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Abstract—This paper presents a data-driven methodology for
analyzing the deployment of heavy-duty (HD) battery electric
trucks (BETs) in drayage operations by providing them with en-
route opportunity charging. The analysis makes use of real-world
activity data of existing drayage trucks at the San Pedro Bay
Ports in California. The methodology involves first identifying
trip-and-tour patterns of the trucks as well as whether they are
loaded or unloaded, and then simulating energy consumption of
the BETs if they follow these trip-and-tour patterns. En-route
opportunity charging scenarios at different locations were then
modeled to determine the state-of-charge (SOC) profiles of two
example BETs based on two different charging power levels.
Results show that one of the BETs would only need opportunity
charging at the home base in order to complete all of its trips
over a simulated two-day period. On the other hand, the other
BET would need not only opportunity charging at the home
base, but also take advantage of en-route opportunity charging
at loading/unloading stops and also extending the length of the
stop time on one of its stops, which will consequently impact the
schedule of the trips that follow. In addition, our results show that
there was no significant improvement in the SOC when increasing
the charging power level from 50 to 150 kilowatt (kW) at the
home-base and at one of the stops for this truck. These results
highlight the importance of providing BETs, even those in short-
haul operations, with access to en-route charging opportunities
in order to increase the deployment of BETs.

Index Terms—Opportunity charging, battery electric trucks,
drayage operations

I. INTRODUCTION

In 2019, the transportation sector was the largest source of
global warming emissions (29% of all emissions) according
to the Inventory of US greenhouse gas (GHG) emissions
from the Environmental Protection Agency (EPA) [1]. The
transportation sector is also responsible for pollutants found in
the air, such as oxides of nitrogen (NOx) and particulate matter
(PM), which cause health risks such as asthma, heart attacks,
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and cancer [2], [3]. In 2017, HD vehicles contributed to 16% of
NOx emissions in the United States (US), despite being only
10% of vehicles on US roads [4]. This disparity is mostly
because HD vehicles consume more fuel per mile (average
miles traveled per gallon of fuel consumed for single-unit truck
=7.5 miles per gallon vs. 24.1 for an average car [5]). They
also travel more miles per year (HD trucks average 60,000
miles per year vs. 12,000 for an average car [5]). In California,
on-road and off-road mobile sources are the largest contributor
to NOx and GHG emissions. According to the California Air
Resources Board (CARB), direct GHG emissions in California
from mobile sources were approximately 40% in 2017 [6]. In
2021, this number increased to more than 50% [3]. In addition,
NOx emissions from mobile sources in California in 2017
accounted for 80% of the total. Over the years, there have been
several efforts to address emissions from the transportation
sector, with transportation electrification being one of the most
recent strategies. In February 2021, the American Council for
an Energy-Efficient Economy (ACEEE) ranked California as
the national leader, being the only state in the country that
has adopted a target for statewide HD electric vehicle (EV)
deployment, and also considering the impact of transportation
on disadvantaged communities [7]. These targets to address
climate change in California were set as an important step
towards achieving carbon neutrality by 2045, and can be found
in Executive Order N-79-20 issued in September 2020 [8].
This executive order targets:

o All in-state sales of new passenger cars and trucks to be
zero-emission by 2035;

o All drayage trucks operating in the state to be zero-
emission by 2035;

o All MD and HD vehicles operating in the state to be
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zero-emission by 2045, where feasible; and
o All off-road vehicles and equipment to be zero-emission
by 2035, where feasible.

To meet these targets, CARB estimates that electrifying
the state’s MD and HD sectors will be critical, and 157,000
chargers will be needed to support 180,000 MD and HD
vehicles anticipated for 2030. Further, in January 2021, the
California Energy Commission (CEC) assessed the EV charg-
ing infrastructure and key actions needed by 2030 mentioning
the importance of supporting innovative charging solutions
and to continue the modeling efforts to project the quantities,
locations, and load curves of chargers needed to meet statewide
travel demand, including for MD and HD vehicles [8]. CARB
also described the importance of electrification efforts and
charging strategies applied to MD and HD fleets, particularly
for Class 8 drayage trucks. The ports of Los Angeles and
Long Beach (usually called together the San Pedro Bay
Ports), are the largest container shipping ports in the US,
handling about 40% of the waterborne imported cargo into
the nation [9]. Consequently, the California South Coast region
and San Joaquin Valley suffer some of the worst air pollution
in the nation mostly related to truck activity and drayage
operations [6]. Thus, CARB and CEC clearly state that more
research and more pilot studies are needed to address these
issues. California needs to continue working on EV charging
strategies, in particular as applied to HD vehicles to meet
current climate targets. Thus, to investigate the potential of
HD transportation electrification efforts in California, we:

e propose a data-driven methodology to identify trip-and-
tour activity patterns for potential en-route opportunity
charging of BETS in drayage operations at the San Pedro
Bay ports,

o adapt BET energy efficiency in the current literature as
applied to loaded and unloaded conditions, and

« simulate charging scenarios at different locations to deter-
mine SOC with and without en-route opportunity charg-
ing for example drayage trucks based on two different
charging power levels.

This paper is organized as follows. First, related work is
presented in Section II. Then, the methodology and dataset
are described in Section III. Next, the results and discussion
are provided in Section IV. Finally, the conclusions and future
work are presented in Section V.

II. RELATED WORK

Opportunity charging can be understood as any opportunity
that the EV has to charge its battery, including brief stops at
traffic intersections or stops to load or unload passengers at
a bus station [10], [11]. Usually, drayage trucks carry cargo
containers from shipping ports to nearby distribution zones,
and also return to home-base daily during operation [12].
Several researchers have identified the activity pattern of
drayage operations, highlighting them as one of the best
candidates for electrification. In [13] truck trips were analyzed,
finding that less than 1% of drayage trucks completed more

than 5 trips per shift, and on average a truck delivered 12
round trips per day. The paper also mentions that the trucks
spend most of its time navigating to the port and dealing
with cargo logistics (port access, loading, etc.), completing
about 60 miles per day near-dock service [13]. In addition,
drayage fleet efficiency has also been studied. In [14], a
drayage operation planning approach that minimizes cost and
maximizes productivity was presented to deal with port access
restrictions by slot capacity availability. Their results showed
that drayage activity productivity can be increased by 10-24%
when port access capacity is increased by 30% [14]. Further-
more, drayage truck emissions have also been assessed over
the years. In [15] a coordinated truck model was presented to
reduce emissions from empty truck trips. Their results suggest
that a collaborative truck appointment system is an effective
tool to reduce emissions, but that a congestion management
tool is also needed at ports [15]. Several studies have targeted
zero-emission drayage operations in Southern California. In
2012, a report prepared from Gladstein for the South Coast
Air Quality Management District (SCAQMD) highlighted the
potential benefits of catenary-accessible hybrid trucks at the
port of Los Angeles [16]. Developments moved forward, and
in 2017 Siemens built a test “eHighway” in Carson, California,
near the port of Long Beach. The system only had three
freight trucks that can pair with the one mile long catenary
system: a BET, a natural gas hybrid-electric truck, and a
diesel-hybrid truck. The trucks were zero-emissions when
connected to the catenary, and when the eHighway ended,
the trucks returned to use their internal engine to drive the
rest of the path [17]. In addition, in 2013, a report from
CALSTART aimed to research, identify, and evaluate potential
technologies to address drayage needs while achieving zero-
emissions in the San Pedro Bay Ports [18]. This report was
intended to specify the requirements that zero-emission trucks
must meet in order to substitute conventional diesel trucks,
emphasizing the importance of routing strategies to improve
productivity [18]. In [19], depot charging load profiles were
modeled for multiple scenarios considering fleet size and
charging strategies. The authors concluded that the opportunity
for a managed depot charging of HD trucks depends on
their duty cycles, and that there is a high variance in fleet
electrification outcomes depending on fleet vocation and grid
conditions [19]. In [12], activity of drayage trucks in Southern
California was analyzed to estimate the corresponding electric
energy consumption and SOC of their batteries. Their results
show that 85% of the tours could be served by electric trucks
if there is opportunity charging at the home base during tours.
Thus, based on the gaps found in the literature, we go one step
further by proposing a data-driven model to identify trip-and-
tour activity patterns for en-route opportunity charging using
real-world data. Additionally we simulate charging scenarios
at different locations, not only home-base as in previous work,
to determine SOC at different power levels.
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III. METHODOLOGY

Activity data of 2,200 drayage trucks from July to October
2021 were obtained. These drayage trucks usually operate
at the terminal regions of: Los Angeles, Oakland, Chicago,
Houston, Charleston, Atlanta, just to name a few. For each
truck, the ID, latitude, longitude, and global positioning system
(GPS) date/time were available. In addition, data for each truck
at different terminal regions were available including: terminal
name, tract name, enter date to the terminal, and exit date from
the terminal. The data were not labeled in terms of stops. This
means that it is unknown where the home-base and stops (at
ports, warehouses, etc.) are for each truck. Additionally, the
activity data obtained does not follow a particular frequency.
The GPS recorded the position of the trucks and the time when
a location was passed as the trucks moved along the road.
Therefore, if there was no movement, no data were recorded.

In this paper, activity data at the terminal regions of the
ports of Long Beach and Los Angeles over 2 days (August 2-
3, 2021) were analyzed for two selected trucks (Truck A and
Truck B) as an initial step to assess the necessity of providing
en-route opportunity charging. As shown in Figure 1, the data
provided were pre-processed and filtered by terminal region
and truckID. Additionally, the GPS date time differential was
calculated to get the time gap between each timestamp. Thus,
a cluster of data points on the map with large time elapsed
between timestamps would mean a potential home-base or
warehouse where the truck stopped to rest or to load or unload
cargo. To isolate the stops and home-base clusters where the
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Fig. 1: Proposed methodology. Light orange boxes correspond
to models created, grey boxes correspond to data sources, and
green boxes correspond to output of the models.

truck spent more time, an unsupervised k-means machine
learning (ML) model was implemented in Python. The k-
means algorithm clusters data by separating them in groups
while minimizing the inertia [20]. This algorithm has been
widely used across a range of applications mostly because
its scalability, including freight GPS data analyses [21]. In
addition, a hyperparameter optimization was performed to
determine the optimum number of clusters, random state (for
results repeatability), and the maximum number of iterations
of the model.

After identifying potential truck stops and the home-base,
a second k-means model was implemented. The main goal
was to obtain the convex hulls for each cluster to identify
possible stops of the truck. Thus, based on the original activity
of the truck, every time the truck enters the convex hull area
and spends a significant amount of time there, the potential
stop will be labeled as a significant stop and be added to
the trip-and-tour of the truck. A truck tour is defined as the
combination of a sequence of trips. A trip usually had one
purpose only such as: pick up a container from the port, deliver
the container to the warehouse, etc. For this paper, a truck tour
starts and ends at the home-base location. Travel distance and
travel time were calculated for trip-and-tour tables using an
API for maps, routing, and navigation in Python.

To calculate the SOC, we made the following assumptions
in our model:

1) Energy performance efficiency for drayage trucks was
adapted from [22]. It was assumed a 60% local and 40%
freeway operation, resulting in 3.72 kWh/mi for loaded
and 1.48 kWh/mi for unloaded trucks;

2) Trucks are unloaded when coming from the home-base
and loaded when coming from the port. The other
statuses were manually assigned;

3) Battery capacity was adapted from [23] with a usable
battery capacity of 300 kWh assuming a 80% battery
state of health protection;

4) 100% SOC at the beginning of the first trip; and

5) A 50 kW and 150 kW charger were used, neglecting
charging losses.

Finally, two different scenarios were considered: potential
en-route opportunity charging at the home-base only, and
potential en-route opportunity charging at the home-base and
warehouse stops.

IV. RESULTS AND DISCUSSION

Figure 2 shows the results of the first k-means clustering
using latitude, longitude, and A time in minutes. It is clearly
seen that Cluster 0 contains most of the points that represent
the truck constantly moving. The aligned vertical clusters with
a large A time were assumed to be the home-base. Hyper-
parameter optimization was performed giving the optimum
number of clusters of 11 for Truck B and 14 for Truck A. The
distributions of Cluster O (shown in blue color in Figure 2) are
presented in Figure 3. As described in Section III, Cluster O
was removed to isolate the clusters where the truck spent more
time stopped. Although 99th percentile of Cluster O has a A
time of 1.65 minutes, there are still some data points with a
larger A time. Consequently, some corrections were applied to
correct the shape of the convex hulls (Figure 4) that had some
relevant points being removed during this step. Convex hulls
computed as a results of the second k-means performed using
only GPS latitude and longitude for Truck A are presented in
Figure 4. There were some single-point stops usually located
near freeways, so a 0.18 miles radius polygon was constructed
around each single-point stop. After getting the convex hulls
for the stops for both trucks, the trip-and-tour identification
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Fig. 2: Results of the first hyperparameter optimization and
k-means clustering for Truck A from July to October 2021.
The optimum number of clusters was 11 and 14 for Truck B
and A respectively.
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Fig. 3: Histogram (left) and cumulative histogram (right) of
Cluster O after performing the first k-means for Truck A from
July to October 2021. 99th percentile of Cluster 0 has a A
time of 1.65 minutes.
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was performed over a smaller dataset from August 2-3 2021
for both Trucks A and B. Figure 5 compares the locations that

Truck A and B visited during August 2-3, 2021. It is observed
that Truck A visited the port, four stops, and also the home-
base for a longer period of time. On the contrary, Truck B
visited the port, three stops, and its stops at the home-base
were shorter. The trip-table for Truck B from August 2-3, 2021
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Fig. 5: Locations visited by Trucks A (top) and B (bottom)
from August 2-3 2021.

is presented in Table I. This truck had 11 trips, represented
by each row in the table, and 3 tours (from home-base to
home-base) over a two day period. Cumulative travel distance
was 216 miles and cumulative travel time was 5.2 hours
for Truck B. On the other hand, cumulative travel distance
was 118 miles and cumulative travel time was 3.6 hours for
Truck A. Figure 6 shows different modeled SOC scenarios

TABLE I: Trip-table for Truck B from August 2-3 2021.

Trip-Table: Truck B
Start End Travel Travel
Location Location distance (mi) | time (min)

Home-base Port 6.854 13.403
Port Home-base 6.830 13.238

Home-base Stopl6 4.572 8.535
Stop16 Stop6 5.441 12.032
Stop6 Stop2 82.318 97.838
Stop2 Port 76.494 102.145
Port Stop6 8.232 18.312
Stop6 Home-base 6.946 13.747
Home-base Stop6 8.577 14.527
Stop6 Stop16 5.507 11.697

Stopl6 Home-base 4.212 7.908

for Trucks A and B. It is observed that Truck A is able to
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Fig. 6: SOC scenario for Truck A from August 2-3 2021 (a). SOC scenarios for Truck B from August 2-3 2021 using a 50 kW
charger (b). SOC scenarios for Truck B from August 2-3 2021 using a 50 kW charger at home-base and 150 kW charger at
Stop6 and Stop2 (c). SOC scenarios for Truck B from August 2-3 2021 using a S0OkW charger at home-base, 150 kW charger
at Stop6, and 150 kW at Stop2 but extending its stay from 0.11 to 1.07 hours adding 161 kWh (d). Shaded red area represents
the discharge threshold (HB=home-base, No_Chg=No Charging, ST6=Stop 6, ST2=Stop 2, ST2_mod= Stop 2 modified).

complete all the trips without requiring en-route opportunity
charging (Figure 6a). However, Truck B shows a different
case. When modeling the scenario of home-base only en-route
opportunity charging with a 50 kW power level (Figure 6b),
an improvement in the SOC is observed when compared to the
no charging scenario. However, its battery will be discharged
before completing the fifth trip from Stop6 to Stop2. When
modifying the en-route charging scenario at home-base+Stop6,
about 100 kWh were added to the battery SOC as the truck
spent about 2 hours in this stop (Stop6). Thus, the truck would
be able to complete the fifth trip (Stop6 to Stop2) ending with a
-2% SOC by using its reserved battery capacity, but its battery
will be discharged before completing the next trip from Stop2
to the Port. Moreover, the truck did not spend enough time at
Stop2, so even if some en-route opportunity charging is added

at this stop (home-base+Stop6+Stop2 scenario), there is no
significant improvement in SOC when using a 50 kW charger
unless the truck spends more time at this stop. Similarly,
SOC scenarios were modeled for Truck B using en-route
opportunity charging at a higher power level of 150 kW. For
the case of charging at the home-base only (Figure 6¢), there
is no significant difference in the SOC when using a power
level of 50 or 150 kW because the truck spent enough time
there to be able to fully recharge its battery. Moreover, there
is no significant improvement when increasing the power level
at Stop 6 from 50 to 150 kW. The truck did not consume a
notable amount of energy from previous trips and it is almost
fully charged before starting the fifth trip. So the truck ends
with a -2% SOC after the Stop6 to Stop2 trip, regardless of
the power level that we have in Stop6 because of the travel

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 18:19:08 UTC from IEEE Xplore. Restrictions apply.



distance of the trip. In addition, a small SOC improvement
is observed when modeling the en-route opportunity charging
scenario using a power level of 150 kW at Stop2. Finally, as
shown in Figure 6d, Truck B will be able to complete all of its
trips by using a 150 kW power level at Stop2 and by extending
its stay at Stop2 from 0.11 to 1.07 hours recharging 161 kWh
to its battery.

V. CONCLUSIONS & FUTURE WORK

Several targets have been set as California moves forward
to achieve carbon neutrality by 2045. With the target of all
drayage trucks operating in the state to be zero-emission by
2035, it is crucial to continue with the modeling efforts to
project the quantities, locations, and load of chargers needed
to meet statewide electrification goals. Thus, in our attempt
to fill the gaps found in the literature of en-route opportunity
charging applied to BETs in drayage operations, we propose
a data-driven methodology to identify trip-and-tour activity
patterns and simulate en-route opportunity charging scenarios
at different locations (not only home-base) to determine SOC
using different power levels. Results show that one of the
BETs would only need opportunity charging at the home base
in order to complete all of its trips over a simulated two-
day period. On the other hand, the other BET would need
not only opportunity charging at the home base, but also en-
route opportunity charging at loading/unloading stops and also
extending the length of the stop time in one of its stops, which
will consequently impact the schedule of the trips that follow.
In addition, our results show that there was no significant
improvement in the SOC when increasing the charging power
level from 50 to 150 kW at the home-base and at one of the
stops for this truck. These results highlight the importance
of providing BETSs, even those in short-haul operations, with
access to en-route charging opportunities in order to increase
the deployment of BETs. Future work will expand the current
scope by utilizing data of all trucks in the dataset. We will
also identify trip-and-tour patterns using a global set of stops
for the entire truck fleet. In addition, we will explore other
charging solutions to charge at the port by studying queuing
activity patterns of the trucks. Finally, strategic location of
charging stations will also be assessed to determine the stops
that need to be converted to electric vehicle charging stations
to fully optimize battery electric drayage truck operations.
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