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ABSTRACT 

 
The prevalence of information and communication technologies has catalyzed the emergent 

on-demand meal delivery (ODMD) service. Order dispatching policies play a crucial role in 
determining the operational performance and environmental impact of ODMD system. In this 
paper, we proposed a comprehensive framework to evaluate meal delivery efficiency and 
quantify the corresponding environmental impact of ODMD system under different order 
dispatching policies. It consists of three components: (1) the real-world meal delivery operational 
context that is generated to simulate daily activities and travel patterns in the city of Riverside 
and construct the on-demand meal delivery scenarios; (2) an efficient optimization approach: 
rolling horizon-based adaptive large neighborhood search algorithm, to obtain order dispatching 
and routing decisions with the dynamic order demand and driver resources; and (3) an energy 
consumption and emission evaluation model developed via EMFAC to quantify the 
corresponding fuel consumption and pollutant emissions. With the proposed framework, three 
order dispatching policies are evaluated: One-Order-Per-Trip (One-O), One-Restaurant-Per-Trip 
(One-R), and Multi-Restaurant-Per-Trip (Multi-R). Simulation results show substantial benefits 
of having orders bundled in the One-R and Multi-R policies. The total travel distance is reduced 
by 14% and 30%, respectively, compared to the One-O policy. Meanwhile, the total number of 
delivery drivers is reduced by 36% and 60%, which shows great potential to relieve the urban 
traffic burdens, together with 14%–30% fuel consumption, GHG emissions, and criteria pollutant 
emissions reductions. Meanwhile, the service quality is maintained with only 1% of late orders. 
 
Keywords: Dynamic on-demand meal delivery, Order dispatching, Impact evaluation, Rolling 
horizon framework, Adaptive large neighborhood search (ALNS). 
 
INTRODUCTION  

 
Catalyzed by the prevalence of information and communication technologies and boosted by 

the unexpected COVID-19 pandemic, on-demand meal delivery (ODMD) has achieved 
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explosive growth (Seghezzi et al. 2021). As reported by Statista, the U.S. food delivery has 
comprised 16% of the total restaurant market (Statista 2022a). The revenue from ODMD is 
projected to reach 63.02 billion dollars by 2022 and shows an annual growth rate of 8.9% 
(Statista 2022b). The fast growth of meal delivery demand brings challenges to the online 
platform to efficiently dispatch meal orders. Meanwhile, the surging delivery trips generated 
inside the city may further exacerbate traffic congestion and bring negative environmental 
impacts. Thus, it is necessary to evaluate the platform’s possible order dispatching policy from 
both operational and environmental perspectives, which can, in turn, provide insights to help the 
ODMD platform balance the primary goal of delivering meals in a shorter time and bringing 
minimal negative effects. 

Most recent research of ODMD can be grouped into two categories: static and dynamic. In 
the static ODMD setting, the authors assume perfect information of meal orders of the whole 
operational horizon. In some research, the authors divide the horizon into several time intervals 
to reduce the complexity, but each time interval’s solution is isolated which also falls in the static 
ODMD scenario. Liu et al (2019) proposed to leverage taxi resources to deliver food orders 
either in an opportunistic manner or in a dedicated manner with the goal to minimize taxi number 
and distance cost. Tu et al (2020) developed an online dynamic optimization framework which 
includes order collection, solution generation and sequential delivery. This approach decomposes 
the large-scale problem into multiple static small-scale problems without considering the 
interactions between each time interval. Wang et al (2021) presented an insertion-based heuristic 
to solve a single driver food delivery routing problem along with the geographic information to 
accelerate the insertion process and the XGBoost algorithm to select the order sequencing rules. 
In the dynamic meal delivery setting, orders and drivers are revealed dynamically during 
operating hours and the online platform has to respond to the new delivery demand efficiently. 
Zhou et al (2020) formulated an online order dispatching system with new orders arrival and 
extended the traditional greedy insertion and regret insertion heuristic to evaluate more orders in 
one iteration, but this research only solved the problem in one time interval without considering 
the platform update. Reyes et al (2018) studied the meal-delivery routing problem (MDRP) and 
proposed a rolling-horizon repeated-matching algorithm to solve the dynamic vehicle routing 
problem and capacity management problem, where they only bundled orders from the same 
restaurant. Huang et al (2021) investigated the dynamic task scheduling problem of a UAV-
based ODMD system and proposed an iterated heuristic to obtain the solution with minimized 
order tardiness, where each UAV is only allowed to carry one order in the delivery. 

However, most existing research focused on developing efficient and fast algorithms, thus 
assuming simplified operational context, i.e., constant delivery speed and Euclidean distance 
between two locations, which makes it impossible to evaluate the impact of ODMD, especially 
from the environmental perspective. On the other hand, the difference of dispatching policies has 
not been investigated before. Most research obtained the optimized solution without considering 
the platform’s operating strategies. To investigate this issue, we propose a comprehensive 
framework to evaluate the impact of ODMD service with real-world dynamic operational 
scenarios. First, a mathematical model is formulated to describe the dynamic ODMD order 
dispatching and routing problem. Next, with the real-world operational context for delivery 
drivers, a rolling horizon based adaptive large neighborhood search algorithm is proposed to 
obtain the optimized order dispatching solution that satisfies the platform’s order dispatching 
policies. Finally, indicators and emission model are used to evaluate the dispatching policy’s 
corresponding operational performance and environmental impact. 
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DYNAMIC ON-DEMAND MEAL DELIVERY PROBLEM 

Problem Description 
 

We consider a dynamic on-demand meal delivery (ODMD) system, which consists of four 
stakeholders: online platform, delivery driver, restaurant, and dinning customer. Dinning 
customer chooses preferable food and places a meal order using the online platform. A meal 
order typically includes information about meal items, restaurant location and customer location. 
The online platform gathers multiple orders and assigns delivery drivers to complete delivery 
tasks. An estimated drop-off time is provided by the platform which represents a delivery 
commitment. The platform aims to construct feasible routes for drivers with the objective to 
minimize delivery delay and total delivery cost. 

Different from traditional static meal delivery settings (Paul et al. 2020), we study the 
dynamic ODMD scenario, where meals are ordered dynamically and delivery drivers can log on 
and log off the system freely during the operating time depending on drivers’ working schedules. 
However, it is not practical to update the system dispatching decision when receiving every new 
order. Similar as (Chen et al. 2022; Reyes et al. 2018), we employ a rolling horizon approach 
which divides the whole operational horizon 𝐻 into ⌈

𝐻

𝜏
⌉ time intervals with a length of 𝜏. 

Suppose the platform begins at time 𝑡0. At every time 𝑡ℎ(𝑤ℎ𝑒𝑟𝑒 𝑡ℎ = 𝑡0 + ℎ × 𝜏 , ℎ =

(1,2, … , ⌈
𝐻

𝜏
⌉), the system will re-optimize its order dispatching decision regarding new meal 

order demand and driver information revealed during [𝑡ℎ−1, 𝑡ℎ). 
Within the dynamic setting, order status and driver status are updated during the operating 

time. As shown in Figure 1, we define three types of states of each order. At time 𝑡ℎ, if an order 
𝑜 is placed in the range of [𝑡ℎ−1, 𝑡ℎ), then it falls in the new order set 𝑂𝑛. After time 𝑡ℎ, the 
platform will dispatch each new order to drivers. Then the order status changes to “scheduled” in 
𝑂𝑠. Drivers will deliver meal orders sequentially and an order is turned to completed status in 𝑂𝑐 
if the order is finally delivered. Accordingly, each delivery driver has two states: working 
(in set 𝐾𝑤) or idle (in set 𝐾𝐼). Driver 𝑘 first logs on the platform and is at idle status waiting for 
platform order dispatching. Suppose at time 𝑡ℎ, the driver receives delivery tasks and starts 
working. In addition, some drivers may have multiple trips and their status keep switching 
between “working” and “idle” until they leave the platform. We further assume driver idles 
around the last-visit location when completing all orders at hand. 

 

 
 

Figure 1. Meal order and driver status definition 
 
Model Formulation 

With the above description, at each re-optimization time 𝑡ℎ, we can specifically formulate a 
pick-up and delivery time window model (PDPTW) (Bent and Van Hentenryck 2006) to 
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represent the order dispatching and routing optimization problem. The model variable and 
parameter definitions are listed in Table 1. With the clear defined sets of 𝑅ℎ, 𝑃ℎ, 𝐷ℎ, and 𝐾ℎ in 
Table 1, then we can construct a directed graph 𝐺 = (𝑉, 𝐸), in which each node in 𝑉 represents 
the location of a customer, a restaurant, or a driver, 𝑉 = 𝑃ℎ ∪  𝐷ℎ ∪ 𝐾ℎ, and each arc in 
𝐸(where 𝐸 = 𝑉 × 𝑉) represents the movement from one node to another. Specifically, we use a 
vector 〈i, j, 𝑞𝑖, 𝑞𝑗, 𝑡𝑝

𝑖  𝑡𝑟
𝑖 ,  𝑡𝑑𝑜

𝑖𝑒  〉 to describe the key information of an order, where i, j are the 
paired pick-up and drop-off locations, 𝑞𝑖 + 𝑞𝑗=0, and the last are three time variables: order place 
time, order ready time and estimated drop-off time. Then we can formulate the on-demand meal 
delivery problem as follows. 

 
Table 1. Variable and parameter definition 

 
Horizon 

𝜏 Time interval length 
𝑡ℎ System re-optimized time, 𝑡ℎ = 𝑡0 + ℎ × 𝜏, ℎ ∈ (1, 2, … , ⌊

𝐻

𝜏
⌋), 𝑡0 is the start time 

Indices 
𝑖/𝑗 pick-up/ drop-off task at a restaurant/customer location 

𝑘/𝑘0 delivery driver, 𝑘0 represents the initial location of driver k 
Sets 

𝑅ℎ Set of all meal order requests. Each request consists of a pair of pick-up and drop-off 
tasks (𝑖, 𝑗), where 𝑅ℎ =  𝑂𝑛 ∪  𝑂𝑠 during time interval [𝑡ℎ−1, 𝑡ℎ) 

𝑃ℎ Set of all pick-up tasks from 𝑅ℎ during time interval [𝑡ℎ−1, 𝑡ℎ)  
𝐷ℎ Set of all drop-off tasks from 𝑅ℎ during time interval [𝑡ℎ−1, 𝑡ℎ) 
𝐾ℎ Set of all delivery drivers, where 𝐾ℎ =  𝐾𝐼 ∪  𝐾𝑤 during time interval [𝑡ℎ−1, 𝑡ℎ) 

Parameters and constants 
𝑞𝑖 Order number to be served at location i. Positive when 𝑖 is a pick-up location; 

negative when 𝑖 is a drop-off location 
𝑄𝑘 Driver k delivery capacity 
𝑠𝑖 Service time of task 𝑖 (load/unload) 
𝑡𝑝

𝑖  Order place time, 𝑖 ∈ 𝑅ℎ, decided by customer 
𝑡𝑟

𝑖  Order ready time, 𝑖 ∈ 𝑅ℎ, decided by the restaurant. 
𝑡𝑑𝑜

𝑖𝑒  Estimated drop-off time, 𝑖 ∈ 𝑅ℎ, provided by the platform 
𝑡𝑖𝑗 Travel time of a OD pair (𝑖, 𝑗)   
𝑑𝑖𝑗 Travel distance of a OD pair (𝑖, 𝑗) 

Intermediate variables 
𝑡𝑝𝑢

𝑖  The actual visit time at the pick-up location i, 𝑖 ∈ 𝑃ℎ 
𝑡𝑑𝑜

𝑖  The actual visit time at the drop-off location i, 𝑖 ∈ 𝐷ℎ 
𝑄𝑖

𝑘 Number of orders assigned when driver k leaves node i 
Decision Variable 

𝑥𝑖𝑗
𝑘  1 if OD pair (𝑖, 𝑗) traveled by driver 𝑘; 0 otherwise 

𝑇𝑖
𝑘 Time when vehicle k visit node i 

 
The platform aims to minimize the total travel distance and total order delay cost to maintain 

high service quality. In the objective function, the first term represents the total delivery distance, 
and the second term is the total delivery delay, which is defined as the difference between the 
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actual drop-off time 𝑡𝑑𝑜
𝑖  and the estimated drop-off time  𝑡𝑑𝑜

𝑖𝑒 . We enforce a linear delay penalty 
function 𝑝𝑐 to penalize late delivery. α and β are weight factors. 

 
𝑀𝑖𝑛 𝐹 = 𝛼 ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑘

(𝑖∈𝑉,𝑗∈𝑉,𝑖 ≠𝑗)𝑘∈𝐾ℎ

   + 𝛽 ∑ 𝑝𝑐 max(0, 𝑡𝑑𝑜
𝑖 − 𝑡𝑑𝑜

𝑖𝑒 )

𝑖∈𝐷ℎ

 

 
subject to 

Route construction constraints: 
 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉𝑘∈𝐾 = 1                 ∀𝑖 ∈ 𝑃ℎ ∪ 𝐷ℎ                                        (1) 
 

∑ 𝑥𝑘0,𝑗
𝑘 =𝑗∈𝑉 1                           ∀ 𝑘 ∈ 𝐾ℎ                                              (2) 

 
∑ 𝑥𝑖,𝑘0

𝑘 = 1                          ∀𝑘 ∈ 𝐾ℎ
𝑖 ∈𝑉                                                (3) 

 
∑ 𝑥𝑖𝑗

𝑘 − ∑ 𝑥𝑗𝑖
𝑘

𝑖 ∈𝑉 = 0                    ∀𝑗 ∈ 𝑃ℎ ∪ 𝐷ℎ, ∀ 𝑘 ∈ 𝐾ℎ
𝑖 ∈𝑉                         (4) 

 
∑ 𝑥𝑖𝑗′

𝑘
𝑗′∈𝑃ℎ∪𝐷ℎ∪𝑘0

−  ∑ 𝑥𝑗′,𝑗
𝑘

𝑗∈𝑃ℎ∪𝐷ℎ∪𝑘0
= 0          ∀(𝑖, 𝑗)  ∈ 𝑅, ∀𝑘 ∈ 𝐾ℎ                     (5) 

 
𝑇𝑖

𝑘 ≤ 𝑇𝑗
𝑘               ∀(𝑖, 𝑗)  ∈ 𝑅, ∀𝑘 ∈ 𝐾ℎ                                     (6) 

 
Capacity constraints: 

 
𝑄𝑖

𝑘 ≤ 𝑄𝑘                     ∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝐾ℎ                                 (7) 
 

𝑥𝑖𝑗
𝑘 = 1 ⇒  𝑄𝑗

𝑘  ≥  𝑄𝑖
𝑘 + 𝑞𝑗                ∀𝑖, 𝑗 ∈ 𝑉  , ∀𝑘 ∈ 𝐾ℎ                          (8) 

 
Time constraints: 

 
𝑡𝑝𝑢

𝑖 ≥ max (𝑡𝑟
𝑖  , 𝑇𝑖

𝑘)                       ∀𝑖 ∈ 𝑃ℎ                                    (9) 
 

  𝑥𝑖𝑗
𝑘 = 1 ⇒ 𝑇𝑗

𝑘 ≥   𝑡𝑝𝑢
𝑖 + 𝑡𝑖𝑗 + 𝑠𝑖       ∀𝑖 ∈ 𝑃ℎ, ∀𝑘 ∈ 𝐾ℎ                               (10) 

 
  𝑥𝑖𝑗

𝑘 = 1 ⇒ 𝑇𝑗
𝑘 ≥  𝑡𝑑𝑜

𝑖 + 𝑡𝑖𝑗 + 𝑠𝑖        ∀𝑖 ∈ 𝐷ℎ , ∀𝑘 ∈ 𝐾ℎ                           (11) 
 

Variable constraints: 
 

𝑄𝑖
𝑘 ≥ 0                             ∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝐾ℎ                               (12) 

 
𝑥𝑖𝑗

𝑘 ∈ {0, 1}                           ∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑘 ∈ 𝐾ℎ                         (13) 
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𝑇𝑖
𝑘 ≥ 0                     ∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝐾ℎ                                     (14) 

 
To ensure the feasibility of routes, we set up specific constraints and grouped them into four 

categories. The first category mainly states the basic requirements of route construction. 
Constraint (1) ensures all meal orders are served. Constraint (2)-(4) enforce each driver to log on 
from the initial location, return to it after log-off, and every route should obey the flow 
conservation constraint. Constraint (5) states that a pair of pick-up and drop-off tasks from one 
order should be completed by the same driver. We do not allow transferring tasks between 
drivers. Constraint (6) guarantees that for one order, the driver should visit the pick-up location 
first and then deliver the meal at the customer location. The second category, including 
constraints (7) and (8), specifies the capacity constraints of the delivery driver, which describes 
the maximum number of orders a driver can receive at any given time and the loaded orders 
number change in the delivery route. Time constraints are summarized in the third group. 
Constraint (9) states that one driver can arrive earlier at the restaurant but should wait until 𝑡𝑟

𝑖  to 
pick up the meal order. Constraints (10) and (11) define driver arrival time at node j is no less 
than the pick-up or drop-off time at node i, plus travel time 𝑡𝑖𝑗 and service time at node i. The 
last group ensures driver served order number is no less than zero (constraint (12)) and provides 
the decision variables’ definition (constraint (13)-(14)). 
 
FRAMEWORK OVERVIEW AND METHODOLOGY 

 
This section proposed a comprehensive framework to evaluate the operational performance 

and environmental impact of the dynamic on-demand meal delivery service. Figure 2 illustrates 
the main components of this framework. First, to enhance the accuracy, we derive a real-world 
operational context in the City of Riverside, California. Then a rolling horizon approach is 
utilized to construct the meal delivery scenario at each re-optimization time. Since meal delivery 
problem is a variant of the vehicle routing problem (VRP) which is a famous NP-hard problem. 
The adaptive large neighborhood search (ALNS) algorithm is applied to gain the optimized order 
dispatching and routing results in a computationally efficient manner (Ropke and Pisinger 2006). 
We specifically design the ALNS algorithm to provide the optimized solution that exactly 
satisfies the platform operation strategy (i.e., One-O, One-R and Multi-R). With the order 
dispatching result, we can evaluate the delivery efficiency and quantify the fuel consumption and 
pollutant emissions of delivery drivers. The remaining parts of this section will describe the 
details of each component.  
 
Operational Context 

 
The meal delivery operational context is construct from both CEMDAP and BEAM model 

(BEAM 2020; Bhat et al. 2004). We first utilize CEMDAP, a daily activity generation software, 
to generate the eat out activity of residents and sample a portion of customers to use the ODMD 
service instead of dine in. The delivery drivers are assumed to be local people who starts from 
their home location. The road network and traffic information are extracted from BEAM model, 
an agent-based simulation platform, where link-level travel distance and travel speed are 
employed to estimate the drivers’ travel time from one location to another. The locations and 
movements of all drivers in the system are tracked and archived during the entire simulation 
process. 
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Figure 2. Overview of the proposed evaluation framework 
 

Meal Delivery Scenario Simulation with Rolling Horizon 
 

Each meal order generated from CEMDAP has an order place time 𝑡𝑝
𝑖 , the customer location, 

and restaurant location. Drivers have their own initial home location and working schedule. At 
each re-optimization time 𝑡ℎ, to construct the meal delivery scenario, we have to specifically 
define the sets of orders 𝑅ℎ, restaurants 𝑃ℎ, customers 𝐷ℎand drivers 𝐾ℎ. The detailed scenario 
simulation is presented in Algorithm 1. The meal scenario update depends on the previous 
order/driver status update (Step 1) and the accumulated the new orders and drivers from the time 
interval [𝑡ℎ−1, 𝑡ℎ)(Step 2). 
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ALNS-based Order Dispatching and Optimization 
 

With the updated meal delivery scenario, the platform needs to dispatch new orders to 
delivery drivers and update driver’s task sequence. With a feasible initial routing solution, we 
employed the ALNS algorithm to achieve an optimized solution efficiently. ALNS is a meta-
heuristic in which multiple removal and repair operators are selected based on an adaptive 
selecting mechanism, to diversify and intensify the initial solution then get the optimized one. 
We mainly followed the main components of ALNS proposed in (Ropke and Pisinger 2006). 
Five removal operators are implemented to perturb the solution space, including random 
removal, worst removal, Shaw removal, longest distance path removal, worst delay path 
removal. Four repair operators are used to re-insert the orders to find a better solution, including 
random repair, greedy repair, regret-2 and regret-3 repair. The generic idea of each operator can 
be found in (Liu et al. 2022).   

Generally, the platform has specific dispatching policies to achieve its goals. The ALNS 
algorithm should be properly designed to ensure that the optimized dispatching results exactly 
follow the dispatching policy. In this paper, we aim to evaluate three commonly used dispatching 
polices: 

• One-Order-Per-Trip (One-O): allowing drivers to finish only one order per delivery trip 
to avoid meal delivery delay.  

• One-Restaurant-Per-Trip (One-R): allowing drivers to visit only one restaurant per 
delivery trip to pick up one or more orders altogether, and then complete the delivery task 
sequentially. 

• Multi-Restaurant-Per-Trip (Multi-R): allowing drivers to pick up meal orders from 
multiple restaurants either in the same commercial zone or near the planned delivery 
route.  

In all three policies, transferring the previous assigned orders to another driver is not allowed. 
Thus, only the new orders can be removed in the ALNS removal process. In the Multi-R policy, 
all repair operators can be utilized to obtain a better solution. In the One-O policy, we 
specifically set each driver’s capacity to be one. Thus, repair operators under One-O policy only 
insert new orders to idle drivers. In the One-R policy, the repair operator inserts new order either 
to an idle driver or drivers served the same restaurant. An overview of the order dispatching and 
optimization process with ALNS is shown in Algorithm 2.  
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Operational Performance and Impact Evaluation 
 

In this section, we introduce indicators and methods to analyze the delivery service quality 
and the impact of adopting different order dispatching polices. At the end of the operational 
horizon, we summarize each order’s actual pick-up time 𝑡𝑝𝑢

𝑖 , drop-off time 𝑡𝑑𝑜
𝑖 and the distance 

cost with the optimized dispatching result. We define following indicators in this model. 
• Click to door time (CtD): the time difference between drop-off time and order place time. 
• Ready to door time (RtD): the time difference between drop-off time and order ready 

time. 
• Number of dispatched driver: drivers required to finish the delivery tasks. 
• Batching rate: portion of orders that are batched with at least one order to deliver 

together. 
• Ratio of late order: orders that are suffered more than 10 minutes delay. 
Meanwhile, EMFAC model (EMFAC 2021) is chosen to quantify the delivery driver’s fuel 

consumption and pollutant emission. EMFAC is an Emission Factor Model, in which an 
emission factor is derived from the average value of repeated measurements of total emissions 
per driving cycle. We construct a Riverside EMFAC model and specify the delivery vehicle to be 
the gasoline vehicle. Emission rates with multiple speed ranges are obtained. Then with the 
driver routing result and traffic network, we can sum up all the delivery vehicle emissions to 
evaluate the environmental impact. In this research, we will evaluate fuel consumption and the 
emission of greenhouse gas (GHG), Nitric oxide (NOx), Carbon Monoxide (CO), and PM2.5. The 
vehicle-miles-travelled (VMT) of delivery drivers can also be obtained from the routing result. 

EXPERIMENTS AND RESULT  

Parameters Setting and Experiments 

Given the inputs of various land-use, sociodemographic, activity, and transportation level-of-
service attributes, CEMDAP provides the output of complete daily activity-trip patterns for each 
individual (Bhat et al. 2004). Focusing on the noon peak from 11:30am-12:30pm, we obtained 
1328 eat-out trips in total and sampled 21% trips (total 278) as meal orders for delivery 
according to the statistics from (Statista 2022a). To simulate the ODMD operation, we set up the 
key parameters as follows. We focused on a 60-minute operating period and set the system 
update and re-optimization time interval 𝜏 to be 5 minutes. The meal order is added to the system 
according to its place time 𝑡𝑝

𝑖 . Then we assume the restaurant needs 5-20 minutes for meal 
preparation, which determines the food ready time 𝑡𝑟

𝑖 . The estimated drop-off time is set to 40 
minutes after the order place time (that is 𝑡𝑑𝑜

𝑖𝑒 =  𝑡𝑝
𝑖 + 40), indicating that the system aims to 

deliver every food order within 40 minutes. Each driver needs extra one minute to pick-up or 
drop-off when arrive at the restaurant/ customer location. Drivers are first generated around the 
residential area and the driver number is according to the order/driver ratios (set as 5) at each re-
optimizing time interval. If current drivers are not sufficient to construct a feasible solution to 
deliver all the new orders, we add new drivers as needed. Finally, the weighted factor 𝛼 and 𝛽 
are both set to be 1 in the objective function. 

For parameter setting in ALNS algorithm, we mainly took the reference in (Ropke and 
Pisinger 2006) and modified some key parameters. Specifically, we set the destruction degree of 
removal operator is 0.2, indicating 20% new orders are removed in each iteration in order to 

International Conference on Transportation and Development 2023 498

© ASCE



sufficiently explore the solution space. The reaction factor in the operator weight adjustment is 
set to be 0.6. The cooling rate in simulated annealing process is set to be 0.99. In the ALNS 
iteration, we total ran 100 segments, and each segment contains 50 iterations. If 250 continuous 
iterations without any improvement occurred, we terminated the algorithm. Both Rolling 
Horizon and ALNS algorithms are coded in python 3.8 and run with a ThinkPadX1 Carbon 2021 
with 16GB of RAM and an Intel Core I7- 1165G7 processor. Figure 3 shows ALNS convergence 
with the three proposed order dispatching policies in one time interval. Even in the Multi-R case, 
which has the highest computational complexity since the algorithm needs to find the best 
insertion position across all possible routes, the average running time for one time interval is 
47.85 seconds. The proposed algorithm shows the potential of real-time decision support for the 
ODMD platform. 

 

 
 

Figure 3. The performance of ALNS with Multi-R, One-O and One-R policy 
 

Evaluation Result 
 

We obtained the order dispatching and routing result with the proposed algorithm under three 
policies and evaluated the ODMD service operational performance and related impact. Table 2 
summarizes the performance of different policies. With the Multi-R policy, drivers are allowed 
to pick up multiple orders from multiple restaurants nearby before making delivery or even to 
pick up a new order during the delivery route. The order batching rate reaches 87.41% and only 
requires 61 drivers to finish the total 278 orders. With more orders batched together and 
optimized delivery trips, we can reduce the redundant trips between the commercial and 
residential areas in the city, thus achieving around a 30% reduction in travel distance. Results 
from the EMFAC model also show nearly 30% savings of fuel consumption, GHG, CO, PM2.5 
and NOx emissions compared to the One-O policy. In the One-R policy, drivers only pick up one 
or more orders that are arrived at the same restaurant. The order batching rate is 61.17% and it 
can reduce around 14% of travel distance, fuel consumption and emissions. In the One-O policy, 
as every order is delivered separately, more drivers are expected to be dispatched with higher 
total delivery cost. On the other hand, One-O shows a significant advantage in delivery time as 
all orders are directly delivered from the restaurant to the customer. The average CtD in the One-
R and Multi-R policies are 3 minutes and 16 minutes higher than that in the One-O policy since 
the driver needs to visit more locations before drop-off the meal order. One-O policy can also 
keep the meals’ freshness to the largest extent as the average RtD is only 9.41 minutes. But only 
1% of orders, that is 2 out of 278 orders, may be delivered later than 10 minutes of the estimated 
drop-off time with orders bundled in the One-R and Multi-R policy.  
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Table 2. Performance comparison of three order dispatching polices 
 

 
 
Evaluation with Customized Click to Door Time 

 
In the above evaluation, we set all orders are estimated to be delivered in 40 minutes. While 

in the real world, if an order is placed from a distant restaurant or the order is placed exactly 
during noon, then the customers may be willing to accept a slightly longer waiting time. Thus, in 
this section, we customized each order’s estimated drop-off time. If an order is placed 15 km 
away from the customer’s location or is placed between 12:00-12:20 pm, we extend five more 
minutes of the estimated drop-off time of each condition. The meal delivery performance and 
impact evaluation are summarized in Table 3 with this customized click-to-door time setting. 
With the customized CtD, the order batching rate increases to 67.73% and 92.54% in One-R and 
Multi-R policy respectively. Accordingly, the travel distance and environmental impact are 
reduced by 18%-35% compared to the One-O policy. As the customized CtD strategy eliminates 
the tough orders that require long-distance delivery in a fixed time window, the system has 
enough time to deliver all orders in time without any late delivery. Regarding the delivery time, 
the One-O policy keeps outperforming the One-R and Multi-R policies with 4 minutes and 19 
minutes savings from the average CtD or RtD respectively. 

 
Table 3. Performance comparison of three order dispatching polices with customized CtD 
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CONCLUSIONS  
 

In on-demand meal delivery (ODMD) service, the platform’s order dispatching policy 
determines the operational performance and environmental impact of ODMD. This paper 
presented a comprehensive framework to evaluate the delivery efficiency and environmental 
impact of ODMD under three dispatching policies. Simulation results illustrate the substantial 
benefits of order batching in the One-R and Multi-R policies. The VMT is reduced by 14% and 
30% respectively compared to the One-O policy along with the 36% and 60% reduction in the 
number of delivery drivers. The reductions in VMT and delivery drivers show significant 
potential to relieve the urban traffic burdens with the One-R and Multi-R policies. Meanwhile, 
fuel consumption, GHG emission, and criteria pollutants emissions are reduced significantly 
(14%-30%). On the other hand, there is a trade-off between the batching benefits and delivery 
time. Although the One-O policy has the highest negative impact on traffic and environment, it 
can deliver orders in the shortest time to guarantee a timely delivery while keeping freshness of 
the meal to the largest extent. This research will encourage the platform to consider a dispatching 
policy that is more friendly to the environment and traffic when designing the delivery system. 

In the future, to make the evaluation framework explain more ODMD delivery factors, we 
need to consider the initial distribution of driver location and the impact of empty trips, i.e., 
deadheading, while waiting for new orders. Meanwhile, for the platform operating cost, we 
should consider real-world operation factors such as profit, incentives, and compensation for 
drivers. Finally, exact solvers, i.e., CPLEX or Gurobi, can be utilized to solve small-scale 
ODMD problems, then compare with the ALNS solutions to understand the gaps with global 
optimal solutions. 
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