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Abstract—Class-8 battery electric trucks (BET) are modeled 

and simulated in this paper to determine their capability in 

fulfilling real-world drayage activity under different operational 

scenarios. Potential wireless charging zones at port terminals are 

identified, and wireless charging opportunities are introduced to 

improve drayage activity fulfillment of BETs. The results show 

that current BETs would be able to fulfill approximately 79-86% 

of the real-world drayage activity sample used in this research, 

and that the ability to receive wireless opportunity charging at 

port terminals could help increase the activity fulfillment to about 

84-91%.  

Keywords—electric vehicle, class-8 truck, range anxiety, drayage 

operations, fleet, wireless charging 

I. INTRODUCTION 

One of the major frontiers for transportation emission 
reduction is the electrification of heavy-duty trucks. Due to the 
higher energy requirement of these vehicles compared to 
passenger cars, the capabilities of battery electric trucks (BET) 
have long been questioned. With the recent advances in battery 
technology, and in electric vehicles (EV) in general, longer-
range EVs are becoming more mainstream. Ever-faster charging 
is also becoming available. However, even though battery 
electric class-8 trucks are currently available commercially [1], 
and more are poised to enter the market in the near future [2], 
concerns regarding the range and charging requirements of 
heavy-duty BETs still remain. Such concerns are valid for long-
haul applications, but shorter-distance operations such as 
drayage appear suitable for BETs in the current market with 
advertised ranges of longer than 250 miles (e.g., [1]). Drayage 
is defined as the activity of transporting containers and bulk in-
between ports, intermodal railyards, and near-by warehouses by 

heavy-duty trucks [3]. Drayage trucks typically work out of a 
base, return to the base at least once per day, have limited daily 
mileage, and spend large portions of driving time in transient 
modes or creeping. These are all prime characteristics that make 
drayage trucks suitable for electrification, as the frequent base 
visits can be used for charging, the limited mileage addresses 
electric range anxiety, and the frequent braking and slow-speed 
movement favor BETs over diesel trucks by providing 
regeneration and reduced energy consumption. Moreover, in 
Southern California, drayage truck activities primarily take 
place near minority and low-income communities, raising 
environmental justice concerns [4]. Therefore, at least on paper, 
BETs have a strong case to replace the diesel trucks in drayage 
fleets.  

Energy demands in drayage operation along with the service 
schedule need to be analyzed to properly assess BET 
deployment feasibility for this application. A model BET can be 
simulated to carry out recorded drayage activity from diesel 
trucks to investigate its capability. Energy consumption of EVs 
based on activity is well-investigated. The physics governing 
vehicle energy demand based on driving speed was modeled in 
[5]. Reference [6] used similar formulations for energy 
consumption prediction. In [7], heavy-duty battery electric and 
plug-in hybrid vehicles were modeled. Similar modeling 
approach was followed in [8] to evaluate performance of 
different medium- and heavy-duty EVs. Reference [9] also 
demonstrated EV energy consumption formulation in detail. In 
this paper, following similar procedures, a microscopic energy 
consumption model is developed to mimic a commercial BET 
with two different battery capacities. 

For simulating charging scenarios, assumptions are made to 
emulate real-world conditions (e.g., lost time for setting up 
charger). Tanvir et al. demonstrated methodology to This work received funding support from the US Department of 
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characterize drayage truck activity data into trips (travelling 
between two nodes) and tours (a chain of trips starting at the 
base and finally coming back to it) [4]. Such identification is 
necessary to break up the microscopic energy consumption data 
into individual sessions, and to identify potential time durations 
for charging. This methodology is adopted in this paper to 
analyze real-world drayage fleet activity data. Finally, drayage 
fleet operation was analyzed for three scenarios, each with 
distinct properties, to investigate if a BET drayage fleet can 
perform at the same level as the diesel fleet. 

Failing to sufficiently recharge the batteries would be a 
major concern for some drayage fleets whose trucks spend little 
time at base in-between tours. Tanvir et al.’s analysis showed 
that a fleet of  BETs with 250 kWh battery would be able to 
perform 75% of the tours if base charging between tours was 
considered [4]. In this paper, it is investigated if the modeled 
trucks with larger batteries, and slightly higher charging 
power—albeit under more realistic conditions—can help 
improve this number. Additionally, as a convenient and 
accessible solution for out-of-base charging, this paper proposes 
wireless charging at port locations where drayage trucks spend 
considerable amounts of time. This additional charging 
opportunity can further help increase the proportion of tours that 
are feasible. Installing wireless chargers at ports can benefit both 
drayage operators and the port authority [11]. The operators 
benefit from out-of-base accessible charging opportunities that 
require no extra travel (driving to and from charging station) and 
labor (connect-disconnect charging port), without bearing any 
installation and maintenance overhead. Availability of out-of-
base charging stations for BETs can be uncertain and 
insufficient, which causes concerns while scheduling the tours. 
Wireless charging mitigates this issue as well. The port authority 
benefits from the operators opting to increase BET penetration 
in fleets, reducing emissions and thus meeting port objectives 
[10]. This paper contributes through its simulation of current 
BETs for drayage application, identification of wireless 
charging zones at port terminals, and studying their effect on 
BET drayage operation. 

II. METHODOLOGY 

A. Data Collection 

This study used vehicle activity data collected from 20 class-
8 diesel trucks, operating out of the fleet base located about a 
mile away from the Los Angeles port. The fleet primarily served 
the San Pedro Bay port complex (Port of Los Angeles and Port 
of Long Beach), the Greater Los Angeles Metropolitan area, and 
the Inland Empire area. Occasionally, the fleet also serviced 
destinations in Central Valley and inland Northern California. 
Over 170 engine control unit (ECU) parameters and GPS data 
(e.g., timestamp, speed, longitude, latitude) were recorded at 1 
Hz with data loggers. The collected data was then processed in 
multiple steps for data cleaning and correction, identifying trips, 
and trip origin-destination cloaking for confidentiality [12]. 
Road grade data was added through map-matching. Only the 
freeway grades were available, thus for non-freeway portions of 
the trips, road grade was considered 0 (flat terrain). The final 
dataset provided truck activity for the week of Monday, Jan 23, 
2017 through Friday, Jan 27, 2017. 

B. Tractive Energy Consumption Model 

Using the 1 Hz activity data, tractive power requirement for 
BET at each second, , was calculated as: 

 =   + 0.5 +  + 
       (1) 

where   is BET mass,   is instantaneous speed,   is 
instantaneous acceleration,  is air density,  is coefficient of 
drag,  is BET front area,  is coefficient of rolling resistance 
of BET tires,  is gravity,  is angle of inclination of the road. 
The collected data did not record instantaneous mass, thus a 
static BET (plus cargo) mass of 35,906 kg was used [4]. 

Instantaneous energy consumption,   from the battery 
can be obtained considering the component efficiencies: 

  = /  (2) 

where ,  , ,   are efficiencies of wheel, final drive, 
motor, and battery, respectively.  was calibrated to match the 
rated range of the simulated BET (275 miles with a 565 kWh 
battery [1] and weighing 80,000 lbs). 

Negative   instances (deceleration) at certain thresholds of 
speed and acceleration provided regeneration [7]: 


 =  ;  ∀( < 0) ∩ ( > 5) ∩ ( < 3)

      (3) 

C. Wireless Charging Model 

The BETs were considered to charge wirelessly at out-of-
base locations, wherever wireless chargers would be available. 
Placement of wireless chargers need to be strategic to maximize 
their utilization. In this study, zones at the San Pedro Bay port 
complex where drayage trucks spend a significant amount of 
time stopping or queuing (e.g., terminal gates) were considered 
for this purpose, as this would allow the trucks the most 
opportunity for charging. To identify these locations, different 
terminals at the port complex were identified first (Fig. 1). 
Collected truck activity data was then used to estimate 
stop/queuing time within terminal boundaries. Potential wireless 
charging zones were selected from locations in the terminals 
with a cluster of stop/queuing data points. To do this, vehicle 
activity data was filtered first by speed (speed = 0) to find where 
the trucks were stopping/idling. These data points, paired with 
aerial images, aided in estimating queuing areas; polygons 
drawn around them then gave potential wireless charging zones. 
Next, by geofencing, the collected GPS data was used to identify 
instances of truck presence at any of the potential charging 
zones. Noisy GPS data showing position change when vehicles 
were not moving were corrected. This was done by considering 
a vehicle staying in a charging zone when its speed is zero, but 
GPS data showing it moving out of the zone. Consecutive 
matched geofence data points were finally grouped together to 
create potential charging events, as if wireless chargers were 
installed in those zones. The summary of such events identified 
for each truck is shown in Table I. During wireless charging, 
instantaneous energy gain was calculated as: 


 =  ; if truck in charging zone

0; else                                                       (4) 
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where   is wireless charging power, and   is wireless 
charging efficiency. 

Instantaneous battery energy consumption can now be 
calculated as: 


 =  +   

  


       (5) 

where  is the per-second energy consumption of accessory 
loads (e.g. air conditioning); here it is the same as the accessory 
load rating,  . Now, the total battery energy consumption in 
a trip can be found by: 

 
 =  


 ;  = trip duration (6) 

 

 

Fig. 1. Locations identified to place wireless chargers (in red) at different terminals (marked by translucent torquise and brown polygons) at the Port of Los Angeles 
(POLA) and the Port of Long Beach (POLB). 
 

TABLE I.  WIRELESS CHARGING STATISTICS. COLORS SHOW RELATIVE VALUES (RED: LOWEST, GREEN: HIGHEST) FOR TIME SPENT AT EACH ZONE 

 

 

Operating hours 36 55 84 68 68 37 59 64 74 53 41 75 34 70 64 76 958

Operating seconds 128397 197437 302426 246244 245843 133106 211466 230303 268009 190459 147875 270473 121164 252249 231706 273295 3450452

Zone/Truck ID LL052 LL056 PEN016 TEC004 TEC006 TEC025 TEC039 TEC042 TEC043 TEC044 TEC045 TEC046 TEC047 TEC048 TEC049 TEC050 Sum

LB6 550 194 0 253 0 0 3567 1406 64 1911 1013 0 99 0 0 0 9057

LB6misc 229 0 0 6 0 0 917 0 1532 0 1088 0 0 721 0 0 4493

LA5 3 2187 5285 0 0 0 0 0 0 3982 611 0 397 0 0 164 12629

LA9 4790 0 3122 0 7933 12574 7770 0 6252 2763 3021 7649 9070 4324 7273 4574 81115

LA8ex 95 0 642 0 647 286 3789 0 1778 179 559 818 5068 1147 1112 550 16670

LA9ex 183 0 416 0 564 4191 3633 0 1754 143 760 442 1925 1037 378 825 16251

LA4ex 160 30 22 0 651 831 81 639 13 207 108 244 0 1604 234 563 5387

LA4ex2 235 331 62 0 269 211 80 545 161 299 179 136 0 263 1231 835 4837

LA4 481 1207 273 0 2619 998 320 7737 2432 5653 576 2952 0 5884 1271 10210 42613

LA7ex 755 1348 4309 2157 1718 236 1867 1169 1177 1667 103 3232 15 2889 2456 1422 26520

LA3ld2 5099 2382 3579 10449 7760 442 0 5147 5180 538 0 3768 121 413 1891 1164 47933

LA7 2445 1977 6072 15733 10665 4338 4545 3381 16474 9655 145 26322 441 12674 3483 12766 131116

LA3 1732 61 6402 180 184 51 0 288 823 39 6 34 0 207 0 0 10007

LA3ld 324 174 2354 997 1755 724 0 318 0 153 0 650 0 199 0 0 7648

LA2ld 182 0 4 52 3529 0 0 4406 3420 0 0 0 0 0 0 3861 15454

LB1 0 5953 789 0 1948 449 1935 3024 3281 197 0 0 0 1418 6192 4309 29495

LB4 0 556 0 2818 2666 2248 929 0 400 292 2237 0 229 0 364 206 12945

LA7w 0 0 2440 791 380 0 0 172 16 116 0 3 0 952 787 209 5866

LB2 0 0 0 0 0 1127 92 0 0 0 703 0 97 0 0 0 2019

LA8 0 0 0 0 0 0 228 0 0 0 151 0 0 205 0 601 1185

LB5 0 0 0 0 0 0 1832 2453 0 0 0 0 0 1471 0 1102 6858

LA2 0 0 0 0 0 0 0 183 0 201 0 2924 117 0 0 0 3425

LA1misc 0 0 0 0 0 0 0 0 0 10 0 426 278 0 0 0 714

Sum 17263 16400 35771 33436 43288 28706 31585 30868 44757 28005 11260 49600 17857 35408 26672 43361 494237

% of operating time 13 8 12 14 18 22 15 13 17 15 8 18 15 14 12 16 14
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D. Tour Generation 

The trip energy consumption, and other trip-level data was used 
to identify tours. The starting and ending GPS coordinates of 
trips were used to identify if those locations were at, or out of 
the base. Noise in GPS data was addressed by considering any 
trip-end coordinate within 1 mile of the base as being in the base. 
Further details on the tour generation algorithm can be found in 
[4]. The recorded data yielded 193 tours for the 20 trucks, and 
tour-level energy consumptions were calculated for each tour by 
summing up the energy consumption of the comprising trips: 


 = ∑ 

 ;  = number of trips in tour
       (7) 

E. Base Charging Model 

 Time at the base can be used to charge BETs with 
conventional charging stations. Battery energy after base 
charging:  

  = 
 + ∑ ()  (8) 

where 


 is battery energy before base charging starts,  

is time available for base charging (in seconds),  is effective 

time factor,  is charging efficiency, and   is charging power 
as a function of battery state of charge (SOC: energy content of 

the battery as a fraction of battery capacity); SOC-  curve is 
shown in Fig. 2 [13].  is introduced to capture the fact that the 
time spent at base cannot be fully utilized for charging. A portion 
of the time is spent in setting up trucks at charger, the truck 
engaged in other tasks, or operators simply forgetting to plug in 
immediately. Table II shows parameters values for this study. 

 

Fig. 2. Change of instantaneous charging power with battery SOC. 

 

 

 

 

 

TABLE II.  PARAMETER VALUES [1], [4][11][14] 

 Parameter Symbol Value 

Vehicle 

Battery size (kWh) - 377, 565 

Mass (kg)  35906 

Coefficient of drag  0.65 

Front area (m2)  8.5 

Coefficient of rolling 

resistance 
 0.008 

Accessory load for EV (kW)  2.8 

Wheel efficiency  0.99 

Final drive efficiency  0.98 

Motor efficiency  0.88 

Battery efficiency  0.88 

Atmosphere 
Air density (kg/m3)  1.161 

Gravity (m/s2)  9.8 

Wireless 

charging 

Charging power (kW)  125, 250, 

380, 500 

Wireless charging efficiency  0.9 

Base 

charging 

Rated charging power (kW) - 250 

Charging efficiency   0.85 

Effective time factor  0.8 

III. OPERATIONAL FEASIBILITY ANALYSIS 

The modeled system was used to simulate several different 
scenarios to determine the operational feasibility of BETs. The 
scenarios are first described for a case where wireless charging 
is not available ( = 0) – thus demonstrating the capabilities 
of the two simulated battery sizes in meeting the activity 
demands of the trucks without any external aid. 

A. S-1: All Tours Start with 100% SOC 

The first step to identifying feasible tours for BETs is to 
identify the tours within the battery range. EV ranges advertised 
in specifications are usually mentioned in terms of distance (e.g. 
miles), estimated from the energy consumption observed from 
standard driving cycles [15]. Real world energy consumption 
differs to some extent, so it is worthwhile using the developed 
model to calculate energy consumption of each tour, and see 
how many of them fall within the range of the modeled truck. S-
1 utilizes Eq. (1)-(7). This scenario assumes that the trucks start 
with a full battery at the beginning of each tour, and with this 
assumption, it was found that 4.1% and 0.5% of the recorded 
tours were beyond the range of the modeled BET with 377 kWh 
and 565 kWh battery packs, respectively. However, having a full 
battery at the start of each tour is highly unlikely as the time 
spent at base in-between tours is often shorter than what is 
needed for a full charge. Conversely, the tours beyond the range 
of a fully charged battery will stay infeasible regardless of the 
charging time. Therefore, we need to further analyze the tours 
determined to be feasible in S-1 to see what proportion of them 
stays feasible when charging constraints are considered. To do 
that, for each battery size considered, the tours beyond range 
were discarded, assuming those were assigned to diesel trucks, 
and the tours within range were assigned to BETs. Thus, in the 
upcoming scenarios, the BETs are carrying out tours in a slightly 
different order than what was recorded from diesel trucks, 
skipping a few. 

B. S-2: Base Charging on Rest Day 

The collected data showed that the studied fleet operated six 
days a week, with Sunday as the rest day. As the drayage tours 
are scheduled beforehand, the operator would keep the rest day 
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for charging the trucks. So, this scenario takes the feasible tours 
for the BETs, and simulates them with fully charged BETs that 
will serve as many tours as possible until their batteries run out. 
Then, they are recharged on Sunday with a 250 kW charger, and 

again goes through the scheduled tours with   
(from Eq. (8)) until the batteries are depleted. Here, Eq. (1)-(8) 
were used; (8) being applied for Sundays only, with  = 24 ×
3600 (whole Sunday). This scenario revealed that among the 
feasible tours identified in S-1, only 71% and 81% would be 
feasible with 377 kWh and 565 kWh battery capacities, 
respectively.  

C. S-3: Opportunity Charging at Base 

S-2 showed that it is essential for BETs to be charged more 
frequently to reduce the number of infeasible tours. Therefore, 
opportunity charging at base was considered in this scenario. It 
is assumed that the time spent at base between two consecutive 
tours would be used to charge the trucks. Thus, this 
automatically includes the charging on rest day. Eq. (1)-(7) gave 
the tour energy consumption, Eq. (8) gave the battery energy 
after opportunity charging at the end of each tour, where  was 
the time difference between consecutive tours. The next tour 

started with   from Eq. (8). This scenario showed 
that 80% and 86% of the tours within ranges of 377 kWh and 
565 kWh battery packs would be feasible when opportunity 
charging at the base is considered. One solution to serving more 
tours is increasing the charging power beyond 250 kW, but that 
is not possible for the simulated trucks as they are rated for 250 
kW [1]. 

D. Adding Wireless Opportunity Charging at Port Terminals 

Another way to improve tour completion is to introduce 
wireless charging at the port terminals. Table III shows the fleet-
level percentages of feasible tours for the three previous 
scenarios when considering different wireless charging powers. 
It should be noted that the values for S-2 and S-3 listed in the 
table are in terms of all the 193 tours carried out by the diesel 
fleet, and not the percentage of only tours within range which 
are reported in S-2 and S-3 above (those values are from the in-
range subset of the 193 tours). The values for S-2 and S-3 are 
also color-coded in a green-yellow-red scale, green being the 
most feasible and red being the least, to better illustrate the 
changes in these values with different wireless charging power 
and battery capacity. 

 

 

 

 

 

 

 

 

 

 

TABLE III.  FEASIBLE TOURS UNDER DIFFERENT SCENARIOS  

Battery 

size (kWh) 

Wireless Charging 

(kW) 
S-1 S-2 S-3 

377 

No wireless charging 95.9% 70.1% 79.1% 

125 97.9% 71.9% 82.2% 

250 98.5% 71.7% 84.0% 

380 98.5% 71.7% 84.0% 

500 98.5% 72.2% 84.0% 

565 

No wireless charging 99.5% 80.6% 86.4% 

125 99.5% 82.7% 89.5% 

250 99.5% 83.2% 90.6% 

380 99.5% 83.2% 90.6% 

500 99.5% 83.2% 91.1% 

 

The results for S-1 show tours with energy consumption 
beyond vehicle range. For the 377 kWh battery pack, wireless 
charging increased the range, as visible from the increase in the 
fraction of feasible tours from 95.9% without wireless charging 
to 97.9% with 125 kW wireless charging, and then to 98.4% 
with 250 kW wireless charging, which then remained 
unchanged for 380 kW and 500 kW. The 565 kWh battery’s 
range, unsurprisingly, is longer. However, wireless charging 
even at the highest power of 500 kW did not aid the larger 
battery pack to cover all the tours—one of the tours has a 
distance of 303 miles. The infeasible tour’s energy requirement 
surpassed the capacity of the larger battery, and was not fulfilled 
by the additional energy gain at the wireless charging zone(s).  

For S-2 with 377 kWh battery, the fraction of feasible tours 
increased with the introduction of 125 kW wireless charging, but 
rather interestingly, slightly decreased for the 250 kW wireless 
charging and stayed the same for 380 kW, before increasing for 
the higher 500 kW wireless charging. This was due to the way 
S-2 was formulated: it discarded the tours identified to be 
beyond the range in S-1, and used the rest in S-2. This makes the 
tour sequence in S-2 (and S-3) be different from the one 
recorded in the activity data. In this case, wireless charging of 
250 kW and 380 kW made a certain tour fall within the range in 
S-1, which was deemed beyond range when 125 kW charging 
was simulated. However, the 377 kWh battery ran out before 
completing this tour in S-2 in 250 kW and 380 kW charging 
configurations, whereas the 125 kW case did not need to 
simulate this particular tour as it was discarded in S-1. Thus, the 
125 kW configuration completed an additional tour that could 
be served with a 377 kWh capacity by means of removing a 
preceding more energy-consuming tour from the original tour 
sequence, and this allowed it to appear slightly more feasible. 
This incident provides a very useful insight in BET operation: 
tours should be sequenced considering their energy 
consumption, in a way that allows the maximum amount of tour 
completion with finite battery capacity. Extensive tour 
reshuffling in this manner was not implemented in this paper 
other than the construction of S-2 and S-3, but this is a powerful 
tool to improve the efficiency of BET fleets. S-2 for 565 kWh 
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battery shows the fraction of feasible tours increasing up until 
250 kW, and then becoming constant, indicating that the energy 
gains from wireless charging are insufficient to fulfill any 
additional tour.  

The results for S-3 showed improvements over those for S-
2, as expected. The fraction of feasible tours plateaus at 250 kW 
wireless charging for the 377 kWh battery pack, indicating no 
gains with increased wireless charging powers. However, for the 
565 kWh pack, 500 kW wireless charging did increase the 
fraction of feasible tours even further. Although this analysis 
shows that the 565 kWh battery pack could serve the most 
amount of tours, if opportunity charging at base and 500 kW 
wireless charging at the port terminals were utilized, it still could 
not serve all the tours. It should also be noted that 250 kW is the 
highest charging power the modeled truck is rated for, and thus 
cannot benefit from higher charging powers. Nevertheless, all 
the scenarios analyzed in this paper demonstrated the enhanced 
capabilities of the newer BETs with increased battery capacity, 
as all the feasibility percentages were high than the values 
reported in [4], which simulated an earlier model BET. An even 
larger battery pack, a higher power charging at the base, and a 
re-ordering of the tour sequence are some ways to further 
improve the feasibility of operating a 100% BET fleet in drayage 
application. 

IV. CONCLUSIONS AND FUTURE WORK 

Drayage has been deemed suitable for electrification as 
drayage trucks typically work out of a base, return to the base at 
least once per day, have limited daily mileage, and spend large 
portion of driving time in transient modes or creeping. However, 
there is variation in operating characteristics among different 
drayage operators. Using real-world activity data of 20 trucks 
from one drayage operator near the Port of Los Angeles, this 
study shows that BETs in the current market would be able to 
fulfill up to 86% of the tours performed by these trucks. 

This study also evaluates the effectiveness of utilizing 
wireless charging zones at port terminals to increase the 
operational feasibility of  drayage BETs. The results show that 
if wireless charging opportunities at port terminals are available, 
then BETs would be able to fulfill up to 90% of the tours 
performed by the existing diesel trucks. Installing wireless 
chargers is a costly task, but doing so at selected zones in port 
terminals can directly provide en-route opportunity charging to 
drayage trucks without impacting their operations (e.g., no need 
for them to make extra trips to and from a charging station). 

In terms of future work, an optimal strategy for selecting and 
prioritizing wireless charging zones should be developed, as it 
may not be financially possible to install all of them at once. As 
shown in Table I, some zones were visited for longer duration 
than others, which would provide more time for BETs to receive 

wireless charging. The feasibility analysis will be expanded to 
examine scenarios with different subsets of wireless charging 
zones, possibly with different levels of charging power, to 
identify an optimal solution (least number of zones yielding 
maximum number of feasible tours). In addition, on the fleet 
operational side, the modification of the tour sequence and the 
use of higher power base chargers to help increase the number 
of feasible tours will also be investigated.  
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