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Abstract
The market for on-demand food delivery (ODFD) has increased considerably, especially during the COVID-19 pandemic. It
is crucial for transportation and environmental agencies to understand how ODFD has reshaped the travel patterns of peo-
ple, affecting vehicle-miles traveled (VMT) as well as pollutant emissions in the transportation system. However, the lack of
public data from food delivery companies makes it challenging to quantify the impact of on-demand delivery on the real-world
transportation network. In this research, we propose a comprehensive framework to quantify the VMT and emissions
incurred by ODFD with three main components: (i) a daily activity generation tool, Comprehensive Econometric Micro-
simulator for Daily Activity-travel Patterns, to create a simulation scenario of ODFD behaviors based on a real-world road-
way network and population demographics in the City of Riverside, California; (ii) an efficient order dispatching and routing
algorithm, adaptive large neighborhood search, to obtain a high quality order dispatching and routing plan; (iii) an emission
evaluation model, emission factor (EMFAC), to evaluate pollutant emissions from all dining-related trips. Both short-term and
long-term impacts of the COVID-19 pandemic are evaluated. Experimental results show that ODFD has great potential to
reduce the dining-related VMT and emissions. The total dining-related VMT in the during-pandemic case decreased by 38%
and in the after-pandemic case reduced by 6% to 9%, and the corresponding environmental impacts were reduced accord-
ingly. Meanwhile, emissions reduced significantly with more electric vehicles involved in food delivery. With 100% electric
delivery fleet, the ODFD service can save 14% to 22% of emissions after the COVID-19 pandemic.
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The COVID-19 pandemic has reshaped people’s activity
patterns, not only in the way they work, but also the way
they shop, eat, and play. According to surveys, most cus-
tomers switched to online shopping and delivery services
because of government requirements of social distancing
and personal fears of transmission of the virus (1, 2). With
regard to the online ordering of cooked food, on-demand
food delivery (ODFD) platforms have recently gained pre-
valence around the world because they benefit both consu-
mers and restaurants by providing contactless, efficient,
and convenient online food ordering and offline food
delivery services (3). Especially when self-quarantine and
social distancing were required during the COVID-19

pandemic (4), this service met both the exact needs of res-
taurant owners for survival of their business and consumer
demand for convenient food supplies without generating
any personal hygiene concerns. According to Statista, by
2021 ODFD comprised 14% of the total restaurant mar-
ket in the U.S.A. and it is expected to keep growing stea-
dily in the next few years (5).
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Most recent work on ODFD focuses on optimizing
the service quality and developing faster and more effi-
cient algorithms. Liu et al. (6) presented a Food Delivery
Network (FooDNet) in which taxi drivers play both
opportunistic and dedicated shared-rider roles in ODFD.
Tu et al. (7) built a dynamic optimization framework to
process order collection, solution generation, and sequen-
tial delivery decisions in each time window. Zheng et al.
(8) proposed a two-stage fast heuristic to solve the food
delivery routing problem, leveraging geographic informa-
tion to speed up the insertion process. From the algo-
rithm perspective, there are three main approaches: (i)
using an exact algorithm, (ii) using local search heuristics,
and (iii) using a large neighborhood search. Exact algo-
rithms aim to obtain the global optimal solution but are
often limited by the size of the problem, and in some
cases even fail to find a feasible solution (9, 10). Local
search heuristics only make small modifications in each
iteration, which may get stuck in a local minima though
some of them are integrated with a Tabu search (11) and
simulated annealing framework (12). Large neighbor-
hood search (LNS) is designed to solve large-scale scenar-
ios by making a large amount of change in each iteration
to diversify the solution space (13). Ropke and Pisinger
(14) combined simulated annealing with LNS and intro-
duced a roulette wheel selection mechanism to select vari-
ous destroy and repair operators. Their approach, named
adaptive large neighborhood search (ALNS), shows great
capability in solving the ‘‘pick-up and delivery problem
with time window’’ (PDPTW) problem, having been
applied in Liu et al. (6), Tu et al. (7), and Emecx et al. (15).

With the unexpected and fast outbreak of the
COVID-19 pandemic, most research did not quantify the
impact of the pandemic on ODFD demand. There is
great uncertainty about the extent to which this fast-
growing food delivery service will affect the transporta-
tion system and urban environment. On the other hand,
little attention has been paid to investigating the environ-
mental challenge and opportunity from the delivery oper-
ation perspective. In the literature, the objectives and
evaluation metrics of most research to date are minimiza-
tion of travel distance (15), order delay (7), and number
of vehicles (6). To the authors’ best knowledge, no exist-
ing research evaluates the environmental impact of
ODFD on a large-scale traffic network. In this paper, to
fill the gaps, we thus aim to study the effect on vehicle-
miles traveled (VMT) and pollutant emissions of ODFD
in the context of the COVID-19 pandemic. (In the rest of
this paper, we refer to the COVID-19 pandemic which
was declared by the World Health Organization early in
2020 as ‘‘COVID’’ for short.)

A comprehensive framework is developed to evaluate
the ODFD service from both operational and sustain-
able perspectives considering the short-term and long-

term impact of COVID and it is validated by numerical
simulation. As shown in Figure 1, a CEMDAP
(Comprehensive Econometric Micro-simulator for Daily
Activity-travel Patterns) model, integrating inputs from
multiple sources, is utilized to generate high-resolution
behaviors and activities. CEMDAP is a micro-simulation
implementation of a continuous-time activity-travel
modeling system. Given as inputs various socio-
demographic data from SynthPoP (16), land use, and
transportation level-of-service attributes from Southern
California Association of Governments (17), the system
provides as output the complete daily activity-travel pat-
terns for all individuals of a population (18). For details
about the CEMDAP model, interested readers should
refer to Bhat et al. (18) and Hao et al. (19). In this
research, we mainly focus on dining-out activities. We
take reference from existing research and survey results
on the impact of COVID on dine-out choices and extract
the food delivery demand based on which ODFD orders
can be obtained (5). Driver information is generated
according to the order amount and traffic information is
extracted from BEAM (20) to execute driver routing
with the real traffic network. The ODFD order dispatch-
ing and routing system is based on the ALNS algorithm
to solve a large-scale optimization problem efficiently.
With the driver routing plan, we can gain the total VMT
and each order visiting plan. Finally, the driver planned
routes will be used as input of the emission factor
(EMFAC) model to exactly quantify the pollutant emis-
sions of delivery drivers. The rest of this paper is orga-
nized as follows. In the next section, we will first
introduce the ODFD system and formulate a mathemati-
cal model to present the food delivery problem. The
third section presents the ALNS algorithm in detail. The
fourth and fifth sections will show the scenario setup
considering COVID and the numerical results analysis
with both operational and environmental evaluation
metrics, followed by the concluding remarks.

Problem Description and Model
Formulation

In this section, we present the ODFD problem descrip-
tion and the mathematical modeling. There are four
main stakeholders in the ODFD system: customers, res-
taurants, delivery drivers, and online platform. Each cus-
tomer places a food order individually. Delivery drivers
are a group of local and non-professional drivers who
are willing to work temporarily to deliver food orders
using their private vehicles. The drivers will log-on to the
ODFD platform and provide their availability for work.
The ODFD platform will gather information of new
orders and active drivers. The goal of ODFD is to dis-
patch orders to currently available drivers and provide a
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routing plan simultaneously considering some specific
constraints and objectives.

The general ODFD process is illustrated as follows,
and the key time stamps associated with one order are
shown in Figure 2. In theory, a customer first places one
order i at time tip. After receiving the order request, the
delivery platform confirms the order information with
the corresponding food provider and receives a time tir
indicating the time the food will be ready. Meanwhile,
the system will provide an expected drop-off time tiedo to
the customer considering the food preparation time, cus-
tomer experience, peak hour demand, and traffic condi-
tion. Based on a collection of food orders and available
drivers, the platform needs to assign each order to the
best driver with regard to driver’s location, availability,
capacity, and so forth. After finding the dispatching solu-
tion, the assigned driver will receive the delivery tasks
and will pick up order i from the restaurant at time tipu
and drop off the food at time tido. Note that the driver
can arrive at the restaurant earlier than the order ready
time but should wait until tir to pick up the order. With
all the time stamp information, we can calculate the fol-
lowing information for each order (in Figure 2):

1. Food preparation time Tpre: the time difference
between order place time and order ready time.

2. Order click-to-door time Tctd : the time difference
between order place time and drop-off time.

3. Order expected click-to-door time Te
ctd: the time

difference between order place time and the
system-offered expected drop-off time, which rep-
resents a delivery time commitment.

4. Order ready-to-door time Trtd : the time difference
between order ready time and drop-off time,
which can indicate the food freshness.

5. Order delivery delay: the time difference between
the expected drop-off time and the actual drop-
off time, calculated as max(0, tido � tiedo).

Figure 3 illustrates an example of ODFD service with
six orders. Each order contains the following informa-
tion: restaurant location (Ri), customer location (Ci),
order place time tip, ready time tir, and expected drop-off
time tiedo. Without the ODFD service, in this paper we
assume that each customer would have a roundtrip to
visit the restaurant individually and then return to their
origin location (shown in the left part of Figure 3). With
ODFD, three routes are generated for drivers k1, k2,
and k3 to finish the assigned pick-up and drop-off tasks
sequentially (shown in the right part of Figure 3). In this
paper, we use restaurant/customer and pick-up/drop-off
tasks interchangeably. Note that delivery drivers are

Figure 1. Framework for evaluating vehicle-miles traveled (VMT) and emission impact of on-demand food delivery (ODFD).
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‘‘shared’’ among multiple restaurants and this flexibility
can offer extra opportunities to minimize delivery cost
and improve system efficiency.

With the above description, in general, the ODFD
problem can be formulated as a pick-up and delivery prob-
lem with time window (PDPTW) model. Assuming that
there are n orders and m drivers in the system, then an
undirected graph G=(V, E) can be defined. Node set V
can represent the locations of a customer, a restaurant, or
a driver. Each arc (E=V 3 V) represents the movement
from one node to another. All parameters and variables
are listed in Table 1. Specifically, order i can be defined as
hi, i+ n, qi, qi+ n, t

i
p t

i
r, t

ie
doi, where i represents the pick-up

node, i+ n represents the drop-off node, qi and qi+ n are
the quantity of orders at the corresponding node. The last

three components are the key time stamps defined above.
Then we can formulate the ODFD problem as follows.

The objective of this problem is to minimize the total
travel distance of delivery drivers and total order delay
cost. The order delay is defined as the difference between
actual drop-off time tido and predefined expected drop-off
time tiedo. a and b are weight factors designed to balance
the distance and delay. Constraint 1 ensures that any
customer or restaurant will be visited exactly once and
all orders in the system will be serviced. Constraints 2
and 3 define the driver’s first stop and last stop of the
trip. Constraint 4 guarantees the flow conservation of
the route. Constraint 5 ensures that each order should be
picked up and delivered by the same driver. The driver
capacity change along the path and its limit is defined in
Constraints 6 and 7. Constraint 8 states that driver’s
arrival time at node j is no less than arrival time of the
previous point i plus travel time from node i to j and ser-
vice time at node i. Constraints 9 and 10 allow each
driver to pick-up the order no earlier than ready time,
and then deliver the order to the corresponding custom-
er’s location. Constraint 11 states the driver’s order num-
ber is no less than zero. Decision variables are defined in
Constraints 12 and 13.

min F= a
X
k2K

X
(i, j)2E

dijx
k
ij +b

X
i2D

max(0, tido � tiedo)

Figure 2. Time record for each order in the on-demand food
delivery (ODFD) system.

Figure 3. Illustration of on-demand food delivery with six orders, compared with customers traveling to restaurants (left side).
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subject to
X

k2K

X
j2V xkij = 1 8i 2 P[D ð1Þ
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j2P x

k
2n+ k, j = 1 8 k 2 K ð2Þ

X
i2D xki, 2n+ k = 1 8k 2 K ð3Þ

X
i2V xkij �

X
i2V xkji = 0 8j 2 P[D, 8 k 2 K ð4Þ

X
j2V xkij �

X
j2V xkj, n+ i = 0 8i 2 P, 8k 2 K ð5Þ

xkij = 1 ) Qk
j ø Qk

i + qj 8 i, jð Þ 2 E, 8k 2 K ð6Þ

Qk
i łQk 8i 2 V , 8k 2 K ð7Þ

xkij = 1 ) Tk
j ø Tk

i + tij + si 8 i, jð Þ 2 E, 8k 2 K ð8Þ

Tk
i ø tir 8i 2 P ð9Þ

Tk
i łTk

n+ i 8i 2 P, 8k 2 K ð10Þ

Qk
i ø 0 8i 2 V , 8k 2 K ð11Þ

xkij 2 0, 1f g 8 i, jð Þ 2 E, 8k 2 K ð12Þ

Tk
i ø 0 8i 2 V , 8k ð13Þ

The solution of the ODFD problem is a set of task
sequences assigned to multiple drivers. In this problem,
the expected drop-off time is defined as the regular
expected time of arrival of each order assuming regular
traffic and delivery demand level, representing the plat-
form’s commitment as well. Under peak hour conditions,
the congested traffic and high demand may cause

unavoidable additional delay to the orders. To accommo-
date this condition, we set time window as a soft constraint
in this problem rather than a hard constraint in the general
PDPTW model (14). If the actual drop-off time is later
than the expected one, this route is still feasible but a pen-
alty will be recorded in the objective function.

Order Dispatching and Routing Algorithm

The ODFD problem is a variant of vehicle routing prob-
lem (VRP) which is a famous combinatorial optimization
problem that possesses non-deterministic polynomial-
time hardness. This is because the real-world order rout-
ing/dispatching operation involves many continuous vari-
ables such as order pick-up time and drop-off time. To
solve this problem in a computationally efficient manner,
a widely used meta-heuristic is presented in this paper. It
consists of two steps. First, we will use a construct algo-
rithm to obtain an initial solution. Thereafter, an ALNS
meta-heuristic is applied to further improve the initial
solution by minimizing the total cost.

Construction Algorithm

A simple heuristic is proposed to generate the initial
solution (shown in algorithm 1). It consists of two steps.
(i) Construct the sorted order sequence with regard to

expected drop-off time tiedo and store in a priority queue

(line 3). Then assign orders to nearest active driver (line
4). After this step, each active driver will be assigned one
order. This strategy ensures that the most urgent orders

Table 1. Definition of Variables

Type Variable Description

System input a, b Weight factor to balance distance and delay
n Total number of orders
m Total number of delivery drivers
P Set of restaurants. Pick-up point 1, . . . , nf g
D Set of customers. Delivery point n+ 1, . . . , 2nf g
K Set of drivers. Initial location 2n+ 1, . . . , 2n+mf g
qi Orders needed to be transported at node i. Positive

when i is a pick-up node, negative when i is a drop-off node.
Qk The maximum number of orders that can be accepted by driver k, 8k 2 K
si Service time at node i (pick-up/drop-off)
tip The food order place time, i 2 D
tir The food order ready time, i 2 D
tiedo The expected drop-off time, i 2 D
tkij Travel time of link ij with driver k
dij Link length of link ij

Intermediate variable Qk
i Number of orders when driver k leaves node i

tipu Order pick-up time, same as Tki , when i 2 P
tido Order drop-off time, same as Tki , when i 2 D

Decision variable xkij 1 if driver k use link i, jð Þ, otherwise 0
Tki Time when driver k arrives at node i
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are paired with the nearest drivers. (ii) Exploit greedy
insertion (described in the ‘‘Repair Process’’ section
below) to plan all remaining orders according to the min-
imum increase of objective. The best insertion position

for order i is calculated with min
k

cki , where cki represents

the change in objective value after inserting order i into
driver k’s delivery sequence incurring least objective
change (line 5–9). An insertion will be rejected if it will
cause a driver to exceed their capacity or work schedule.

Adaptive Large Neighborhood Search (ALNS)

Although the initial solution is feasible, it might involve
unacceptable delivery delay and inappropriate task
sequences. Therefore, we need to further improve the ini-
tial solution. In this paper, we utilize the ALNS frame-
work, in which multiple removal and repair operators
are selected based on an adaptive selecting mechanism,
to diversify and intensify the initial solution then obtain
the optimized solution. ALNS can explore a large neigh-
borhood in a structured way, thus it has the potential to
escape the local minimum and provide high quality solu-
tions. The details of ALNS are described in the following
sub-sections.

Removal Process. First, the current solution is destroyed
with one of the following operators. An important para-
meter in the removal process is the degree of destruction.
If only too small a part is destroyed, then it can be diffi-
cult to escape a local minimum. If an enormous part is
destroyed, then it may require extensive time to construct
a new solution. In this paper, a random number b is cho-
sen from 4, unf g to decide the number of removal
orders, where n is the total number of orders and u is the
destroyed ratio. The removed tasks will be placed in a
task pool.

(a) Random removal: This operator randomly
selects b tasks to remove to diversify the solution
space.

(b) Worst removal: This operator ranks the insertion
cost of every order in an increasing order, while
introducing a random number y 2 (0, 1) and a
parameter p, then removes the order located at
ypn. This randomization is implemented to avoid
removing the same task repeatedly.

(c) Shaw removal: This operator was first proposed
to solve VRP problems based on evaluating the
similarity of two locations (21). In the ODFD
problem, slight modifications are needed since
the smallest unit in our problem is an order which
consists of two locations. Specially, we calculate
the relatedness of two orders with the following
equation. The first part is the distance between
order i and j including the restaurant’s distance
dp ið Þ, p jð Þ and the customer’s distance dd ið Þ, d jð Þ. The
second part is the pick-up and drop-off time dif-
ference between two orders in the current assign-
ment. Smaller Ri, j indicates higher similarity
between two orders. The Shaw removal operator
removes most related orders each time.

Ri, j = p1 dp ið Þ, p jð Þ+ dd ið Þ, d jð Þ
� �

+ p2 tip � tjp

���
��� + tiedo � t

je
do

�� ��� �
ð14Þ

(d) Distance-based path removal: This operator is
designed to remove a route with longest distance.
All tasks on this route will be placed into the
removed task pool directly.

(e) Delay-based path removal: This operator picks
the route with longest total delay, then removes
all tasks on that route.

Repair Process. A repair operator is employed to re-insert
the removed tasks. In this paper, parallel insertion heuris-
tics is chosen so that multiple routes are built simultane-
ously. Further, to reduce the computational complexity,
we sort orders using the expected drop-off time tiedo then
pop out each one to be re-inserted.

(a) Random repair operator: Randomly select a fea-
sible position, then insert the task. Similar to the
random removal operator, this operator also per-
turbs the solution space.

(b) Greedy insertion operator: Greedily insert every
task into the best position such that the change
of objective function is minimized.

(c) Regret-q insertion operator: The main drawback
of greedy insertion is that it might leave the most
‘‘expensive’’ task to the last iteration where we
lack flexibility. Regret-q insertion could avoid

Algorithm 1 Construction Algorithm

1: Input: N : the order set, K : the driver set
2: Output: The initial route for each driver k
3: Priority queue L Sort orders by tiedo
4: Pop out order sequentially and assign to a nearest active

driver
5: for order i remains in N do
6: for driver k in K do
7: greedy insertion(i, k)
8: end for
9: end for
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this situation by incorporating look-ahead infor-
mation. Let Dc

j
i indicate the objective change

when task i is inserted into j th cheapest position.
Then we need to find the order i that maximizes
the regret value in Equation 15. In this paper,
Regret-2 and Regret-3 insertion operators are
constructed.

max
i

Xq

j= 2
Dc

j
i � Dc1i

� �n o
ð15Þ

Adaptive Weighting and Selection Mechanism. Instead of
selecting only one removal and one insertion operator in
the entire searching process, ALNS uses all the operators
proposed above. In each iteration, one removal and one
repair operator are selected independently based on the
roulette wheel selection principle. At the beginning, each
operator is equally weighted. Weights will be updated
after a segment of iterations. Assume that we have n

operators and operator i with weight wk
i at segment k.

Then the probability of choosing operator i at segment k

is defined as Pk
i =

wk
iPn

j= 1
wk
j

. An adaptive weight adjust-

ment method is introduced (Equation 16) to update the
weight according to the operator performance.

wk
i = 1� rð Þwk�1

i + r
mi

pi
ð16Þ

where the weight of operator i at segment k (wk
i ) is

derived based on the weight at segment k-1(wk�1
i ). r is a

reaction factor that controls the speed of this algorithm
reacting to the effectiveness of operators. pi indicates
the number of times that operator i is chosen in this seg-
ment. mi is the accumulated score of operator i (Equation
17). At the beginning of each segment, every accumulated
score will be set to zero. In each iteration, a score gk will
be assigned to the operator, which represents the perfor-
mance of the operator (Equation 18).

mi =
Xpi

j= 1
gkj ð17Þ

gkj =

g1 if a new best solution is obtained

g2 if the solution is better than the current solution

g3 if the solution is worse than the current one

but still accepted:

8>>>><
>>>>:

ð18Þ

Acceptance and Termination Criteria. To avoid becoming
trapped in a local minimum, we use simulated annealing

strategy to accept a worse solution s
0
with probability of

e�
f s
0ð Þ�f (s)
T , where f is the objective function and T is the

temperature. T will decrease with a cooling rate
d : T = dT (0\d\1). Considering practicality, we prefer
to obtain good results in a short time rather than the
optimal solution that takes a long computational time.
Thus, we propose the following termination criteria to
stop the ALNS algorithm. The algorithm will terminate
if one of the rules is met: the maximum number of itera-
tions jmax is reached; j iterations have been executed
without any improvements.

EMFAC Model

The EMFAC model is calibrated from the average value
of repeated measurements of total emissions per driving
cycle. Developed by the California Air Resources Board,
the EMFAC model integrates a mobile sources emission
model where local-specific emission rate and vehicle
activity are combined to generate seasonal or annual
emissions for various geographic areas in California (22).
We construct an EMFAC model for the City of
Riverside, California, and specify the delivery vehicle to
be a gasoline-fueled private vehicle. The following emis-
sion rates are obtained (Table 2).

The EMFAC model provides a convenient way to
model area-wide vehicle emission levels which only
requires the vehicle travel speed as input. We obtain the
link-level travel speed of the City of Riverside and
assume that each driver will follow the link speed in the
network, thus determining the emission rate of the deliv-
ery vehicle per link. With the delivery routing result, we
can sum up all emissions link-by-link to evaluate the
emission impact. In this research, we evaluate the impact
of greenhouse gases (GHG), NOx, CO, and PM2.5.

Scenario Design and Experiment Setup

In this section, we first set up ODFD service scenarios
with consideration of the COVID-19 pandemic. A well-
calibrated CEMDAP model is first applied to generate
eat-out demand in the City of Riverside during the lunch
hour, that is, 11:30 a.m. to 12:30 p.m. CEMDAP gener-
ates a total of 1,328 eat-out trips. This includes all eat-
out options: dine-in, pick-up, or home delivery. We need
to decide the home delivery ratio based on the survey
data and current research related to COVID.

Before the COVID-19 pandemic, in the U.S. home
delivery sales was reported to be 8% of the eat-out mar-
ket (23). COVID brought major changes to eat-out beha-
viors. Some new requirements and strategies, such as
social distancing and remote working, resulted in an
increasing demand for ODFD services. With regard to
the intention to eat out, Tahlyan et al. (24) studied beha-
vior change in relation to multiple eat-out modes, includ-
ing dine-in, pick-up, and on-demand delivery during

Liu et al 7



COVID. According to the data analysis of this study, we
found that the total eat-out demand reduced by 34%
because of regulations and concerns on COVID and
more people opted to order food online.

The effect of COVID has evolved with time, with
changes in the pandemic condition, public attitudes, and
shopping preferences. Many studies have focused on
shopping behavior during and after COVID. For exam-
ple, Wang et al. (25) showed that the long-term effect of
COVID on less essential goods (i.e., takeout food) would
be approximately half that of the near-term effects. The
long-term impact of COVID on eat-out choice is still
under debate. Multiple surveys have explored the change
in online shopping behaviors during COVID. One survey
by Morgan Stanley exactly focuses on the change in
online food delivery penetration share (5). The main sur-
vey result is shown in Figure 4. The black bar shows the
prediction result before COVID, and blue bar is the

adjusted prediction result considering the short-term and
long-term impacts of COVID. With this information, we
averaged the ratio over the years 2020 to 2023 to obtain
the delivery ratio during COVID. Since the COVID-19
virus has many variants and it effects are still not com-
pletely terminated, in this research, we set the expected
time for ‘‘after COVID’’ at 2025. Depending on the long-
term effects of COVID, we set up two scenarios to dis-
cuss the post-COVID food delivery situation. With all
the research and survey results, we set up the following
experiment scenarios.

1. Scenario B: Before COVID, the total eat-out
demand is unaffected by COVID. The ODFD
ratio is 8%.

2. Scenario D: During COVID, the total eat-out
demand shrinks by 34% because of restaurant
closures and restrictions. The ODFD ratio
increases to 15%.

3. Scenario A1: After COVID, the total eat-out
demand recovers to the before-COVID level. The
ODFD ratio is 15% (conservative).

4. Scenario A2: After COVID, the total eat-out
demand recovers to the before-COVID level. The
ODFD ratio is 21% (optimistic).

We sampled from the total eat-out trips according to the
scenario settings. As an example, Figure 5 shows the
ODFD customer location and restaurant distribution in
scenario A2, with a total of 278 orders, scattered in the
City of Riverside.

To simulate the ODFD operation, we set up the
ODFD scenario as follows. After the customer places
one order, the food preparation time is a random

Figure 4. Prediction of online food delivery penetration share in
the U.S. (24).

Table 2. Pollutant Emission Rates From Private Delivery Vehicle Using EMFAC Model (22)

Speed (mph) NOx_RUNEX PM2.5_RUNEX CO_RUNEX GHG_RUNEX

5 0.1047548 0.0095916 1.9610494 730.490871661
10 0.0920467 0.0060364 1.7142107 587.889228881
15 0.0807634 0.0040165 1.5665320 481.750639020
20 0.0721445 0.0028265 1.4482002 401.929636697
25 0.0654610 0.0021013 1.3648953 346.068099773
30 0.0607778 0.0016363 1.2398813 306.232655164
35 0.0570647 0.0013466 1.1472837 284.141599805
40 0.0546770 0.0011704 1.0674726 275.301472327
45 0.0532620 0.0010726 0.9946617 276.339908564
50 0.0526385 0.0010371 0.9344414 284.848677089
55 0.0534785 0.0010568 0.8774290 296.359939367
60 0.0548256 0.0011285 0.8142389 307.219363871
65 0.0565380 0.0012766 0.7742411 317.223470809
70 0.0610274 0.0013955 0.7685599 319.747283997

Note: GHG = greenhouse gases; RUNEX = running exhaust emissions from vehicle tailpipe while traveling on the road.

It is assumed that the fuel used is gasoline. The unit for all emission rates is grams per mile.
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number within interval [5, 20], with which we can define
the order’s ready time. The expected click-to-door time is
40min (26), indicating the system aims to deliver every
food order within 40min. Each driver needs an extra
1min to pick up or drop off when they arrive at the res-
taurant/customer location. Moreover, link travel time is
obtained with real-world link length divided by link
speed, both of which were extracted from the Riverside
BEAM model (20). Then we do the routing using the
Networkx module (27) to obtain the fastest route
between any two locations. We first generate drivers’
initial locations around the residential area, assuming
that drivers will depart from home to pick up a food
order. For drivers with multiple delivery rounds, we
assume they will be idle around the last visit location to
wait for new orders. The generated driver number is
according to the order/driver ratio and is set to five.
The driver capacity is 10 orders per trip. In general,
food orders will arrive according to time. We set the
system to update in every 10min to dispatch the new
arriving orders. Finally, based on multiple experiments,
we set the weight a and b both equal to one in the
objective function.

For parameter settings in the ALNS algorithm, we
only list the key parameters. Other detailed parameter
settings can be found at (14). The destruction degree u of
removal operator is 0.2. The reaction factor r in the oper-
ator weight adjustment is set at 0.6. The operator scores
based on the performance is set at (30,18,12). Cooling
rate in the simulated annealing process is set at 0.99. In
the ALNS iteration, we run a total of 100 segments,
where each segment contains 50 iterations, thus jmax is
5,000 iterations. If 500 continuous iterations execute
without any improvement, we terminate the algorithm.

Experiment Result and Analysis

Performance of ALNS Algorithm

In this part, we first illustrate the performance of the pro-
posed algorithm. We compare with two sets of baselines:
(i) iterated greedy algorithm (IG) and (ii) 12 LNS algo-
rithms that combine the previous proposed removal and
repair operators. The IG method, proposed in Wang
et al. (28), is based on the local search mechanism to
select long delay orders or earlier drop-off orders and
then rearrange the delivery routes to minimize total cost.
In LNS, a fixed pair of operators will be used repeatedly
to improve the solution. The order numbers in scenario
B (106 orders) and D (131 orders) are similar and com-
putational complexity is also similar, thus we only choose
scenarios D, A1, and A2 to evaluate the algorithm per-
formance. To ensure fair comparison, we apply the same
construction algorithm to obtain an initial solution and
the same termination criteria. The algorithm perfor-
mance is summarized in Table 3.

In all three cases, we can note that ALNS outperforms
both IG and LNS algorithms in improving the delivery
performance. The IG algorithm is mainly based on a
local search mechanism which will limit the algorithm to
search for a wide range of neighborhoods and can be eas-
ily trapped in local minima. With the same termination
criterion, the IG algorithm is around 4% worse than the
ALNS algorithm. Among the 12 LNS algorithms, we can
see that the SR-G operator pair performs best in case D
and case A1, which is only 0.7% worse than ALNS,
though more computational time is required to achieve
such a high quality solution. But in case A2, the SR-G
algorithm is 6% worse. This shows the dependency of the
LNS algorithm of different cases and the lack of robust-
ness. We then average 12 LNS algorithm performances
to obtain the LNS-Avg result and compare it with ALNS
performance. This comparison again shows the superior-
ity of the ALNS algorithm. ALNS can perform 9%,
10%, and 13% better in D, A1, and A2 case respectively.
Further, we can note that the average running time of
ALNS is longer than other algorithms, because ALNS
iteratively searches for more potential neighborhoods to
escape the local minima. Another reason is that our algo-
rithm is implemented on an ordinary computer and writ-
ten in the Python script language. In practice, one can
consider using parallel or distributed computing and cod-
ing in a much faster programming language, such as
C++ or Java to further accelerate the computational
speed.

Operational Performance Analysis of ODFD Service

We ran our proposed algorithms over all four cases: B,
D, A1 and A2. With the obtained order dispatching and

Figure 5. On-demand food delivery orders in case A2. Red point
= restaurant, green point = customer location, arc = meal order.
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routing result, we further look into the operational per-
formance of the ODFD service. In Table 4, we show the
general operational performance. Among four cases, the
total VMT cost increases because of the rising demand
for the ODFD service. From the order delivery delay, we
can note that the average delay per order is within 2min.
The average click-to-door time is around 33min, indicat-
ing that on average customers can receive food orders
within 33min after placing the order online, which is
acceptable in the real world. Meanwhile, the food fresh-
ness can be guaranteed because the average order ready-
to-door time is around 20min.

Figure 6 shows the box plot of the click-to-door time
and ready-to-door time distribution in detail. The x-axis
represents multiple scenarios results and the y-axis is the
time unit (minutes). In the experiment setup, we set the
expected click-to-door time for all orders at 40min.
Thus, the first threshold indicates whether any delay

occurs. Tctd of less than 40min means no delay occurs
and the order has been delivered earlier or on time. It is
important to note that up to 75% of orders are delivered
within Te

ctd . The second threshold indicates whether the
food order is delivered more than10min later than the
expected time, and we tagged these orders as unsatisfied
order. We can see that only a few orders are delivered
later than 10min from the expected time, that is, there
were only three unsatisfied orders in case D (listed in
Table 4). All orders are delivered within 60min, as we
can identify the maximum Tctd in the box plot as well.
This attractive operational performance is achieved
because the ODFD system can gather several orders and
determine order dispatching and routing decisions in
coordination using the proposed ALNS algorithm. Thus,
the delivery drivers are able to pick up multiple food
orders in the restaurant areas then deliver to the cus-
tomer zones, or pick up new orders along the delivery

Table 3. Performance Comparison of Different Algorithms for On-Demand Food Delivery with Three Scenarios

Scenario

Algorithm

D A1 A2

Obj Avg time (s) Obj gap Obj Avg time (s) Obj gap Obj Avg time (s) Obj gap

IG 1232.44 24.91 25.08% 2026.00 89.56 27.29% 2443.30 130.35 23.82%
WR-G 1198.53 79.55 22.19% 1972.89 222.03 24.29% 2494.82 137.82 25.77%
WR-R2 1311.72 16.02 211.84% 2275.94 41.00 217.03% 2705.60 65.68 213.11%
WR-R3 1324.60 15.64 212.94% 2262.77 46.87 216.55% 2710.53 65.20 213.26%
SR-G 1179.98 189.17 20.61% 1901.20 165.16 20.68% 2507.26 132.69 26.23%
SR-R2 1270.83 14.78 28.35% 2170.90 35.24 213.02% 2635.25 54.50 210.79%
SR-R3 1294.17 13.31 210.34% 2168.16 41.51 212.91% 2452.58 158.54 24.14%
DisR-G 1263.87 17.69 27.76% 2117.80 39.00 210.84% 2512.31 159.47 26.42%
DisR-R2 1378.91 7.82 217.57% 2313.73 15.67 218.39% 2502.13 136.33 26.04%
DisR-R3 1374.19 7.75 217.17% 2117.80 38.40 210.84% 2455.63 169.37 24.26%
DeR-G 1278.00 17.08 28.97% 2138.98 48.72 211.72% 2589.19 54.93 29.20%
DeR-R2 1366.01 7.53 216.47% 2314.81 15.23 218.43% 2714.14 21.26 213.38%
DeR-R3 1378.61 7.47 217.54% 2327.35 17.03 218.87% 2721.21 20.82 213.61%
LNS-Avg 1301.62 32.82 210.98% 2173.53 60.49 213.12% 2583.39 98.05 29.00%
ALNS 1172.85 158.14 0% 1888.26 447 0% 2350.98 834.12 0%

Note: Avg = average; IG = iterated greedy; WR=worst removal; SR = Shaw removal; DisR = distance-based path removal; DeR=delay-based path removal;

G = greedy insertion; R2 = regret-2 insertion; R3 = regret-3 insertion; LNS= large neighborhood search; ALNS= adaptive large neighborhood search; Obj =

optimized objective value of delivery problem; Avg time = average running time to obtain an optimized solution when system updates.

‘‘Obj gap’’ is calculated with (ALNS_obj 2 B)/B, where ALNS_obj is the objective value obtained with our proposed ALNS algorithm and B denotes the

objective value obtained with the corresponding baseline algorithm. A negative gap indicates a better solution with ALNS. ALNS can achieve the minimal

cost compared to baseline algorithms.

Table 4. Operational Performance of the Solution

Scenario
Number of
orders

Vehicle-miles
traveled (km)

Total delivery
delay (min)

Unsatisfied
orders

Average Tctd
(min)

Average
Trtd (min)

B 106 914 159 4 33.99 20.48
D 131 1052 120 3 33.37 20.75
A1 200 1658 230 4 33.86 20.68
A2 278 2073 277 7 33.45 20.66
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route, delivering food orders more efficiently. To sum
up, we can achieve satisfactory delivery performance
measured by delivery speed and food freshness.

VMT and Emissions Impacts of ODFD

In this section, we quantify the VMT and emissions
impacts of all eat-out trips. For ODFD trips, the routing
result for a delivery driver is utilized as the input of the
EMFAC model to calculate the emission amount. For
other eat-out demands, we assume people visit the res-
taurant either to dine in or take out; these trips are in-
person roundtrips between customer and restaurant loca-
tions. We use the Networkx module to obtain the fastest
route for in-person trips and quantify the corresponding
VMT. We then use the EMFAC model to obtain the
emissions impact. We combine the impacts of ODFD
trips and in-person trips together to evaluate the VMT
and emissions impacts under different COVID periods
(B, D, A1, and A2). The detailed results are summarized
in Table 5. For all four scenarios, the average distance
cost for an ODFD order is 7.5 to 8.5 km/order. While
for the in-person trips to pick up an order, the distance
cost is around 18km/order. This difference illustrates the
superiority of ODFD service to reduce VMT with the
optimized solution.

Take case B as the baseline scenario; during COVID
the total VMT and emissions all reduced by 38%, includ-
ing vehicles on the road for the purpose of eating out.
This might be explained by the following two reasons.
First, the government-imposed lock downs, social distan-
cing requirements, and fear of infection, meant that the
eat-out demand reduced drastically, which can undoubt-
edly reduce the VMT and emissions. Second, more peo-
ple tended to use the ODFD service as it is a desirable
choice for convenient and contactless food delivery under

the wide concern of personal health. With the ODFD
service, the system can bundle more orders together to
pick up most food orders in the commercial zone first
then deliver them to the customers sequentially, so one
would expect more saving of VMT and emissions.

Meanwhile, the ODFD service may change people’s
eat-out behavior in the long term considering the poten-
tial change in dining style. When wwe compare case A1
and case A2 with case B, we can note that although the
eat-out demand recovers to the before-COVID level,
with higher ODFD ratio, the VMT and emissions can
still be decreased by around 6% to 9% depending on the
future ODFD penetration rate. The dining-related vehi-
cles on road are reduced by 6% to 11% as well. Thus,
high penetration rate of ODFD can help reduce VMT in
the traffic network and to build an eco-friendly transpor-
tation system.

It is also noticed that a similar reduction rate can be
found in VMT and pollutant emissions for the same sce-
nario. The main reason is that with EMFAC model,
VMT and speed pattern are two key inputs for emission
estimation. As the objective function only aims to mini-
mize the VMT, the speed pattern is hard to optimize or
influence. Thus, the percentage change in emissions is the
same as the percentage change in VMT during different
periods. We will introduce the fuel-consumption/emis-
sions into the objective function to avoid this limitation
in future research. Another possible reason is that we
assume all vehicles to be gasoline fueled. With the homo-
genous vehicle fleet, VMT saving is proportional to emis-
sion savings. If some vehicles are replaced with electric
vehicles, then we can expect more emission reduction in
the urban context.

To validate this assumption, we introduced electric
vehicles (EVs) into the delivery vehicle fleet under multi-
ple penetration rates and calculated the emissions
change. EVs are reported to occupy 6% of the private
vehicle market share in California (29). Our baseline sce-
nario is set up as 6% dining-related vehicles being
replaced with EVs. Both dine-in and food delivery emis-
sions are reduced proportionally with the EV penetration
rate in these two sectors. If dine-in vehicles and delivery
vehicles were electrified by the same proportion, then
environmental impacts are reduced by the same amount
as in the all gasoline vehicle case. To specifically study
the benefits of delivery fleet electrification, we conducted
a sensitivity analysis by steadily increasing the EV pene-
tration rate only in the delivery fleet and assumed that
94% of in-person trips still use gasoline vehicle. In the
real world, in practice, delivery platforms can subsidize
EV drivers to increase the EV penetration rate, which
can be potentially higher than the total EV penetration
rate in the private car market. For example, Uber has
already launched a pilot program to subsidize EV drivers

Figure 6. Distribution of click-to-door time and ready-to-door
time.
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with an extra one dollar per order (30). Taking GHG
emissions as an example, we present the results in Figure
7. The result shows that the GHG emissions reduced sig-
nificantly with higher EV penetration rate. With the
same VMT saving as in Table 5, in the during-COVID
case, the emissions can be reduced by 45%. In the after-
COVID case with 100% EV delivery fleet, the ODFD
service can save 14% to 22% of emissions and 6% to
9% of VMT cost. This sensitivity analysis provides evi-
dence to encourage the food delivery platforms to pay

attention to the delivery vehicles’ composition and
encourage more EV drivers to participate in the delivery
process, since delivery fleet electrification can reduce fur-
ther energy consumption and mitigate negative environ-
mental externalities.

Conclusion

The COVID-19 pandemic has brought major changes to
eat-out behaviors and since the start of the pandemic
more people tend to order food online. There is great
uncertainty about the extent to which this fast-growing
food delivery service will affect the transportation system
(VMT) and urban environment (pollutant emissions). In
this paper, a comprehensive framework is proposed to
evaluate the VMT and emissions impact of ODFD ser-
vices. An effective order dispatching and routing algo-
rithm is implemented to assign order sequences to
available drivers. The ALNS outperforms 13 baseline
algorithms in obtaining high quality solutions. The
operational analysis of the experiment results further
shows that ALNS can provide an ODFD solution with
fast delivery speed and high standard of food freshness.
From the city-wide VMT and emission impact analysis
of all dining-related trips through different COVID peri-
ods, we can note that the total VMT and pollutant emis-
sions (including GHG, CO, PM2.5, and NOx) all
reduced by 38% during COVID and by 6% to 9% in the
after-COVID case. With increasing EV ratio of the deliv-
ery fleet, the results show that emissions reduced signifi-
cantly with higher EV penetration rate. With 100% EV

Table 5. Vehicle-Miles Traveled (VMT) and Emission Impacts of On-Demand Food Delivery (ODFD) in Different Scenarios

Scenario
Eat-out
trips

No.
orders

No.
vehicles VMT (km)

Greenhouse
gases (GHG) (kg) CO (g) PM2_5 (g) NOx (g)

B ODFD trips 106 23 914.22 175.69 530.23 0.75 32.21
In-person trips 1,222 1,222 22,428.84 4,317.86 12,138.02 17.79 784.69
All eat-out trips 1,328 1,245 23,343.06 4,493.55 12,668.25 18.54 816.90

D ODFD trips 131 28 1,052.00 202.64 612.31 0.87 37.14
In-person trips 746 746 13,351.50 2,570.75 7,238.60 10.56 467.37
All eat-out trips 877 774 14,403.50 2,773.39 7,850.91 11.43 504.51

A1 ODFD trips 200 45 1,658.12 318.24 958.78 1.35 58.36
In-person trips 1,128 1,116 20,298.74 3,907.52 11,000.86 16.03 710.28
All eat-out trips 1,328 1,161 21,956.86 4,225.76 11,959.64 17.38 768.64

A2 ODFD trips 278 57 2,073.08 397.80 1,203.50 1.69 72.99
In-person trips 1,050 1,050 19,189.46 3,692.47 10,404.08 15.14 671.27
All eat-out trips 1,328 1,107 21,262.54 4,090.27 11,607.59 16.83 744.26

Comparison D versus B A1 versus B A2 versus B

Metric No. vehicles 237.83% 26.75% 211.08%
VMT (km) 238.30% 25.94% 28.91%
GHG (kg) 238.28% 25.96% 28.97%
CO (g) 238.03% 25.59% 28.37%
PM2_5 (g) 238.36% 26.23% 29.20%
NOx (g) 238.24% 25.91% 28.89%

Figure 7. Reduction of greenhouse gas emissions under
increasing electric vehicle (EV) penetration rates.
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delivery fleet, the ODFD service can save 14% to 22%
of emissions in the post-COVID context.

This study has potential limitations. First, our evalua-
tion of the VMT and environmental benefits may be
optimistic. (i) The VMT and emissions impact are based
on the optimized order dispatching and routing result,
whereas in the real world this depends on the delivery
platform’s operation strategy and optimization objective.
(ii) We assume delivery drivers will remain idle at a posi-
tion to wait for new orders instead of actively moving
around to enhance the chance of receiving new delivery
tasks, while in practice such deadheading trips might
account for a higher amount of total VMT which may
offset the environmental benefits of ODFD (31). Second,
our food delivery setup is static without considering the
dynamism of order demand and driver resources. This
might not exactly represent the real-world delivery pro-
cess since it is still possible that drivers may be assigned
new orders during the delivery round. Finally, because
of the limitation of existing research on the impact of
COVID on ODFD, we have to take reference from other
research and survey results. This might introduce a slight
gap since the research area and context are different in
our research and other references.

In the future, we will work on improving the model,
for example, setting fuel consumption, which is also
directly correlated with GHG emissions, as the main
objective of the optimization model to investigate the
potential of eco-friendly ODFD. Moreover, factors in
real-world ODFD operation such as profit, incentives,
and compensation for drivers will be considered in the
future work. Another interesting research direction is the
integration of EVs with ODFD, such as considering EV
range limits and access to charging, utilizing EVs to
reduce emissions, and optimizing the order dispatching
decision with a mixed energy fleet of traditional vehicles
and EVs. Finally, this proposed framework and algo-
rithms could be readily employed to solve other on-
demand delivery problems, such as groceries and parcels,
and evaluate the corresponding impact.

Author Contributions

The authors confirm contribution to the paper as follows: study
conception and design: H. Liu, P. Hao, Y. Liao, K.
Boriboonsomsin, M. Barth; data collection: H. Liu, P. Hao, Y.
Liao; analysis and interpretation of results: H. Liu, P. Hao, Y.
liao, K. Boriboonsonsim, M. Barth; draft manuscript prepara-
tion: H. Liu, P. Hao. All authors reviewed the results and
approved the final version of the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This study is funded by the National Center for
Sustainable Transportation (NCST).

ORCID iDs

Yejia Liao https://orcid.org/0000-0003-4997-7528
Kanok Boriboonsomsin https://orcid.org/0000-0003-2558-
5343
Matthew Barth https://orcid.org/0000-0002-4735-5859

References

1. Schmidt, S., C. Benke, and C. A. Pané-Farré. Purchasing
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