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Abstract—Class-8 battery electric trucks (BET) are modeled
and simulated in this paper to determine their capability in
fulfilling real-world drayage activity under different operational
scenarios. Potential wireless charging zones at port terminals are
identified, and wireless charging opportunities are introduced to
improve drayage activity fulfillment of BETs. The results show
that current BETs would be able to fulfill approximately 79-86%
of the real-world drayage activity sample used in this research,
and that the ability to receive wireless opportunity charging at
port terminals could help increase the activity fulfillment to about
84-91%.
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I. INTRODUCTION

One of the major frontiers for transportation emission
reduction is the electrification of heavy-duty trucks. Due to the
higher energy requirement of these vehicles compared to
passenger cars, the capabilities of battery electric trucks (BET)
have long been questioned. With the recent advances in battery
technology, and in electric vehicles (EV) in general, longer-
range EVs are becoming more mainstream. Ever-faster charging
is also becoming available. However, even though battery
electric class-8 trucks are currently available commercially [1],
and more are poised to enter the market in the near future [2],
concerns regarding the range and charging requirements of
heavy-duty BETs still remain. Such concerns are valid for long-
haul applications, but shorter-distance operations such as
drayage appear suitable for BETs in the current market with
advertised ranges of longer than 250 miles (e.g., [1]). Drayage
is defined as the activity of transporting containers and bulk in-
between ports, intermodal railyards, and near-by warehouses by
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heavy-duty trucks [3]. Drayage trucks typically work out of a
base, return to the base at least once per day, have limited daily
mileage, and spend large portions of driving time in transient
modes or creeping. These are all prime characteristics that make
drayage trucks suitable for electrification, as the frequent base
visits can be used for charging, the limited mileage addresses
electric range anxiety, and the frequent braking and slow-speed
movement favor BETs over diesel trucks by providing
regeneration and reduced energy consumption. Moreover, in
Southern California, drayage truck activities primarily take
place near minority and low-income communities, raising
environmental justice concerns [4]. Therefore, at least on paper,
BETs have a strong case to replace the diesel trucks in drayage
fleets.

Energy demands in drayage operation along with the service
schedule need to be analyzed to properly assess BET
deployment feasibility for this application. A model BET can be
simulated to carry out recorded drayage activity from diesel
trucks to investigate its capability. Energy consumption of EVs
based on activity is well-investigated. The physics governing
vehicle energy demand based on driving speed was modeled in
[5]. Reference [6] used similar formulations for energy
consumption prediction. In [7], heavy-duty battery electric and
plug-in hybrid vehicles were modeled. Similar modeling
approach was followed in [8] to evaluate performance of
different medium- and heavy-duty EVs. Reference [9] also
demonstrated EV energy consumption formulation in detail. In
this paper, following similar procedures, a microscopic energy
consumption model is developed to mimic a commercial BET
with two different battery capacities.

For simulating charging scenarios, assumptions are made to
emulate real-world conditions (e.g., lost time for setting up
charger). Tanvir et al. demonstrated methodology to
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characterize drayage truck activity data into trips (travelling
between two nodes) and tours (a chain of trips starting at the
base and finally coming back to it) [4]. Such identification is
necessary to break up the microscopic energy consumption data
into individual sessions, and to identify potential time durations
for charging. This methodology is adopted in this paper to
analyze real-world drayage fleet activity data. Finally, drayage
fleet operation was analyzed for three scenarios, each with
distinct properties, to investigate if a BET drayage fleet can
perform at the same level as the diesel fleet.

Failing to sufficiently recharge the batteries would be a
major concern for some drayage fleets whose trucks spend little
time at base in-between tours. Tanvir et al.’s analysis showed
that a fleet of BETSs with 250 kWh battery would be able to
perform 75% of the tours if base charging between tours was
considered [4]. In this paper, it is investigated if the modeled
trucks with larger batteries, and slightly higher charging
power—albeit under more realistic conditions—can help
improve this number. Additionally, as a convenient and
accessible solution for out-of-base charging, this paper proposes
wireless charging at port locations where drayage trucks spend
considerable amounts of time. This additional charging
opportunity can further help increase the proportion of tours that
are feasible. Installing wireless chargers at ports can benefit both
drayage operators and the port authority [11]. The operators
benefit from out-of-base accessible charging opportunities that
require no extra travel (driving to and from charging station) and
labor (connect-disconnect charging port), without bearing any
installation and maintenance overhead. Availability of out-of-
base charging stations for BETs can be uncertain and
insufficient, which causes concerns while scheduling the tours.
Wireless charging mitigates this issue as well. The port authority
benefits from the operators opting to increase BET penetration
in fleets, reducing emissions and thus meeting port objectives
[10]. This paper contributes through its simulation of current
BETs for drayage application, identification of wireless
charging zones at port terminals, and studying their effect on
BET drayage operation.

II. METHODOLOGY

A. Data Collection

This study used vehicle activity data collected from 20 class-
8 diesel trucks, operating out of the fleet base located about a
mile away from the Los Angeles port. The fleet primarily served
the San Pedro Bay port complex (Port of Los Angeles and Port
of Long Beach), the Greater Los Angeles Metropolitan area, and
the Inland Empire area. Occasionally, the fleet also serviced
destinations in Central Valley and inland Northern California.
Over 170 engine control unit (ECU) parameters and GPS data
(e.g., timestamp, speed, longitude, latitude) were recorded at 1
Hz with data loggers. The collected data was then processed in
multiple steps for data cleaning and correction, identifying trips,
and trip origin-destination cloaking for confidentiality [12].
Road grade data was added through map-matching. Only the
freeway grades were available, thus for non-freeway portions of
the trips, road grade was considered O (flat terrain). The final
dataset provided truck activity for the week of Monday, Jan 23,
2017 through Friday, Jan 27, 2017.

B. Tractive Energy Consumption Model

Using the 1 Hz activity data, tractive power requirement for
BET at each second, P, was calculated as:

P, = mv,a, + 0.5pC Av3 + C,.gmv.cos6 + gmv,sind
(1)

where m is BET mass, v, is instantaneous speed, a; is
instantaneous acceleration, p is air density, C, is coefficient of
drag, A is BET front area, C,,. is coefficient of rolling resistance
of BET tires, g is gravity, 8 is angle of inclination of the road.
The collected data did not record instantaneous mass, thus a
static BET (plus cargo) mass of 35,906 kg was used [4].

Instantaneous energy consumption, E£°"S4e? from the battery
can be obtained considering the component efficiencies:

E£omUmed = Py [yNpaimMe (2
where Ny, Npq, My, N are efficiencies of wheel, final drive,
motor, and battery, respectively. 1z was calibrated to match the
rated range of the simulated BET (275 miles with a 565 kWh
battery [1] and weighing 80,000 lbs).

Negative P, instances (deceleration) at certain thresholds of
speed and acceleration provided regeneration [7]:

E;*" = Palwneaniuns; V(P < 0) 0 (v, > 5) N (a, <3)
3)
C. Wireless Charging Model

The BETs were considered to charge wirelessly at out-of-
base locations, wherever wireless chargers would be available.
Placement of wireless chargers need to be strategic to maximize
their utilization. In this study, zones at the San Pedro Bay port
complex where drayage trucks spend a significant amount of
time stopping or queuing (e.g., terminal gates) were considered
for this purpose, as this would allow the trucks the most
opportunity for charging. To identify these locations, different
terminals at the port complex were identified first (Fig. 1).
Collected truck activity data was then used to estimate
stop/queuing time within terminal boundaries. Potential wireless
charging zones were selected from locations in the terminals
with a cluster of stop/queuing data points. To do this, vehicle
activity data was filtered first by speed (speed = 0) to find where
the trucks were stopping/idling. These data points, paired with
aerial images, aided in estimating queuing areas; polygons
drawn around them then gave potential wireless charging zones.
Next, by geofencing, the collected GPS data was used to identify
instances of truck presence at any of the potential charging
zones. Noisy GPS data showing position change when vehicles
were not moving were corrected. This was done by considering
a vehicle staying in a charging zone when its speed is zero, but
GPS data showing it moving out of the zone. Consecutive
matched geofence data points were finally grouped together to
create potential charging events, as if wireless chargers were
installed in those zones. The summary of such events identified
for each truck is shown in Table I. During wireless charging,
instantaneous energy gain was calculated as:

fpWirelessCharge _ {chflwc; if truck in charging zone
t 0; else

“)
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where Py, is wireless charging power, and 71y, is wireless
charging efficiency.

Instantaneous battery energy consumption can now be
calculated as:

Batter
E Yy _

Regen WirelessCharge
" — Eg:onsumed + E;lcc —E gen __ E g

t t (5)

where E/°C is the per-second energy consumption of accessory

loads (e.g. air conditioning); here it is the same as the accessory
load rating, P,... Now, the total battery energy consumption in
a trip can be found by:

Batter
E Yy _

t=T EBattery
trip — Jt=1

¢ ; T = trip duration

(6)

POLA Terminals

LA1 - China Shipping
LA2 - Yang Ming

LA3 - TraPac

LA4 — Evergreen

LAS - Yusen

LA6 — POLA Multi-Use
LA7 — Eagle Marine
LA8 — Calif. United. Cont.
LA9 - APM

POLB Terminals
LB1—Hanjin
LB2 -MSC/ZIM
LB3 —Matson
LB4-00CL
LB5—K Line
LB6—-COSCO

Fig. 1. Locations identified to place wireless chargers (in red) at different terminals (marked by translucent torquise and brown polygons) at the Port of Los Angeles

(POLA) and the Port of Long Beach (POLB).

TABLE L WIRELESS CHARGING STATISTICS. COLORS SHOW RELATIVE VALUES (RED: LOWEST, GREEN: HIGHEST) FOR TIME SPENT AT EACH ZONE
Operating hours 36 55 84 68 68 37 59 64 74 53 41 75 34 70 64 76 958
Operating seconds 128397 197437 302426 246244 245843 133106 211466 230303 268009 190459 147875 270473 121164 252249 231706 273295 3450452
Zone/Truck ID LL052  LLO56  PENO16 TEC004 TECO06 TEC025 TEC039 TEC042 TEC043 TEC044 TECO45 TECO46 TEC047 TEC048 TEC049 TECO50 Sum
LB6 550 194 253 1406 64 1911 1013 99 9057
LB6misc 1088 4493
LAS 611 164 12629
LA9 3021 7649 9070 4324 7273 4574 81115
LA8ex 286 559 818 5068 1147 1112 550 16670
LA9ex 143 760 1037 378 825 16251
LAdex 831 207 108 1604 234 563 5387
LAdex2 269 211 80 299 179 263 1231 835 4837
LA4 481 1207 2619 998 320 7737 2432 5653 576 5884 1271 10210 42613
LA7ex 755 1348 4309 2157 1718 236 1867 1169 1177 1667 103 2889 2456 1422 26520
LA3Id2 5099 2382 3579 10449 7760 442 5147 5180 121 413 1891 1164 47933
LA7 2445 1977 6072 15733 4338 4545 441 12674 12766 131116
LA3 1732 61 6402 180 10007
LA3Id 997 724 7648
LA2ld 15454
LB1 5953 789 449 197 29495
LB4 556 12945
LA7TW 116 5866
LB2 2019
LA 1185
LB5 6858
LA2 2924 3425
LAlmisc 426 714
Sum 17263 16400 35771 33436 43288 28706 31585 30868 44757 28005 11260 49600 17857 35408 26672 43361 494237
% of operating time 13 8 12 14 18 22 15 13 17 15 8 18 15 14 12 16 14
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D. Tour Generation

The trip energy consumption, and other trip-level data was used
to identify tours. The starting and ending GPS coordinates of
trips were used to identify if those locations were at, or out of
the base. Noise in GPS data was addressed by considering any
trip-end coordinate within 1 mile of the base as being in the base.
Further details on the tour generation algorithm can be found in
[4]. The recorded data yielded 193 tours for the 20 trucks, and
tour-level energy consumptions were calculated for each tour by
summing up the energy consumption of the comprising trips:

Batter Batter:
E Yy _\yn E V.

tour = Qi=1Etyip; ~ m = number of trips in tour
L

(7
E. Base Charging Model

Time at the base can be used to charge BETs with
conventional charging stations. Battery energy after base
charging:

EChargedBattery — EtB_alttery +Zttz=Tl nCPtC(SOC) (8)

where EZ%*" is battery energy before base charging starts, T

is time available for base charging (in seconds),  is effective
time factor, 7). is charging efficiency, and Pf is charging power
as a function of battery state of charge (SOC: energy content of
the battery as a fraction of battery capacity); SOC-P£ curve is
shown in Fig. 2 [13]. a is introduced to capture the fact that the
time spent at base cannot be fully utilized for charging. A portion
of the time is spent in setting up trucks at charger, the truck
engaged in other tasks, or operators simply forgetting to plug in
immediately. Table II shows parameters values for this study.

250 T T T

- - N
o o o
[=1 o o
T T T
L L L

Instantaneous Charging Power (Ptc)
[+
o

0 . . 1 1
0 0.2 0.4 0.6 0.8 1

Battery SOC

Fig.2. Change of instantaneous charging power with battery SOC.

TABLE II. PARAMETER VALUES [1], [4][11][14]
Parameter Symbol Value

Battery size (kWh) - 377, 565
Mass (kg) m 35906
Coefficient of drag Cy 0.65
Front area (m?) A 8.5
Coefficient of rolling

Vehicle resistance Crr 0.008
Accessory load for EV (kW) Pycc 2.8
Wheel efficiency Nw 0.99
Final drive efficiency Npa 0.98
Motor efficiency Ny 0.88
Battery efficiency g 0.88
Air density (kg/m’) 1.161

Atmosphere |~ (m/s) Z 9.8

Wireless Charging power (kW) Py ;ég’ ggg’

charging Wireless charging efficiency Nwe 0.9
Rated charging power (kW) - 250

Base - >

charging Charg}ng §fﬁ01ency Ne 0.85

Effective time factor a 0.8

III. OPERATIONAL FEASIBILITY ANALYSIS

The modeled system was used to simulate several different
scenarios to determine the operational feasibility of BETs. The
scenarios are first described for a case where wireless charging
is not available (Py, = 0) — thus demonstrating the capabilities
of the two simulated battery sizes in meeting the activity
demands of the trucks without any external aid.

A. S-1: All Tours Start with 100% SOC

The first step to identifying feasible tours for BETSs is to
identify the tours within the battery range. EV ranges advertised
in specifications are usually mentioned in terms of distance (e.g.
miles), estimated from the energy consumption observed from
standard driving cycles [15]. Real world energy consumption
differs to some extent, so it is worthwhile using the developed
model to calculate energy consumption of each tour, and see
how many of them fall within the range of the modeled truck. S-
1 utilizes Eq. (1)-(7). This scenario assumes that the trucks start
with a full battery at the beginning of each tour, and with this
assumption, it was found that 4.1% and 0.5% of the recorded
tours were beyond the range of the modeled BET with 377 kWh
and 565 kWh battery packs, respectively. However, having a full
battery at the start of each tour is highly unlikely as the time
spent at base in-between tours is often shorter than what is
needed for a full charge. Conversely, the tours beyond the range
of a fully charged battery will stay infeasible regardless of the
charging time. Therefore, we need to further analyze the tours
determined to be feasible in S-1 to see what proportion of them
stays feasible when charging constraints are considered. To do
that, for each battery size considered, the tours beyond range
were discarded, assuming those were assigned to diesel trucks,
and the tours within range were assigned to BETs. Thus, in the
upcoming scenarios, the BETs are carrying out tours in a slightly
different order than what was recorded from diesel trucks,
skipping a few.

B. S-2: Base Charging on Rest Day

The collected data showed that the studied fleet operated six
days a week, with Sunday as the rest day. As the drayage tours
are scheduled beforehand, the operator would keep the rest day
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for charging the trucks. So, this scenario takes the feasible tours
for the BETs, and simulates them with fully charged BETs that
will serve as many tours as possible until their batteries run out.
Then, they are recharged on Sunday with a 250 kW charger, and
again goes through the scheduled tours with EC¢hargedBattery
(from Eq. (8)) until the batteries are depleted. Here, Eq. (1)-(8)
were used; (8) being applied for Sundays only, with T = 24 X
3600 (whole Sunday). This scenario revealed that among the
feasible tours identified in S-1, only 71% and 81% would be
feasible with 377 kWh and 565 kWh battery capacities,
respectively.

C. S-3: Opportunity Charging at Base

S-2 showed that it is essential for BETSs to be charged more
frequently to reduce the number of infeasible tours. Therefore,
opportunity charging at base was considered in this scenario. It
is assumed that the time spent at base between two consecutive
tours would be used to charge the trucks. Thus, this
automatically includes the charging on rest day. Eq. (1)-(7) gave
the tour energy consumption, Eq. (8) gave the battery energy
after opportunity charging at the end of each tour, where T was
the time difference between consecutive tours. The next tour
started with E¢hargedBattery from Eq. (8). This scenario showed
that 80% and 86% of the tours within ranges of 377 kWh and
565 kWh battery packs would be feasible when opportunity
charging at the base is considered. One solution to serving more
tours is increasing the charging power beyond 250 kW, but that
is not possible for the simulated trucks as they are rated for 250
kW [1].

D. Adding Wireless Opportunity Charging at Port Terminals

Another way to improve tour completion is to introduce
wireless charging at the port terminals. Table III shows the fleet-
level percentages of feasible tours for the three previous
scenarios when considering different wireless charging powers.
It should be noted that the values for S-2 and S-3 listed in the
table are in terms of all the 193 tours carried out by the diesel
fleet, and not the percentage of only tours within range which
are reported in S-2 and S-3 above (those values are from the in-
range subset of the 193 tours). The values for S-2 and S-3 are
also color-coded in a green-yellow-red scale, green being the
most feasible and red being the least, to better illustrate the
changes in these values with different wireless charging power
and battery capacity.

TABLE IIL. FEASIBLE TOURS UNDER DIFFERENT SCENARIOS

Si;ia;lt(wh) erele:ls( ‘%l)largmg S-1 S2 S-3
No wireless charging | 95.9% 70.1% 79.1%

125 97.9% 71.9% 82.2%

377 250 98.5% 71.7% 84.0%
380 98.5% 71.7% 84.0%

500 98.5% 72.2% 84.0%

No wireless charging | 99.5% 80.6% 86.4%

125 99.5% 82.7% 89.5%

565 250 99.5% 83.2% 90.6%
380 99.5% 83.2% 90.6%

500 99.5% 83.2% 91.1%

The results for S-1 show tours with energy consumption
beyond vehicle range. For the 377 kWh battery pack, wireless
charging increased the range, as visible from the increase in the
fraction of feasible tours from 95.9% without wireless charging
to 97.9% with 125 kW wireless charging, and then to 98.4%
with 250 kW wireless charging, which then remained
unchanged for 380 kW and 500 kW. The 565 kWh battery’s
range, unsurprisingly, is longer. However, wireless charging
even at the highest power of 500 kW did not aid the larger
battery pack to cover all the tours—one of the tours has a
distance of 303 miles. The infeasible tour’s energy requirement
surpassed the capacity of the larger battery, and was not fulfilled
by the additional energy gain at the wireless charging zone(s).

For S-2 with 377 kWh battery, the fraction of feasible tours
increased with the introduction of 125 kW wireless charging, but
rather interestingly, slightly decreased for the 250 kW wireless
charging and stayed the same for 380 kW, before increasing for
the higher 500 kW wireless charging. This was due to the way
S-2 was formulated: it discarded the tours identified to be
beyond the range in S-1, and used the rest in S-2. This makes the
tour sequence in S-2 (and S-3) be different from the one
recorded in the activity data. In this case, wireless charging of
250 kW and 380 kW made a certain tour fall within the range in
S-1, which was deemed beyond range when 125 kW charging
was simulated. However, the 377 kWh battery ran out before
completing this tour in S-2 in 250 kW and 380 kW charging
configurations, whereas the 125 kW case did not need to
simulate this particular tour as it was discarded in S-1. Thus, the
125 kW configuration completed an additional tour that could
be served with a 377 kWh capacity by means of removing a
preceding more energy-consuming tour from the original tour
sequence, and this allowed it to appear slightly more feasible.
This incident provides a very useful insight in BET operation:
tours should be sequenced considering their energy
consumption, in a way that allows the maximum amount of tour
completion with finite battery capacity. Extensive tour
reshuffling in this manner was not implemented in this paper
other than the construction of S-2 and S-3, but this is a powerful
tool to improve the efficiency of BET fleets. S-2 for 565 kWh
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battery shows the fraction of feasible tours increasing up until
250 kW, and then becoming constant, indicating that the energy
gains from wireless charging are insufficient to fulfill any
additional tour.

The results for S-3 showed improvements over those for S-
2, as expected. The fraction of feasible tours plateaus at 250 kW
wireless charging for the 377 kWh battery pack, indicating no
gains with increased wireless charging powers. However, for the
565 kWh pack, 500 kW wireless charging did increase the
fraction of feasible tours even further. Although this analysis
shows that the 565 kWh battery pack could serve the most
amount of tours, if opportunity charging at base and 500 kW
wireless charging at the port terminals were utilized, it still could
not serve all the tours. It should also be noted that 250 kW is the
highest charging power the modeled truck is rated for, and thus
cannot benefit from higher charging powers. Nevertheless, all
the scenarios analyzed in this paper demonstrated the enhanced
capabilities of the newer BETs with increased battery capacity,
as all the feasibility percentages were high than the values
reported in [4], which simulated an earlier model BET. An even
larger battery pack, a higher power charging at the base, and a
re-ordering of the tour sequence are some ways to further
improve the feasibility of operating a 100% BET fleet in drayage
application.

IV. CONCLUSIONS AND FUTURE WORK

Drayage has been deemed suitable for electrification as
drayage trucks typically work out of a base, return to the base at
least once per day, have limited daily mileage, and spend large
portion of driving time in transient modes or creeping. However,
there is variation in operating characteristics among different
drayage operators. Using real-world activity data of 20 trucks
from one drayage operator near the Port of Los Angeles, this
study shows that BETs in the current market would be able to
fulfill up to 86% of the tours performed by these trucks.

This study also evaluates the effectiveness of utilizing
wireless charging zones at port terminals to increase the
operational feasibility of drayage BETs. The results show that
if wireless charging opportunities at port terminals are available,
then BETs would be able to fulfill up to 90% of the tours
performed by the existing diesel trucks. Installing wireless
chargers is a costly task, but doing so at selected zones in port
terminals can directly provide en-route opportunity charging to
drayage trucks without impacting their operations (e.g., no need
for them to make extra trips to and from a charging station).

In terms of future work, an optimal strategy for selecting and
prioritizing wireless charging zones should be developed, as it
may not be financially possible to install all of them at once. As
shown in Table I, some zones were visited for longer duration
than others, which would provide more time for BETs to receive

wireless charging. The feasibility analysis will be expanded to
examine scenarios with different subsets of wireless charging
zones, possibly with different levels of charging power, to
identify an optimal solution (least number of zones yielding
maximum number of feasible tours). In addition, on the fleet
operational side, the modification of the tour sequence and the
use of higher power base chargers to help increase the number
of feasible tours will also be investigated.

ACKNOWLEDGMENT

The authors would like to thank the drayage operator who
allows data collection of the trucks.

REFERENCES

[1] “VNR Electric Series.” https://www.volvotrucks.ca/-/media/vtna/files/en-
us/5631 volvo_vnr-electric-brochure compressed-for-web_f-
update.pdf?rev=-1&hash=0DD967A6FD553224B982811B11B65B39
(accessed Apr. 23, 2022).

[2] Tesla, “Semi.” https://www.tesla.com/semi (accessed Apr. 25, 2022).

[3] “Drayage Trucks at Seaports & Railyards.” https://ww2.arb.ca.gov/our-
work/programs/drayage-trucks-seaports-railyards (accessed Apr. 25,
2022).

[4] S. Tanvir, F. Un-Noor, K. Boriboonsomsin, and Z. Gao, “Feasibility of
Operating a Heavy-Duty Battery Electric Truck Fleet for Drayage
Applications,” Transp. Res. Rec., vol. 2675, no. 1, pp. 258-268, 2021.

[5] X. Wu, D. Freese, A. Cabrera, and W. A. Kitch, “Electric vehicles’ energy
consumption measurement and estimation,” Transp. Res. Part D Transp.
Environ., vol. 34, pp- 52-67, 2015, doi:
https://doi.org/10.1016/j.trd.2014.10.007.

[6] C. De Cauwer, J. Van Mierlo, and T. Coosemans, “Energy Consumption
Prediction for Electric Vehicles Based on Real-World Data,” Energies ,
vol. 8, no. 8. 2015, doi: 10.3390/en8088573.

[7] Z. Gao, Z. Lin, and O. Franzese, “Energy consumption and cost savings of
truck electrification for heavy-duty vehicle applications,” Transp. Res.
Rec., vol. 2628, no. 1, pp. 99-109, 2017, doi: 10.3141/2628-11.

[8] Z. Gao, Z. Lin, S. C. Davis, and A. K. Birky, “Quantitative evaluation of
MD/HD vehicle electrification using statistical data,” Transp. Res. Rec.,
vol. 2672, no. 24, pp. 109-121, 2018, doi: 10.1177/0361198118792329.

[9] P.Ruan, G. Wu, Z. Wei, and M. J. Barth, “A Modularized Electric Vehicle
Model-in-the-Loop Simulation for Transportation Electrification Modeling
and Analysis,” in 2021 [EEE International Intelligent Transportation
Systems Conference (ITSC), 2021, pp. 1685-1690.

[10]“Potential Emission Reductions for Select Clean Air Action Plan
Strategies,” 2017. [Online]. Available:
https://kentico.portoflosangeles.org/getmedia/d9072146-6650-4ala-8845-
1a2fb18eb341/CAAP_Potential Emission Reductions_from_Select CA
AP_2017_Strategies-Final.

[11]“Accelerating the EV transition at the Port of Los Angeles.”
https://waveipt.wpengine.com/ports/.

[12]G. Scora et al., “Variability in real-world activity patterns of heavy-duty
vehicles by vocation,” Transp. Res. Rec., vol. 2673, n0. 9, pp. 51-61, 2019.

[13]“Tapered Charging.” https://teslatap.com/articles/supercharger-
superguide/ (accessed Apr. 24, 2022).

[14]L. Soares and H. Wang, “A study on renewed perspectives of electrified
road for wireless power transfer of electric vehicles,” Renew. Sustain.
Energy Rev., vol. 158, p. 112110, 2022.

[15]“How Does The EPA Calculate Electric Car Range?,” 2020.
https://cleantechnica.com/2020/08/18/how-does-epa-calculate-electric-
car-range/ (accessed Apr. 24, 2022).

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on June 29,2023 at 19:54:57 UTC from IEEE Xplore. Restrictions apply.



