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ABSTRACT

The prevalence of information and communication technologies has catalyzed the emergent
on-demand meal delivery (ODMD) service. Order dispatching policies play a crucial role in
determining the operational performance and environmental impact of ODMD system. In this
paper, we proposed a comprehensive framework to evaluate meal delivery efficiency and
quantify the corresponding environmental impact of ODMD system under different order
dispatching policies. It consists of three components: (1) the real-world meal delivery operational
context that is generated to simulate daily activities and travel patterns in the city of Riverside
and construct the on-demand meal delivery scenarios; (2) an efficient optimization approach:
rolling horizon-based adaptive large neighborhood search algorithm, to obtain order dispatching
and routing decisions with the dynamic order demand and driver resources; and (3) an energy
consumption and emission evaluation model developed via EMFAC to quantify the
corresponding fuel consumption and pollutant emissions. With the proposed framework, three
order dispatching policies are evaluated: One-Order-Per-Trip (One-O), One-Restaurant-Per-Trip
(One-R), and Multi-Restaurant-Per-Trip (Multi-R). Simulation results show substantial benefits
of having orders bundled in the One-R and Multi-R policies. The total travel distance is reduced
by 14% and 30%, respectively, compared to the One-O policy. Meanwhile, the total number of
delivery drivers is reduced by 36% and 60%, which shows great potential to relieve the urban
traffic burdens, together with 14%—-30% fuel consumption, GHG emissions, and criteria pollutant
emissions reductions. Meanwhile, the service quality is maintained with only 1% of late orders.

Keywords: Dynamic on-demand meal delivery, Order dispatching, Impact evaluation, Rolling
horizon framework, Adaptive large neighborhood search (ALNS).

INTRODUCTION

Catalyzed by the prevalence of information and communication technologies and boosted by
the unexpected COVID-19 pandemic, on-demand meal delivery (ODMD) has achieved
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explosive growth (Seghezzi et al. 2021). As reported by Statista, the U.S. food delivery has
comprised 16% of the total restaurant market (Statista 2022a). The revenue from ODMD is
projected to reach 63.02 billion dollars by 2022 and shows an annual growth rate of 8.9%
(Statista 2022b). The fast growth of meal delivery demand brings challenges to the online
platform to efficiently dispatch meal orders. Meanwhile, the surging delivery trips generated
inside the city may further exacerbate traffic congestion and bring negative environmental
impacts. Thus, it is necessary to evaluate the platform’s possible order dispatching policy from
both operational and environmental perspectives, which can, in turn, provide insights to help the
ODMD platform balance the primary goal of delivering meals in a shorter time and bringing
minimal negative effects.

Most recent research of ODMD can be grouped into two categories: static and dynamic. In
the static ODMD setting, the authors assume perfect information of meal orders of the whole
operational horizon. In some research, the authors divide the horizon into several time intervals
to reduce the complexity, but each time interval’s solution is isolated which also falls in the static
ODMD scenario. Liu et al (2019) proposed to leverage taxi resources to deliver food orders
either in an opportunistic manner or in a dedicated manner with the goal to minimize taxi number
and distance cost. Tu et al (2020) developed an online dynamic optimization framework which
includes order collection, solution generation and sequential delivery. This approach decomposes
the large-scale problem into multiple static small-scale problems without considering the
interactions between each time interval. Wang et al (2021) presented an insertion-based heuristic
to solve a single driver food delivery routing problem along with the geographic information to
accelerate the insertion process and the XGBoost algorithm to select the order sequencing rules.
In the dynamic meal delivery setting, orders and drivers are revealed dynamically during
operating hours and the online platform has to respond to the new delivery demand efficiently.
Zhou et al (2020) formulated an online order dispatching system with new orders arrival and
extended the traditional greedy insertion and regret insertion heuristic to evaluate more orders in
one iteration, but this research only solved the problem in one time interval without considering
the platform update. Reyes et al (2018) studied the meal-delivery routing problem (MDRP) and
proposed a rolling-horizon repeated-matching algorithm to solve the dynamic vehicle routing
problem and capacity management problem, where they only bundled orders from the same
restaurant. Huang et al (2021) investigated the dynamic task scheduling problem of a UAV-
based ODMD system and proposed an iterated heuristic to obtain the solution with minimized
order tardiness, where each UAV is only allowed to carry one order in the delivery.

However, most existing research focused on developing efficient and fast algorithms, thus
assuming simplified operational context, i.e., constant delivery speed and Euclidean distance
between two locations, which makes it impossible to evaluate the impact of ODMD, especially
from the environmental perspective. On the other hand, the difference of dispatching policies has
not been investigated before. Most research obtained the optimized solution without considering
the platform’s operating strategies. To investigate this issue, we propose a comprehensive
framework to evaluate the impact of ODMD service with real-world dynamic operational
scenarios. First, a mathematical model is formulated to describe the dynamic ODMD order
dispatching and routing problem. Next, with the real-world operational context for delivery
drivers, a rolling horizon based adaptive large neighborhood search algorithm is proposed to
obtain the optimized order dispatching solution that satisfies the platform’s order dispatching
policies. Finally, indicators and emission model are used to evaluate the dispatching policy’s
corresponding operational performance and environmental impact.
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DYNAMIC ON-DEMAND MEAL DELIVERY PROBLEM

Problem Description

We consider a dynamic on-demand meal delivery (ODMD) system, which consists of four
stakeholders: online platform, delivery driver, restaurant, and dinning customer. Dinning
customer chooses preferable food and places a meal order using the online platform. A meal
order typically includes information about meal items, restaurant location and customer location.
The online platform gathers multiple orders and assigns delivery drivers to complete delivery
tasks. An estimated drop-off time is provided by the platform which represents a delivery
commitment. The platform aims to construct feasible routes for drivers with the objective to
minimize delivery delay and total delivery cost.

Different from traditional static meal delivery settings (Paul et al. 2020), we study the
dynamic ODMD scenario, where meals are ordered dynamically and delivery drivers can log on
and log off the system freely during the operating time depending on drivers’ working schedules.
However, it is not practical to update the system dispatching decision when receiving every new
order. Similar as (Chen et al. 2022; Reyes et al. 2018), we employ a rolling horizon approach

which divides the whole operational horizon H into [g] time intervals with a length of 7.
Suppose the platform begins at time t,. At every time t,(wheret, =t,+hXt,h=
1,2, .., [g]), the system will re-optimize its order dispatching decision regarding new meal

order demand and driver information revealed during [t,_4, ty).

Within the dynamic setting, order status and driver status are updated during the operating
time. As shown in Figure 1, we define three types of states of each order. At time tj, if an order
o is placed in the range of [t;_q,ty), then it falls in the new order set O™. After time t, the
platform will dispatch each new order to drivers. Then the order status changes to “scheduled” in
0%. Drivers will deliver meal orders sequentially and an order is turned to completed status in O¢
if the order is finally delivered. Accordingly, each delivery driver has two states: working
(in set K%) or idle (in set K7). Driver k first logs on the platform and is at idle status waiting for
platform order dispatching. Suppose at time ¢, the driver receives delivery tasks and starts
working. In addition, some drivers may have multiple trips and their status keep switching
between “working” and “idle” until they leave the platform. We further assume driver idles
around the last-visit location when completing all orders at hand.

Figure 1. Meal order and driver status definition

Model Formulation

With the above description, at each re-optimization time t;, we can specifically formulate a
pick-up and delivery time window model (PDPTW) (Bent and Van Hentenryck 2006) to
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represent the order dispatching and routing optimization problem. The model variable and
parameter definitions are listed in Table 1. With the clear defined sets of R™ P" D" and K" in
Table 1, then we can construct a directed graph G = (V, E), in which each node in V represents
the location of a customer, a restaurant, or a driver, V = PP U D" U K", and each arc in
E(where E =V X V) represents the movement from one node to another. Specifically, we use a
vector (i, j, q;, qj, t{, tl, ti ) to describe the key information of an order, where i, j are the
paired pick-up and drop-off locations, g; + q;=0, and the last are three time variables: order place
time, order ready time and estimated drop-off time. Then we can formulate the on-demand meal

delivery problem as follows.

Table 1. Variable and parameter definition

Horizon

T

Time interval length

th

System re-optimized time, t, =ty + h X 7,h € (1,2, ..., |g|), to is the start time

Indices

i/j

pick-up/ drop-off task at a restaurant/customer location

k/kq

delivery driver, k, represents the initial location of driver &

Sets

Rh

Set of all meal order requests. Each request consists of a pair of pick-up and drop-off
tasks (i,j), where R* = 0™ U 0 during time interval [t,_q, t)

Ph

Set of all pick-up tasks from R" during time interval [t,_q, ty)

Dh

Set of all drop-off tasks from R" during time interval [t;_q, t5,)

Kh

Set of all delivery drivers, where K" = K' U K" during time interval [t;_4, t,)

Parameters and constants

qi

Order number to be served at location i. Positive when i is a pick-up location;
negative when i is a drop-off location

Qk

Driver £ delivery capacity

Si

Service time of task i (load/unload)

i
tp

Order place time, i € R", decided by customer

ty

Order ready time, i € R", decided by the restaurant.

ie
tdo

Estimated drop-off time, i € R", provided by the platform

Travel time of a OD pair (i, )

Travel distance of a OD pair (i, j)

Intermediate variables

i
tpu

The actual visit time at the pick-up location 7, i € P

i
tdo

The actual visit time at the drop-off location i, i € D"

QF

Number of orders assigned when driver k leaves node i

Decision Variable

k
XU

1 if OD pair (i, j) traveled by driver k; 0 otherwise

T}

Time when vehicle k visit node i

The platform aims to minimize the total travel distance and total order delay cost to maintain
high service quality. In the objective function, the first term represents the total delivery distance,
and the second term is the total delivery delay, which is defined as the difference between the
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actual drop-off time t}, and the estimated drop-off time t.. We enforce a linear delay penalty
function p, to penalize late delivery. a and [} are weight factors.

MinF =« dijxf; +P Z pe max(0, th, — ti)

kekh (iev,jev,i #j) ieDh

subject to
Route construction constraints:

Ykek Djev X5 = 1 Vi € Phu DM (D)
Yievxi, ;=1 VkeKn? (2)
Yievxly, =1 vk € K" (3)
Yievxli —Yievxfi =0 vj € PPuDtV ke K" 4)
j'ePhuDhUK, xlkj’ - ZjEPhUDhUkO x]k’_j =0 v(i,j) €R,Vk € K" (5)
TF < T} v(i,j) € R,Vk € K" (6)

Capacity constraints:
QF < @* Vi €V,Vk € K" (7)
xf5=1 = QF = Qf +q, Vi,jEV ,Vk € K" (8)

Time constraints:

th, = max(tl,T/) Vi € p" 9)
xfi=1=Tf> th, +t;+s; VieP"vkeKk" (10)
xf=1=Tf> thy+t;+s; VieD"vkekh (11)

Variable constraints:
QF >0 Vi €V,Vk € K" (12)
xk € {0,1} v(i,j) € E,Vk € K" (13)
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TK >0 Vi €V,Vk € K" (14)

To ensure the feasibility of routes, we set up specific constraints and grouped them into four
categories. The first category mainly states the basic requirements of route construction.
Constraint (1) ensures all meal orders are served. Constraint (2)-(4) enforce each driver to log on
from the initial location, return to it after log-off, and every route should obey the flow
conservation constraint. Constraint (5) states that a pair of pick-up and drop-off tasks from one
order should be completed by the same driver. We do not allow transferring tasks between
drivers. Constraint (6) guarantees that for one order, the driver should visit the pick-up location
first and then deliver the meal at the customer location. The second category, including
constraints (7) and (8), specifies the capacity constraints of the delivery driver, which describes
the maximum number of orders a driver can receive at any given time and the loaded orders
number change in the delivery route. Time constraints are summarized in the third group.
Constraint (9) states that one driver can arrive earlier at the restaurant but should wait until t to
pick up the meal order. Constraints (10) and (11) define driver arrival time at node j is no less
than the pick-up or drop-off time at node i, plus travel time t;; and service time at node i. The
last group ensures driver served order number is no less than zero (constraint (12)) and provides
the decision variables’ definition (constraint (13)-(14)).

FRAMEWORK OVERVIEW AND METHODOLOGY

This section proposed a comprehensive framework to evaluate the operational performance
and environmental impact of the dynamic on-demand meal delivery service. Figure 2 illustrates
the main components of this framework. First, to enhance the accuracy, we derive a real-world
operational context in the City of Riverside, California. Then a rolling horizon approach is
utilized to construct the meal delivery scenario at each re-optimization time. Since meal delivery
problem is a variant of the vehicle routing problem (VRP) which is a famous NP-hard problem.
The adaptive large neighborhood search (ALNS) algorithm is applied to gain the optimized order
dispatching and routing results in a computationally efficient manner (Ropke and Pisinger 2006).
We specifically design the ALNS algorithm to provide the optimized solution that exactly
satisfies the platform operation strategy (i.e., One-O, One-R and Multi-R). With the order
dispatching result, we can evaluate the delivery efficiency and quantify the fuel consumption and
pollutant emissions of delivery drivers. The remaining parts of this section will describe the
details of each component.

Operational Context

The meal delivery operational context is construct from both CEMDAP and BEAM model
(BEAM 2020; Bhat et al. 2004). We first utilize CEMDAP, a daily activity generation software,
to generate the eat out activity of residents and sample a portion of customers to use the ODMD
service instead of dine in. The delivery drivers are assumed to be local people who starts from
their home location. The road network and traffic information are extracted from BEAM model,
an agent-based simulation platform, where link-level travel distance and travel speed are
employed to estimate the drivers’ travel time from one location to another. The locations and
movements of all drivers in the system are tracked and archived during the entire simulation
process.
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Figure 2. Overview of the proposed evaluation framework
Meal Delivery Scenario Simulation with Rolling Horizon

Each meal order generated from CEMDAP has an order place time tL, the customer location,
and restaurant location. Drivers have their own initial home location and working schedule. At
each re-optimization time t,, to construct the meal delivery scenario, we have to specifically
define the sets of orders R", restaurants P, customers D"and drivers K". The detailed scenario
simulation is presented in Algorithm 1. The meal scenario update depends on the previous
order/driver status update (Step 1) and the accumulated the new orders and drivers from the time
interval [t,_q, t,)(Step 2).

Algorithm 1: Meal delivery scenario simulation

Input: Last dispatching result 5", new order and drivers in [t"~!, ")
Output: updated set 2", P", D" K"

1 Step 1: update order and driver status in 5!

2 if order is delivered before " then

3 | Add order to set O°

4 else

5 | Add order to set O

6 end

7 if driver has on-going task at t" then

8 | Add driver to set K

9 else

10 | Add driver to set K/

1 end

12 Step 2: Receive new order and driver revealed in [t"', ")

13 add new orders to O™ and add new drivers to k'’

14 update order set B" = O* U O™ and get P", D" accordingly

15 update driver set K" = K'U K"
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ALNS-based Order Dispatching and Optimization

With the updated meal delivery scenario, the platform needs to dispatch new orders to
delivery drivers and update driver’s task sequence. With a feasible initial routing solution, we
employed the ALNS algorithm to achieve an optimized solution efficiently. ALNS is a meta-
heuristic in which multiple removal and repair operators are selected based on an adaptive
selecting mechanism, to diversify and intensify the initial solution then get the optimized one.
We mainly followed the main components of ALNS proposed in (Ropke and Pisinger 2006).
Five removal operators are implemented to perturb the solution space, including random
removal, worst removal, Shaw removal, longest distance path removal, worst delay path
removal. Four repair operators are used to re-insert the orders to find a better solution, including
random repair, greedy repair, regret-2 and regret-3 repair. The generic idea of each operator can
be found in (Liu et al. 2022).

Generally, the platform has specific dispatching policies to achieve its goals. The ALNS
algorithm should be properly designed to ensure that the optimized dispatching results exactly
follow the dispatching policy. In this paper, we aim to evaluate three commonly used dispatching
polices:

e One-Order-Per-Trip (One-0O): allowing drivers to finish only one order per delivery trip

to avoid meal delivery delay.

e One-Restaurant-Per-Trip (One-R): allowing drivers to visit only one restaurant per
delivery trip to pick up one or more orders altogether, and then complete the delivery task
sequentially.

e Multi-Restaurant-Per-Trip (Multi-R): allowing drivers to pick up meal orders from
multiple restaurants either in the same commercial zone or near the planned delivery
route.

In all three policies, transferring the previous assigned orders to another driver is not allowed.
Thus, only the new orders can be removed in the ALNS removal process. In the Multi-R policy,
all repair operators can be utilized to obtain a better solution. In the One-O policy, we
specifically set each driver’s capacity to be one. Thus, repair operators under One-O policy only
insert new orders to idle drivers. In the One-R policy, the repair operator inserts new order either
to an idle driver or drivers served the same restaurant. An overview of the order dispatching and
optimization process with ALNS is shown in Algorithm 2.

Algorithm 2: Order dispatching and optimization with ALNS 1:

Input: Last dispatching result 5" ! ,updated set ", P", D" K", dispatching policy
Output: Optimized solution S™ at time "
1 Step 1: Construct a feasible initial solution S" w.r.t to dispatching policy

2 Step 2: ALNS improvement

3 while not reach the max iteration or max iteration without improvement do

4 select a removal operator to destroy the solution /* only removed the new orders */

5 select a repair operator to re-insert the orders and obtain S"~"“" w.r.t dispatching
policy

p if obj(S""e) < obj(S") then

7 | St = Ghonew

8 else

9 | Accept S~ with the probability from simulated annealing

10 end

1 update operator score

12 end
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Operational Performance and Impact Evaluation

In this section, we introduce indicators and methods to analyze the delivery service quality
and the impact of adopting different order dispatching polices. At the end of the operational
horizon, we summarize each order’s actual pick-up time tzi,u, drop-off time t4,and the distance
cost with the optimized dispatching result. We define following indicators in this model.

e Click to door time (CtD): the time difference between drop-off time and order place time.

e Ready to door time (RtD): the time difference between drop-off time and order ready

time.

e Number of dispatched driver: drivers required to finish the delivery tasks.

e Batching rate: portion of orders that are batched with at least one order to deliver

together.

e Ratio of late order: orders that are suffered more than 10 minutes delay.

Meanwhile, EMFAC model (EMFAC 2021) is chosen to quantify the delivery driver’s fuel
consumption and pollutant emission. EMFAC is an Emission Factor Model, in which an
emission factor is derived from the average value of repeated measurements of total emissions
per driving cycle. We construct a Riverside EMFAC model and specify the delivery vehicle to be
the gasoline vehicle. Emission rates with multiple speed ranges are obtained. Then with the
driver routing result and traffic network, we can sum up all the delivery vehicle emissions to
evaluate the environmental impact. In this research, we will evaluate fuel consumption and the
emission of greenhouse gas (GHG), Nitric oxide (NOx), Carbon Monoxide (CO), and PM2.5. The
vehicle-miles-travelled (VMT) of delivery drivers can also be obtained from the routing result.

EXPERIMENTS AND RESULT
Parameters Setting and Experiments

Given the inputs of various land-use, sociodemographic, activity, and transportation level-of-
service attributes, CEMDAP provides the output of complete daily activity-trip patterns for each
individual (Bhat et al. 2004). Focusing on the noon peak from 11:30am-12:30pm, we obtained
1328 eat-out trips in total and sampled 21% trips (total 278) as meal orders for delivery
according to the statistics from (Statista 2022a). To simulate the ODMD operation, we set up the
key parameters as follows. We focused on a 60-minute operating period and set the system
update and re-optimization time interval t to be 5 minutes. The meal order is added to the system
according to its place time t;;. Then we assume the restaurant needs 5-20 minutes for meal
preparation, which determines the food ready time t%. The estimated drop-off time is set to 40
minutes after the order place time (that is t¢ = tzi, + 40), indicating that the system aims to
deliver every food order within 40 minutes. Each driver needs extra one minute to pick-up or
drop-off when arrive at the restaurant/ customer location. Drivers are first generated around the
residential area and the driver number is according to the order/driver ratios (set as 5) at each re-
optimizing time interval. If current drivers are not sufficient to construct a feasible solution to
deliver all the new orders, we add new drivers as needed. Finally, the weighted factor a and 8
are both set to be 1 in the objective function.

For parameter setting in ALNS algorithm, we mainly took the reference in (Ropke and
Pisinger 2006) and modified some key parameters. Specifically, we set the destruction degree of
removal operator is 0.2, indicating 20% new orders are removed in each iteration in order to
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sufficiently explore the solution space. The reaction factor in the operator weight adjustment is
set to be 0.6. The cooling rate in simulated annealing process is set to be 0.99. In the ALNS
iteration, we total ran 100 segments, and each segment contains 50 iterations. If 250 continuous
iterations without any improvement occurred, we terminated the algorithm. Both Rolling
Horizon and ALNS algorithms are coded in python 3.8 and run with a ThinkPadX1 Carbon 2021
with 16GB of RAM and an Intel Core 17- 1165G7 processor. Figure 3 shows ALNS convergence
with the three proposed order dispatching policies in one time interval. Even in the Multi-R case,
which has the highest computational complexity since the algorithm needs to find the best
insertion position across all possible routes, the average running time for one time interval is
47.85 seconds. The proposed algorithm shows the potential of real-time decision support for the
ODMD platform.

Multi-R One-0 One-R

m 980 1
1
180
2654
1940 {—|
1
180
- 0
100 200 300 400 500 400 o ; P
Iterat Iteratio

Figure 3. The performance of ALNS with Multi-R, One-O and One-R policy
Evaluation Result

We obtained the order dispatching and routing result with the proposed algorithm under three
policies and evaluated the ODMD service operational performance and related impact. Table 2
summarizes the performance of different policies. With the Multi-R policy, drivers are allowed
to pick up multiple orders from multiple restaurants nearby before making delivery or even to
pick up a new order during the delivery route. The order batching rate reaches 87.41% and only
requires 61 drivers to finish the total 278 orders. With more orders batched together and
optimized delivery trips, we can reduce the redundant trips between the commercial and
residential areas in the city, thus achieving around a 30% reduction in travel distance. Results
from the EMFAC model also show nearly 30% savings of fuel consumption, GHG, CO, PM2.5
and NOx emissions compared to the One-O policy. In the One-R policy, drivers only pick up one
or more orders that are arrived at the same restaurant. The order batching rate is 61.17% and it
can reduce around 14% of travel distance, fuel consumption and emissions. In the One-O policy,
as every order is delivered separately, more drivers are expected to be dispatched with higher
total delivery cost. On the other hand, One-O shows a significant advantage in delivery time as
all orders are directly delivered from the restaurant to the customer. The average CtD in the One-
R and Multi-R policies are 3 minutes and 16 minutes higher than that in the One-O policy since
the driver needs to visit more locations before drop-off the meal order. One-O policy can also
keep the meals’ freshness to the largest extent as the average RtD is only 9.41 minutes. But only
1% of orders, that is 2 out of 278 orders, may be delivered later than 10 minutes of the estimated
drop-off time with orders bundled in the One-R and Multi-R policy.
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Table 2. Performance comparison of three order dispatching polices

. . . N One-Rvs Multi-R vs
Dispatching policy One-0 One-R Multi-R One-0 One-0
Orders delivered 278 278 278 0 0
Number of dispatched driver 155 99 61 -36.13% -60.65%
Operational |Batching rate 0% 61.17% 87.41% 61.17% 87.41%
Performance |Avg_CtD(min) 16.91 20.37 33.56 A 3.46 4 16.65
Avg_RtD(min) 9.41 12.83 26.06 A 3.42 2 16.65
Ratio of late order 0% 1.09% 1.07% 1.09% 1.07%
Total travel distance(km) 4341.63 3724.35 2613.17 -14.22% -29.84%
Fuel(gallon) 97.12 83.38 58.64 -14.15% -29.67%
Impact GHG(kg) 835.58 717.41 504.48 -14.14% -29.68%
Evaluation CO(g) 2674.96 2321.13 1644.72 -13.23% -29.14%
PM2.5(G) 3.72 3.22 2.28 -13.44% -29.19%
NOx(g) 154.76 133.13 93.61 -13.98% -29.69%

Evaluation with Customized Click to Door Time

In the above evaluation, we set all orders are estimated to be delivered in 40 minutes. While
in the real world, if an order is placed from a distant restaurant or the order is placed exactly
during noon, then the customers may be willing to accept a slightly longer waiting time. Thus, in
this section, we customized each order’s estimated drop-off time. If an order is placed 15 km
away from the customer’s location or is placed between 12:00-12:20 pm, we extend five more
minutes of the estimated drop-off time of each condition. The meal delivery performance and
impact evaluation are summarized in Table 3 with this customized click-to-door time setting.
With the customized CtD, the order batching rate increases to 67.73% and 92.54% in One-R and
Multi-R policy respectively. Accordingly, the travel distance and environmental impact are
reduced by 18%-35% compared to the One-O policy. As the customized CtD strategy eliminates
the tough orders that require long-distance delivery in a fixed time window, the system has
enough time to deliver all orders in time without any late delivery. Regarding the delivery time,
the One-O policy keeps outperforming the One-R and Multi-R policies with 4 minutes and 19
minutes savings from the average CtD or RtD respectively.

Table 3. Performance comparison of three order dispatching polices with customized CtD

Dispatching policy One-0 One-R Multi-R One-R vs Multi-R vs
One-0 One-0

Orders delivered 278 278 278 0 0
Number of dispatched driver 151 94 54 -37.75% -64.24%
Operational |Batching rate 0% 67.63% 92.45% 67.63% 92.45%
Performance |Avg_CtD(min) 16.76 21.17 36.11 A 4.41 4 19.35
Avg_RtD(min) 9.26 13.68 28.6 A 442 A 19.34
Ratio of late order 0% 2.15% 0.00% 0.00% 0.00%
Total travel distance(km) 4324.09 3500.8 2244.06 -19.04% -35,90%
Fuel(gallon) 96.72 78.4 50.48 -18.94% -35.61%
Impact GHG(kg) 832.18 674.51 434.32 -18.95% -35.61%
Evaluation CO(g) 2650.73 2197.03 1421.69 -17.12% -35,29%
PM2.5(G) 3.7 3.04 1.98 -17.84% -34.87%
NOx(g) 154.03 125.31 80.69 -18.65% -35,61%
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CONCLUSIONS

In on-demand meal delivery (ODMD) service, the platform’s order dispatching policy
determines the operational performance and environmental impact of ODMD. This paper
presented a comprehensive framework to evaluate the delivery efficiency and environmental
impact of ODMD under three dispatching policies. Simulation results illustrate the substantial
benefits of order batching in the One-R and Multi-R policies. The VMT is reduced by 14% and
30% respectively compared to the One-O policy along with the 36% and 60% reduction in the
number of delivery drivers. The reductions in VMT and delivery drivers show significant
potential to relieve the urban traffic burdens with the One-R and Multi-R policies. Meanwhile,
fuel consumption, GHG emission, and criteria pollutants emissions are reduced significantly
(14%-30%). On the other hand, there is a trade-off between the batching benefits and delivery
time. Although the One-O policy has the highest negative impact on traffic and environment, it
can deliver orders in the shortest time to guarantee a timely delivery while keeping freshness of
the meal to the largest extent. This research will encourage the platform to consider a dispatching
policy that is more friendly to the environment and traffic when designing the delivery system.

In the future, to make the evaluation framework explain more ODMD delivery factors, we
need to consider the initial distribution of driver location and the impact of empty trips, i.e.,
deadheading, while waiting for new orders. Meanwhile, for the platform operating cost, we
should consider real-world operation factors such as profit, incentives, and compensation for
drivers. Finally, exact solvers, i.e., CPLEX or Gurobi, can be utilized to solve small-scale
ODMD problems, then compare with the ALNS solutions to understand the gaps with global
optimal solutions.
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