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A B S T R AC T
Despite deep learning approaches have achieved promis-

ing successes in 2D optical flow estimation, it is a challenge
to accurately estimate scene flow in 3D space as point clouds
are inherently lacking topological information. In this pa-
per, we aim at handling the problem of self-supervised 3D
scene flow estimation based on dynamic graph convolutional
neural networks (GCNNs), namely 3D SceneFlowNet. To
better learn geometric relationships among points, we intro-
duce EdgeConv to learn multiple-level features in a pyramid
from point clouds and a self-attention mechanism to apply the
multi-level features to predict the final scene flow. Our trained
model can efficiently process a pair of adjacent point clouds
as input and predict a 3D scene flow accurately without any
supervision. The proposed approach achieves superior perfor-
mance on both synthetic ModelNet40 dataset and real L iDAR
scans from K I T T I  Scene Flow 2015 datasets.

Index Terms— 3D Scene Flow Estimation; Graph CNN;
Self-supervised Learning; 3D Scene Understanding.

1. INTRODUCTION

Scene flow describes the 3D motion of points, which can be
used to understand dynamic scenes. With the accurate scene
flow, various high-level applications in 3D computer vision
are able to be improved such as visual odometry, scene re-
construction, object segmentation, etc. Estimating scene flow
directly from two point clouds in 3D space is still demanding,
because most existing works [1] [2] [3] [4] typically generate
3D scene flows from 2D optical flows and stereo/RGB-D in-
formation, which still mainly rely on 2D images and misses
the direct 3D structure information. Such methods cannot be
applied with 3D input data.

There are some existing methods focusing on 3D point
cloud and flow estimation, especially in robotics [5] [6].
Ushani et al. [5] proposed to apply expectation-maximization
(EM) to study scene flow estimation from LiDAR Data. De-
wan et al. [6] formulated the estimation of dense rigid scene
flow from 3D LiDAR scans as a problem of minimizing the
energy function. However, these approaches mainly build a
multi-stage system to extract hand-crafted features, and did
not benefit from deep neural networks.

Most deep learning based approaches for processing point
cloud target at 3D classification and segmentation tasks. For

example, PointNet [7] is a novel network to directly process
unordered point data. It learns a spatial encoding of each scat-
tered point individually and then aggregates them together to
obtain a global feature distribution. An improved version
PointNet++ [7] processed a group of 3D points in a hierarchi-
cal fashion. In this way, the method is able to capture both
local and global features at multiple scales to achieve robust
and detailed capturing. PointCNN [8] proposed the X-conv
operator to replace commonly-used Conv layers in grid-based
CNN to better handle irregular and unordered point clouds.
Wang et al. [9] exploited local geometric features by building a
graph and proposed a convolution-like operator on the con-
nected edges for 3D segmentation. However, these works all
focus on dealing with static point clouds, and mainly target
classification and segmentation.

There are limited attempts on 3D scene flow estimation
with deep learning networks most recently. FlowNet3D [10],
as the 3D counterpart of FlowNet [11] and FlowNet 2.0
[12], learns deep hierarchical features of point clouds and
flow embeddings based on [7]. HPLFlowNet [13] estimated
scene flow from large-scale point groups by introducing three
schemes Down Bilateral Convolutional Layers (DownBCL),
UpBCL, and CorrBCL to achieve a fast and computational
cost-saving method. However, such methods are still in a
supervised manner with point-to-point correspondence to
regress ground truth scene flow, and are not suitable for dy-
namically computing point features at each layer.

In this work, we propose a novel deep learning archi-
tecture for tackling the scene flow estimation problem. The
proposed network dynamically estimates scene flow directly
on 3D point clouds without supervision. Our network first
computes edge features on top of PointNet from two input
point clouds to help construct a local graph and edge em-
beddings, which promote the network to learn both global
and local geometric features. The network model computes
the dynamic graph and then subsequently applies CNN to the
graph to recompute it at each layer. Then the extracted fea-
tures learned from both local and global context are fed into
an attention mechanism to further learn co-contextual infor-
mation by combing embedding features from both source and
target point clouds. In the generation of the final scene flow,
we propose a new module called EdgeDeConv to perform the
accumulation the features to produce the scene flow for 3D
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Fig. 1. Overview of our self-supervised training framework. Our proposed graph convolutional network directly predicts scene
flow motion in 3D space by taking two point clouds as input. Our network is composed of three major components: (a) Dynamic
feature learning; (b) Attention-based transformer; (c) Scene flow generation.

flow generation. Finally, the second input point cloud is able
to be synthesized by warping the first input point cloud and
the predicted scene flow, to construct our self-supervised 3D
reconstruction constraint. The entire framework architecture
is provided in Fig. 1.

We summarize our contributions as follows: (a) To the
best of our knowledge, our work is highlighted to be the first
one to leverage dynamic graph convolutional neural network
on self-supervised scene flow estimation; (b) We introduce
two 3D reconstruction losses: Chamfer reconstruction Loss
and Laplacian shape reconstruction loss, to synthesize the
second input point cloud from the predicted scene flow; (c)
We propose a new EdgeDeConv module, followed by the at-
tention transformer to recover the embedded features and pro-
duce the final scene flow.

2. S C E N E  FLOW ESTIMATION F R A M E WOR K

The proposed self-supervised scene flow estimation method,
3D SceneFlowNet, is composed of three major components:
Dynamic point feature learning, attention transformer and
scene flow generation. In this section, we will describe each
process and our designed self-supervised loss constraints for
the network training.

2.1. Dynamic feature learning

Given point clouds as input, usually the first step for most
existing methods is to embed each set of 3D points into a
higher dimensional space by feature transformation, and then
predicting a global vector for the entire point cloud by aggre-
gating point features with max pooling operation [7] [14].

However, we target at embedding each point as one fea-
ture independently and incorporating both local structure with
global feature together to build the representation inspired by
[9]. Specifically, given two input point clouds, we first con-
struct a k-NN graph on k nearest neighbored points, and then
compute the edge features on those points by applying a non-
linear function to each of the two edge endpoints to generate

an edge-wise weight to connect each of the two vertices, and
save the weights as trainable parameters to help with the net-
work learning process later. The accumulated output from
multiple EdgeConv blocks is an aggregation of vertex points
at each layer. To simultaneously combine the global features
from all layers and learn local information from connected
vertex edges (xm , xm ), the updated output for vertex i  at each
level m can be expressed as:

x m  =  R e LU ( ( x i  1      x j  1) +  (x i  1 )) (1)

where  and  are trainable weights to be updated dynam-ically
in the graph network. The combined edge features for

the entire group of points are a combination of extracted fea-
tures on each point at every layer: X  = p n xm .
Different from previous works, which directly feed the em-
bedded point features into a multi-layer perception (MLP),
we further perform the last EdgeConv layer without pooling
to generate the refined edge features with the dimension of n
(3+c) (n is the number of 3D points, c is the channel number
of the mixed features).

Following the extracted and combined edge features, we
dynamically recompute the entire graph at each layer during
the training phase. From the dynamic updates, the graph CNN
is able to adaptively construct the graph instead of fitting a
fixed setting, which facilitates to deal with various motions,
like scene flow in this work. The effectiveness of dynamic
updating is demonstrated in the ablation analysis parts of Ta-
ble 1 and 2.

2.2. Attention transformer

In order to better learn the flow motion from the two input
point clouds jointly, we adopt an attention mechanism to
establish the inner links between the embeddings of point
groups X  and Y together, instead of computing them sep-
arately.     The motivation to leverage attention model is to
combine integrated features from both point clouds to ad-
dress the shortcomings of focusing on one point cloud only.
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The process is depicted in the attention transformer compo-
nent in Fig. 1. Specifically, if the embedded features learned
from the last EdgeConv module are X  and Y for the two input
point clouds respectively, the designed attention mechanism
is able to learn a mapping representation from X  and Y to X 0

and Y 0, where X 0  and Y 0 are new transformed embeddings
incorporating both self information and mutual information.
A  simple version of our attention mechanism is to compute a
linear combination ()  on the embedded features as:

X 0  =  X  +  (X ; Y ); Y 0 =  Y +  (Y ; X ) (2)
To improve the linear combination and aggregate the in-

puts over multiple times with different transformation rela-
tionships, we modify the position-wise linear combination
() to a non-linear function ()  and add additional learn-able
coefficients  and  to indicate the weights assigned for self-
attention and cross-attention. The improved expression then
turns into:

X 0  =  X  +   E L U ( G N ( X ; Y  )) Y
0 =  Y +   E L U ( G N (Y ; X ) )

where  is a non-linear transformation by a Group Normal-
ization [15] followed by E L U  [16] activation function.

2.3. Scene flow generation

With the encoded features from the attention model, we in-
troduce the EdgeDeConv for the first time to perform feature
accumulation to produce the final predicted scene flow in 3D
space. By decoding the attentioned embeddings as an oppo-
site process of edge-wise encoding, the feature dimension re-
verses from n  (3+c) to n  3, in order to recover the same size
as the input. To determine the exact correspondences be-tween
the two point clouds, we calculate and minimize the point-to-
plane distance, which is the sum of the squared dis-tance
between each point in the first point set and the tangent plane
at the second point set, to find the closest matching.
Therefore, we are able to build the self-supervised losses by
formulating the scene flow estimation as a 3D reconstruction
problem. Assuming the first input point cloud is P s r c  and
the second input point cloud is Ptgt , the predicted scene flow
between the point clouds is F  and thus the synthesized sec-
ond point cloud Ptg t can be expressed as Ptg t =  P s r c  +  F .
We expect the vector of Laplacian coordinates of the synthe-
sized point cloud should be consistent with the source point
cloud. The differential coordinate vector can be written as:
(pi ) =   1 (pj    pi ), where (p) is the Laplacian co-
ordinate vector at point p. d is a set of points near the center
vertex. To build a consistency between the two local shape
characteristics of the surface, as a rough alignment in shape,
the reconstructed shape regularization term is defined as:

Ls h a p e  =  
X X

k(pm )      (qn )k2
(4)

m 2 P t g t ; n 2 P t g t

In addition to the shape consistency term, the recon-
structed Chamfer loss is further introduced, as a fine ad-
justment, to best preserve the overall structure and point
distribution at each level l, it can be expressed as:

L c h a m f e r  = ( min Ptgt      Ptg t  +
l        x 2 P t g t

(5)
min Ptgt      Ptg t  )

y 2 P t g t

The overall self-supervised constraint on two point sets
is a weighted sum of the two proposed reconstructed losses
across every level: L s e l f  =  1 L c h a m f e r  +  2 Lshape .

3. E XPE R I M E N T S

To evaluate our models, we test on both synthetic Model-
Net40 dataset and real-world K I T T I  Scene Flow dataset, with
compairsons with other state-of-the-art methods. An ablation
study is conducted to analyze the contribution of each key
component.
3.1. Dataset and setup

For training, we select the K I T T I  scene flow dataset [17]
[18], which is originally used to evaluate of stereo based
algorithms. To generate point clouds, We randomly sample n
points from each frame in a non-corresponding manner,
which means there are no point-to-point correspondences be-
tween the points for the first frame and the points sampled
from the second frame. To evaluate the performance of 3D
scene flow calculation, we use the sampled point clouds from
adjacent frames, remove the ground points and apply 150
point clouds of all the 200 point clouds for training, since
there is no ground truth in the test split.

We also test on the ModelNet40 [19] dataset, which con-
sists of totally 12311 3D CAD models of 40 categories. We
utilize the official 9843 shapes for training and the rest 2468
for testing. To generate the scene flow, following the similar
setting as in the K I T T I  dataset, we randomly transform the
raw point cloud with a rotation degree in the range of [0, 45]
and a translation ranging from -0.5 and 0.5, sampled the raw
and transformed point clouds in a non-corresponding manner,
and take the sampled point clouds together as our input each
time.

During the training phase, we build a four-level feature
pyramid in the graph network from the two input point clouds.
The weights for 1 and 2 are set to be 1.0 and 0.25 based on
testing. We train our model starting from a learning rate of
0.001 and reducing it to half every 60 epochs. Each point
cloud is sampled to 2048 points for efficient and fast learning.
For evaluation, we adopt 3D average End-Point-Error (EPE)
and flow estimation accuracy (ACC) to restrict the percentage
of points with a relative error less than 5% as our evaluation
metrics and compare with ground truth scene flow and other
recent algorithms.
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Fig. 2. Results on the K I T T I  Scene Flow dataset. In each
sample column, first to last row: 2 input point clouds PC1 and
PC2 are drawn in Blue and Red, respectively; Our predicted
PC2 (green) with the estimated scene flow and ground truth
PC2 (red); Same for [20] (3rd row) and [10] (4th row).

Method Input EPE3D AC C
ICP [20]                          points        0.385        57.6%

Dewan et al. [6]                   points        0.587        28.3%
Splatnet [21]                      points        0.147        84.7%

FlowNet3D [10]                   points        0.122        94.4%
Ours w/o dynamic updating         points        0.109        90.3%

Ours w/o attention mechanism       points        0.117        86.9%
Ours w/o surface regularization      points        0.120        87.5%

Ours full                          points        0.102        92.6%
Table 1. Quantitative result on the K I T T I  Scene Flow dataset.
For error metric 3D End-point-error (EPE3D), lower is better.
For accuracy metric ACC,  the higher the better.

3.2. Experimental results
Table 1 and Table 2 report the scene flow estimation results
on K I T T I  Scene Flow and ModelNet40 dataset, respectively.
We first compared with ICP algorithm [20] and scene flow
tracking [6]. It can be observed our algorithm achieves much
higher performance than these two methods in K I T T I  dataset
because they are more suitable for rigid transform but not well
adapted to moving scenes or objects, especially for [6]. Com-
pared with deep learning based supervised methods Splatnet
[21] and FlowNet3D [10], our pipeline still shows slightly
better performance especially for EPE3D (in meters). The
reason can be explained as that the proposed network is able
to learn better the represented features from each point group
and relationships between both point clouds efficiently bene-
fiting from the dynamic updating and attention mechanism.

Table 1 and Table 2 also provide the effects of each key
component in the proposed 3D SceneFlowNet. Comparing
with different settings without one component at each time
(w/o dynamic updating, attention and shape regularization),
our proposed full pipeline gets the best performance, with
(5.7% accuracy improvement compared to the setting w/o at-
tention mechanism on K I T T I  and 9.6% accuracy improve-

Fig. 3. Results on the ModelNet40 dataset. In each sample
column, first to last row: 2 input point clouds PC1 and PC2
are drawn in Blue and Red, respectively; Our predicted PC2
(green) with the estimated scene flow and ground truth PC2
(red); Same for [20] (3rd row) and [10] (4th row).

Method Input EPE3D AC C
ICP [20]                          points        0.210        63.9%

Dewan et al. [6]                    points        0.463        39.3%
Splatnet [21]                       points        0.076        88.0%

FlowNet3D [10]                   points        0.054        94.3%
Ours w/o dynamic updating         points        0.041        91.7%

Ours w/o attention mechanism       points        0.047        84.5%
Ours w/o surface regularization      points        0.050        86.4%

Ours full                          points        0.036        94.1%
Table 2. Quantitative result on the ModelNet40 dataset. For
error metric 3D End-point-error (EPE3D), lower is better. For
accuracy metric ACC,  the higher the better.
ment on ModelNet40). Figure 2 and 3 provide visual results
of our scene flow prediction together with the results from
other classic and deep learning methods. We can see that
compared with [20] and [10], our network can recover the 3D
flows for dynamic objects and small details more accurately,
while the compared methods only roughly obtain a rigid flow
for the entire point cloud, especially for [20].

4. CONCLUSION
This paper presents a novel graph-based self-supervised 3D
scene flow estimation approach 3D SceneFlowNet, which
benefits from the multi-level dynamic point learning to better
extract features from single point group and multi-level at-
tention mechanism to better learn the relationships between
different point clouds. To estimate the scene flow in 3D space
without supervision, we propose the EdgeDeConv operator
and the two types of 3D reconstruction losses. Our approach
achieves extraordinary performance in both accuracy and
error metrics on two different datasets.
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