T%EQ

we require that the functions @i individually attain their minima at T4, 0 =0 1le.

arg min &, (If(r%EQ)) =0 (30)
T%EQ
A . 2
arg min 9, ((l1 (r%EQ)) ) =0 (31)
T%EQ
argmin &3 ((I] (th o)) = 3 (1)) = 0 (32)
T%EQ

or, considering the fact that /7 = (If)* = (If)* — 3I] = 0 when 7}, , = 0, this condition can alternatively be
stated as
argmin $(g;)) =0, i = {1,2,3}. (33)

8i
The convexity requirements can be equivalently stated in terms of the derivatives of b;
5 do; : : .
$;(g;) convex <= —— monotonically increasing (34)

8i
6
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. dd;
&;(g;) non-decreasing <= To non-negative 35)
8i
A d &,
argmin §; = 0 <— — =0 (36)
8i ng gi=0

We use NODEs to approximate the derivative functions d &, /dg;, such that these three requirements are satisfied a
priori, see also Section 2.6. At this point we need to make two remarks

Remark 2.1. &, is not in the form of a composition of functions. Rather, since /{ is linear in the elements of
TyEQ, then (1) = @1((11,{,”EQ)11 + (r%EQ)zg + (r%EQ)33). As such, @; does not need to be a non-decreasing
function of its argument. In other words, only requirements (34) and (36) need to be satisfied for @;.

Remark 2.2. Notice that the argument of 5252 is non-negative. The argument of ?!53 can be expressed in terms the
eigenvalues of Tygg

(If)2—3lf:tlz+122+r32—tlrg—tlr3—tgr3 (37)

which shows that it too is non-negative. This will be important in Section 2.6 where we will construct NODEs such
that non-negative inputs lead to non-negative outputs thereby fulfilling the requirement (35).

2.5. Evolution law for the fiber phase

Substituting the free energy function of (14) into the dissipation inequality of (20) yields

owk M 1.
F NEQ F
:-CF>0 38
THIr CliM 2 T (38)
[
‘L’F
NEQ

where T3 go € R denotes the fiber stress. Note that the double contraction in this equation corresponds to the
inelastic part of the stretch in the fiber

W =1f =cf .M. (39)

With Eq. (39), the dissipation inequality can be written more concisely as
ro (M
TNEQ oF >0. (40)
i

Eq. (40) requires the specification of a constitutive equation for the evolution of 1. The model has to satisfy
sign(if /AF) = sign(tf o)- In particular, any monotonically increasing function passing through (0, 0) will satisfy
this. In light of this, we propose the following form of the evolution equation for the fiber

M F
()\_F) = N(tygp) 41)
where A denotes a NODE. As we show in Section 2.6, a NODE is guaranteed to be monotonic and it can be
constructed to pass through the origin.
F

Note that Eq. (41) is a scalar equation that should be enough to specify the evolution of C/, Cf. One way of
closing the system of question is to specify the tensor C/ from A, for example

Cl =M. (42)

However, the evolution of the fiber viscoelastic branch can be done without the explicit multiplicative split of
the deformation gradient (1). Instead, only the scalar multiplicative split

1f=1f1f (43)
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is needed. Then, Egs. (38), (41) and (43) fully specify the evolution of the fiber viscoelastic branch without
computing CF', CF'. To close, the contribution to the stress tensor from the fiber phase is

1 2 0w 2 0Vl dIF
F F T NEQ T NEQ YY4¢ T
= —FS F' = —F F' = —-F —<F 44
TNEQ = EONEQT = R TE 7" I acC @
which reduces to
F 1 . FMF”™
aNEQ:thEQ—C:M . 45)

2.6. Neural ordinary differential equations

A NODE is a machine learning framework that generalizes some classical models such as recurrent neural
networks. We use NODE:s to construct monotonic and nonnegative relationships between inputs x and outputs y.
The key idea behind NODE:s is the use of an ODE defined on pseudotime w to compose continuous transformations
of a hidden state h(w)

dh(w)

o = [©), ».60) (46)

where the function f(-, -, 0) is given by a fully connected feed-forward neural network with parameters 6. Given
the initial value h(0) of the hidden state, the output of the model can be obtained by integrating the ODE up to a
predetermined pseudotime, say w = 1

1
h(1) =h(0) + [ f(h(w), w, 0)dt 47
0

We assign the input to the initial condition h(0) = x and the final state to the output y = h(l).

From the fundamentals of ODEs we know that no two trajectories of an ODE intersect, because the contrary
would indicate that the right hand side f(-) will map the two trajectories to different direction at the point of the
intersection, which contravenes the definition of a function. In the 1-dimensional case, this indicates that for any
two trajectories /1 (t) and h(¢)

h1(0) = h2(0) <= hi(1) = ha(1)
h1(0) < ha(0) <= hi(1) < hao(1)
or more succinctly
(hao(1) = Ry (1))(h2(0) — h1(0)) = 0
= 2=y —x) =0

which shows that the input—output map of a NODE is monotonic.
As mentioned previously, the right hand side of the ODE in (46) is given by a neural network

S(x) =W,h(.W2h(Wix +b1) +by) + b, (48)

where W; and b; are the weights and biases of the ith layer of the neural network. Removing the biases from the
neural network results in a new feed-forward operation consisting of a series of multiplications that map x = 0 to
f(x) = 0 provided the activation function satisfies 4(0) = 0,

f(x) = W,h(.W2h(Wx)). (49)

Together with the monotonicity of NODEs, an architecture such as (49) guarantees that the outputs of the NODEs
are non-negative and that the NODE:s attain their global minima at x = 0, i.e.,

fx)=0 = y=0 when x=0 50)
fx)>0 =— y>0 when x>0 51

While this form of NODE:s is suitable, removing all the biases is not necessary. In application we use neural networks
of the form

f(x) = Wyh(..W2h(W,x)) + exp(by) (52)
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Fig. 2. Example of ODE trajectories generated by NODEs. Trajectories of the ODEs for BWQ’IQ /011 (a) and BWQ’IQ / Biz (b). The NODE
defines the underlying vector field shown in gray, which generates the observed trajectories. The corresponding input—output map is monotonic
(c). Trajectories of the ODEs for 9 W,{‘,”EQ /01} (d) and 9 &P%EQ /0I5 (e) and the resulting input—output maps (f) have a similar response to

the equilibrium branch. Trajectories of the ODEs for da%l/dgl (), d®, /dg> (h) and d®3 /dgs (i) with g; as defined in Section 2.4.1 and
the resulting input—output maps (j). In this case the domain of the inputs includes negative non-equilibrium stresses and the outputs are
convex functions with minimum at vanishing non-equilibrium stress.

This form of f is identical to the one given in (49) with the exception that the output of the neural network is
shifted by a positive value, which adds more flexibility to the neural network. However, all the desirable qualities
of NODEs that we have achieved so far are preserved.

In summary, we have shown that the input—output map of a NODE is monotonic. When neural networks of the
form (52) are used, non-negative inputs result in non-negative outputs. And finally, the NODE:s attain their global
minima at x = 0. We use NODEs to approximate the functions 0 Ygo /011, 0 Weg/d12, 0 ¥nEg/dl}, 8@1/81’, e
The resulting ODE trajectories and input—output maps for one model are shown in Fig. 2.

2.7. Integration of the evolution equation

We offer two separate methods for integrating the evolution equations. The first method uses the iterative
predictor—corrector algorithm reported in [25] for the matrix phase and the Newton—Raphson solution scheme

9
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reported in [26] for the fiber phase. This solution method is necessary when the deformations are arbitrary. However,
the Newton—Raphson algorithms used in this method make it computationally costly and unstable when combined
with gradient based optimizers.

The second method can be used for biaxial experiments, i.e., when plane stress conditions hold and F is diagonal.
Under these circumstances the solution of the evolution equation can be expressed as a system of ODEs which makes
convergence much faster and stable.

2.7.1. Method 1: Predictor—corrector algorithm for arbitrary F

Matrix phase
The matrix evolution equation provided in (22) is rewritten here
1 - 0P
— (LM = (53)
2 TNEQ

The key idea is to carry out an operator split of the material time derivative of b, into elastic predictor (E) and
inelastic corrector (I) parts

b = (FCY'FT) = b} + b¥1” + FC¥ 'F” (54)
— ——
E 1

where 1 = FF~! is the spatial velocity gradient.
. . L o —1. ..
In the elastic predictor step the material time derivative of CM " is set to zero, giving us

—1 -1 -1
(C,M rial = (C,M )t:tn,l == (by)trial = (F)z:r,,(C,M )t:zn,l(F)t:zn (55)
In the inelastic corrector step the spatial velocity gradient is set to zero, giving us
1 - 1. - 09
——(ZbMp¥ T = pMpy T = (56)
2 2 TNk
. 09
= b} = —2——bY (57
TNEQ
Solving this differential equation by exponential mapping and discretizing leads to
09
bM)—, ~exp | —2A¢ m M )ial (58)
0TNEQ —
But in the isotropic case b and T, o are co-axial, which allows us to write this equation in the principal axes
9P
)héwiz = exp I:—ZAI diag (8_)} ()»éwiz)trial (59
: 7, :

where )\yi are the principal elastic stretches of the matrix phase, diag (0 #/97;) is a diagonal matrix consisting of
the derivatives of @ with respect to principal values of T4, o- Finally, taking the logarithm of both sides gives us

L

) 0P
€.,i = —At diag Pyl (€c,i uial (60)
The nonlinear equation of (60) can be solved using a Newton—Raphson algorithm.
Fiber phase

For an arbitrary F and corresponding C = F”F, using the scalar split of the fiber stretch in Eq. (43), the ODE
in Eq. (41) can be explicitly expressed in terms of A/,

A
(A_ZF> =N (tyeoA]. C. M) . 1)
Discretizing this differential equation using a backward Euler scheme results in
()Vf)tn = ()\‘iF)tn_| + At()"f)fn'/\/ (IIC;EQ(()”I'F)M’ C’ M)) : (62)

10
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This constitutes a nonlinear and implicit equation for Af at time 7, since M is constant and C is prescribed.
This equation can be solved for the new value of the internal variable with a numerical solver such as the
Newton—Raphson algorithm. The contribution to the stress from the non-equilibrium fiber branch is specified in
(45).

2.7.2. Method 2: System of ODEs when F is diagonal and plane stress conditions hold

Matrix phase )
The Lie derivative of b in the evolution equation can be written in terms of b¥ to get
. 09
bY — @) +b)1") = ————>pY (63)
TNEQ
where
1=FF! (64)
b = FMFM” (65)
b = FMEM)T 4 FM (M)T (66)
and since T o 1s diagonal,
09 09
= diag (—) . 67)
BrNEQ 31’,‘
Substituting these back to (63) results in
MM T M (pMA\T MM T MM T p—THT : Ch4 T
FMEMT MMy (FF FMEMT 4 pHpt pTR ) = diag ( 5—  F.F! . (68)
Ti
where, in the absence of shear terms, every matrix is diagonal, i.e.
A 0 0 MO0 0 A0 0
F=[0 % O|.FV=|0 % 0|, F=|0 i 0], (69)
0 0 X3 0 0 Al 0 0 I
Then (68) can be written as a system of equations, which after some simplifications results in
: Mo 139
e e P L (70)
’ A 201 ’
. A 130
WM= = —— ™ 71
e,2 ()\2 2 81’2) e,2 ( )
: Ay 190
Mo =2 ——— ) AM,. 72
6,3 ()\‘3 2 87:3 ) 6,3 ( )

Biaxial loading

Under biaxial loading conditions the out of plane stress component and its time derivative are equal to zero,

ag‘g = d% = 0. Then, assuming the fibers are in the 1-2 plane,

M M M M
do; 0033 0033 0033

doe™ oM. doM . . . . .
- M 33 33 33 3 M M M
O3 = = A+ Ay Az + A+ Ao+ Aa=0
33 dt 3)\] ! a)\,z 2 8}\'3 3 a)\? el a)\é e2 a)\‘g e3
with
dol . do . NV 1 Y
A a_)L313)Ll + 3T323}\2 + 8)»2‘% )\Esl + aA?Z )‘9,2

oM /90s
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00 /02
T oM /ons’
substituting this into (72) leads to
A _ 132
Mty = gl 4)
3 7ves

Then Egs. (70), (71) and (74) constitute a system of three ODEs for the three unknowns AY

MM, and A
Uniaxial loading

The case of uniaxial loading closely resembles the case of biaxial loading. The only difference being the
symmetry A, = A3, Ay = A3, .... This simplifies the Egs. (70), (71) and (74) to

. Mo 100
M == ——— )¢ 75
el (}\.] 231’]1) ! ( )
A =3 (76)
A 138
: A 2 0T
kol = g A (77
1= Za
with
oM . oM .
T
T 90 /9hy + 90 M /023
) dogs /01N, + o /DAY,
8031‘34/3)»2 + 80312’/8)\3
Fiber phase

Note that the fiber evolution equation of (61) is an ordinary differential equation in A. This equation can be
integrated using a numerical integrator of choice thus avoiding an iterative solution scheme. This integration can be
performed independent of the matrix phase in biaxial experiments if the fibers are assumed to lie in the 1-2 plane.

2.8. Model calibration and verification

We use both experimental and synthetic training data to train and test our models. The synthetic data is generated
using the creep potential used in [25] and neo-Hookean material models for the Helmholtz free energy functions.
The creep potential in [25] can be shown to have the following form

1 1
Prc = —(ID)? + —((I7)* = 3IF). 78
RG 9nv( 0 +3nD(( 0 5) (78)

Note that differentiating this form of the creep potential with respect to Tygo twice leads to the familiar isotropic
matrix V™! = ﬁ(ﬂ - HeD+ ﬁl ® I reported in [25], where p and 1y are material parameters and I is the
4th order identity tensor.

In the case of anisotropic data we use a linear form of the evolution Eq. (20) as proposed in [26]

AF 1
L) =—1f (79)
(Af ) np O

where np is a positive parameter that represents the characteristics viscosity of the fiber.

We use the following form of neo-Hookean strain energy functions for W{E"’Q and Uy, o When generating synthetic
training data

1 1
V= 5M(rmtrb -3+ 5K(J — 1) (80)
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and the following form for ¥7, and ¥, ,
W = kexp(ly — 1) — 1. 1)

We train and test the proposed model with experimental stress data from a variety of materials. Our choice of
materials was influenced by the following criteria:

e Include a reasonably large variety of materials
e Focus mainly on soft tissue but include some synthetic materials
e Include both isotropic and anisotropic materials

As a result we train and test the models with experimental data obtained from biaxial stress relaxation experiments
on blood clots [29], natural rubber [30], four brain tissue regions [31] and myocardium [32] to train our models.
Myocardium is assumed to be anisotropic and the stress predictions are given in two orthogonal directions, while
the other materials are assumed to be isotropic in this study.

2.9. Training data-driven models of viscoelasticity

Training a data-driven model of viscoelasticity is computationally expensive. This is due to the fact that the state
of stress at any given point depends not only on the observable quantities like the strains, but also on the values of
the hidden variables such as 1)/, 12/,, AY, and 1 in biaxial experiments, or (C})~', A[ in the case of arbitrary
deformations. This makes training data-driven models time consuming as it entails a full integration of the entire
history of stress in every epoch of training. Therefore, even though it was possible to train the NODE-based models
directly on data, we found that it was sometimes more efficient to use closed-form models of the form (78) and
(80) to pre-train the NODE based model. Then the NODEs can be re-trained against the actual stress data.

In this study we make use of JAX; a package for high performance numerical calculations in Python to train our
models. We use the ADAM optimization algorithm with a typical step size of 0.5 x 10~* and parameters 8; = 0.9
and B, = 0.999 (used by JAX). Training time highly depends on the number of data points being processed, the
number of epochs and the size of the neural networks. Usual training times are between 1 and 5 h on an Apple
M1 CPU. The code and data for this study are provided in a public repository given in Appendix B to enable
independent verification of the findings of this study.

Verification is not as computationally intensive as the training since only a forward-pass is required. Evaluation of
stress history for a given set of boundary conditions usually takes less than a minute with a JAX-compiled function.

3. Results

A physically sound formulation of viscoelasticity satisfies the 2nd law of Thermodynamics. To this end, we
design creep potentials ¢ with appropriate requirements to satisfy this criterion. A demonstration of this is shown
in Fig. 3 where, even randomly sampled NODEs are shown to result in non-negative dissipation of energy under
arbitrary stresses. On the other hand, feed-forward neural networks (FFNN) fail to satisfy this criterion. We show
the dissipation of energy with two FFNN-based creep potentials, one randomly sampled like the NODEs and the
other trained against the creep potential of (78). We expect that the randomly sampled FFNN would violate the
2nd law of Thermodynamics, but even the FFNN trained to interpolate an appropriate creep potential violates this
criterion especially outside the training region.

We design the creep potential with a very expansive basis to enhance the capability of our model to capture all
modes of energy dissipation. In particular, our formulation encompasses a generalization of the creep potentials of
the form (78) which are ubiquitously used to describe viscoelastic behavior of isotropic materials. To demonstrate
this we generate synthetic stress relaxation data with the creep potential of (78) and neo-Hookean models and train
the NODE based model against this data. The resulting plots of stress for various rates of loading and peak stress
are shown in Fig. 4. As expected, the NODE based model learns and replicates the training data almost exactly.

Next we train the model with experimental data. As a first step we train the model with experimental stress-
relaxation data from human brain tissue [31]. This dataset contains compression relaxation and uniaxial tension
data from four regions of human brain; basal ganglia, carpus callosum, corona radiata and cortex. We use the two
datasets independently to train and test the NODE and the analytical model. The compression relaxation data and
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Fig. 3. The NODE modeling framework is guaranteed to result in non-negative dissipation of energy under all deformations. Dissipation
of energy under uniaxial, equibiaxial and pure shear conditions with 50 randomly sampled NODEs (a—c), and, dissipation of energy under
50 randomly sampled states of stress (tygp) with 100 randomly sampled NODEs, 1 randomly sampled FFNN and 1 trained FFNN on
physically admissible data (d). All points above the red lines correspond to positive dissipation of energy. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Results of training the NODEs against synthetic data generating with the analytical model described in (78) and (80).

the predictions of the two models after training are shown in Fig. 5. On average, the NODE based model has a
mean absolute error (MAE) of 7.3 Pa, whereas the analytical model has a higher error at 13.3 Pa. The uniaxial
tension data consist of loading—unloading curves on the same tissue samples as before and are plotted in Fig. 6.
The samples are loaded up to a stretch of 1.1 at a rate of 2 mm/min in this experiment. On average, the NODE has
MAE of 4.5 kPa and the analytical model has a 45% higher MAE at 6.5 kPa.

Next, we train the model with data on blood clots [29]. This dataset consists of three stress relaxation experiments
on a blood clot sample with peak stresses of 10%, 20% and 30%, respectively. In the experiments a 10 mm x 40 mm
blood clot sample with a thickness of 2 mm is stretched along the short edge with a strain rate of 0.001 m/s up to
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Fig. 5. Compression relaxation data obtained from four regions of human brain; basal ganglia (a), corpus callosum (b), corona radiata (c),
cortex (d), and the predictions of the NODE and the analytical model after training.

the desired peak stress and held for 300 s. We train with two of the datasets at a time while testing with the third
experiment. The data and predictions of the models after training are shown in Fig. 7. In Fig. 7(a) the training data
consists of the two curves with the lower peak force, in Fig. 7(b) it consists of the lower and the upper curves while
the middle curve is used for validation and in Fig. 7(c) the lowermost curve is kept for validation while the upper
two curves are used for training. As we go from Fig. 7(a) to (c) the training MAE steadily increases from 0.033
mN to 0.056 mN to 0.070 mN. This is partly because the magnitude of training stress is higher as we go from
(a) to (c¢). The rise in mean relative error (MRE) is much less pronounced at 0.015, 0.019 and 0.021, respectively.
The validation MAE, on the other hand, is lowest for Fig. 7(b) at 0.193 mN compared to MAEs of 0.437 mN and
0.209 mN of the other two cases. This indicates that the model performs better in interpolation than extrapolation.
Nevertheless, the prediction in the validation dataset still captures qualitatively and quantitatively the response of
the blood clot.

Lastly, we train the isotropic model with data from natural rubber [30]. The data for natural rubber consists of
both a stress relaxation and various monotonic compression experiments under different strain rates. We train the
model with the stress relaxation data and test with the monotonic compression curves as a validation. The results
are shown in Fig. 8. The plots of Fig. 8(a) show that the NODE captures the training data almost exactly, while the
analytical model struggles to do so. The MAE of the analytical model is approximately 5 times higher than that of
the NODE at 0.071 MPa for the analytical model versus 0.014 MPa of the NODE model. Qualitatively, there is a
notable difference in the analytical compared to the NODE predictions in the Training plot of Fig. 8. The analytical
model is simply incapable of capturing the response, but this is not a problem for the NODE model.

In validation, NODE has lower errors in the three curves with 0.025/s, 0.075 and 0.225/s strain rates with an
MAE between 0.131 and 0.231 MPa whereas the MAE of the analytical model ranges from 0.218 to 0.351 MPa,
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Fig. 6. Uniaxial tension data obtained from four regions of human brain; basal ganglia (a), corpus callosum (b), corona radiata (c), cortex
(d), and the predictions of the NODE and the analytical model after training.
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Fig. 7. Stress relaxation data obtained from blood clots and predictions of the model after training.

a much poorer performance. On the 0.96/s curve the analytical model has the lower error at 0.413 MPa vs 0.672
MPa of the NODE. This demonstrates that the model yields acceptably close results even when trained with one
type of testing data and tested with another.

Next, we train the model with anisotropic data. For this we use tensile stress relaxation data for human
myocardium [32]. Unlike the previous examples, myocardium is a fibrous and anisotropic material and exhibits
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Fig. 8. The NODE and the analytical model were trained with experimental stress relaxation data on natural rubber (a) and tested with
various monotone compression curves with different strain rates (b).

significant difference in the stress response in the Mean Fiber Direction (MFD) and Cross Fiber Direction (CFD). We
model myocardium assuming the fibers are in-plane, thus the anisotropy direction is specified by a single parameter,
the fiber angle 0. The data consists of the average stress of n = 5 human myocardium samples in a 5 min long stress
relaxation experiment with a 10% peak stress. The results of training both analytical and NODE-based models are
shown in Fig. 9. The NODE has MAEs of 0.187 kPa and 0.145 kPa in MFD and CFD, respectively, whereas the
analytical model has MAEs of 0.327 kPa and 0.271 kPa.

A summary of the performance of the two models under all experimental training data is provided in Fig. 10.
We use mean relative error in this figure to unify the vertical axis of all the different materials. The NODE has the
lower error in all cases demonstrating the flexibility of the data-driven model.

4. Discussion

We present a fully data-driven, physics-informed model of finite viscoelasticity. Unlike theories of linear
or finite linear viscoelasticity, finite viscoelasticity allows for large deformations and large deviations from the
thermodynamic equilibrium [25]. This functionality is especially important for soft materials like rubber and soft
biological tissue because such materials routinely undergo extremely large deformations in dynamic environments.

The state of stress in a viscoelastic solid can be described using two class of potentials, a creep or dissipation
potential and the Helmholtz free energy function [33]. In the classical approach to viscoelasticity both of these
potentials are modeled with closed-form expressions. The creep potential of Eq. (78) is nearly the default isotropic
creep potential of choice for most studies. Some examples of its use for modeling various materials like blood clots,
polymers and rubber can be found in [29,34,35]. Some other studies extend the model of [25] to the anisotropic
case using an isotropic—anisotropic split of the Helmholtz free energy function [26,36], but even in these cases,
linear dissipation is used for the isotropic and anisotropic parts.

The dissipation potential Eq. (78) is a simple function with only two parameters. While it has remained popular,
the restrictions of a linear model limit the flexibility of viscoelastic materials that can be modeled. Nonlinear
extensions of Eq. (78) in the literature retain the same functional form but replace the viscosity with a function
of the deformation [37,38]. We offer a physics-informed, data-driven potential based on NODEs that has much
more flexibility, allowing it to capture complex viscoelastic dissipation patterns. In fact, it can be shown that the
dissipation potential of (78) is a special case of the proposed potential when the outputs of the NODEs are set to
constant values rather than convex functions of their arguments.

The methodology proposed in this paper encompasses a large class of viscoelastic dissipation response. We
require that the dissipation potential be a convex function with its global minimum at 74 ro = 0 as stated in
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Fig. 9. Stress relaxation data for myocardium in Mean Fiber Direction (MFD) and Cross Fiber Direction (CFD) and the predictions of the

two models after training.
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Fig. 10. Training mean relative error (MRE) for all experimental data considered in this study for the NODE and the analytical model.

Section 2.1. However, this is not necessary, as all functions f whose partial derivative f/d(t’ go)ij With respect
to the elements (z}/,)ij of T, is positive when (z};,);j > 0 and negative when (7} ,)i; < 0 will satisfy the
positive dissipation criterion. Nevertheless, convexity is an elegant and mathematically convenient way of expressing
functions that satisfy this criterion [33]. Furthermore, we choose to work with only three functions of the invariants
of Tygo (g1, &2 and g3), but there are more possibilities that could be utilized to build even wider classes of
constitutive models. Practically speaking, even with just three invariants of 7ygp we can already extend the class
of viscoelastic behavior way beyond the linear potential Eq. (78), and beyond the nonlinear extensions which keep
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Eq. (78) but turn the viscosity into a function of the deformation [38]. The NODE functions can capture arbitrary
convex functions (provided enough neurons are used to represent the creep potentials). When trained on various
experimental data, the NODE has no problem fitting the data, see Figs. 5-9.

Other theories to model viscoelasticity, in particular for polymers, involves the use of statistical arguments to
describe the slip and reorganization of the polymer chains [39]. A similar approach, based on reactive mixtures,
has been proposed for biological tissue [40]. Another large class of models can be derived from extensions of the
linear viscoelasticity models to large deformations. For example, in [41], non-equilibrium stresses are introduced as
internal variables, and each satisfies a linear ordinary differential equation. This class of models result in sums of
exponential relaxation functions. To capture non-exponential decay, extensions of [41] using fractional derivatives
can result in richer relaxation behavior [42,43].

Regarding the Helmholtz free energy, we have previously demonstrated that NODEs can be used to construct
polyconvex and objective strain energy functions for modeling hyperelastic materials [3]. Therefore, for the
equilibrium potential in the present work we use almost the same methodology as in [3]. One change in the present
formulation is the modeling of compressible and nearly incompressible behavior as opposed to fully incompressible
materials. The non-equilibrium free energy function has the same requirements as the equilibrium potential, only
with respect to the elastic component of the deformation. Thus, the NODE framework can be used as well for the
calculation of the non-equilibrium stresses. Taken together, the proposed methodology is able to describe the entire
material behavior using data-driven potentials, without the need of a single ad hoc material parameter or constitutive
relation.

The flexibility of the method is demonstrated by its ability to learn the viscous behavior of a wide range
of biological and synthetic materials including multiple brain tissue regions, rubber, blood clots, and human
myocardium. The training error in all cases is consistently lower than the analytical model of [25]. However, there
is still some discrepancy between the experiments and the predictions of the model after training. While this may
in part be caused by noisy data, it is likely that some of our simplifications and assumptions are preventing the
model from learning the material responses better. For instance, we assume the deformations in the experimental
data are homogeneous. However, it is likely there are some boundary effects in biaxial test data due to the nature
of these experiments [31].

The results of training with data from natural rubber also indicates that the model is capable of predicting stresses
in unseen types of loading. The framework is suitable for isotropic or anisotropic materials. Importantly, all this
flexibility is achieved while polyconvexity and positive energy dissipation are satisfied exactly.

The utility of constitutive material models can be increased by implementation in computational solvers like
the finite element method. While we do not attempt to implement the proposed model in a finite element
framework in the current study, it remains a future goal. This would require further consideration of the time
discretization algorithm and the consistent tangent (interested readers are encouraged to read Section 4 of [25] for
a predictor—corrector scheme for the isotropic case).

5. Conclusions

In this paper we introduce a physics-informed data-driven model of general, finite, anisotropic, three-dimensional
viscoelasticity based on NODEs. We show that the dissipation potential based on NODEs automatically satisfies
the 2nd law of Thermodynamics by leveraging properties of NODEs to build monotonic functions. Polyconvexity
of the Helmholtz free energy is also ensured with a NODE framework. We train the proposed model with various
experimental datasets and demonstrate the flexibility of the method in capturing complex viscoelastic responses of
a wide class of materials including rubbers, blood clots, brain, and myocardium. We anticipate that this work will
enable the modeling and simulation of arbitrary viscoelastic materials without the burden of selecting closed-form
constitutive equations.
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Appendix A. Proof of convexity of 112 and 112 —ol

A function f of a symmetric 3 x 3 matrix M can alternatively be expressed as a function of the 6 independent
elements of M as

SM) = f(My1, My, M3z, M1z, M3, Ma3). (A.1)

The function f is convex in the elements of M if the Hessian matrix of f is positive semi-definite. The Hessian
matrix of f is given by

22f % f 3 f i f
aM?, OM119Myy  OM110M33 IM19M)o
3 f f af a2 f
MM Z MM MM
H — 222f 11 331124;2 @33 ZZZf 12 (A2)
IM330M 1 IM330Ma) M2, IM330M),
H is positive semi-definite if all of its eigenvalues are non-negative.
Al I}
The function f(M) = (I;(M))? = (trM)? can be expressed as
FOM) = f(Myy, My, M33) = (Myy + My + M33) (A.3)
Then it is readily seen that the Hessian of f is
222 0 00
222 000
222 000
H= 00 0 0 O0O (A4)
00 0 00O
00 0 0 0O
which has eigenvalues A; = 6, Ay = A3 = Ay = As = Ag = 0. Therefore 112 is convex.
A2. I} —al
The second principal invariant I, of a matrix M can be expressed in terms of the elements of M as
LM) = My My, + My M3z + My Mz — M, — My — M3, (A.5)
using this in f(M) = I} — al, results in
FM) = (Myy + My + Ms3)
— (M1 My, + My Ms3 + Moy M3 — M7, — M7y — M33)
= M}, + M3, + M35 + (2 — a)(M11 My + My1 M3z + My Ms3)
+ (M}, + My + M3y).
Then the Hessian of f is given as
2 2—a 2—a O O O
2 -« 2 2—a 0 O O
2—a 22—« 2 0o 0 O
H= 0 0 0 20 0 O (A-6)
0 0 0 0 20 O
0 0 0 0 0 2o
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This matrix has eigenvalues

A =23—a) (A7)
py— (A.8)
i =a (A9)
A = 20 (A.10)
As = 2a (A.11)
he = 201 (A.12)

Then it can be seen that all the eigenvalues are non-negative for 0 < « < 3. Therefore Il2 — 31, is convex for
0<a<3.

Appendix B. Supplementary material

All data, model parameters and code associated with this study are available in a public Github repository at ht
tps://github.com/tajtac/nvisco.
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