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Global pluripotential theory over a trivially valued field

SEBASTIEN BoucksoM (1) AND MATTIAS JONSSON (2)

Dedicated to Ahmed Zeriahi for all his contributions to complex analysis and geometry

ABSTRACT. — We develop global pluripotential theory in the setting of Berkovich
geometry over a trivially valued field. Specifically, we define and study functions and
measures of finite energy and the non-Archimedean Monge—Ampére operator on
any (possibly reducible) projective variety. We also investigate the topology of the
space of valuations of linear growth, and the behavior of plurisubharmonic functions
thereon.

RESUME. — Nous développons une théorie du pluripotentiel global dans le
contexte de la géométrie de Berkovich sur un corps trivialement valué. Plus pré-
cisément, nous définissons et étudions des fonctions et mesures d’énergie finie et un
opérateur de Monge—Ampere non-archimédien sur toute variéte projective (éventuel-
lement réductible). Nous explorons également la topologie de ’espace des valuations
a croissance linéaire, et le comportement des fonctions plurisousharmoniques sur
celui-ci.

Introduction

The main purpose of the present paper is to lay the foundations of
pluripotential theory in the setting of Berkovich geometry over a trivially
valued field, paralleling as much as possible the known theory in the com-
plex analytic case.

Pluripotential theory is a crucial tool in complex analysis and geometry,
and A. Zeriahi has been a central protagonist in the story of its develop-
ment. For an excellent introduction, see the book by V. Guedj and A. Zeri-
ahi [77]. This theory lies at the heart of the variational approach to complex
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Monge-Ampére equations [11], which proved particularly fruitful in relation
to Kéhler—Einstein metrics, and ultimately led to a new proof of the Yau—
Tian—Donaldson (YTD) conjecture for Fano manifolds [12], later generalized
to (log terminal) Fano varieties [89, 91].

There are several reasons for developing a corresponding theory over
a trivially valued field, that is, any field equipped with the trivial (non-
Archimedean) valuation. First, the Berkovich approach to non-Archimedean
geometry is the one closest to the complex analytic intuition, and it is natu-
ral to see to what extent the complex analytic theory admits a counterpart in
the setting of Berkovich spaces. Second, Berkovich spaces over a trivially or
discretely valued field can often be used to study degenerations in complex
geometry [30, 31, 57, 58, 59, 60, 101], and such degenerations are central to
the variational approach to the YTD conjecture [12, 90], through the notion
of geodesic rays.

The thrust of the YTD conjecture is to relate the existence of a solution
to a non-linear PDE to an algebro-geometric condition known as K-stability,
which has recently also come to play a key role in the study of moduli
spaces, especially for Fano varieties. [2, 15, 17, 93, 107]. The relation of
K-stability with spaces of valuations and non-Archimedean geometry over
trivially valued fields, originally pointed out in [29], is one major motivation
to endeavor the present study, and will be further exploited in the companion
papers [35, 34].

K-stability of a polarized projective variety (X, L) over an algebraically
closed field k is a condition phrased in terms of Gy,-equivariant degenerations
(X, L) — Al of (X, L) known as test configurations [53]. Our basic proposal,
which goes back to [29], consists in interpreting (X, £) in terms of a piecewise
linear function ¢, on the Berkovich analytification X" with respect to the
trivial absolute value on the ground field k. To readers familiar with non-
Archimedean geometry, this will sound very natural indeed: the base change
of a test configuration (X, L) by Speck[w] — A! = Speck[w] provides
a model for the base change (Xk, Lk) to the non-Archimedean field K =
k((w)), and hence a model/PL metric on the Berkovich analytification L3} —
X%, This metric can further be canonically identified with a PL function on
X3, thanks to the reference metric on Lj? induced by the trivial model, and
¢ is simply the restriction of this function to X*" — X%, the embedding
being realized by Gauss extension.

While this point of view was basically the one adopted in a previous
version of this article [33], we have tried here to take a more elementary and
self-contained approach, avoiding for the most part any explicit reference to
general Berkovich geometry (which accounts in part for the length of the
present article).
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Functions and measures of finite energy

Let k be an arbitrary algebraically closed field, and X an irreducible(®)
projective variety over k, with function field k(X). In order to describe more
precisely our main results, recall first that the Berkovich analytification X?"
of X with respect to the trivial valuation on k is a compactification of the
space XV of valuations v: k(X)X — R, trivial on k, endowed with the
topology of pointwise convergence. Points of X" can be understood as semi-
valuations v on X, i.e. valuations v € Y3 for some subvariety Y C X. The
set X4V c XVal of divisorial valuations, which are attached to prime divisors
over X, is dense in X?2".

For every v € X® and every section s € H°(X,mL), m € N, we can
make sense of v(s) € [0,+o00] by trivializing L at the center of v. Setting
|s|(v) := exp(—v(s)) defines a continuous function |s|: X" — [0, 1], and the
topology of X?" is in fact defined by the set of such functions. Building on
these, we introduce the following classes of functions on X?":

o Fubini-Study functions for L are continuous functions ¢: X** — R
of the form

¢ = m~ ' max{log |s;| + A;},

where (s;) is a finite set in H°(X, mL) without common zeroes, and
A\i € Q. This defines a subset H = H(L) of C%(X) := CY(X** R),
and we show that the map (X, £) — ¢ alluded to above sets up a
1-1 correspondence between H(L) and the set of ample, integrally
closed test configurations (X, L) for (X, L) (see Section 1.4 for the
definition when X is not normal).

o piecewise linear (PL) functions on X2 are elements of the Q-linear
subspace PL(X) of C%(X) spanned by H = H(L); this subspace
turns out to be independent of L, and is dense in C°(X). In the
present setting, PL functions play the role of smooth functions from
the complex analytic case. It is proved in Appendix A that PL func-
tions are induced by usual piecewise linear functions on dual com-
plexes of snc test configurations, when X is smooth and char k = 0.

e L-psh functions are usc functions ¢: X2 — R U {—o0}, not iden-
tically —oo, that can be obtained as limits of decreasing nets in
H(L). The set PSH = PSH(L) of L-psh functions is stable under
addition of a real constant, finite maxima, decreasing limits, and is
the smallest such class of functions that contains all functions of the

(1) While the main body of the article deals with possibly reducible varieties, we assume
here for simplicity that X is irreducible.
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form m~1log|s|, s € H*(X,mL)\ {0}. It follows from Dini’s lemma
that C%(X) N PSH is the closure of H in the topology of uniform
convergence. We prove that the restriction of an L-psh function ¢
to X4V is finite-valued, and determines ¢. We endow the set PSH
with the topology of pointwise convergence on X4V,

In the main body of the text, we actually work with w-psh functions, where
w € NY(X) is any (real) ample (and sometimes even arbitrary) numerical
class on X. However, here we will stick to the above setting, for simplicity.

As in [29], the Monge—Ampére energy E: H — R is defined on ¢ € H as
the normalized intersection number (or height)

o (En+1)
E(p) := m7

where n = dim X, V = (L"), and (X,£) — P! is the canonical G-
equivariant compactification of the ample, integrally closed test configura-
tion (X, L) — A! that represents ¢. The above normalization ensures that
E(p+c¢) =E(p) +cfor c € Q.

Adapting to our setting the original approach of [39, 71], we also attach to
o its Monge—Ampére measure MA(p), a Radon probability measure on X?*
with finite support in X9V, defined using intersection numbers computed on
Xp. We then have

d

% E«1—0¢+w0=/m(¢—@ﬂmﬂﬂ

an

t=0
for all ¢» € H, and this actually characterizes the measure MA(y), since H
spans the dense subset PL(X) C C%(X).

This formula shows that E is increasing on ‘H, and we canonically extend
it by monotonicity to a usc functional E: PSH — R U {—oc0}, continuous
along decreasing nets. We denote by

E':={p € PSH | E(p) > —co}

the set of L-psh functions of finite energy. Thus ¢ € £ iff p: X** — RU
{—o0} is a decreasing limit of functions ¢; € H with E(y;) bounded. Note
that the complex analytic analogue of £! has been well studied, see [10, 11,
44, 45, 76).

The weak topology of £ is the subset topology from PSH (i.e. the topology
of pointwise convergence on X%V), and the strong topology is the coarsest
refinement of the weak topology that makes E: £! — R continuous. De-
creasing nets in £! are strongly convergent, and  is thus strongly dense
in £1.
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As in [11], we dually introduce an energy functional EV: M — [0, 4+-o0]
on the space M of Radon probability measures p on X*", by setting

EY(u) = sup <E(<p) - /w) = sup <E(s0) - /w) ,

where the right-hand equality follows from a simple approximation argu-
ment. Thus EY is convex, and lsc with respect to the usual weak topology
of M. The space
M= {p e M|EY(n) < oo}

of measures of finite energy has a weak topology inherited from M, and a
strong topology, defined as the coarsest refinement of the weak topology for
which EY becomes continuous. In contrast to £', we prove that both M?
and its strong topology are independent of L.

For any two ¢, ¢’ € H, we further have E(¢) —E(¢’) > [(p—¢') MA(yp),
a reflection of the concavity of E. This precisely means that ¢ computes the
supremum defining the energy of MA(y), which thus lies in M?.

The main contribution of the present article can be summarized as fol-
lows.

THEOREM A. — The Monge-Ampére operator MA: H — M admits a
unique continuous extension MA: E' — M?', where both sides are equipped
with the strong topology.

It further induces a topological embedding with dense image E' /R — M?*,
which is onto if X is smooth, and either chark =0 or dim X < 2.

Theorem A can be viewed as a trivially valued analogue of the main
result of [11], which itself is a version of the celebrated result of Yau [108]
and a later version by Kolodziej [83]. In the non-Archimedean setting, earlier
results include [26, 92, 109].

Theorem A actually brings together several main steps, of various flavors,
that we now proceed to describe.

Monotone extension of the Monge—Ampére operator to £!

In a first step, we prove that the Monge—Ampere operator MA: H —
M?! admits a unique extension MA: &' — M!? that is continuous along
decreasing nets (with respect to the weak topology of M1).

Since any function in £ is, by definition, the limit of a decreasing net in
‘H, uniqueness is clear. Our proof of existence is rather different from previ-
ously used approaches [23, 26, 76], and proceeds via a direct monotonicity
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argument. It is phrased in terms of a multilinear energy pairing

(LO,QDO) Teet (Lﬂm(pn) € Q

defined on tuples (L;,¢;) with L; € Pic(X)g and ¢; € PL(X) (and which
basically amounts to the Deligne pairing, see Remark 3.13 and compare [102,
Definition 2.1] in the Kéhler case), but we reformulate it here in a language
that will perhaps be more familiar to some readers. The key point is to
observe that, for any ¢ € H, the functional Fy: H — R defined by

Fy(e) i= (n+ DE@) + [ (6~ ¢)MA)

(which is equal to V~Y(L,v) - (L,)" in terms of the energy pairing) is
increasing, and further satisfies

Fy(p) — Folp) = / BMA(p), Fu(p) > (n+1)E(p) +infe —sup .

Like the energy E, Fy, can thus be monotonically extended to a finite-valued
functional Fy: E' — R, continuous along decreasing nets. Since H spans
the dense subpace PL(X) C C°(X), it is then easy to infer the existence,
for each ¢ € £, of a unique measure MA(¢) € M such that [ MA(p) =
Fy (@) — Fo(yp) for all ¢ € H.

This provides an extension MA: £ — M that is continuous along de-
creasing nets. As above, the concavity of E further implies, for each ¢ € &1,
that EY(MA(p)) = E(p) — [ ¢ MA(¢p), and hence MA(p) € M1

Maximizing sequences

Pick € M, and consider a sequence (;) in ' that computes EY () =
SUP,cg1 (E(go) — fcp,u); we call this a mazimizing sequence for p. In the
complex analytic case, it follows a posteriori from the variational approach
developed in [11] that MA(p;) — u weakly in M. Here we show this directly,
by relying on a uniform differentiability property of a natural monotone
extension E¥ of E to arbitrary usc functions. More precisely, we infer from a
key estimate in [28] that we have, for all p € €1, ¢ € PL(X) and ¢ > 0,

E*(p 4 e)) = E(g) + ¢ / PMA(p) + O(E2),

where the estimate is uniform with respect to ¢. We can then apply the
variational argument of [11] to infer that [ ¢ MA(yp;) — [ u, which yields
weak convergence MA(yp;) — p.
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Quasimetrics

Following [10, 11], the next step is to show that Aubin’s functional
I(e,9) = [ (0= )MA) ~ MA()

satisfies a quasi-triangle inequality, and descends to a quasi-metric on £!/R
that defines the strong topology. As in [10], the quasi-triangle inequality is
based on fairly sophisticated estimates obtained by repeated applications of
a Cauchy—Schwarz inequality for the energy pairing. But a new feature here
is that we also dually introduce

(s pt') = of (Tu(e) + ()

on M!, where J,,(¢) := EY (1)~ E(p)+ [ ¢ > 0 tends to zero precisely along
maximizing sequences for u. We prove that the Monge-Ampeére operator is
bi-Lipschitz with respect to I and IY, i.e. IV(MA(p), MA(¢")) ~ I(p,¢),
and also that TV (MA(g;), MA(¢})) — TV (1, i) if (1), (¢}) are maximizing
sequences for y, ¢/. This allows us to show that IV is a quasi-metric on M?
that defines the strong topology, and hence that MA: £1/R — M! is a
topological embedding with dense image.

In [34] we will show that £! and M! can be equipped with natural metrics
(rather than quasimetrics) that define the strong topologies, in such a way
that the induced (pseudo)metric on £!/R is a metric, and MA: £ /R — M?
is an isometry. The space M! and subspaces thereof will play a key role for
the approach to K-stability in [35].

The envelope property

In the complex analytic case, it is a basic fact that the (usc) envelope
supy ; of any family (p;) of psh functions on a (smooth) complex manifold
remains psh. This remains true for psh functions on any complex space that
is locally irreducible in the analytic topology, but fails in general without
this assumption. In our setting, we say that L has the enwvelope property if
the previous property holds. We prove that it implies that X is unibranch,
which means that the normalization v: X¥ — X is a homeomorphism (in
the Zariski topology), and is equivalent to X being locally analytically ir-
reducible in the complex case. Conversely, we conjecture that the envelope
property holds as soon as X is unibranch (e.g. normal), and prove that it
holds when X is smooth and either chark = 0 or dim X < 2, by adapting
arguments from [27, 72].
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We further show that the envelope property is equivalent to the analogues
of several fundamental known facts in the complex analytic case:

e weak compactness of PSH /R;
e completeness of £1/R with respect to the quasi-metric I;
e surjectivity of MA: &1 — M1

It is also equivalent to the property that for any ¢ € C°(X), the psh
envelope
P(yp) :=sup{y € PSH, ¢ < ¢}
is continuous (or, equivalently, L-psh).

Valuations of linear growth

The results mentioned so far have been quite similar to the complex
analytic picture; we now focus on some aspects that are specific to the non-
Archimedean setting. We say that a subset £ C X" is pluripolar if E C
{¢ = —oo} for some ¢ € PSH, this condition being independent of L. As
opposed to the complex analytic case, a point v € X" can be nonpluripolar.
This is for instance the case for a divisorial valuation v € X4V, and we show
more generally that a point v € X" is nonpluripolar iff v is a valuation of
linear growth in the sense of [36], i.e. v(s) < Cm for all s € H°(X, mL)\ {0},
for a uniform constant C' > 0.

We turn the set X' of valuations of linear growth into a metric space
(later shown to be complete) by setting

doo (v, w) == sup {m ™ v(s) —w(s)| | m >1, s € H'(X,mL) \ {0}}.

We refer to the metric space topology of X' as the strong topology, the
weak topology being the one inherited from X?". This interacts nicely with
the space M!, as follows:

THEOREM B. — A pointv € X lies in X' ff the Dirac mass 6, lies in
MU, Furthermore, the map v — 6, defines a closed embedding X'™ — M?,
with respect to both the weak and the strong topologies (on both sides), onto
the set of extremal points of the convex set M?.

Thus a net (v;) in X" converges strongly to v iff v; — v weakly and
EY(4,,) — EY(d,). As we shall see in the companion paper [34], the energy
EY(d,) coincides with the expected vanishing order S(v) [16, 64], an invariant
that appears in the definition of the stability threshold (or d-invariant) that
has come to play a key role in recent works on K-stability of Fano varieties,
such as [18, 19] to name just a few.
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Our final main result analyzes the behavior of L-psh functions on X"®.

THEOREM C. — Pick any L-psh function p. Then:

(i) the restriction of ¢ to X' is strongly continuous, and even 1-

Lipschitz with respect to deo;

(ii) the restriction of ¢ to any doo-bounded subset of X" is weakly con-
tinuous;

(iii) if ¢ € &, then ¢ has sublinear growth with respect to du., i.e.
lo| < AdlSe + B on X'™ for some A,B >0 and 0 <e < 1;

(iv) if p € EY and MA(y) is supported in a doo-bounded subset of X',
then ¢ € CO(X).

In (iii), de denotes the distance to any fixed point vy € X', The as-
sumption in (iv) holds, for instance, if MA(p) has finite support in X",
More generally, as we show in Appendix A, dual complexes of snc test con-
figurations (when X is smooth and chark = 0) provide strongly compact
subsets of X'" and (iv) therefore applies to Monge-Ampére measures with
support in such a dual complex, as in [26].

Relation to other works and outlook

This article is in part a continuation of our joint work with T. Hisamoto
[29], which, along the work of K. Fujita [62, 63] and C. Li [87, 88], first
emphasized the role of valuations in the study of K-stability. Besides the
clear influence from previous works in the complex setting, especially [10,
11, 76], this article owes a great debt to our joint work with C. Favre [26, 27].
Inspired in part by the local analysis of [24, 56, 57], and by the unpublished
work of M. Kontsevich and Y. Tschinkel [84], it paved the way to non-
Archimedean pluripotential theory, for smooth varieties over a discretely
valued field of residue characteristic 0. These developments built upon the
notion of a semipositive continuous metric on a line bundle, as developed
by S.-W. Zhang [110], Bloch-Gillet-Soulé [13], Gubler [69, 70], Chambert-
Loir [39], and others.

In the last few years, a number of works on non-Archimedean pluripoten-
tial theory have appeared, including [22, 28, 37, 72, 74], as well as the first
version of this paper [33]. Among these, [22, 28] work over arbitrary non-
Archimedean fields, including the trivially valued case, and thus have some
amount of overlap with the present work. As mentioned above, the main re-
sult of [28] in fact plays a key role in our analysis of maximizing sequences.
We conversely expect all results in the present article to extend (once prop-
erly formulated) to the case of an arbitrary non-Archimedean ground field.
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This is work in progress, but some results in this generality have in fact
already appeared in [33], and R. Reboulet has initiated an interesting study
of the metric geometry of £! in this generality [98, 99], perhaps more closely
related to the companion paper [34] of the present work.

As opposed to our approach to pluripotential theory, which adopts a
global definition of psh functions justified by analogous results in the com-
plex case, it is important to point out that a theory of a local nature is
also emerging, thanks to the foundational work of A. Chambert-Loir and
A. Ducros [40]; see also [73]. The one-dimensional situation was studied in
detail in the thesis of A. Thuillier [106] (see also [3]). In our theory, functions
in PSH are defined as decreasing limits of nicer functions, namely those in .
In the complex setting, the global notions rely on the local ones, and what
is a definition in the trivially valued case becomes an important theorem in
the complex situation, see [14, 48].

In a different direction, the approach followed in this paper is likely to
carry over to the general case of (1,1)-classes on compact Kéahler manifolds,
where the basic formalism of test configurations and K-stability was intro-
duced in [50, 102]. In that case, Berkovich analytification is of course not
available, but a good replacement for it can be constructed as a limit of dual
complexes of snc test configurations, as in [31, Section 4].

Structure of the paper

This article is organized as follows.

e Besides recalling some basic facts on Berkovich analytification, test
configurations and valuations of linear growth, Section 1 extends the
relation between divisorial valuations and test configurations that
was drawn in [29] to possibly non-normal varieties, emphasizing the
role of what we call integrally closed test configurations.

e Section 2 introduces Fubini-Study and PL functions, and describes
their relation to test configurations. “Almost trivial” test configura-
tions are also revisited from this perspective (fixing, in particular, a
minor issue in [29]).

e In Section 3 we define and study plurisubharmonicity for PL func-
tions, and undertake a thorough investigation of the energy pair-
ing, for which various estimates are derived from a basic Cauchy—
Schwarz inequality.

e Sections 4 and 5 are devoted to general psh functions. In the former
section, we establishing some basic properties and introduce the
notion of pluripolar sets. In the latter, we make a detailed study of
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envelopes of psh functions, and the associated notion of negligible
sets. We prove that divisorial points are negligible.

In Section 6 we study psh functions that are homogeneous with re-
spect to the scaling action of Rs¢. The relation with (nef) b-divisors
is discussed, and a general decomposition theorem for psh functions
is established.

Section 7 extends the energy pairing to psh functions by monotonic-
ity, and studies mixed Monge-Ampeére measures and various energy
functionals on functions of finite energy.

In Section 8 we extend the Monge-Ampere energy functional to
more general functions, and prove a crucial uniform differentiability
result, using [28].

Section 9 is devoted to the Monge—Ampére energy of a Radon proba-
bility measure, and a preliminary study of the space M! of measures
of finite energy. In particular, we introduce the important notion of
a maximizing net for a measure.

In Section 10, we introduce the strong topology on M?!, and prove
that it is defined by the quasi-metric IV, with respect to which it
is complete. We further show that M and its strong topology are
independent of the choice of polarization, when X is irreducible.
Section 11 is devoted to the space X '™ of valuations of linear growth.
It establishes Theorem B above, as well as (most of) Theorem C.
In Section 12 we turn to the strong topology and quasi-metric for
E'. We complete the proof of Theorem A, and also investigate the
continuity of solutions to Monge—Ampeére equations, completing the
proof of Theorem C.

Assuming the envelope property, Section 13 endeavors a detailed
study of the Bedford—Taylor capacity, and proves that negligible
sets are pluripolar.

Finally, Appendix A adapts to the trivially valued setting the well-
known description of the Berkovich analytification as a limit of dual
complexes, while Appendix B provides a condensed description of
various objects considered in the paper in the case of toric varieties.
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Notation and conventions

e We use the standard abbreviations usc for “upper semicontinuous”,
Isc for “lower semicontinuous”, wlog for “without loss of generality”,
and iff for “if and only if”. We also use PL for “piecewise linear”,
snc for “simple normal crossing”, and psh for “plurisubharmonic”.

e Following the Bourbaki convention, all compact and locally compact
topological spaces are required to be Hausdorff.

e A net in a set X is a family (x;);cr of elements of X indexed by a
directed set, i.e. a partially preordered set in which any two elements
are dominated by a third one. A subnet of (x;);cr is a net of the
form (2,(;))jes where ¢: J — I is increasing and final, i.e. for each
i € I there exists j € J with ¢(j) > i. A (Hausdorff) topological
space X is compact iff every net in X admits a convergent subnet.

e If X is a Hausdorff topological space, and ¢: X — R U {£o0} is
any function, then the usc regularization ¢* of ¢ is the smallest usc
function with ¢* > ¢. Concretely, ¢*(z) = limsup,_,, ¢(y). The Isc
reqularization is defined by ¢, = —(—p)*.

e We work over an algebraically closed field k, for the most part of
arbitrary characteristic. In this paper, a variety (over k) is a sep-
arated k-scheme of finite type that is reduced, but not necessarily
irreducible, nor even equidimensional.

e For any variety X, we denote by Pic(X) the Picard group of isomor-
phism classes of line bundles. Elements of the associated Q-vector
space Pic(X)g := Pic(X)®zQ can be viewed as isomorphism classes
of Q-line bundles.

e If X is a projective variety, we denote by N*(X) the finite dimen-
sional R-vector space of numerical classes of R-Cartier divisors on
X. Tt comes with a surjective linear map Pic(X)r — N!(X) induced
by L — ¢1(L).

e Ample classes form a nonempty open convex cone Amp(X) C N1(X),
whose closure is the closed convex cone Nef(X) C N'(X) of nef
classes. For 6,60’ € NY(X), we write § > ¢’ if § — 0" is nef. We
generally denote by 6 an element of N'(X), and by w an element of
Amp(X).

e The cone Psef(X) C NY(X) of pseudoeffective classes is defined as
the closed convex cone generated by classes of effective R-Cartier
divisors; its interior Big(X) is the cone of big classes.

e A section of a line bundle on X is regular if it does not vanish
identically along any irreducible component of X. Its zero scheme
is then a Cartier divisor on X.

e An ideal a on X is a coherent ideal sheaf a C Ox, and similarly for
fractional ideals.
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e We denote by w the coordinate of the affine line Al = Spec k[w]
and of the torus G,, = Spec k[ew™1].

e For z,y € Rxp, # S y means x < Cpy for a constant C,, > 0 only
depending on n, and z =~ y if x < y and y < z. Here n will be the
dimension of a fixed variety X over k.

o A quasi-metric on a set Z means a function d: Z x Z — R3¢ that
is symmetric, separates points, and satisfies the quasi-triangle in-
equality

d(z,y) < C(d(x,2) + d(z,y))

for some constant C' > 0. This is equivalent to requiring the quasi-
ultrametric inequality d(x,y)) < Cmax{d(z,z),d(z,y)} for some
other constant C' > 0, and d“ is then also a quasi-metric for any o €
R<o. A quasi-metric space (Z,d) comes with a Hausdorff topology,
and even a uniform structure. In particular, Cauchy sequences and
completeness make sense for (Z, d). Such uniform structures have a
countable basis of entourages, and are thus metrizable, by general
theory. A subset E C Z is bounded if d is bounded on E x F.

1. Berkovich analytification and test configurations

In what follows, X denotes a (possibly reducible) projective variety over k
(see the conventions above). The main purpose of this section is to review the
relation between the Berkovich analytification of X and test configurations,
following the approach of [29].

1.1. The Berkovich analytification

Here we note some facts about the Berkovich analytification of X with
respect to the trivial absolute value on k.

1.1.1. The space of valuations

Assume first that X is irreducible, with function field k£(X). In this paper,
a valuation on X means a real-valued valuation v : k(X)* — R, trivial on

k. The trivial valuation viriy = Vx triv € Xval is defined by vy (f) = 0 for
all f € k(X)*.
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We denote by X V2! the space of valuations on X, endowed with the topol-
ogy of pointwise convergence on k(X)*. As soon as dim X > 1, X' is not
locally compact (see Section 1.1.6 below).

By the valuative criterion of properness, each valuation v on X admits a
center c¢(v) = cx(v) € X, characterized as the unique (scheme) point £ € X
such that v > 0 on the local ring Ox ¢ and v > 0 on its maximal ideal. Note
that ¢(v) is the generic point of X iff v = vy .

In this paper, a divisorial valuation v on X is a valuation of the form
v =tordg, where t € Q< and F is a prime divisor on a normal, projective
birational model X’ — X. The center of v on X is then the generic point of
the image of F in X. It will be convenient to also count the trivial valuation
Vtriv = limy_,o tordg as a divisorial valuation. We write X9V for the set of
divisorial valuations on X.

1.1.2. The Berkovich analytification

Returning to the case of a possibly reducible variety X, we denote by
X3 the Berkovich analytification of X with respect to the trivial absolute
value on k, as in [7]. For our purposes, it will be sufficient to view X" as a
compact® topological space, whose points can be interpreted as semivalu-
ations on X, i.e. valuations v on some irreducible subvariety Y C X, called
the support of v and denoted s(v). As a set, we thus have X" = [, YV
with Y ranging over all irreducible subvarieties of X, and the topology of
X" is the coarsest one such that for each (Zariski) open U C X we have:

e the set U*" C X" of semivaluations whose support meets U is open;
o for each f € O(U), the function |f|: U*™ — Ry defined by | f|(v) :=
exp(—v(f)) is continuous.

Sets of the form U®*" are open for the Zariski topology of X".

The Berkovich analytification is functorial. Any morphism h: Y — X of
varieties induces a continuous map h*": Y?* — Xa" For simplicity, we will
write h instead of h*". The analytification functor satisfies various GAGA
properties, see [7, Section 3.4]. For example, if (X?)s are the connected
components of X, then X" = ]_[B(Xﬁ)an, and each (X#)?" is connected.

(2) Recall that all compact spaces are required to be HausdorfT in this paper.
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1.1.3. Valuations and divisorial valuations

Mapping v € X" to the generic point s(v) of its support defines a con-
tinuous map
s: X" — X.
On the other hand, mapping v to its center ¢(v) € X defines a map
c: X — X,

which is this time anticontinuous, in the sense that ¢=1(U) C U*® is closed
(hence compact) for any open subset U C X (in the language of Berkovich
geometry, ¢~ (U) is actually a k-analytic domain of X®").

We say that v € X®" is a valuation on X (as opposed to a semivaluation)
if its support is an irreducible component of X, i.e. s(v) is a generic point of
X. Denoting by (X,) the irreducible components of X, the set of valuations
can be written as H

Xval _ X;ial.

[e%

We define the set of divisorial valuations on X as
Xdiv = HX;HV.
(6%

It is a dense subset of X®" (see Theorem 2.14).

Remark 1.1. — Assume dim X > 1. When k is countable, the set X4V
is countable as well. The compact space X?" is thus separable, and hence
metrizable. This fails when k is uncountable, as X?" is not even first count-
able in that case. However, it nevertheless follows from [97] that any point
lying in the closure of a subset F C X?" is the limit of a sequence in E; in
particular, any closed subset of X?" is sequentially compact.

Given any ideal b C Ox and v € X" with center ¢(v) € X, one sets
v(b) := min{v(f) | f € bey} € [0, +o0], (1.1)

the minimum being achieved among any given set of generators of b(,).
Denoting by Z C X the zero locus of b, we have

v(b) >0 <= c(v) € Z, v(b) =400 s(v)C Z.
For any two ideals b, b’, we have
v(b-b") =v(b) +v(b), wv(b+b")=min{v(b),v(b")}. (1.2)

The map v — v(b) is continuous on X?*, and such functions generate the
topology of X?". In fact, denoting by Z the set of ideals of X, it is easy to
check that X" can be identified with the “tropical spectrum” of Z, i.e. the
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space of all functions x: Z — [0, +oo] that satisfy (1.2), endowed with the
topology of pointwise convergence (compare [80, Section 1.2]).

1.1.4. Partial order and scaling action

The space X?" is endowed with a natural partial order relation, most
easily described from the tropical spectrum perspective by
v =0 <= v(b) = '(b) for all ideals b C Ox.

As in [80, Lemma 4.4], one checks that v > v iff ¢(v) € {c(v')} and v(f) >
v'(f) for all f € Ox o).

There is also a natural continuous, order preserving scaling action
Ry x X — X (t,v) —> tv,

which induces, in turn, an action on functions ¢: X** — R U {fo0} by
setting for t € Ry and v € X"

(t-@)(v) :=tp(t ). (1.3)
Note that t-¢ = ¢ for all ¢ iff ¢ is homogeneous, which means, in this paper,
o(tv) = te(v) for all t > 0 and v € X*. This action of course preserves the
set

CY(X) := Co(x™ R)
of continuous functions ¢: X** — R. The reason for adding a factor ¢ in (1.3)
will become clear with Proposition 2.19(iii) and Theorem 4.7 (ii) (see also
Lemma 2.34 for a geometric interpretation in terms of base change).

1.1.5. Trivial semivaluations

For each closed point p € X (k), {p}"® consists of a single (trivial) semi-
valuation vy v, and X (k) is thus naturally realized as a subset of X?".
More generally, to each irreducible subvariety Y C X is associated the triv-
ial semivaluation vy iy € X** with support Y. The set

Xtriv C xan
of trivial semivaluations can be identified with the set of functions x: Z —
{0, +o0} satisfying (1.2) and equals the set of fixed points of the scaling

action of R+ on X2, One easily checks that X"V is the closure of X (k) C
xan,

Any scheme point £ € X is the generic point of a subvariety ¥ C X, and
taking £ to vy v defines a bijection X 5 XtV which is a section of both
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maps s: X™ — X, ¢: X* — X. The inverse X"V — X is continuous but
not a homeomorphism.

Ezxample 1.2. — Pick v € X?", denote by Y its support and by Z the
closure of its center ¢(v). Then Z C Y, and vy v < v < Uz 4iv. Further,

t1_1>151+ LU = VY, trivs tl}gloo U = V7 triv-

The set X"V N XVal of trivial valuations is in 1-1 correspondence with
the irreducible components X, of X; its elements will be denoted by

Vtriv,a ‘= VX, triv € Xdiv-
When X is irreducible, there is only one such valuation, denoted by vty -
The following condition will arise many a time in this paper.

DEFINITION 1.3. — A function ¢: X** — RU{—o00} is generically finite
if ¢|xan # —00 for all a.

LEMMA 1.4. — Let ¢p: X — RU {—o00} be decreasing. Then:

(i) for any irreducible subvariety Y C X, |yan satisfies the “mazimum
principle”

Sup ¢ = P(VY triv); (1.4)

(ii) ¢ is generically finite iff it is finite at Vyiv,o for each a;
(iii) if @ is further usc and Z C X denotes the closure of the center of
v € X", then

tv) \ p(Vztriv) = Sup ¢
ast — +o00.

Proof. — For any v € Y*", we have v > vy triv, see Example 1.2. Thus
©(v) < @(vy,riv), which yields (i), and hence (ii). To see (iii), note that for
t € Ryg we have

o S vz v == 9(t0) > (vzmiv) = SUpp,

since ¢ is decreasing, and limsup,_, , ., @(tv) < @(vz triv), since @ is usc. O

1.1.6. The Berkovich analytification of a curve

Here we describe X" in the case when X is a curve, i.e. of pure dimension
one. We may and will assume X is connected.
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If X is smooth, then X?" is a star-shaped R-tree rooted at vy, see
Figure 1.1. Further, the Berkovich topology coincides with the weak tree
topology as defined in [56, Section 3.1.4] or [79, Section 2.1.1], for example.

More specifically, each closed point p € X (k) determines a compactified
ray tp : [0, 400] — X2, with ¢,(0) = Vuiv, Lp(t) = tord, for t € (0,+00),
and ¢, (+00) = vp triv. The half-open rays ¢, ((0, +00]) = ¢! (p) form an open
partition of X®" \ {vtyiyv}, and we have

X = xval | X(k), X"V =X(k)=X(k)U {vewiv},
Xdiv {Utrlv} [ H Q>0

peX (k)

A neighborhood basis of vy, is formed by complements of the union of
finitely many segments ¢, ([t;, +-00], where t; € Ryo. In particular, every
neighborhood of vy, contains at least one (in fact, infinitely many) com-
pactified rays; this prevents X2 from being locally closed in X", and X!
is therefore not locally compact.

In the general case, let (X,) be the irreducible components of X. Then
the normalization morphism X" — X induces a surjective map

XVian — HXZ,an xan
@

that identifies the endpoints vy, v of all rays corresponding to a point p; €
vl (p), p € X(k).

ordy,,

ord,,

Up triv Up triv

ord,,

Figure 1.1. The Berkovich analytification of a smooth curve (left) and
a nodal curve (right), see Section 1.1.6.

This simple piecewise linear picture admits a far-reaching generalization:
as we shall see in Appendix A, if X is smooth of dimension n and char k = 0,
then X®" can be written as the projective limit of the family of simplicial
complexes (of dimension at most n) attached to all snc test configurations.
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1.2. Test configurations

A test configuration X for X consists of:

(i) a flat, projective morphism of schemes 7: X — Al;
(ii) a Gp-action on X lifting the canonical action on Al;
(iii) an isomorphism X; ~ X.

By [29, Proposition 2.6], the scheme X is reduced, and hence a variety. The
central fiber X} is a principal Cartier divisor, defined by the regular function
7%, with @ denoting the coordinate on Al. The open set X'\ Xy is Zariski
dense, and (iii) amounts to the data of a G,-equivariant isomorphism

X\ X=X x Gy (1.5)
over Gy C Al. As a result, m: A — Al admits a canonical (Gm-equivariant
compactification m: X — P, obtained by simply extending (1.5) to A"\ Xp ~
X x (P1\ {0}) over P!\ {0}. Thus X is a projective variety, of dimension
dim X + 1.

For each subvariety Y C X, the closure Y C X of the image of Y x Gy,
under (1.5) is a test configuration for Y. This applies to the irreducible
components X, of X, and induces the irreducible decomposition X =, X.
In particular, X is irreducible iff X is.

If L is a Q-line bundle on X, a test configuration (X, L) for (X, L) consists
of a test configuration X for X, a G,-linearized Q-line bundle £ on X', and
an identification (X, £); ~ (X, L) compatible with X; ~ X. We also say that
L is a test configuration for L, determined on X'. We then have a canonical
Gu-equivariant isomorphism

(X\ Ap, L) ~ (X, L) x Gy, (1.6)
and a canonical extension £ of £ to a Gy,-linearized Q-line bundle on X'.

When £ (and hence L) are honest line bundles, (1.6) induces an isomor-
phism of k[cw®!]-modules
HY(X, L) m1) = HY(X, L) (w11,
which allows to view H(X, £) as a k[w]-submodule of H?(X, L) (1)
Ezample 1.5. — Test configurations (X, L) for (X,Ox) are in 1-1 cor-

respondence with wvertical Q-Cartier divisors D on X, by which we mean
Gpy-invariant Q-Cartier divisors on X’ with support in Xj.

Ezample 1.6. — The trivial test configuration Xy for X is the product
X x Al, with the trivial G,-action on X. If L is a Q-line bundle on X, the
trivial test configuration (Xiyiv, Liriv) for (X, L) is defined by Ly := piL,
with p1: Xiv — X the first projection.
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FEzample 1.7. — Consider a closed subscheme Z C X, with ideal b C Ox.
The blowup p: X — Xyyiv of ZXx{0} C X x{0} = Xiv is a test configuration
for X, known as the deformation to the normal cone of Z. The central fiber
splits into a sum of two effective Cartier divisors Xy = X + P, where X
is the strict transform of X x {0}, which is isomorphic to the blowup of Z
in X, and P is the exceptional divisor of p, which can be identified with
the projective compactification P(Cz/x @ 1) of the normal cone Cz/x =
Specy (ED,,en b™ /6™ 1) (see [66, Section 5.1]).

Test configurations for X form a category, a morphism pu: X — X’ being a
Gm-equivariant morphism over A!, compatible with the isomorphisms x| ~
X ~ Xj. There is at most one morphism X — X’ between any two given
test configurations, and we say that X dominates X’ when it exists. Two test
configurations that dominate each other are canonically isomorphic, and can
thus safely be identified. Any two test configurations can be dominated by a
third, and the set of (isomorphism classes of) test configurations for X thus
forms a directed poset.

LEMMA 1.8. — Let X be a test configuration that dominates Xy via a
morphism p: X — Xiyiv. Then X admits a vertical Q-Cartier divisor D that
is p-ample.

Proof. — Since the structure morphism 7: X — A! is G,-equivariant
and projective (by definition of a test configuration), we can pick a G-
linearized, m-ample line bundle £ on X. Let L be its restriction to X ~ X7,
so that (X, L) is a test configuration for (X, L). If we denote by Ly the
pullback of L by X — Xy — X, then D := £ — p*Ly is a vertical Q-
Cartier divisor on X, and it is p-ample. ]

1.3. Gauss extension

Each test configuration X for X comes with a topological embedding
o X s (X\ &)™ C &P,

called Gauss extension, with image the set of k*-invariant semivaluations
w € X* such that w(w) = 1 (and hence centered on Ap), and defined as
follows. For each irreducible subvariety Y C X, the associated test configu-
ration ) C X provides a canonical embedding of function fields

k(YY) C k(YY) (@) = k(Veiv) ~ k(D).
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The Gauss extension of a valuation v: k(Y)* — R is then defined as the
unique valuation o(v): k()* — R such that

o(v) (Z fdwd> = min(v(fq) + d)

deN
on k(Y)[w] = k().

By [29, Lemma 4.2], o defines a 1-1 correspondence between XV&!
(resp. X4) and the set of k*-invariant valuations (resp. divisorial valu-
ations) w on X such that w(w) = 1.

Remark 1.9. — Gauss extension is in fact independent of the choice of
X, in the following sense: the base change X g of X to the non-Archimedean
field K := k((w)) admits a Berkovich analytification X3", whose points can
again be interpreted as semivaluations w on X g, compatible with the given
valuation on K, i.e. trivial on k& and such that w(w) = 1. Given any test
configuration X’ for X, we thus have a canonical identification of X' with
the image of o: X*" — &X®", and the corresponding map o: X*"* — X3 is
a continuous section of the natural projection m: X7 — X",

For any non-Archimedean field extension F'/k, [97, Corollaires 3.7 & 3.14]
more generally yields a canonical continuous section o: X*"* — X% of the
projection 7: X3 — X" that takes v € X*" to the unique point o(v) in
the Shilov boundary of 7= (v) = M(H(v)DF).

1.4. Integrally closed test configurations and divisorial valuations

DEFINITION 1.10. — We say that a test configuration X for X is inte-
grally closed if the scheme X is integrally closed in the generic fiber Xy ()
of m: X — Al

In other words, X is integrally closed iff it can be covered by affine open
subsets U = Spec A such that the k[w]-algebra A is integrally closed in
Aj(w)- Note that &X' is normal iff X is normal and &' is integrally closed.

Ezample 1.11. — The trivial test configuration X5, = X x A! is inte-
grally closed.

The integral closure of any test configuration X in X () defines a finite,

Gu-equivariant morphism X - X (because the scheme X, being of finite
type over a field, is excellent), which induces an isomorphism on the generic
fibers over A!. Thus X is an integrally closed test configuration for X, which

- 667 —



Sébastien Boucksom and Mattias Jonsson

we simply call the integral closure of X. It is characterized as the unique
integrally closed test configuration that dominates X via a finite morphism.

When X is normal, the integral closure X of any test configuration X
coincides with its normalization X* (see also Remark 1.22).

LEMMA 1.12 (Zariski’s main theorem). — If X is integrally closed and
w: X' — X is a morphism of test configurations, then pu,Ox = Ox.

Proof. — By coherence of direct images, u,Oy is a finite Oxy-module.
Sections of Oy on an open U C X are thus rational functions on U that
are regular on the generic fiber and integral over O, and hence belong
to Ou. O

Integral closedness admits the following characterization, a “vertical ver-
sion” of the usual Serre criterion for normality.

THEOREM 1.13. — A test configuration X is integrally closed iff it is:
(i) vertically Ry, in the sense that X is reqular at each generic point
of Xo;
(ii) vertically S, in the sense that depth Oy ¢ > min{2,dim Ox ¢} for
all f € AXp.

Remark 1.14. — Condition (i) was called partially normal in [95, Defini-
tion 3.7].

LEMMA 1.15. — For any test configuration X for X, we have:
(i) X is vertically So < Xj is S1, i.e. without embedded points;
(if) X is So <= X is Sy and X is vertically Ss.
Proof. — Since &} is a Cartier divisor, each £ € A}y satisfies
depth O‘)(’g = depth OXO,§ +1, dim OX,§ = dim OX07§ + 1.
This yields (i), while (ii) is a direct consequence of the isomorphism
X\ Xy~ X X Gy O
COROLLARY 1.16. — For any test configuration X, the following are
equivalent:
(i) Xo is reduced;
(ii) X is integrally closed, and Xy is generically reduced.

Proof. — The scheme Xj is reduced iff it is generically reduced and S;.
By Lemma 1.15, A} is thus reduced iff it is generically reduced and X is
vertically Ss. Finally, Xy generically reduced implies that X is regular at
each generic point of Xj, since the latter is a Cartier divisor. The result is
now a consequence of Theorem 1.13. O
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Before entering the proof of Theorem 1.13, we introduce some terminology
that will be used throughout this paper.

DEFINITION 1.17. — Let X be a test configuration for X.

(i) A vertical fractional ideal a on X is a coherent fractional ideal sheaf
that is Gy -invariant, and trivial outside Xj.

(ii) The polar scheme P C X of a vertical fractional ideal a is the closed
subscheme of X defined by the ideal of poles p := {f € Ox | fa C
Ox}.

(iif) A vertical Cartier divisor D on X is a Gy -invariant Cartier divisor
with support in Xp.

Note that P in (ii) is supported in Xp, a being trivial outside Xjp.

Vertical Cartier divisors on X are in 1-1 correspondence with locally
principal vertical fractional ideals of X, via D +— Ox (D). If D is further
effective, then it coincides with the polar scheme of Ox (D).

LEMMA 1.18. — A test configuration X is integrally closed iff every ver-
tical fractional ideal a on X that is integral over Ox satisfies a C Ox.

Proof. — The “only if” part is obvious. Conversely, consider the integral
closure p: X — X. Then a := p, O3 is a vertical fractional ideal that is
integral over Oy, and the “if part” follows. O

The next result is the key step in the proof of Theorem 1.13.

LEMMA 1.19. — Let X be an integrally closed test configuration for X,
and a be a vertical fractional ideal on X. Then:

(i) every associated point of the scheme of poles of a is a generic point
of Xo;
(ii) X is vertically Ry.

Proof. — We follow the usual proof of Serre’s criterion for normality. Let
p={f€Ox| faec Ox} be the ideal of poles, and pick an associated point
& € Xy of the polar scheme P C X. By definition of an associated point,
there exists f € Ox ¢ such that f ¢ pe but fmg C pe, with mg the maximal
ideal of Oy ¢. Then fme - a¢ is an ideal of Ox ¢, and hence fm¢ - as C mg or
fme-ag = Ox ¢. In the former case, the usual determinant trick implies that
fag is integral over Oy ¢. Since X is integrally closed, we infer fas C Ox ¢,
i.e. f € p¢, a contradiction. We thus necessarily have fm¢-a; = Ox ¢, which
proves that m¢ is invertible, and hence that Ox ¢ is a DVR. This proves (i),
as well as (ii), taking a = Oy (Xp). O
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Proof of Theorem 1.13. — Assume that X is integrally closed. By Lem-
ma 1.19, X is vertically R;, and the polar scheme Xy of Ox (X)) has no
embedded points. By Lemma 1.15, X' is thus vertically S, which proves
(i) = (ii).

Assume, conversely, that X' is vertically R; and S5, and pick a vertical
fractional ideal a on X that is integral over Oy . According to Lemma 1.18,
we need to show that a C Oy, which means that its ideal of poles p :=
{f €0x | fa C Oy} is trivial. Arguing by contradiction, suppose that the
polar scheme P is non-empty, and pick an associated point & € Xy of P. If
dim Ox ¢ = 1, then £ is a generic point of Ay. Since X is vertically Ry, Ox ¢
is regular, and hence integrally closed. Thus a; C Ox ¢, which contradicts
£ € P. We thus have dim Ox ¢ > 2, and hence depth Ox ¢ > 2, since X is
vertically So.

Since £ is an associated point of P, we can find, as above, f € Oy ¢ such
that f & pe but fme C be, ie. fme-ag C Oxe. Since f ¢ pe, there exists
g € ag such that h := fg ¢ Oy ¢. Write h = a/b with a,b € Ox¢ and b a
non-zerodivisor. Then a ¢ (b), but amg C (b). Thus £ is an associated point
of the Cartier divisor D = (b = 0), which contradicts depth Op ¢ > 1. O

Generalizing [29, Section 4.2], we associate to every irreducible compo-
nent F of the central fiber A of an integrally closed test configuration X a
divisorial valuation vy € X4V, as follows.

By Theorem 1.13, the local ring of X at the generic point of E is a DVR
(compare [41, Lemme 2.1]), and hence defines a divisorial valuation ordg :
E(X)* — Z. As in [29, Definition 4.4], we set by := ordg(w) = ordg (X)),
and define a valuation vg on X as the restriction of wg := bEl ordg to

E(X) Ck(X)(w) = k(Xiv) = k(X).
Since wg is k*-invariant and wg(w) = 1, we have o(vg) = wg.

LEMMA 1.20. — A waluation v on X is divisorial iff v = vg for an
irreducible component E of some integrally closed test configuration X for X.

This follows from [29, Theorem 4.6]. While the latter assumes X nor-
mal, its proof is a rather simple consequence of a theorem of Zariski [82,
Lemma 2.45], which does not depend on this assumption.

Example 1.21. — Assume X is smooth, and let Z C X be a smooth
irreducible subvariety. The vanishing order at the generic point of Z is then a
divisorial valuation ordy € X%V: indeed, denoting by 7: X — X the blowup
of Z and F its exceptional divisor, we have ordy; = ordg. Alternatively,
ordz = vp with P the exceptional divisor of the blowup X — Xy of Zx {0},
i.e. the deformation to the normal cone of Z in X (see Example 1.7).
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Remark 1.22. — The normalization X* of a test configuration & for X
is a test configuration for the normalization X* of X. The normalization
morphism X — X factors through the integral closure X and the induced
morphism XY — X is an isomorphism over each generic point of XO, X
being regular at such points (compare [95, Lemma 3.9]). As a consequence,
the irreducible components of Xy and those of Ay induce the same set of
valuations in X4V = (xv)div,

LEMMA 1.23. — A wvertical fractional ideal a on an integrally closed test
configuration X satisfies a C Oy iff ordg(a) = 0 for each irreducible com-
ponent E of Xj.

Proof. — If a C Oy, then trivially w(a) > 0 for all w € X*". Conversely
assume ordg(a) > 0 for all E. We need to show that the polar scheme P
of a is empty. Suppose this is not the case, and pick an associated point &
of P. By Lemma 1.19(ii), £ is the generic point of some component E of
X, and the assumption ordg(a) > 0 thus yields ag C Oxpg, ie. £ ¢ P, a
contradiction. g

1.5. Valuations of linear growth

Let L be a line bundle on X. A semivaluation v € X" can be naturally
evaluated on any section s € H°(X, L), by defining v(s) as the value of v
on the germ in Ox corresponding to s in any local trivialization of L at the
center of v. Thus v(s) € [0, +00], v(s) = oo iff s vanishes along the support
of v, and v(s) > 0 iff s vanishes at the center of v. Setting |s|(v) := e (%)
defines a continuous function |s|: X — [0, 1].

Remark 1.24. — This construction reflects the existence of the trivial
metric |- | of L*", a continuous metric characterized by |7| = 1 on the com-
pact set ¢~ 1(U) for any trivializing section 7 € H°(U, L) on an open subset
UcCX.

In what follows, we fix an ample line bundle L on X.

LEMMA 1.25. — A semivaluation v € X** is a valuation iff v(s) < 400
for all regular sections s € HY(X,mL), m € N.

Proof. — Suppose v ¢ XV2! so that its support Y C X is not an irre-
ducible component of X. Since L is ample, we can find for m > 1 a nonzero
section s € H?(X, mL) that vanishes along Y, but not along any irreducible
component of X. Then s is regular, and v(s) = co. The converse direction is
clear. ]
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Following [16, 36], we introduce:

DEFINITION 1.26. — The maximal vanishing order of L at v € X?" is
defined as

Ty (v) = sup {m ™ "v(s) |m >1,scH(X,mL) regular} € [0, +00].

We say that v has linear growth if T (v) < +oo, and denote by X" the
corresponding subset of X",

The linear growth condition is easily seen to be independent of the choice
of an ample line bundle L. By Lemma 1.25, we have X' c X2l and the
inclusion is strict in general [36, Example 2.19]. We will later interpret X'»
as the set of nonpluripolar points of X?", cf. Proposition 4.38 below.

LEMMA 1.27. — Pick an irreducible component X, of X, and set L, :=
L|x,, . For each v € X2 C X" we then have T_(v) = Tr(v). In particular,

Xlin _ H X(I;n

(03

Proof. — Since the restriction to X, of a regular section on X is regular,
we trivially have Tr_(v) > Tp(v). Conversely pick a nonzero section s €
H°(X,,mLy). For 7 > 1, s" extends to a regular section 5§ € HY(X, rmL).
Then rv(s) = v(s") = v(3) < Tr(v)mr, and hence m~v(s) < Tr,(v), which
proves that Ty (v) < TL(v). O

PROPOSITION 1.28. — FEwery divisorial valuation has linear growth, i.e.
Xdiv C Xlin'

Proof. — Pick v € X4V, and choose a projective birational morphism
pw: X' — X with X’ normal and a prime divisor £ C X’ such that v = tordg,
t € Qs¢. Let H be an ample line bundle on X’. Pick a regular section
s € H°(X,mL) and set a := ordg(s). Then div(u*s) — aFE is an effective
Weil divisor on X', and hence

a(E-H" ') < (div(p*s) - H™ ) = m(p*L - H™1).

Thus a < Cm for a uniform constant C' > 0, which proves that ordg, and
hence also v, has linear growth. O

More generally, any v € X®" such that v < v’ for some v/ € X4V is a
valuation of linear growth. Conversely, [36, Theorem 2.16] implies:

Ezample 1.29. — If v € X! is centered at a closed point of X, then
v e X iff y < o' for some v/ € X4V,
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2. Piecewise linear and Fubini—Study functions

As before, X denotes a projective variety. We introduce the classes of
piecewise linear and Fubini—Study functions on the Berkovich space X?",
and interpret them in terms of test configurations, along the lines of [29].

2.1. Flag ideals and piecewise linear functions

Recall from Section 1.1 that to any ideal b C Oy is associated a con-
tinuous function X*" — [0, 4+o00] given by v — v(b). For reasons that will
become clearer later, we define

log|b| : X" — [—00, 0]
by setting log |b|(v) := —wv(b). The function log|b| is homogeneous with
respect to the scaling action of Rsg, and (1.2) yields
log |b - b'| =log |b] +log [b’|, log|b+ b'| = max{log|b|,log|b'|}  (2.1)
for all ideals b, b’ C Ox.
Following [29, 95], we define a flag ideal a as a vertical fractional ideal
on Xyiv = X x Al ie. a Gy -invariant, coherent fractional ideal sheaf that

is trivial on X x Gy,, according to our conventions. We then have a weight
decomposition
a= Z aw (2.2)
AET
for a decreasing sequence of ideals ay C Ox such that ay = Ox for A < 0
and ay = 0 for A > 0. For any v € X" with Gauss extension ¢(v), we have

o(v)(a) = mgn{v(cu) — AL

We define a continuous function ¢, : X" — R by setting ¢q(v) = —o(v)(a),
ie.

Pq = m)z\ix{log lax| + A} (2.3)

For any two flag ideals a,a’, we have
Paa' = Pat Py Parw = max{pa, pa}. (2.4)
DEFINITION 2.1. — We define the space of piecewise linear (PL) func-

tions on X" as the Q-linear subspace
PL(X) c C°(X)
generated by all functions @, attached to flag ideals a.
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By (2.4), the subset
PLY(X) := {m 'pa | m € Zsy, a flag ideal} C PL(X) (2.5)

is stable under sums and finite maxima, and contains all Q-valued constant
functions. It is also stable under multiplication by Q4 : if ¢ € Q4, then
cpa = m Lpgme for any m € Zsq such that me € Z. Further, it is stable
under the scaling action of Qso: if ¢ € Qs and a = >, ayw >, then
t-pa = m Loy, where m € Z~ is such that mt € Z,and o’ = Y, af'o ™A

It follows that the Q-vector space PL(X) is stable under finite maxima
and minima, and under the scaling action of Q, and it contains all constant
Q-valued functions. Further, any function in PL(X) can be written as a
difference of functions in PL™(X), and is Q-valued on X9V,

We refer to Theorem 2.7 and Appendix A for an interpretation of PL
functions in terms of test configurations and PL functions on simplicial com-
plexes, respectively. In our setting, PL functions play the role of smooth
functions in the complex analytic case, as illustrated by the next result.

THEOREM 2.2. — The space PL(X) is dense in C°(X) for the topology
of uniform convergence.

By the “lattice version” of the Stone—Weierstrass theorem, this is a direct
consequence of the following result.

LEMMA 2.3. — The Q-linear subspace PL(X) C C%(X) is stable under
maz (and hence min), contains the constants in Q, and separates the points
of Xan.

Proof. — The first two properties are clear. As mentioned in Section 1.1,
the topology of X2 is generated by the functions log|b| attached to ideals
b C Ox. For any two v,v’ € X we can thus find an ideal b such that
log |b|(v) # log|b|(v') (since X" is Hausdorff), and it follows that ¢ :=
max{log |b|, —m} € PL(X) separates v, v’ for m > 1. O

Remark 2.4. — We will occasionally consider the R-vector space
PL(X)r C C%(X) generated by PL(X). As opposed to the latter, PL(X)g
is not closed under max.

Ezxample 2.5. — Given a closed subscheme Z C X with ideal b C Oy,
the function

vz = max{log|b|, —1}
lies in PLT(X), since ¢z = ¢, with a = b + (w). Note that

t- vz = max{log |b|, —t} (2.6)
for all t € Qso.
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Example 2.6. — Assume X is a smooth irreducible curve, and recall the
description of X?" in Section 1.1.6. As a special case of Example 2.5, each
p € X (k) defines a function ¢, € PLT(X) that satisfies, for all ¢ € X (k)
and ¢ € [0, +o00],

max{—t,—1} if ¢ =p;
Ly (t) =
a#r(t) {0 otherwise.

Using (2.6) and the fact that every nontrivial ideal of X is of the form
b = Ox(—>,a;p;) for a finite set (p;) in X (k) and a; € Zs, one checks
that the functions ¢- ¢, with ¢t € Qs and p € X (k) span PL(X). A function
¢ € C°(X) is PL iff ¢ is constant on all but finitely many rays of X®* and
Q-PL on these rays, and ¢ € PLT(X) iff ¢ is further convex (and hence
decreasing, being bounded) on each ray.

2.2. PL functions and test configurations

Let X be a test configuration for X, and recall that Gauss extension
of (semi)valuations yields an embedding oy: X?* < X2 onto the set of
k*-invariant semivaluations w € X2 such that w(Xp) = w(w) = 1.

Recall also that a vertical Q-Cartier divisor on X means a G,-invariant
Q-Cartier divisor with support in Xj (see Example 1.5). Such divisors form
a finite dimensional Q-vector space, denoted by

VCar(X)g.

To each D € VCar(X)g we associate a continuous function pp € C(X)
by setting
¢p(v) := ox(v)(D)
for v € X where the right-hand side is defined as m~1oy (v)(Ox(—mD))
for any choice of m € Zsg such that mD is a Cartier divisor (and hence
D>0= pp=0).

The map D > pp is Q-linear, and invariant under pull-back: if p: X' —

X is a morphism of test configurations then oy (v)(p*D) = ox(v)(D) for
all v € X*, and hence ¢,»p = ¢p. It thus gives rise to a Q-linear map

H_)I()nVCar(X)Q — CO(X), (2.7)

where the direct limit ranges over the directed poset of (isomorphism classes
of) test configurations (or merely integrally closed ones, since they form a
cofinal subset).
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THEOREM 2.7. — The map D — ¢p in (2.7) induces a Q-linear iso-
morphism
H_n;VCar(X)Q ~ PL(X).
X

LEMMA 2.8. — Let X be an integrally closed test configuration for X,
and D € VCar(X)g. Then D is effective iff op(vg) = 0 for each irreducible
component E of Xj.

Proof. — After passing to a multiple, we may assume that D is
Cartier. Since ox(vg) = bgl ordg, Lemma 1.23 shows that —pp(vg) =
b' ordg(Ox(—D)) is nonnegative for all E iff Ox(—D) C Ox, which is
also equivalent to D being effective. O

LEMMA 2.9. — For any ¢ € C°(X), the following properties are equiva-
lent:

(i) ¢ € PLT(X);

(i) there exists a test configuration X that dominates Xy via p1: X —
Xiviv, and a p-semiample vertical Q-divisor D € VCar(X)g such
that ¢ = pp.

Proof. — Assume (i), and write ¢ = m ™1y, for a flag ideal a on X5, and
m € Zsp. Denote by p: X — Xyiy the blowup of a, so that a- Oy = Ox(E)
with £ € VCar(X). Then ¢ = ¢p with D := m™'E € VCar(X)g, which
is p-semiample. This proves (i) = (ii). Conversely, assume (ii), and pick
m sufficiently divisible such that Ox(mD) is p-globally generated. Then
Ox(mD) = a- Oy with a := p,Ox(mD), and hence ¢ = m~1p,, which
proves (ii) = (i). O

Proof of Theorem 2.7. — Lemma 2.8 implies that (2.7) is injective. Any
D € VCar(X)g with p: X — Xiiv can be written as a difference of p-
(semi)ample divisors; on the other hand, any ¢ € PL(X) is a difference of
functions in PLT(X), and Lemma 2.9 thus shows that the image of (2.7) is
precisely PL(X). O

Next we prove a result that will be used in Section 4.4.

DEFINITION 2.10. — Given a flag ideal a, we define the set £, C X4V
of Rees valuations of a as the finite set of divisorial valuations associated to
the irreducible components of Xy, where X — Xy is the integral closure of
the blowup of a.

As the blowup of any ideal is canonically isomorphic to the blowup of
any power of that ideal, we have ¥, = X, for any r > 1.

Remark 2.11. — Let X — X,y be the integral closure of the blowup
along a flag ideal a C Oy, , and (E;) the irreducible components of Ajp.
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The Rees valuations of a are then the valuations vg, € X div o X. Note that
the terminology is a bit abusive, as (assuming X is normal) the divisorial
valuations ordg, on X can also be seen as the Rees valuations of the ideal a.

LEMMA 2.12. — PFEvery divisorial valuation is a Rees valuation of some
flag ideal. More generally, for any finite subset ¥ C X4V there exists a flag
ideal a of X such that X C X,.

Proof. — Tt suffices to consider the case ¥ = {v}, v € X4V, By Lem-
ma 1.20, there exists an integrally closed test configuration X for X, and an
irreducible component F of Xy such that vy = v. Passing to a higher test
configuration, we may assume that X" is the integral closure of the blowup
of Xy along a flag ideal a, and then v € 3. O

LEMMA 2.13. — For any flag ideal a and any ¢ € PL+(X), we have
sup(p — ¢a) = max(p — @a).
an o
Proof. — Write ¢ = m™'pq, where m > 1 and o’ is a flag ideal. Then
©— ©a =m e — @am). As Bgm = Xq, we may assume m = 1.

Let {E;}; be the irreducible components of Xp, so that X, = {vg, };.
Write a - Oy = Ox(D) with D € VCar(X)q. For each i we have o(vg,) =
ordg, (Xo) "t ordg,, and hence

.. ordg, (D) — ordg, (a’) } .

ordg, (Xo)
Pick r € Z~¢ such that rc € Z. For all ¢ we then have
ordg, ((a')"(reXy —rD)) = 0,
and hence (a')"(rcXy — rD) C Oy, by Lemma 1.23. This yields, in turn,

max(p — @q) = max {
S i

re+ro(v)(a’) = ro(v)(a)

for all v € X?* and we conclude, as desired, sup ya (¢ — pq) = c. O

2.3. Density of divisorial valuations

Using PL functions, we establish some topological properties of X2". Most
importantly, we prove

THEOREM 2.14. — The set XV 4s dense in X2,

Proof. — By density of PL(X) in C%(X) (see Theorem 2.2), it suffices to
prove that if ¢ € PL(X) vanishes on X%, then ¢ = 0. By Theorem 2.7 we
have ¢ = @p for some vertical Q-Cartier divisor D on an integrally closed
test configuration X. The result now follows from Lemma 2.8. O
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Using this, we further show:

LEMMA 2.15. — For any projective variety X, we have:

(i) the set of semivaluations v € X?® with one-dimensional support is
dense in X" iff every irreducible component of X has dimension at
least 1;

(i) X2\ XVl js dense in X" iff every irreducible component of X has
dimension at least 2.

Proof. — We may assume that X is irreducible. Indeed, a subset of X?"
is dense iff its intersection with X32" is dense in X3" for every irreducible
component X, of X.

The case dim X = 0 is trivial, and if dim X = 1, then the set of valuations
with one-dimensional support equals XV, which is dense, whereas X"\ X val
is not, see Section 1.1.6.

We may therefore assume dim X > 1. In this case, we claim that the set
C of semivaluations with one-dimensional support is dense in X?®". This will
prove (i), and hence also (ii), since any such semivaluation is contained in
Xan \ Xval.

Pick a prime divisor ¥ on a normal birational model 7: ¥ — X. By
Theorem 2.14, it is enough to show that ordg € X%V lies in the closure of C.
By definition of the topology of X", this amounts to the following: given an
affine open subvariety U C X that intersects m(E) and f1,..., fr € O(U),
we need to exhibit v € C such that v(f;) is arbitrarily close to ordg(f;) for
i =1,...,r. We claim that we can actually find v € C such that v(f;) =
ordg(f;) for all i. To see this, denote by Z the union of the irreducible
components of » . w*div(f;) that are distinct from E. Since E and Y are
smooth at the generic point of FE, we can find an irreducible curve C C Y,
not contained in the exceptional locus of m, and a closed point p € C that
does not lie on Z, such that E and C intersect transversely at p. Setting
ord(c, (f) := ord,(f|c) for f € Oy, defines a semivaluation ord ¢ ) € Y*",
which lies outside YV since Y has dimension at least 2 at p, by assumption.
The image of ord(c,) in X*" is a semivaluation with support 7(C), and
hence v € C. By construction, we further have ordg(f;) = ordg(n*f;) =
ord (¢ p) (7* fi) = v(fi) for all i, and we are done. O

2.4. Fubini—-Study functions

We now introduce classes of functions defined by global sections of line
bundles.

- 678



Global pluripotential theory over a trivially valued field

Recall that the base ideal of a line bundle L on X is the ideal b;, C Ox
locally generated by the global sections H°(X, L). The corresponding closed
subscheme of X is called the base scheme of L, while its base locus Bs(L) is
the underlying Zariski closed set, i.e.

Bs(L) = {z € X | s(z) =0 for all s € H*(X, L)}.

LEMMA 2.16. — A line bundle L admits a regular section s € H*(X, L)
iff Bs(L) is nowhere dense.

Proof. — The set of regular sections in HY(X, L) is the complement of the
union of linear subspaces V,, := {s € H*(X, L) | s|x, = 0}. Thus L admits
a regular section iff each V,, is a strict subspace; this is also equivalent to
saying that Bs(L) does not contain any component X, i.e. Bs(L) is nowhere
dense. 0

Consider now a Q-line bundle L. The asymptotic base locus of L is the
Zariski closed subset B(L) := Bs(mL) for m sufficiently divisible. One says
that L is effective (resp. semiample) if B(L) is nowhere dense (resp. empty).
Note that

L effective = L pseudoeffective, i.e. ¢;(L) € Psef(X);
L semiample = L nef, i.e. ¢;(L) € Nef(X).

Indeed, the first implication follows from Lemma 2.16, which yields a regular
section s € HY(X,mL) for m sufficiently divisible, so that m~1div(s) is an
effective Q-Cartier divisor in the numerical class of L.

Consider next an additive subgroup A C R (the main cases being {0}, Q,
or R), and a function ¢: X" — RU{—o00} of the form

o=m""! m]ax{log Isj| 4+ A} (2.8)

with m € Zso such that mL is an honest line bundle, (s;) a finite set
of sections of HY(X,mL), and A\; € A. (Recall that (2.8) means ¢(v) =
m~ ! max;{—v(s;) + A\;} for all v € X*"). Using Lemma 1.4, the next result
is straightforward:

LEMMA 2.17. — FEvery function ¢: X** = RU{—o0} of the form (2.8)
is continuous, decreasing, and satisfies B(L)(k) C {¢ = —oo}. Furthermore,
the following are equivalent:

(i) ¢ is generically finite, i.e. @|xan # —oo for all a (see Defini-
tion 1.8);
(i) ¢ is finite at Viyiv,o for all a (see Section 1.1.5);
(iii) ¢ is finite valued on X Vo
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DEFINITION 2.18. — Given a subgroup A C R and a Q-line bundle L on
X, we say that a function ¢: X** - RU{—o0} is

(i) a A-rational, generically finite Fubini-Study function for L if ¢ is
of the form (2.8) and generically finite, i.c. finite valued on X'
(see Lemma 2.17);

(ii) a A-rational Fubini-Study function for L if ¢ is further finite valued
on all of X?™.

We denote by Ha(L) C ng\f(L) the spaces so defined.
Note that these sets only depend on the isomorphism class of L, i.e. its
image in Pic(X)g. Further,
Ha(L) = HE (L) N COX).
For any ¢ as in (2.8), we have
o = (rm) " max{log|s]| + A} (2.9)
J
for all r € Z~¢. Thus
HE (L) = HEN (L), Ha(L) = Hoa(L), (2.10)

which means that the subgroup A C R can always be assumed to be divisible
in the above definition. Finally, we trivially have

HE (L) € HE(L) c HEN(L), Ho(L) C Ha(L) C Hg(L).

These sets can be empty; more precisely, it is straightforward to check that

HE(L) # 0 <= HE(L) # 0 <= L effective; (2.11)
Hr(L) # 0 <= Ho(L) = {0} < L semiample. (2.12)

The next result summarizes further properties that are also readily checked
(compare [22, Proposition 5.4]).

PROPOSITION 2.19. — Pick any L € Pic(X)g. Then:

(i) each p € ng\f(L) is decreasing on X®", and hence satisfies the maxi-
mum principle (1.4) (see Lemma 1.4); further, o = —co on B(L)*";
(ii) ’H/g\f(L) and Ha(L) are both invariant under the scaling action (1.3)
restricted to the subgroup {t € Rsq | tA C A} of Rso;
(iii) for all L' € Pic(X)g and a € Q¢ we have
HE (aL) = aHB (L), HE(L)+HE (L) c HE(L + L),

and similarly for Ha;
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(iv) for any morphism f:Y — X from a projective variety we have
JTHA(L) CHA(fTL),

and the same holds for ”Hif if f is surjective.

When ¢ € 'Hif(L) is written as in (2.8), the scaling action in (ii) is simply
given by
t-p=m""max{log|s;| +t\;}.
J

For any v € X?", we similarly have
o(tv) = m~ max{—tv(s;) + \;},
J
which yields:

LEMMA 2.20. — For any ¢ € Hﬁg{c(L) and v € X", t — ¢(tv) is conver
and decreasing on Rsg.

Proposition 2.19 (iv) admits the following partial converse, a key ingredi-
ent in the proof of Theorem 4.32 below.

LEMMA 2.21. — Let w: Y — X be the blowup of an ideal b C Ox, with
exceptional divisor E. Denote by sp € H(Y, Oy (E)) the canonical section,
so that 7 log |b] = log |sg| € HE (E). For any L € Pic(X)g we then have

HE (7L — E) + log |sp| € 7*HE (L).

LEMMA 2.22. — In the notation of Lemma 2.21, we have b™ C
1Oy (—mE) for all m € N, and equality holds for all m large enough.

Proof. — This follows from the fact that Y is the relative Proj of the
graded Ox-algebra R = @, b™, which is generated in degree 1, and that
Oy (—FE) = Oy (1) (see for instance [78, Exercise 11.5.9]). O

Proof of Lemma 2.21. — Pick ¢ € ’Hif(w*L—E), and write it as in (2.8),
with s; € HO(Y, m(7*L — E)). After replacing m and the s; with 7m and s
for r large enough as in (2.9), we may assume that m,Oy (—mE) = b™, by
Lemma 2.22. For each i, s;s7 € H°(Y, mn*L) locally belongs to the ideal
Oy (—mE), and hence s;s% = 7*0; with o; € H(X, Oy (mL) ® b™). This
yields ¢ + log|sg| = 7 with ¢ := m~! max;{log|o;| + \;}. Since 7 is
birational, ¢ is finite valued at each vyiv,o iff 7% = ¢ + log|sg| satisfies
the analogous condition on Y, which is indeed the case since sg is a regular
section. Thus ¢ € 7—[{72’5(1/)7 and we are done. O

For later use (see Theorem 6.21), we also establish the following “division”
property:
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LEMMA 2.23. — Assume that X is normal. Pick L € Pic(X)g, an effec-
tive Q-Cartier divisor E on X, and ¢ € Hif(L). Then

¢ <loglsg|+0(1) < ¢ —log|sg| € HE(L - E).

We have somewhat abusively set log|sg| := m~tlog|smE| € ’H%f(E)
for m sufficiently divisible, where s,,z € H°(X, mFE) denotes the canonical
section.

Proof. — Write ¢ as in (2.8). Replacing m and s; with rm and s} for
r large enough, we may assume that mFE is a Cartier divisor. For each 4,
we have log|s;| + A; < me < log|sme| + O(1), ie. v(s;) = v(mE) - C
for all v € X?" and a uniform constant C'. Replacing v with tv and letting
t — 400, we infer v(s;) = v(mkE) for all v. This holds in particular with
v = ordp for any irreducible component F' of F, which shows that s; locally
belongs to the ideal Ox(—mE) C Ox, since X is normal. For each i, we thus
have s; = 0;8,,r With o; € HO(X,m(L — E)), which yields ¢ — log|sg| =
m~! max;{log|o;| + A;}. This function is further generically finite, since so
are o and log |sg|, and we conclude, as desired, p—log|sg| € 'H[g\f(LfE). O

We further observe that generically finite Fubini-Study functions are au-
tomatically constant on a substantial part of X?":

LEMMA 2.24. — Pick L € Pic(X)g and ¢ € H%f(L). Then there exists
a non-empty Zariski open subset U C X such that ¢ = sup ¢ on ¢~ *(U).

Recall that the center map ¢ : X*® — X is anticontinuous. Thus ¢~ 1(U)
is closed in X2 (in fact, a k-analytic domain), but it has non-empty interior,

as it contains the non-empty open subset ¢~ 1({p}) for any closed point p €
U(k).

Proof. — Write ¢ = m™! max;{log|s;| + A\;} as in (2.8), with s; # 0 for

all i. For any v € X°", v(s;) = —log |s;|(v) is nonzero iff s; vanishes at the
center c(v). If ¢(v) ¢ Z :=J,;(s; = 0), we thus have ¢(v) = max; \; = sup ¢,
which yields the result with U := X \ Z. O
The space
H(L) = Ho(L)

of (rational) Fubini-Study functions plays a central role in this paper. As
we shall see, when L is ample, H(L) is in 1-1 correspondence with the set
of integrally closed, ample test configurations (see Corollary 2.32 below).
On the other hand, Hgr(L) is closely related to the notion of an “R-test
configuration” as considered for instance in [51]; see [34] for details.
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2.5. Fubini—Study functions and PL functions

We now study the relation between H (L) and the space PL(X) introduced
in Section 2.1.

PROPOSITION 2.25. — For any L € Pic(X)g and ¢: X*" - RU{—o0},
we have o € H(L) iff ¢ = m~ Yo, for a flag ideal a and m € Zwq such that
mL is an honest line bundle and mLyiy ® a is globally generated on Xy -

Here (Xiyiv, Ltriv) is the trivial test configuration for (X, L), see Exam-
ple 1.6. In terms of the weight decomposition (2.2), note that mL, ® a is
globally generated iff mL ® ay is globally generated for all A € Z.

Proof. — Assume first ¢ € H(L) and write ¢ = m ™! max;{log|s;| + \i}
for a finite set (s;) in H®(X,mL) and \; € Z. The rational sections (s;c0 %)
of mLiiv on Xy generate a flag ideal a such that mLi, ® a is globally
generated on Xy, and ¢ = m ™ p,.

Assume, conversely, that ¢ = m~'a with a a flag ideal such that mL, ®
a is globally generated. As above, write a = Y, ., ax@ . For each A €
Z, Ox(mL) ® ay is globally generated by a finite set (s ;); of sections in
HO(X,mL), and (2.3) shows that

p=m"! H;&X{log Isxil + A},
K

which proves that ¢ € H(L). O

COROLLARY 2.26. — For any L € Pic(X)q, we have Q1 H (L) CPLT(X),
and equality holds if L is ample. In particular, H(L) spans the Q-vector space
PL(X) whenever L is ample.

In view of Proposition 2.19 (iii), this implies

COROLLARY 2.27. — We have PLT(X) = (J, H(L), where L ranges
over ample classes in Pic(X).

Given a flag ideal a, we get an evaluation map PL(X) — Q¥s. We now
show that this map is surjective. Using Lemma 2.12, this will imply that the
evaluation map PL(X) — Q¥ is surjective for any finite subset ¥ C XV,
For later purposes, we prove a more precise result.

LEMMA 2.28. — For any flag ideal a, and L € Pic(X)g ample, the fol-
lowing property holds for m sufficiently divisible. For any ¢ € Q< there
exists 1 = 1 and p € H(L) such that ¢ = r(pq — mp) € PL(X) satisfies
Y(v) = ¢y for allv € L.
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Before proving the lemma, we establish the following version of [29, The-
orem 1.10].

LEMMA 2.29. — Let a be a flag ideal. Denote by pu: X — Xy the inte-
gral closure of the blowup along a, and by E1, ..., En the irreducible compo-
nents of Xy. Then

({f € Ox,,, lordg,(f) > ordg, (a™)}

G (1S € Oy, l0rdi, (f) > ordg, (™)} (2.13)
i>1

for all m € N large enough.

Proof. — The (antieffective) vertical Cartier divisor D on X such that
Ox(D) = a- Oy is p-ample, and the left-hand side of (2.13) coincides with
1 Ox(mD). For m > 1,
are both u-globally generated, and taking p, yields the result. O

Proof of Lemma 2.28. — Let X — Xy be the integral closure of the
blowup of X}y along a, and {E;}; the irreducible components of Xy, so that
¥a = {vi}i, where v; = vg,. By Lemma 2.29, after replacing a with some
power, we may assume that for any j, we have

n {f € Ox,, |OrdE1(f) > OrdEi(a)}

G = [{f € O | 0rd,(£) > ordp, (a)}
i#]
For m sufficiently divisible, m Ly, ® a} is globally generated for any j. After
replacing L by mL, we may assume m = 1. Then, for each j, there exists s; €
H® (Xiriv, Lriv) such that ordg;, (s;) < ordg, (a) and ordg, (s;) > ordg, (a) for
all i # j. Write s; = >, oy ;0@ with s, ; € HY(X, L), and define functions
Py X — RU{—o0o} by
= m/\ax{log |sja] — A}

Then pl;(vi) = —b; ' ordg, (s;) and @q(v;) = —b; ' ordg, (a); hence py(v;) >
¢a(vy) while p’(v;) < pa(vs) for i # j. If we pick a = min; pq(v;) and set
pj = max{p},a}, then p; € H(L) and

fglzx(ﬁj(vi) — ¢a(v5)) <0 <eg; = p;(v;) — pal(v;).
For r > 1, we now set
p:=max{pj—ej—c;/r} € H(L) CPLT(X) and 1 =r(ps—p) € PL(X).
J
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If r > 1, then re; + ¢; > ¢; for all ¢, j, which easily implies 9 (v;) = ¢; for
all j. O

2.6. Equivalence of test configurations

Let L be a Q-line bundle on X. As in [29, Definition 6.1], we say that
two test configurations (X, L), (X', L) for (X,L) are equivalent if £ and
L' agree after pulling back to a test configuration X’ dominating both X’
and X”.

For simplicity, we say that a test configuration (X, £) is integrally closed
(resp. semiample, ample) if X' (resp. £) is. Slightly generalizing [29, Lem-
ma 6.3] (which assumed X normal), we have:

ProrosiTioON 2.30. — If L is an ample Q-line bundle, then every semi-
ample test configuration for (X, L) is equivalent to a unique ample, integrally
closed test configuration.

Proof. — By [29, Proposition 2.17], every semiample test configuration is
equivalent to an ample test configuration, which can further be assumed to be
integrally closed after passing to the integral closure. This proves existence.

To prove uniqueness, let (X, L), (X', L") be two ample, integrally closed
test configurations for (X, L) that are equivalent. After replacing L with a
multiple, we may assume that £, £ are honest line bundles. By ampleness, it
will then be enough to show that H®(X, m£L) = H°(X’,mL’) for all m € N,
as k[w]-submodules of H(X,mL)jm=1) (see Section 1.2). Choose a test
configuration X" dominating X and X’ via pu: X" — X, p/: X" — X', such
that £” := p*L£ = p*L’. Since X and X’ are integrally closed, Lemma 1.12
yields p,Oxn = Oy, 1. Oxr = Oxr, and the projection formula shows that

HO(x,mL) = H* (X", mL") = H* (X', mL").
The proof is complete. O

2.7. Fubini—Study functions and test configurations

Let L be a Q-line bundle on X. For any test configuration (X, L) for
(X, L), we can choose a test configuration X’ with two morphisms p: X’ —
X, p: X' = Xyiv. Then

D = L — p*Liyiv € VCar(X)g,
and mapping £ to D yields a 1-1 correspondence between the set of equiva-

lence classes of test configurations for (X,L) and the Q-vector space
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lim . VCar(X)g, which in turn is isomorphic to PL(X), by Theorem 2.7.
We write ¢, for the element of PL(X) associated to £. The restriction of
@ to X4V coincides with the function associated to the equivalence class of
(X, L) in [29, Section 6].

THEOREM 2.31. — For any Q-line bundle L on X, the map L — ¢
sets up a 1-1 correspondence between:

(i) the set of equivalence classes of test configurations for L and PL(X);
(ii) the set of equivalence classes of semiample test configurations for L
and H(L).

Note that the sets in (ii) are nonempty only if L is semiample. Combined
with Proposition 2.30, we infer:

COROLLARY 2.32. — If L is an ample Q-line bundle, then L — ¢,
defines a 1-1 correspondence between the set of ample, integrally closed test
configurations for L and H(L).

The set H(L) thus corresponds to HN4(L) in the notation of [29, Defini-
tion 6.2].

Proof of Theorem 2.31. — By construction, the map £ +— ¢, is the
composition of D +— ¢p with the canonical bijection between equivalence
classes of test configurations for L and lim VCar(X)gq. Thus (i) is a direct
consequence of Theorem 2.7.

To prove (ii), let (X, L) be a semiample test configuration for (X, L).
After replacing L with a multiple and pulling-back to a higher test configu-
ration, we may assume without loss that L is a globally generated line bundle,
and that X dominates the trivial test configuration via p: X — Xiy. Set
D := L — p*Liiv € VCar(X), so that ¢z = @p. Since L is globally gener-
ated, Oy (D) is p-globally generated, and the flag ideal a := p,Ox (D) thus
satisfies a - Oy = Oy (D), and hence ¢, = ¢p = . Denote by @' C a the
flag ideal locally generated by

H® (Xsiv, Loviv ® a) ~ HO(X, L).
Since L is globally generated, we have o' - Oy = Ox(D) = a- Ox; hence

Yo = . By construction, L®a’ is globally generated, and Proposition 2.25
thus yields, as desired, ¢ € H(L).

Conversely pick ¢ € H(L). After replacing L with a multiple, Proposi-
tion 2.25 yields ¢ = ¢, for a flag ideal a on X4, such that L, ® a is
globally generated. Denoting by pu: X — A}, the blowup along a, we have
a-Ox = Ox(D) for a vertical Cartier divisor D such that £ := pu* Ly + D
is globally generated, and ¢y = pp = @q = @. O
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The next result will be needed in Section 3.1.

LEMMA 2.33. — If L is an ample Q-line bundle on X and X any test
configuration for X that dominates Xy, then L admits an ample test con-
figuration L determined on X.

Proof. — By Lemma 1.8, we can find D € VCar(X)qg that is relatively
ample over AXy. Denoting by Ly the pullback of L to X, it follows that
L := Ly + €D is ample for € € Q¢ small enough, and we are done. O

2.8. Geometric interpretation of the scaling action

As noted in Section 2.1, the spaces PL(X) and PL*(X) admit a natural
scaling action by Qsg. We now give a geometric interpretation of the scaling
action of Z~¢ in terms of base change.

Using flag ideals, this is easy: any function ¢ € PLT(X) can be written
© = m~ Ly, for some m € Zq and some flag ideal a on X, = X x Al
It then follows from the discussion after (2.5) that if d € Z~q, then d- ¢ =
m*1@a<d), where a(@ is the pullback of a under the map X,y — Xiyiv given
by @ — w?.

Following [29, Section 6.3], we can give a smilar interpretation of the
scaling action when the functions are associated to test configurations.

Let L be a Q-line bundle on X. For any test configuration (X, L) for
(X,L) and d € Z~, denote by X; — A! the base change of X — A! by
@ w?, and let £y be the pull-back of £ to Xj.

LEMMA 2.34. — For each d € Z~y we have d - pr = ¢,

Proof. — After passing to a higher test configuration, we may assume,
by linearity, that L = Ox and £ = Ox(D) with D € VCar(X). Denote by
p: Xy — X the natural morphism. For any v € X?", we then need to show
that

ox,(v)(p*D) = dox(d~'v)(D),
where ox and oy, denote the Gauss extensions. Let Y C X be the support
of v. Then w := p,ox,(v) is a valuation on the induced test configuration
Y C X, and it will be enough to show that w = dox(d~'v). To this end,
note that w is k*-invariant, and satisfies w(w) = ox,(v)(w?) = d. We thus
have d~'w = ox(v') for a unique valuation v’ on Y. For all f € k(Y) we
have p*f = f, and hence

V' (f) =d  w(f) = do(f),

which proves, as desired, that w = d ox(d~1v). O
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COROLLARY 2.35. — Let L be an ample Q-line bundle, and pick ¢ €
H(L). For all d € Z~¢ divisible enough, the unique ample, integrally closed
representative of d - ¢ has a reduced central fiber.

Proof. — Let (X, L) be the ample, integrally closed representative of .
By Lemma 2.34, the ample, integrally closed representative of d - ¢ is the
integral closure (Xy,Lq) of (Xy,Lq), and we thus need to show that the
central fiber )?d,o is reduced for d divisible enough.

By [103, Tag 091J], the central fiber of the normalization X is generi-
cally reduced for d divisible enough. Since Xy is integrally closed, the nor-
malization morphism X7 — Xy is an isomorphism over the generic points of

fd,o (see Remark 1.22), which is thus also generically reduced. We conclude
thanks to Corollary 1.16. |

2.9. Almost trivial test configurations

We end this section with an analysis of “almost trivial” test configura-
tions. Following [29, 96, 104], we introduce:

DEFINITION 2.36. — We say that a test configuration X for X is

(i) almost trivial if the normalization XV of X is trivial;
(ii) trivial in codimension 1 if the canonical Gy,-equivariant birational
map X --» Xiiv 1S an isomorphism in codimension 1.

Note that (i) corresponds to [29, Definition 2.9], while (ii) corresponds
to [104, Definition 1] and [96, Definition 3.3].

Recall that X'” is a test configuration for the normalization X" of X. If
X is trivial in codimension 1, then Xy is generically reduced, and X is thus
regular at each generic point of Aj.

As we shall see, (ii) implies (i), but the converse fails in general, even
when X is smooth, despite what was claimed in [29, Proposition 2.11]. This
was kindly pointed to us by Masafumi Hattori, together with the following
simple example:

Ezample 2.37. — Let X C P? be a smooth conic such that [0: 0: 1] ¢ X,
and consider the test configuration X defined the 1-parameter subgroup
p(t)[xo : w1 1 23] = [x0 : @1 : tap], which degenerates X = X to a double
line &Xy. It comes with a morphism of test configurations X%,y — X', which is
finite, and hence coincides with the normalization. Thus X is almost trivial,
but not trivial in codimension 1, as Xy is generically non-reduced.
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The next result clarifies the situation, and also provides a simple inter-
pretation of almost triviality in terms of PL functions.

THEOREM 2.38. — Let L be a Q-line bundle on X and (X,L) a test
configuration for (X, L), with associated function ¢r € PL(X). Then:

(i) if X is almost trivial, then o is locally constant. When L is further
ample, the converse holds as well; N
(ii) X s almost trivial iff its integral closure X is trivial;
(iii) X is trivial in codimension 1 iff X is almost trivial and Xy is gener-
ically reduced.

When X is equidimensional and £ is ample, (i) is also equivalent to
J(pz) =0, cf. Corollary 10.4 below (compare also [29, Theorem A (ii)]).

Proof. — Assume that X’ is almost trivial, i.e. X¥ = [[, XY is trivial.
Since XY is integrally closed and its central fiber is irreducible, Lemma 2.8
implies that VCar(XY)q is 1-dimensional, and hence

V*(»C - »Ctriv)|X& = CQ‘X(Z,O

for some ¢, € Q. This implies that ¢, = ¢, on X3V ~ (X¥)4Y; hence
Y = cq on X3", by density of divisorial points, and we infer that ¢, is
constant on each connected component of X", which proves the first part

of (i).

Assume conversely that £ is ample, and ¢, is locally constant. Arguing
on each connected component of X" we may assume that X is connected,
and hence o, = ¢ € Q. After replacing £ with £ — ¢Xy, we may assume
¢ = 0. Then ¢« = v*¢p, = 0, and Corollary 2.32 implies that the ample,
integrally closed test configuration (X*,v*L) is trivial, which concludes the
proof of (i).

We next turn to (ii). If X is trivial, then its normalization X is trivial
as well. To prove the converse, we may assume wlog that £ is ample (as any
test configuration admits a Gy,-equivariant, ample line bundle). Assuming
that X" is trivial, (i) shows that ¢, is locally constant, and Corollary 2.32
yields as above that X is trivial as well, which proves (i).

Finally we prove (iii). If Ay is generically reduced, then X is regular at
each generic point of Xy. Thus X'¥ — X is an isomorphism over these points,
and X is therefore trivial in codimension 1 iff X is. To prove (iii), we may
thus assume wlog that £ is ample and X is normal, irreducible, and trivial in
codimension 1, and we then need to show that & is trivial. Since X is trivial
in codimension 1, Ap is irreducible, and ordy, = ordyx,,,, , = o(viv). After
adding to £ a multiple of Xy, we assume ¢, (viriv) = 0, and we then need to
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show that ¢, = 0, by Corollary 2.32. To see this, pick a test configuration
X’ that dominates both X and AXi,, with morphisms p: X/ — X and
p: X' — Xuiv, and set

D := pu*L — p* Ly € VCar(X')q,

so that ¢ = ¢p. Since ordy, (D) = ordx,,, (D) = ¢p(vuiv) = 0, D is
exceptional with respect to both p and p. For m divisible, we thus have

am = 1, Ox(mD) C Ox(mp, D) C O,

and similarly a], = p,Ox/(—mD) C Og,,,. On the other hand, D
(resp. —D) is semiample with respect to p (resp. p), and hence a,, - Oy =
Ox/(mD), al,-Oxr = Ox/(—mD) for m large and divisible enough. It follows
that Ox/(+mD) C Ox/; hence D = 0, which concludes the proof. O

3. Plurisubharmonic functions and energy pairing: the PL case

In this section, X is any projective variety, with irreducible components
(Xa). Set n := dim X. We introduce and study the class of PL functions
that are §-psh for a numerical class # € N'(X). We also introduce the energy
pairing, defined, for the moment, on (n + 1)-tuples of pairs (0, p) € N1(X) x
PL(X), and study its finer properties when ¢ is -psh.

3.1. Plurisubharmonic PL functions

In what follows, it will be convenient to allow real coefficients. We thus
denote by
PLg := PL(X)r C CY(X)
the R-vector space generated by PL := PL(X). Theorem 2.7 induces an
isomorphism
@VC&I(X)R ~ PLR . (31)
x

For any test configuration 7: X — A!, we denote by

N (x/AT)
the space of m-numerical equivalence classes of all (not necessarily vertical)
R-Cartier divisors D on X, i.e. the quotient of Car(X)r by the subspace
defined by D - C' = 0 for all irreducible curves C C X contained in some

fiber of m. Since 7 is projective, it follows from general theory that the
R-vector space N'(X/A!) is finite dimensional (this is also a consequence
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of Lemma 3.1 below). We equip it with the corresponding R-vector space
topology.

A class o € NY(X/AY) is nef if a- C > 0 for each irreducible curve C in
a fiber of m: X — Al. Nef classes form a closed convex cone

Nef(X /A c NY(x/AY).

Given a morphism p: X’ — X of test configurations and o € NY(X'/Al), we
have

o € Nef(X/A') <= p*a € Nef(X'/AY).

LEMMA 3.1. — For a class a € N1 (X /AY), the following conditions are
equivalent:

(i) a € Nef(X/Al);
(i) oy, € Nef(Xy) = Nef(Xp red)s
(iii) a-C = 0 for all Gy, -invariant irreducible curves C' C Xp.

In particular, the restriction map N*(X/A') — N(Xp) is injective.

Proof. — Trivially, (i) = (ii) = (iii). Assume (ii), and pick a Gy,-linear-
ized, ample line bundle A on X. For each € > 0, (o + ¢.A)|x, is ample, and
a+¢eA is thus relatively ample over a neighborhood of 0 € A!, see [85, 1.2.7].
Thus (a+¢eA)|x, is ample for some ¢ € Gy, and hence for all t € Gy, thanks
to the Gy,-equivariant isomorphism X \ Xy ~ X x Gy, over Gy, (note that
Gm, being connected, acts trivially on N!(X'/Al)). It follows that o + eA
is nef for all ¢ > 0, and hence « is nef as well, proving (ii) = (i). Finally
assume (iii). To prove (ii), we need to show that o - C' > 0 for every (not
necessarily Gp,-invariant) irreducible curve C C Ap, which we accomplish
by way of a standard degeneration argument: denote by C; the image of C'
under t € G, and note that o - C = « - C, by Gpy-invariance of a. By
properness of the components of the Chow scheme of X, Cy := lim;_,o C
exists as an effective 1-cycle. It is Gp,-invariant, and hence a positive linear
combination of G,,-invariant irreducible curves. Thus

a-C=lma-Cy=a-Cy =0,
t—0
and we are done. O

If a test configuration X dominates Xy = X x Al then each class
0 € N'(X) pulls back to a class fx € N*(X/A!) via the composition

X — Xpiv = X x A — X.

In line with [27, 39, 69, 110], we introduce:
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DEFINITION 3.2. — We say that a function ¢ € PLyp 4s -plurisub-
harmonic (8-psh for short) if it is determined by a divisor D € VCar(X)r
on a test configuration X dominating Xy such that Ox + D € Nef(X/AY).

We sometimes also say that the pair (6,¢) € N*(X) x PLg is psh. Here
0x + D denotes, slightly abusively, the sum of #y and of the image of D in

NL(X/AY).
This definition is independent of the choice of X'. Indeed, for any mor-
phism of test configurations pu: X’ — X, we have

Oxr +p*D = p* (0x + D),

which is thus nef iff 6y + D is nef. Restricting to X7 ~ X further shows that
a 0-psh function in PLg can only exist when 6 € Nef(X).

We will use the notation
PLrNPSH(A) and PLNPSH(A)

for the sets of #-psh functions in PLg and PL, respectively. At this point,
the notation is purely formal, but it will be justified in Section 4, by defining
the set PSH(#).

When 6 = ¢;(L) € N'(X) is the numerical class of L € Pic(X)g on X,
we simply speak of L-psh functions. By Theorem 2.31, we have:

Ezxample 3.3. — For any Q-line bundle L on X, £ — ¢, sets up a 1-1
correspondence between the set of semipositive non-Archimedean metrics
in the sense of [29, Definition 6.4], i.e. equivalence classes of nef test con-
figurations £ for L, and PLNPSH(L). By Theorem 2.31 (ii), we thus have
H(L) C PLNPSH(L), the inclusion being strict in general.

Remark 3.4. — Following [26, 27] we could define a closed (1, 1)-form on
X" to be an element 7 € lim N'(x/A'), and declare a function ¢ € PLg
to be n-psh if it is of the form ¢ = ¢p, with D € VCar(X)g such that n+ D
is nef. In this paper we only consider the case when 1 € N!(X,,/Al) is
determined by the pullback of a class § € N'(X).

As a direct consequence of the fact that Nef(X/A') C NY(X/A!) is
closed, we have:

LEMMA 3.5. — Let 0; — 6 be a convergent sequence in N'(X). Pick
p, Y € PLg, and assume that o + ¢;1 is 0;-psh for a sequence ¢c; — 0. Then
@ 1s O-psh.
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PROPOSITION 3.6. — Pick 0,0’ € NY(X), and assume that o, € PLg
are 0-psh and 0'-psh, respectively. Then:

(i) ¢+ ¢ is (0 + 0)-psh, and ty is t0-psh for all t € Rsg;

(ii) for each c € R andt € Qsg, ¢+ c and t - ¢ are O-psh;

(iii) if 0 = 0" and p, ¢’ € PL, then max{yp, ¢’} € PL is 0-psh;

(iv) ¢ is decreasing with respect to the partial order on X**, and hence
satisfies (1.4) (see Lemma 1.4);

(v) for any morphism f:Y — X from a projective variety, f*¢ is f*0-
psh;

(vi) if we further assume that f:Y — X is surjective, then

@ O-psh <= ¢|xan O|x,-psh for all a <= f*¢ f*0-psh.

In particular, (i) shows that PLg NPSH(#) is a convex subset of PLg.

LEMMA 3.7. — For any 0 € NY(X) and ¢ € PLg NPSH(0), there exists
a sequence @, € H(Ly,) with Ly, € Pic(X)g such that @, — ¢ uniformly
on X* and ¢1(Ly,) — 0.

Proof. — Pick a test configuration X dominating A}y and D €
VCar(X)g such that ¢ = ¢p. By openness of the (relatively) ample cone
of N'(X/A'), we can find a sequence of Q-line bundles L,, on X and
D,, € VCar(X)q such that ¢;(L,,,) — 6 in NY(X), D,, — D in VCar(X)g,
and c¢1(Ly,)x + Dy, € NYX/AL) is ample for all . In particular, £,, =
(L) x+Dyy, is a semiample test configuration for L, and hence ¢, 1= ¢, =
vp,, € H(Ly,). Furthermore, D,,, — D implies ¢,, — ¢ uniformly. O

Proof of Proposition 3.6. — Pick a test configuration X dominating X,y
and D, D’ € VCar(X)g that determine ¢, ¢’. By assumption, 6y + D and
0y + D" are nef. Thus

O+0)xy+D+D = (0Ox+D)+ (0 +D) and (t0)x+tD=1t(0x + D)
are nef as well, proving (i).

For each ¢ € R we have ¢ + ¢ = ¢piex,. Since Xy = 7*(0) vanishes
in NY(X /A1), Ox + D + cXp is nef, and ¢ + ¢ is thus §-psh. To prove the
remaining part of (ii), it suffices to prove that if d € Z~, then ¢ is 6-psh
ift d- ¢ is 6-psh. In view of Lemma 2.34, this follows from the fact that
Ox + D € NY(X/A) is nef iff its pullback under the base change of X with
respect to w — w? is nef.

Assume now § = ¢’ and D, D’ € VCar(X)q. By openness of Amp(X), we
can find an Q-line bundle L on X such that ¢;(L)—6 is ample and arbitrarily
small. Then ¢, " are L-psh, and it will be enough to show that max{¢, ¢’}
is L-psh as well, by Lemma 3.5. After perhaps passing to a higher test
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configuration, we may assume that X supports an ample test configuration
L for L (Lemma 2.33). For each € € Qx¢, the Q-line bundle Ly + D + &£
is ample, and hence semiample. Thus ¢ + ¢ is Fubini-Study for (14 ¢)L,
and similarly for ¢’ + .. By Proposition 2.19, it follows that

max{y +epr, ¢ +epst =max{p, ¢’} +epr

is Fubini-Study for (1 4 €)L, and hence (1 + ) L-psh. Using Lemma 3.5 we
conclude, as desired, that max{p, ¢’} is L-psh. This proves (iii).

By Proposition 2.19, any Fubini-Study function is decreasing, and (iv)
thus follows from Lemma 3.7.

To prove (v), note that the Gy,-equivariant rational map Y x Gy, --» X
induced by f admits a G,-equivariant resolution of indeterminacies, which
is thus a test configuration ) for Y dominating ).y. Also denoting by
f+Y — & the corresponding morphism, we have f*¢ = ¢s+p, and the
result thus follows from the fact that 0y + f*D = f*(6x + D) is nef, as
the pullback of a nef class. If f: Y — X is surjective, then f: )Y — X is
surjective as well, and (vi) follows. O

Given a test configuration 7: X — A! we denote by Amp(X/Al) C
Nef(X' /Al) the set of m-ample classes o € N}(X'/Al), that is, classes whose
restriction to Xy is ample.

DEFINITION 3.8. — For any w € Amp(X), we denote by H™(w) C
PLNPSH(w) the set of w-psh PL functions of the form pp with D €
VCar(X)g for a test configuration X dominating Xy and wxy + D €
Amp(X/AY).

After pulling back by the (finite) integral closure morphism X=X , one
may always arrange that X is integrally closed in this definition.

Ezample 3.9. — If w = ¢;(L) for an ample Q-line bundle, then H(L) is
in 1-1 correspondence with the set of ample, integrally closed test configu-
rations (X, L) for (X, L) (see Corollary 2.32), and

Hdom(L) — erom(Cl(L)) I H(L)

corresponds to the subset such that X dominates Xjiy.

As in Corollary 2.26, we have
Q. HIo™ (@) = PLH(X) (32)
for any w € Amp(X), so that H9°™(w) spans the Q-vector space PL(X).
PROPOSITION 3.10. — Ifw € Amp(X), then every ¢ € PLr NPSH(w)

is a uniform limit of functions in HI™(w).
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LEMMA 3.11. — For any w € Amp(X), the set of test configurations
X dominating Xy such that there exists H € VCar(X)g with wy + H €
Amp(X/AY) is cofinal in the set of all test configurations.

Proof. — By Lemma 1.8, any test configuration for X is dominated by
a test configuration X with a morphism p: X — Xy such that VCar(X)g
contains a p-ample divisor A. Since wy,,,, € N'(Xiiyv/Al) is ample, wy +
eA = prwy,,, +eA € N} (X/AY) is ample for € € Q=g small enough, and
setting H := €A yields the result. |

Proof of Proposition 3.10. — Pick any ¢ € PLgNPSH(w), and write
¢ = pp for some D € VCar(X)g, where X is an integrally closed test
configuration. Thus wy + D € N'(X/A!) is nef. By Lemma 3.11 we may
assume that there exists H € VCar(X)r such that wy + H is ample. Pick
a basis (C;) for VCar(X)g and write D = >, ¢,C;, H = ). c,C; with
ci,¢; € R. For m > 1, the class wxy + D + = H € N'(X/A') is ample, and
we can pick €, € (0, %) such that if D, = > (¢; + % + €m,i)Cy, then
D,, € VCar(X)g and wx + D,, is ample. It follows that ¢p, € H¥™(w),
and that ¢p_, —p = %apH + Y. em,ipc, tends to 0 uniformly on X**. [

3.2. The energy pairing

Recall that every test configuration m: X — A! admits a canonical com-
pactification m: X — P! If X dominates Xy, then any 6 € N'(X) pulls
back to a class 6 € N*(X), whose image in N*(X/A') coincides with 6
considered above.

Pick an (n + 1)-tuple of pairs (6;, ;) € N*(X) x PLg, i = 0,...,n, and
choose a test configuration X dominating X,y and divisors D; € VCar(X)r
that determined the ;. Following [29, Definition 6.11], we introduce:

DEFINITION 3.12. — The energy pairing takes an (n + 1)-tuple of pairs
(ei,g&i) S Nl(X) X PLg,2=0,...,n to

(B0,%0) - - - - - (Bnyp0) == (90}§+D0> . (9n,f+Dn) cR.  (3.3)

The right-hand side is an intersection number against the fundamental

class
(X = > [¥d (3.4)
dim X,=n
of the (n+ 1)-dimensional projective variety X, with 0, %+Di € NY(X) now
denoting (slightly abusively again) the sum of 91‘, 5 and of the image of D;

in N'(X). By the projection formula, this definition is independent of the
choice of X.
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Remark 3.13. — Assume 0; = ¢1(L;) with L; a line bundle on X, i =
0,...,n. In that case, the energy pairing can be interpreted as a metric on
the Deligne pairing (Lo,...,Ly), as follows. Pick ¢, € PLg, ¢ = 0,...,n.
Using the trivial metric on L;, ¢; can be identified with a continuous dpsh
metric ¢; on L; in the sense of [22, Definition 8.7]. By [22, Theorem 8.16],
one gets an induced metric (¢, ..., ¢,) on the line (Lo,...,L,), that can
in turn be viewed as a real number, thanks to the trivial metric. Using [22,
Theorem 8.18], one can check that this number coincides with (6, ) - .. . -

(Ons on)-

ProrosiTiON 3.14. — The energy pairing is a symmetric, multilinear
form on N*(X) x PLg. For all tuples (0;,p;) € N*(X) x PLg, i =0,...,n,
we further have:

(i) (0,1) - (01,01) .- (Onypn) = (01 - .- ) x;
(ii) for all co,...,cn € R we have

(005900+CO)"" ' (0n7§0n+cn) = (907800) (gn,@n)
+Zci(90'-~-'§i'-~-'9n)){;
=0

(iii) (60,0) ... (0,,0) =0;
(iv) (Bo,t-w0) .. (On,t-@n) =1t(00,00) ... (On,pn) for all t € Qso;
(v) denoting by v: X” — X the normalization morphism, we have

(6o, 0) - - (6, on) > (B0,00)lx0 -+ (s pn)lx.,
dim X,=n
= (V*Qo,l/*@o) Tl (V*HH,V*@H);

(vi) pick an integrally closed test configuration X dominating Xy,
Dy,...,D,, € VCar(X)r, and set @; := @p, fori=1,...,n. For
all ¢ € PLr we then have

(0790) ’ (617901) et (envsan)
:ZbESD(UE)<01,X+D1)|E'-H'(Gn,X+Dn)|E‘7 (35)
where the sum runs over the irreducible components E of Xy and

bE = Ol"dE(Xo) = Ol"dE(w).

The right-hand side in (i) is an intersection number against the funda-
mental class [X] = 4, x.—,[Xa]. We emphasize that X in (vi) does not
depend on ¢.

Proof. — The first assertion is an immediate consequence of the multi-
linearity and symmetry of the right-hand side of (3.3). In the notation of
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Definition 3.12,

(071) . (91,<p1) ..t (Gn,gon) = [Xo] . (917§+D1) ..t (en,)?_‘_Dn)
=[X]- (0,5 +D1)-...- (6, 5+ Dn)
= (91,2?)|X1 el (on,;?”Xl =(01-...-0,)x,

where the second equality holds by flatness of 7: X — P!. This proves (i),
which implies (ii), by multilinearity, while (iii) follows from the projection
formula applied to X x P! — X.

To prove (iv), we may assume that ¢t € Z~, since we are dealing with a
group action of Qs ¢. The result is now a simple consequence of the geometric
description of t- ¢ in terms of base change in Lemma 2.34 and the projection
formula (compare [29, Lemma 6.13]). Next, (v) follows (3.4), v, [X"] = [X],
and the projection formula. Finally, for (vi), pick a morphism p: X' — X of
test configurations and Dy € VCar(X')r such that ¢ = ¢p,. Then

(0790) ) (617501) et (env@n)

= Do (0,5 +#"D1) .- (6, 5 + " Dn)

= Do (05 +D1) o (6, 5+ Dn))

= Do)+ (0,5 +D1) oo (0, 5+ Dn)

=Y ordp(Do)[E] - (6, 5+ D1) .- (6, 7+ Da)
E

=3 b p(vp)[E] - (9172?+D1) e <0n’)7+Dn> ,
E

where we used the projection formula in the third equality. |
For psh pairs, (3.5) implies the following crucial monotonicity property:

LEMMA 3.15. — Consider psh pairs (6;, p;) €Nef (X)xPLg,i=1,...,n,
and pick also 0y € NY(X) and o, o, € PLg. Then

0o <y = (00, ¢0) (01,01) -+ (0, ) < (00, 0) (01,01) -+ (0n, 0n)-

Combined with Proposition 3.14 (iii), this yields:

COROLLARY 3.16. — For all psh pairs (0;,¢;) € Nef(X) x PLg, i =

0,...,n, we have

<
20:>(907§00)(9n7§0n)

Vigpi
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Anticipating the general construction of Section 7.3, it is convenient to
interpret (3.5) by attaching to any tuple (0;, ;) € N'(X)xPLg,i=1,...,n
its mized Monge—Ampére measure

n

J\(0; +dd° ;) =" cpdy, (3.6)
E

i=1
with ¢g :=bg(01,x + D1)|lg - ... (Onx + Dy)|g. It is thus a signed Radon
measure on X", with support a finite subset of X4V, and characterized by

[0 N+ 000 = (0.9) - Brpn) o Gn) (37)

for all ¢ € PL (recall that PL is dense in CY(X), see Theorem 2.2). By
Proposition 3.14 (i),

n

/X N (6 +ddSp;) = (61 ... 0,)x. (3.8)

i=1
The symmetry of the intersection pairing yields the “integration by parts”
formula

/ po dd® @1 A N\ (6; +dd° ;) = / p1 dd® o A N\ (0; +dd° ;) (3.9)

i=2 X i=2
for all p; € PLg, while Proposition 3.14 (iv) yields
N\ +dde(t - ;) = t. [\ (0; + dd° ;) (3.10)

K2 K2

for all t € Q~¢. When ¢; = 0 for some ¢, we drop the term dd€ ¢; from the
notation.

Example 3.17. — We have
LA NO= > (01 On)x Bupry - (3.11)
dim X,=n

Example 3.18. — Assume Z C X are both smooth and irreducible, with
associated valuation ord; € X4V, Set d := dim Z, and consider the function
¢z of Example 2.5. Denoting by p: X — Xiyiy the blowup of Z x {0} and P
its exceptional divisor, we have Xy = X + P (see Example 1.7), oz = —pp,
Vs = vyiy and vp = ordy (see Example 1.21). For any 6 € N!(X), we have

X
(0 + dd° QOZ)n = CaordZ + ((071) - C) 5’Utriv7

where

. 4
i Ox = P)lp = (ol +0n()" = Y- (1) (08 -50-5(2)).

J
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with s;(Z) the i-th Segre class of Z (see [66, Chapter 4]).

Ezxample 3.19. — Assume that X is a smooth irreducible curve. Then
each ¢ € PLg is a PL function on any ray (tordy):>o with p € X(k),
constant on all but finitely many of these. Moreover, for any § € N'(X), we
have

0 + dd® ¢ = (deg 0)0u,,,, + Ay, (3.12)
where
2

d
O+90(t ordp)dy,,,, + @‘P(t ordp)

Ap =

peX (k) [
is (up to a sign) the tree Laplacian. To see all this, note that the case ¢ =0
follows from 3.11, so by linearity we may assume # = 0. We may further
assume ¢ = a - ¢, with a € Q¢ and p € X (k), since these functions span
PLg (see Example 2.6) and the operators dd® and A are R-linear. By (3.10),
we can also assume a = 1. Then ¢(tord,) = max{—t,—1}, and ¢(tord,) =0
for ¢ # 0. This implies Ay = dorq, — 6 which coincides with dd€ ¢, by
Example 3.18.

Vtriv )

When (0;, ;) € N}(X) x PLg is psh for i = 1,...,n, the measure (3.6)
is positive (which is equivalent to Lemma 3.15). Conversely:
THEOREM 3.20. — Pick w € Amp(X) and (0, ) € N'(X) x PLg. Then
@ 1is O-psh iff
(0 +dd° ) A (w+dd° )"t =0
for all ¢ € HI™(w).
Ezample 3.21. — If X is a smooth irreducible curve and (6, ) € N*(X) x

PLg, then ¢ is 6-psh iff 8 + dd°p > 0. In view of Example 3.19, this
amounts to:

(i) for each p € X(k), t — ¢(tord,) is convex—and hence decreasing,
being bounded above;

(ii) degf + 3 cx k) %‘0+4p(t ord,) > 0.

As an important consequence of Theorem 3.20, we infer the following
analogue of [27, Theorem 5.11] and [74, Theorem 5.5]:

COROLLARY 3.22. — For each 6 € NY(X), PLg NPSH(#) is closed in
PLg with respect to the topology of pointwise convergence on XV,

Proof of Theorem 3.20. — By Lemma 3.11, we can pick a test configura-
tion X dominating the trivial one, such that there exists H € VCar(X')g with
wy + H € Amp(X/A') and D € VCar(X)gr with ¢ = ¢p. By Lemma 3.1,
we need to show that (6x + D) - C > 0 for each Gy,-invariant irreducible
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curve C' C Xy. Consider, as in the proof of [67, Proposition 8|, the blowup
w: X' — X along C, with exceptional divisor F. Then X’ is a test configu-
ration for X, and —F' is p-ample, so that

o :=wy +p*H —eF € Amp(X'/AY)
for 0 < ¢ < 1. Since F' is an effective Cartier divisor dominating C, there
exists a € Q¢ such that
p (F - a”fl) =aC
in N1 (X /A'), and the projection formula thus yields
(Ox +D)-C=a*F-(Ox +p*D)-a"*.

Now
F-(0x +p*D)-a" ' = /LPFQ9 +dd® @) A (w4 dd® )"t

with ¢ 1= ¢,epg_cr € HI™(w). By assumption, the right-hand integral is
nonnegative. Thus (x + D) - C > 0, and we are done. O

In view of Theorem 3.20, Corollary 3.22 is a direct consequence of the
following continuity result.

LEMMA 3.23. — Consider a tuple (0;,¢;) € N} (X) x PLg, i =1,...,n,
and assume that 1 is the pointwise limit on XU of a net (¢1,); in PLg.
Then

n n

(61 +dd® @1;) A N\ (6 + dd® ;) — (61 +dd® 1) A N (6 + dd° ;)

i=2 i=2
weakly as measures on X",
Proof. — By density of PL in C°(X) (cf. Theorem 2.2), we need to show

n

/gpo (61 +dd® @1;) A N\ (6 + dd° ;)

1=2
— /@0 (91 + dd° (pl) N /\(9z + dd* (pi) (313)
=2
for all ¢y € PL. Now
/gpo (61 +dd® @1;) A N\ (6: + dd° ;)
1=2
/(poel/\ /\ +dd Lpz /(po dd° ngj/\ /\(92+ddc @i),

=2
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and (3.9) yields

/800 dd® 1y A\ (0; + dd° ;) = /<P1j dd® o A /\ (8; + dd° ;)

1=2 =2
— [ ddtonn A6 +ad° ) = [ oo ddionn A6 +dd ),
1=2 1=2

since dd® g A A1 (0; +dd® ;) is supported in a finite subset of X4V, This
proves (3.13), and concludes the proof. a

3.3. Convexity and Hodge-type estimates

The following consequence of the Hodge index theorem is one main build-
ing block of all the results to follow.

LEMMA 3.24. — For all psh pairs (0;,0;) € N} (X)xPLg,i=1,...,n—1
and ¢ € PLg, we have
(0,0)* (B1,1) - .-+ (Bn—1,pn—1) < 0.

Proof. — When (0;, ¢;) € N}(X)g x VCar(X)g and ¢ € PL, this follows
from [29, Lemma 6.14], itself a consequence of the Hodge index theorem.
The general case easily follows by approximation, arguing as in the proof of
Corollary 3.22 and using Proposition 3.10. g

THEOREM 3.25. — Pickp € {0,...,n+1}. Fori = 0,...,n —p, let
(0;,0;) € NY(X) x PLg be a psh pair, and write for brevity I' := (o, ©0) -
(Br—ps Pn—p). For any class § € N*(X), the function

pr—>(0,9)" T
is then concave on PLg NPSH().
Here T is a purely notational device, and we are not trying to make sense
of it as a cycle class, for example.

LEMMA 3.26. — For all ¢, € PLg we have

(0,0)P T = (0,0)"-T=> (0,0—¢) - (0,0) - (0,0)P"7-T  (3.14)
j=0

and q
t=0
Proof. — This follows from straightforward computations based on the
multilinearity and symmetry of the energy pairing. O
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LEMMA 3.27. — For all o, € PLr NPSH(H), the sequence
aj = (07 ¥ — ’(/}) . (97 QO)J : (97,(/)>p—1—j I
is decreasing on {0,...,p— 1}, and
pap—1 < (0,¢)"-T' = (6,4)" - I' < pao. (3.16)
Proof. — For 7 =0,...,p— 1, we have
a1 — aj = (Oa Y — w)z : (9790)3 ' (9,¢)p_j_2 -T < 07
by Lemma 3.24. In view of (3.14) this implies (3.16), O
Proof of Theorem 3.25. — By (3.15) and (3.16), we have, for any two
©,% € PLg NPSH(6),

600 T<@uP T+ 6,0-0p+1p) T
t t=0

This is equivalent to the concavity of ¢ — (0, )P -T' on PLg NPSH(#). O
By Lemma 3.24, we may introduce:

DEFINITION 3.28. — To each (n—1)-tuple of psh pairs (0;,p;) € N1 (X)x
PLr,i=1,...,n—1, we associate a seminorm on PLg by setting

11l 01,01)- 00 10m-1) = V=(0,0)% - (B1,01) - (B, 0n1).
For all ¢, € PLg, we then have the Cauchy—Schwarz inequality

10, 0) - (0,9) - (61,01) ...+ (On—1, Pn—1)|
< ||(p||(91,¢1)--»-'(9n—1,<,0n—1)H’(/}H(91,901)'--.-(9"_1,9071_1)' (317)

For the remainder of this section we fix a nef class 6 € Nef(X).
DEFINITION 3.29. — For all ¢, € PLg NPSH(0) we set
do(p, 1) = max L llp — ¢||%9,¢)j.(0,¢)n—171~ (3.18)

0gsn—

When ¢ = 0 we simply set
do(p) = do(p,0).
We first note the following basic monotonicity property.
LEMMA 3.30. — Assume ' € NY(X) satisfies ' > 0. For all
¢, € PLgNPSH(0) C PLg NPSH(A'),
we then have

dG'(@a w) 2 d9((p7 ’(/J)
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Proof. — By assumption, 6" := ¢’ — 6 is nef. For j =0,...,n—1, we thus
have
e — ¢||%9/,¢)j.(9/,¢)n—1—j
—(0,60 = )7 ((0,0) + (6",0))” - ((6,) + (0", 0)" .
Expanding out, Lemma 3.24 yields
mw—w?«a@+w%m“«aw+w"»”kj
( ) : (97 SO)J : (97¢)n—1—j’
and the result follows. O

In analogy to [10, Theorem 1.8], we shall prove that dy satisfies a quasi-
triangle inequality.

THEOREM 3.31. — For all ¢1, @2, p3 € PLg NPSH() we have
do(p1,92) S do(p1,93) + do(ps, 1)
Recall that we write z < y if x < Cpy for a constant C,, > 0 only
depending on n, and x =y if z <y and y < z.

As we shall see later, if 6 is ample, then dy(¢p, 1) = 0 iff ¢ — 1) is constant,
cf. Corollary 10.4.

LEMMA 3.32. — For all ¢,¢',4p € PLg NPSH(#) we have
Q. 9) = 19 = bl s yomr 3.19)

and

do (1 =)+t 1) S (1 —t)do(p,9) + tdo(¢, ) (3.21)
for all t €1]0,1].

Proof. — Expanding out
o= b2, wyuyps = =200 = )+ (8,) + 0,0)

directly proves (3.19). On the other hand, an elementary computation yields
O, 9)" = (0,0)" !+ (n+1)(0, 0 — ) - (0,9)"

n

= G+ 1)(0,0 — )2 - (8, 0) - (0,9)" "1

Jj=
1

|
—

O

(J+Dlle - ¢||%9,¢)j.(9,¢)n—1—j, (3.22)
=0
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which implies (3.20). By Theorem 3.25, the right-hand side of (3.20) is a
convex function of ¢, and (3.21) follows. O

The key estimate is as follows.
LEMMA 3.33. — For all p, ', € PLg NPSH(0) we have
I = &' [IT9.pyn-1 S do(o, ") max{dy(p,¥), do(¢', 1)} "
with oy, =2 € (0,1].

Proof. — Set 7 == Lo+ ¢), f = ¢ — ¢, A= dolp,¢), B =
max{dg(p,¥),do(¢’,4)}, and, for j =0,...,n — 1,

bj = 1200y 0,myn -5 = —(0, )+ (B,0)7 - (6,7)" 177,
By (3.19), we have by &~ A, and our goal is to show that

b1 < ATTB
Since f = (¢ — ¥) + (¥ — ¢’), the triangle inequality for the seminorm
|| . ||(‘9’w)n—1 yields
2
bn-1 < (o = Yllo,pyn—1 + 1" — ¥l (g,)n-1)" < 4B. (3.23)

If A > B, then b, 1 < 4B < 44 7T Bl 7 , providing the desired es-
timate. We thus henceforth assume A < B, and prove by induction on
7=0,...,n—1 that

b; < A¥ BV (3.24)
For j = 0 this holds since by =~ A. Now fix 0 < j < n — 2, and note that
bjp1—bj=—0,f)* (Y —7)-(0,9) - (0,7)" >

=—(0,f)- (0, —7)-(0,) - (0,8) - (,7)" >
100, F)- (0,0 —7) - (8,0)) - (0,4) - (6, 7)" 279, (3.25)

Here we can use Cauchy—Schwarz to bound the last two terms. For example,
0, 1)+ (0,00 = 7) - (6,) - (0,0) - (6,7)" 72|
< fllo.0)-0,0)5-0,7)n 2= 1 = Tl (0,0)-(0,0)-(8,7)n—2-3 -

Using (6, ¢) < 2(6,7) we can bound the first factor by /2b;, and the second
factor by

V2[4 = 7l (0.5)5.(0.7yn 15 < V2do(7,).
We have a similar bound for the last term in (3.25). Adding the two bounds
yields b1 — b; < 4dg(7,%)+/bj. By (3.21) do(7,7) < VB, and we conclude

bis1 —b; < \/Bb; (3.26)

- 704 —



Global pluripotential theory over a trivially valued field

for 0 < j < n — 2. Using the induction hypothesis (3.24), we get

biy1 Sb;+/Bb; < A¥ B3 4 AT Bl mE

_ A g ((2) +1> .

By assumption, A < B,sobj41 S A% B 5T The proof is complete. [
Proof of Theorem 3.81. — Set 7 := (¢1 + ¥2)/2. By (3.19), we have
do(p1,02) S o1 = wallfg rynr S max i — @3ll5p, ryn-1-

By Lemma 3.33 we have, for i = 1,2,
lpi = @allfg.rynr < dois pa) ™™ max{de(ps, 7), do (03, 7).

By Lemma 3.32

do(@i,7) S do(p1,02) and  do(p3,7) S max do (i, ¢3)-

Altogether, this yields
do(p1,p2) S max do (i, a)*" max{dy(p1,2), max dy(ps, 3)} " (3.27)

When dg(p1,92) > maxi=12da(pi,p3), (3.27) yields dg(p1,2)
max;—12 do(@;, ¢3). The same inequality trivially holds when dg(¢1, ¢2)

max;—1,2 dg(ps, ©3).

VAR IAN

COROLLARY 3.34. — For all @y, ...,p, € PLgk NPSH(6) we have
190 = ©111%0,00)-..-(0.0m) S do(0, 1) Jax do(pi)'—n
with a, = 2177,
Recall that dg(p) = dg(p, 0).
Proof. — Set 7:= == """ , ¢; € PLg NPSH(#). Then

llpo — <P1||%9,¢2).....(9,%) S llpo — <P1||?9,T)n—l
5 d9 (41007 901)0(" max{dg (@07 7—)’ d@(@h T)}l_an7

by Lemma 3.33. The result follows since
maX{dQ (@0, T)a d@(@h T)} 5 max {mlax d@(% Qpl)7 miaX d@ (g0/7 307,)}
< max {dy (), do (¢'), max do i)

by quasi-convexity of dy (cf. (3.21)) and the quasi-triangle inequality. O
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4. Plurisubharmonic functions

As before, X is a projective variety, and (X, ) denotes its set of irreducible
components.

In this section, we introduce the class PSH() = PSH(X,0) of 6-psh
functions associated to an arbitrary numerical class § € N'(X). We also
study pluripolar sets, i.e. loci where 6-psh functions take the value —oo.

4.1. The class of 6-psh functions

Recall that:

e afunction ¢ : X*" — RU{—oo} is called generically finite if | xan #
—oo for all a (see Definition 1.3);

o for any L € Pic(X)q, Hif(L) denotes the set of generically finite
(continuous) functions ¢: X** — R U {—o0} of the form

© = m ™ max{log|s;| + \;}

where (s;) is a finite set of sections of mL with m sufficiently divis-
ible, and A; € R (see Definition 2.18). This set is non-empty iff L is
effective.

Given any numerical class # € N'(X), we are seeking to define a class PSH(#)
of O-plurisubharmonic functions (0-psh functions for short) ¢: X** — R U
{—o0}. By analogy with the complex analytic setting, these functions should
be usc and generically finite, and the following properties should hold:

(PSH1) for any L € Pic(X)g, we have Hg(L) C PSH(L) := PSH(c¢1(L));

(PSH2) if a generically finite function p: X** — R U {—oo} arises as the
pointwise limit of a decreasing net (¢;) with ¢; € PSH(6;) and
lim; 6; = 0, then ¢ € PSH(0).

Note that (PSH2) implies the following two properties:

(PSH2a) for any function ¢: X" — R U {—occ}, the set of § € N}(X) such
that ¢ € PSH(#) is closed (possibly empty);

(PSH2b) for any § € N!(X), the set PSH(0) is closed under decreasing limits
(provided the limit function is generically finite).

Taking (PSH1) and (PSH2) as minimal requirements directly leads to the
following definition:
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DEFINITION 4.1. — For any 0 € NY(X), we define a f-psh function
p: X — RU{—0o0} as a generically finite, usc function that can be written
as the pointwise limit of a decreasing net p; € ’Hﬁgg(Li) with L; € Pic(X)g
such that lim; ¢1(L;) = 0 in N1 (X).

We denote by PSH(6) the set of f-psh functions, and by
CPSH(A) := C°(X) N PSH(0) C £>(#) C PSH(H)

the subsets of continuous and bounded #-psh functions, respectively. When
needed, we also write PSH(X,0) = PSH(#) etc. Using the notation in the
definition, we have:

e since ’Hﬁ%f(Li) is non-empty, L; is necessarily effective, by (2.11),
and hence

PSH(0) # ) = 0 € Psef(X); (4.1)

e if © is bounded, then ¢; is finite valued, i.e. p; € H(L;); this
implies that L; is semiample, by (2.12), and hence

E°(0) # 0 = 0 € Nef(X); (4.2)

o if o € CPSH(#) is further continuous, then p; — ¢ uniformly on
Xa by Dini’s lemma.

Remark 4.2. — In the complex analytic case, psh functions and metrics
are defined in a different way, which is local in nature. However, when X
is smooth, well-known arguments due to Demailly [48] and relying on the
Ohsawa—Takegoshi extension theorem show that any psh metric on a (nec-
essarily pseudoeffective) line bundle L can be approximated from above by
metrics attached to sections of mL+ A, where A is a fixed ample line bundle
and m is large (compare for instance [20, Theorem 5.4] or [75, Appendix]).
As a result, any such metric satisfies the analogue of Definition 4.1.

LEMMA 4.3. — For functions in PL(X)g, Definition 4.1 is consistent
with Definition 3.2. In other words, given 0 € N'(X), a test configuration X
that dominates Xy and D € VCar(X)g, we have

¢p € PSH(A) <= 01 + D € Nef(X/A").
Indeed, this follows from Lemma 3.5, Lemma 3.7 and Corollary 3.22. For
any 6 € N1(X), we get, in particular,
PSH(#) contains all constant functions <= 6 € Nef(X), (4.3)

which provides a converse to (4.2).
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Remark 4.4. — If L is a Q-line bundle, then functions in PSH(L) =
PSH(cq (L)) can be interpreted as psh metrics on L, using the trivial metric.
By (4.3), any nef line bundle L admits a bounded (continuous) psh metric,
to wit the trivial metric. This is in stark contrast with the complex analytic

case, where a nef and big line bundle may not admit any bounded psh metric
(see [23, Example 5.4], based on [49, Example 1.7]).

THEOREM 4.5. — Properties (PSH1) and (PSH2) above are satisfied.

As a consequence, Definition 4.1 is indeed the minimal one for which
(PSH1) and (PSH2) are satisfied.

LEMMA 4.6. — Let K be a compact topological space, and assume we are
given:

e a set S and, for each s € S, a family Fs of continuous functions
f: K - RU{—o0}, stable under addition of a constant;
e g map p: S — T to a metrizable topological space T .

For eacht € T, denote by Fy the set of all (usc) functions g: K — RU{—o0}
that can be written as the pointwise limit of a decreasing net (f;) with f; € Fs,
for a net (s;) of S such that lim; p(s;) = t in T. Then .7?,5 = }N"t for any
t € T. In other words, if a function g: K — RU{—oc0} can be written as the
pointwise limit of a decreasing net (g;);er with g; € fti for a net (t;) of T
such that lim; t; = t, then g € ﬁt.

Proof. — Pick a metric d on T inducing the given topology. For each
i € I, g; is the pointwise limit of a decreasing net (f;;)jes, with f;; € Fi,
for a net (s;;) e, in S such that ¢; j := p(s; ;) satisfies lim; ¢; ; = ¢;. Denote
by A the set of triples « = (4, j,¢) with i € I, j € J; and € € Ry, and define

a partial preorder on A by setting
1>
(ivjva) 2 (ilvj/7€,) — fi,j +e< fi’,j' +€/ on K (44)
d(ti)j, ti) +e< d(tifyj/, ty) + E/,
We claim that A is directed. To see this, pick oy = (i1, j1,€1), aa = (i2, Jo2,€2)
in A. Since I is directed, we can choose i3 € I with i3 > i1,i5. Pick also
ez > 0 with e3 < min{ey,e2}. Since (g;); is decreasing, we have g;, <
mil’l{gil,giZ} < min{fi17j1,fi2,j2}7 and hence
iy + €3 <min{fi, j, + €1, fir jo + €2} (4.5)

pointwise on K. For each j € J;,, define h; : K — R by

39

hj = exp (fiy,j + €3) — exp (min{ f;, j, + €1, fir jo +€2}) -
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Then (h;) is a decreasing net of continuous functions such that lim; h; <0
pointwise on K, by (4.5). The compact space K can thus be written as the
increasing union of the open sets {h; < 0}, and hence K = {h;, < 0} for
some j3 € J;,, i.e.

fia,js +e3 < min{fi1,j1 + €1, fiz,jz +€2} on K.

Since lim; t;, ; = t;;, and €3 < min{ej,es}, we can further arrange, after
increasing js if needed, that

d(tisﬁjsv tia) +e3 < min{glv 62} < min {d(tihh ) til) +é1, d(timjfz ) tiz) + 52} .

Thus a3 := (i3, j3s,£3) € A satisfies a3 > @i, a9, which proves, as desired,
that A is directed.

Now, for each a = (i, j,¢) € A, set
Sq =58;; €8, ta=p(sa) €T, and go:=fij+e€Fs,,

where the last containment holds because F; is assumed to be stable under
addition of a constant. By construction, (gs)aca is a decreasing net, and it
will suffice to show lim,, g, = ¢ pointwise on K and lim, t, = t. Pick § > 0
and z € K. Since lim; g;(x) = g(z) and lim; t; = ¢, we can find iy € I such
that g;,(z) < g(x) + ¢ and d(t;,t) < 0 for all i > iy. Using lim; f;, ;(z) =
9io (z) and lim; ¢, ; = t;,, we next pick jo € J;, and 0 < g9 < 1 such that
fimjo(x) +ée0 < g(x) + 60 and d(tio,joatig) +ep < 9. Set ag := (io,jo,e’:‘o) € A.
For each o = (i, j,¢) € A such that o > g, we then have, by (4.4),

ga(z) = fi,j(x) + € < fig,jo(x) + €0 < g(z) +,
d(ta,ti) = d(ti,j,ti) < d(ti,j7ti) +e< d(tiodo’tio) +e0 < (5,
as well as ¢ > ig, which implies d(¢;,t) < 0 and hence d(tn,t) < 2§. This

shows, as desired, lim, g,(x) = g(z) and lim, t, = ¢, which concludes the
proof. O

Proof of Theorem 4.5. — That (PSH1) holds is clear from Definition 4.1.
As for (PSH2), it corresponds to the special case of Lemma 4.6 in which
K = X* Fp = HE(L) for L € S := Pic(X)q, and p: § — T := N (X)
maps L € Pic(X)g to ¢1(L). Indeed, for any 6 € N'(X), PSH(9) is precisely

the set of functions in Fy that are generically finite. ]

4.2. Basic properties

The next few results provide some basic but important properties of #-psh
functions.
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THEOREM 4.7. — For all 6,0’ € NY(X) and t € Rsq, we have:

(i) PSH(9) + PSH(¢') Cc PSH(0 + 0') and PSH(t) = t PSH(6);
(i) the set PSH(#) is convex, and stable under uniform limits, finite
mazxima, the additive action of R, and the scaling action of Rsq;
(iii) for any morphism f: Y — X and ¢ € PSH(X,6), either f*p €
PSH(Y, f*0) or f*p = —oc0 on some irreducible component of Y*";
(iv) for any ¢ € PSH(0) and any a, we have ¢|xan € PSH(X,,0|x, ).

Remark 4.8. — If X is disconnected, with connected components X7,
then it is easy to see that PSH(X,0) =[], PSH(X?,0|x5).

LEMMA 4.9. — For any 0 € NY(X) and ¢, ¢’ € PSH(0), we can find a
net (L;) of Q-line bundles and ;, ¢} € ’Hﬂgg(lli) such that lim; ¢ (L;) — 0,
Pi N\, PN

Proof. — By definition, we can find decreasing nets (¢;)ier, (<P;‘)j61’ and
Q-line bundles M;, M} such that ¢; € HE (M), S ’Hif(Mj’.), lim; ¢1 (M;) =
lim; i (M]) = 0 and lim; p; = ¢, lim; ¢’ = ¢'. Replacing I, I’ with the
directed set I x I’ (equipped with the product preorder), we may assume
I = I'. Fix an ample line bundle A. Since lim;(c1(M;) — ¢1(M])) = 0, we
can find g; € Q¢ such that M; — M/ + ;A is ample and lim;&; = 0. If
L; := M; + ¢;A, then ¢;(L;) — 0, and since L; — M; and L; — M/ are both
ample, Proposition 2.19 yields ¢; € HE (M;) € HE(L;), ¢, € HE'(L;), and
we are done. g

Proof of Theorem 4.7. — We will repeatedly use Proposition 2.19. Pick
¢ € PSH(0), ¢’ € PSH(¢'). As ¢ and ¢’ are finite on vy o for all «, so
is the function ¢ + ¢’, which is therefore generically finite. Further, ¢ and
¢’ can be written as the limits of decreasing nets (¢;)icr and (¢});er with
i € HE (L:), @, € HE (L)) for Ly, L', € Pic(X)q such that lim; ¢;(L;) = 0
and lim; c; (L) = ¢', respectively. The net (¢; + ¢}) (i jjerxr is decreasing,
and converges pointwise to ¢ + ¢'. Now ¢; + ¢} € Hﬂgg(Li + L}), and hence
¢ +¢" € PSH(O + 0), since lim; j)(c1(Li) + e1(L})) = 0 + ¢'. This proves
the first inclusion in (i).

For any ¢ € R and t € Ryg, ¢; + ¢ and t - ¢; belong to H%Rf(Li), and
decrease, respectively, to ¢ + ¢ and t - ¢, which therefore belong to PSH(6).

We next show that tp € PSH(t6). If ¢ is rational, this is clear, since each
tL; is a Q-line bundle, tp; € Hif(tLi) and tp; \, ty. In the general case, we
may assume, after replacing ¢ with ¢ — sup ¢, that ¢ < 0. Writing ¢ as the
limit of an increasing sequence t,,, € Qx¢, we then have ¢,,p € PSH(¢,,0) and
tme \¢ to, tmf — 16, and hence tp € PSH(¢0), by (PSH2). This concludes
the proof of (i), which implies that PSH(#) is convex.
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To prove that PSH() is stable under maxima, pick ¢, ¢’ € PSH(#). By
Lemma 4.9, we can find a net (L;) of Q-line bundles and ;, ¢} € HE'(L;)
such that lim; ¢1(L;) — 6, @i \¢ ¢, ¢i \¢ ¢’. Then max{p;, ¢,} € ’Hﬂ%f(Li)
decreases to max{y, ¢’}, which therefore belongs to PSH(6).

If a net in PSH() converges uniformly to a function ¢: X*" — RU{—o0},
then ¢ is generically finite, and is also the uniform limit of a sequence (,,)
in PSH(#). After passing to a subsequence, it is then easy to find constants
¢m — 0 such that (¢, + ¢n) is decreasing, and we infer ¢p € PSH(0), by
(PSH2). This concludes the proof of (ii).

Next we prove (iii). Write ¢ € PSH(f) as the decreasing limit of a net
pi € Hif(Li) such that lim; ¢;(L;) = 6. Then each ¢; € Hﬁf(L,-) satisfies
either f*p; € ’Hf{( f*L;) or f*p, = —oo on some irreducible component
of Y2 If f*p is generically finite, then the latter case never occurs, since
o < f*ei. Since f*o; \( f*¢ and ¢ (f*L;) — f*6, (PSH2) yields f*¢ €
PSH(f*0).

Finally, (iv) follows from (iii) since ¢ is generically finite. O

COROLLARY 4.10. — Pick § € NY(X), ¢,v € PSH(0) with ¢ < ¢, and
let x: (—00,0] = R be a continuous convex function such that 0 < x' < 1.
Then x o (¢ — 1) +1 € PSH(H).

Proof. — Note that x o (¢ — ¢) + ¢ is generically finite. Now, x can
be written as a decreasing limit of functions x,, that are finite maxima of
affine functions of the form ¢(t) = at + b, where a € [0,1] and b € R. For
each m, xm o (p — ¥) + ¢ is a finite maximum of functions of the form
(o (p—1)+v = (1 — )+ ap+ b, and hence x o (¢ — 1) + v € PSH(9),
by Theorem 4.7. Now xm 0 (o — ) + 1 N\, x © (¢ — ¥) + 1, and the result
follows, by (PSH2). O

COROLLARY 4.11. — If# € Nef(X) and 0 > ¢ € PSH(6), then exp(p) €
E>(6).

Indeed, we can pick 1» = 0 (since 0 is nef, see (4.2)). This corollary will
allow us to reduce certain statements about general #-psh functions to the
case of bounded ones.

PROPOSITION 4.12. — For any 0 € N'(X) and » € PSH(0), we have:

(i) ¢ is decreasing and usc on X";
(i) for each irreducible subvariety Y C X, the “maximum principle”

sup ¢ = @(Vy,triv)
Yan
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holds; in particular,
Sup ¢ = max Cp(vtriv,a)- (46)

(iii) for any v € X", t — @(tv) is convex and decreasing on [0, +00),
and p(tv) \y ©(Vz triv) = SUDPzan @ as t — +00, with Z the closure
of the center of v.

Proof. — By Proposition 2.19(i), each ¢; € ’Hﬂgg(l;i) is decreasing, and
t — ;(tv) is convex, by Lemma 2.20. Since (¢;) converges pointwise to ¢,
the latter inherits these properties. The rest follows from Lemma 1.4. O

Example 4.13. — Let X be a smooth irreducible curve, and recall the
description of X®® given in Section 1.1.6. For any 6 € N!(X), a usc function
w: X 5 RU{—o0} is then O-psh iff

(i) for each p € X (k), pp(t) := ¢(tord,) is convex on [0,+o00) (and
hence decreasing, being bounded above);

(i) degf+3_,cx k) ¥p(0+) = 0 (which implies ¢},(04) = 0, and hence
t — @(tord,) constant, for all but countably many p € X (k)).

Indeed, when ¢ is PL, this follows from Example 3.21, and the general case
is obtained by writing a function satisfying (i) and (ii) as a decreasing limit
of PL functions with the same properties (compare [56, Section 7] and [79,
Section 2.5]).

This characterization implies PSH(0) = R when X is a smooth irreducible
curve. As in the complex analytic case, this holds in fact on any connected
variety, see Corollary 4.24 below.

Remark 4.14. — Any ¢ € PL(X)g is 7-psh with respect to some closed
(1,1)-form 7, in the sense of Remark 3.4. However, ¢ is in general not 6-
psh for any § € N'(X), since such functions must be decreasing in the
partial ordering on X" (see Proposition 4.12). As a result, several potential
definitions of quasi-psh functions coexist in our context.

4.3. The regularization theorem

Many properties of #-psh functions are obtained by regularization, that
is, approximation by nicer #-psh functions. In our present approach, regu-
larization of #-psh functions is built into their definition. One can, however,
improve the properties of the approximants as follows:
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THEOREM 4.15. — Pick § € N'(X) and ¢ € PSH(0). Then:

(i) ¢ can be written as the limit of a decreasing net p; € ’Hg(Li) with
L; € Pic(X)q such that c1(L;) — 0 is ample and lim; ¢1(L;) = 6;
(ii) if 0 € Nef(X) then (i) holds with p; € H(L;) = Ho(L;) and L;
ample;
(iii) if w := 0 € Amp(X), then ¢ can be written as the limit of a
decreasing net in HI°™(w) (see Definition 3.8).

We shall later prove that these results actually hold with (countable)
sequences instead of nets, see Corollary 12.18.

As already indicated by (iii), the class of #-psh functions has particularly
good properties when 6 € Amp(X) is ample. In this case, we typically write
w instead of 6.

COROLLARY 4.16. — For any w € Amp(X), the space CPSH(w) =
CO(X) N PSH(w) is the closure of Hi™(w) C C°(X) in the topology of
uniform convergence.

Proof. — By Theorem 4.7, CPSH(w) is closed in the topology of uniform
convergence. By Theorem 4.15 and Dini’s lemma, any ¢ € CPSH(w) is the
uniform limit of a net in H°™(w), and the result follows. O

COROLLARY 4.17. — For any 6 € NY(X) and any ¢ € PSH(0) we have
0 > —o00 on X",

Proof. — Pick an ample line bundle L such that ¢;(L) — 0 is nef. Then
¢ € PSH(L). Using Theorem 4.7 and X" = []_ X" we may assume X
is irreducible. Now pick v € X", Then Ty (v) < oo, and we claim that
©(v) = p(vuiv) — TL(v). Indeed, Ty, (v) is the supremum of m~wv(s) over
m € Zso and s € H*(X,mL) \ {0}. Equivalently, ¢ := m~!log|s| satisfies
(V) = P(Vtriv) — TL(v). Adding constants and taking finite maxima shows
that this also holds for all ¢ € H(L), and then for all ¢ € PSH(L), by
Theorem 4.15. g

As another consequence, we get:

COROLLARY 4.18. — Assume that X is irreducible, and let L be an am-
ple Q-line bundle. Then PSH(L) is the smallest class of functions ¢: X?® —
R U {—o0}, not identically —oo, that contains all functions of the form
m~log|s| with m € Zwg and s € H°(X,mL) \ {0}, and is stable under
addition of a real constant, finite mazima, and decreasing limits.

Proof of Theorem 4.15. — By definition, ¢ is the limit of a decreasing
net p; € ’Hg(Li) with ¢;(L;) — 6. Using (2.8) it is straightforward to see
that each ¢; can further be written as a decreasing limit of functions in
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H%f(Li). By Lemma 4.6, we may thus assume that ¢; € ”H,éf(Li). We can
also arrange that ¢;(L;) — 60 € Amp(X). Indeed, given any ample line bundle
A, we can find €; € Q- such that lim;e; =0 and L; — 0 +¢; A is ample. By
Proposition 2.19, we have @; € H(g@f(Li) - "H(g@f(Li + ¢;A), and replacing L;
with L; + ;A yields the claim. This proves (i).

Assume next that 6 is nef. In the notation of (i), it follows that each L;
is ample. Further, each ¢; is the decreasing limit of max{¢;, —m} € H(L;),
and Lemma 4.6 yields (ii).

Finally assume that w := 6 is ample. Replacing ¢ with ¢ — sup ¢, we
may assume ¢ < 0. By Proposition 3.10, any function in PLNPSH(w) is
a decreasing limit of functions in H9°™(w). Relying again on Lemma 4.6,
it will thus be enough to show that ¢ is the decreasing limit of functions
in PLNPSH(w). Use the notation of (ii), and pick ¢ € Q1. For all i large
enough we then have tw — ¢1(L;) € Amp(X) for ¢ large enough, and hence
H(L;) € PLNPSH(tw). It follows that t~1¢ is the decreasing limit of a net
in PLNPSH(w). Since ¢ < 0, we have t 1o N\, ¢ as t \, 1, and another ap-
plication of Lemma 4.6 shows that ¢ is also the decreasing limit of functions
in PLNPSH(w). This proves (iii). O

Remark 4.19. — Assume that chark = 0 and that X is smooth and
connected. Consider the field of Laurent series K = k((t)), and denote by
X3 the Berkovich analytification of the base change X ; this comes with a
natural projection m: X% — X?". The base change wx of any w € Amp(X)
defines a closed (1,1)-form on X3" with ample de Rham class, in the sense
of [27]. Using Theorem 4.15 (iii) and Theorem A.4 in the Appendix, one can
show that a function ¢: X** — R U {—o0} is w-psh in the present sense iff
T is wi-psh on X% in the sense of [27].

4.4. The topology of PSH(6)

Let us fix € N*(X) for the moment. By Corollary 4.17, any ¢ € PSH(#)
is finite-valued on X4V =[] Xdiv.
DEFINITION 4.20. — We endow PSH() with the topology of pointwise

convergence on X4V,

As we shall later see in Theorem 11.4, this topology coincides with the
topology of pointwise convergence on X" = 1L, XIin In view of (4.6), we
have:

Ezample 4.21. — The map ¢ — sup ¢ = max, ¢(Viv,o) IS continuous
on PSH(6).
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THEOREM 4.22. — For any ¢ € PSH(8) and any usc function p: X* —
R U {—o0}, we have

0 <1h on XU = o <1h on X0,
In particular, ¢ is the smallest usc extension of p|xaw to X,

COROLLARY 4.23. — Every 0-psh function is uniquely determined by its
restriction to X4, and the topology of PSH(0) is Hausdorff.

Because of this, we will occasionally say that a function ¢: X4V — R
is 6-psh if it admits a (necessarily unique) extension to a 6-psh function on
xan,

COROLLARY 4.24. — If X is connected, then any 0-psh function is con-
stant, i.e. PSH(0) = R.

Proof. — By GAGA, X?" is connected, and after replacing X with an
irreducible component, we may assume that X is irreducible. By Corol-
lary 4.23, it is then enough to show that any ¢ € PSH(0) with supy =
©(viriv) = 0 satisfies p(v) = 0 for any v € X4V, Consider the decreasing se-
quence (mp)men and its pointwise limit ¢ := lim,, (mp). Since ¥ (viiv) = 0,
we have ¢ € PSH(0) (see Theorem 4.5). By Corollary 4.17, we thus have
P(v) > —o0, ie. p(v) =0. O

COROLLARY 4.25. — Pick a decreasing net (;) in PSH(), and assume
that it converges to ¢ € PSH(0). Then ¢ = lim; ; pointwise on X",

Proof. — The pointwise limit 1 of (¢;) on X®* coincides with ¢ on X4V,
In particular, ¥(Vyiv,q) is finite for any «, and hence ¢ € PSH(6), by Theo-
rem 4.5. By Corollary 4.23, we infer ¢ = ¢, which means that ¢; converges
to ¢ pointwise on X2 |

LEMMA 4.26. — For each v € PL(X), there exists a finite set ¥ C X4V
such that

sup(ip — ) = max(p — ¢) (4.7)

for all p € PLT(X), and the same result then holds for all ¢ € PSH(6),
6 € NY(X). Moreover, if 1 = r(pq — p), where r € Qsg, a is a flag ideal,
and p € PL+(X), then we can pick ¥ = X, the set of Rees valuations of a.

Proof. — We can always write ¥ = r(p, — p) as above, and by homo-
geneity we may assume 7 = 1. The case ¢ € PLT(X) now follows from
Lemma 2.13, since ¢ + p € PL1(X).

Now assume ¢ € PSH(6) for some § € N'(X). After replacing 6 with
w € Amp(X) such that w — 0 is nef, we may assume 6 = w is ample. By
Theorem 4.15, we can find a decreasing net (¢;) in H4°™(w) € PLT(X) such
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that ¢; N\ ¢. For each v € X®" we then have ;(v) — 1 (v) < maxs, (p; — )
for all 4, and hence ¢(v) — 1(v) < maxy_ (¢ — ). O

Proof of Theorem 4.22. — 1If ¥ € PL(X), the result follows from Lem-
ma 4.26. Assume next 1) € C°(X). By Theorem 2.2, v is a uniform limit of
functions in PL(X), and the result thus holds for ¢ as well. In the general
case, we can find a decreasing net (1;) in C°(X) with v; — 1. Then ¢ <
Y < 1 on X4V implies ¢ < ; on X, and hence ¢ < 1) on X?" as well. [

Remark 4.27. — Assume char k = 0. By Corollary A.3, any v € X?" is
the limit of a net (v;) in X4 such that v; < v for all i. As any ¢ € PSH(6)
is decreasing and usc, it follows that ¢(v;) = ©(v), which provides a slightly
more precise version of Corollary 4.23 in that case.

We record another useful consequence of Lemma 4.26.

PROPOSITION 4.28. — For any ¢ € C(X), ¢ > sup yan (¢ — ¢) is con-
tinuous on PSH().

Proof. — When v is PL, this is a direct consequence of Lemma 4.26. As
above, the general case follows by density of PL(X) in C°(X) with respect
to uniform convergence. O

COROLLARY 4.29. — For any v € X®", the evaluation map ¢ — @(v) is
usc on PSH(0).

In other words, each convergent net ¢; — ¢ in PSH(#) satisfies ¢ >
lim sup, ¢; pointwise on X2".

Proof. — Pick a convergent net ¢; — ¢ in PSH(#). Since ¢ is usc and
X is compact, we have ¢ = inf{y) € C%(X) | ¢ > ¢} pointwise. For each
candidate 1 and € > 0, Proposition 4.28 implies that ¢; < ) 4+ ¢ on X" for
all ¢ large enough. Thus lim sup; ¢; < 1+ ¢ pointwise on X", and the result
follows by taking the infimum over v and letting ¢ — 0. ]

Remark 4.30. — The evaluation map ¢ — ¢(v) € RU {—o0} can fail
to be continuous in general. For example, take X = P! and L = O(1).
In homogeneous coordinates [zo : 21], set ¢, := max{m~1log|z;|, —1} for
m > 1. Then ¢, — 0 in PSH(L), but for p := {z1 = 0} € X (k) we have
©m (Vp riv) = —1 for all m, see Section 1.1.6.

We also note:

LEMMA 4.31. — Let f: Y — X be a morphism from a projective variety,
such that any irreducible component of Y is mapped onto a component of X.
For any 6 € N'(X), the map f*: PSH(0) — PSH(f*0) is then continuous.
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Proof. — The assumption guarantees that f maps Y4 to X4V, and the
result follows. g

We conclude this section with an “almost birational invariance” prop-
erty of #-psh functions. Recall that any projective birational morphism is
(isomorphic to) the blowup of some (generically trivial) ideal, see [78, The-
orem IL.7.17].

THEOREM 4.32. — For any birational morphism w: Y — X, there exists
wx € Amp(X) and px € PSH(wx) such that

PSH(7*0) + n*px C m* PSH(0 + wx).

for all @ € NY(X). If 7 is realized as the blowup of a generically trivial ideal
b C Ox, then one can take ox = log|b|.

As we shall see in Lemma 5.13 below, we actually have PSH(7n*0) =
7* PSH(0) when the envelope property holds for 8. However, the “error term”
T px is necessary in general (for instance if m is the normalization of a
reducible variety).

COROLLARY 4.33. — In the notation of Theorem 4.32, there exists wy €
Amp(Y) such that PSH(wy ) + m*px C 7* PSH(wx).

Proof of Theorem 4.32. — Write 7 as the blowup of an ideal b C Ox.
Denote by E the exceptional divisor, and choose an ample line bundle H on
X such that H ® b is globally generated. As —F is m-ample, we can further
arrange that H' := 7#*H — E is ample. We claim that the result holds with
ox = log|b| and wx := ¢1(H). Since H ® b is globally generated, we can
choose a finite subset (s;) of H*(X, H®b) that locally generates b, and hence
log |b| = max; log |s;| € HE'(H) C PSH(wx).

Assume first that 6 = ¢1 (L) with L € Pic(X)g. Pick ¢’ € PSH(7*L), and
write ¢’ as the limit of a decreasing net ¢} € H&'(L}) with L} € Pic(X)g and
c1(L) = e1(w*L). Since H' is ample, H' +(7*L— L) = (7*(L+H)—E)— L,
is ample for all i large enough, and hence ¢} € H%f(w*(L + H) — E), by
Proposition 2.19. By Lemma 2.21, there exists ¢; € ’Hﬁgg(L + H) such that
oL+ px = 7 p;. As  induces an isomorphism Y4V 5 X4V o, is uniquely
determined, and the net (g;) is decreasing on X" by Theorem 4.22. Its
pointwise limit ¢ := lim; @; satisfies ¢’ +7*px = 7 on X4V, In particular,
©(Vgriv,o ) 1s finite for all o. This shows that ¢ is generically finite, and hence
v € PSH(L + H) (see Theorem 4.5), which proves the result in that case.

In the general case, we can choose a sequence L, € Pic(X)g such that
c1(Ly,) — 6 is nef and converges to 0. By Theorem 4.7, we have PSH(6) C
PSH(L,,), and the previous step thus shows that any ¢’ € PSH(n*0) C
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PSH(7n*L,,) satisfies ¢’ + n*px = 7%p,, with ¢,, € PSH(L,, + H). As
noted above, ¢, is uniquely determined by ¢, and hence independent of m.
Since ¢1 (L) — 6, Theorem 4.5 yields ¢ € PSH(#), which concludes the
proof. |

Proof of Corollary 4.33. — Use the same notation as above, and set
wy = i (m*wx — E) € Amp(Y). Since m*¢x = log|sg| C PSH(E), we have
PSH(2wy ) + 7*¢x C PSH(nm*wx ), and Theorem 4.32 yields

PSH(2wy ) + 27 ¢px C n* PSH(7*(2wx)),

which is equivalent to the desired the result. O

4.5. Pluripolar sets

Mimicking classical pluripotential theory, we introduce:

DEFINITION 4.34. — A subset E C X" is pluripolar if there exist 6 €
NY(X) and ¢ € PSH(0) such that E C {¢ = —oc}.

LEMMA 4.35. — Pick w € Amp(X). Then E C X" s pluripolar iff
E C {p =—o0} for some ¢ € PSH(w).

Proof. — Assume E C {¢) = —oo} for some ¢ € PSH(#), § € N'(X).
For t > 0 large enough we have tw > 6. Thus ¢ := t~!4 is w-psh (see
Theorem 4.7), and satisfies F C {¢p = —oc0}. O

LEMMA 4.36. — For any Zariski closed subset Z C X, Z®" is pluripolar
iff Z is nowhere dense, i.e. does not contain any irreducible component X,.

Proof. — If Z*™ C {¢ = —oco} with ¢ € PSH(0), then Z does not contain
any component X, since @ is generically finite. Conversely, if Z is nowhere
dense then we can find a section s of some ample line bundle L that vanishes
along Z, but not along any irreducible component of X. Then ¢ := log |s]| is
L-psh, and Z2" C {p = —o0}. O

By the next result, any countable subset of X (k) C X2 is therefore also
pluripolar, but some are Zariski dense.

LEMMA 4.37. — Any countable union of pluripolar sets is pluripolar.

Proof. — Let (Ey,)m>1 be a sequence of pluripolar subsets, and fix w €
Amp(X). For each m, pick ¢,, € PSH(w) such that E,, C {¢,, = —oco}, and
set Gm,a = SUPxan @m > —00. We can pick ¢,, > 0 such that }° ¢, <1
and >, C¢ml|am,al < oo. Then ¢ = 3 cpnom € PSH(w) and U,, B C
{ = —oo}. 0
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PROPOSITION 4.38. — A point v € X" is nonpluripolar iff v € X",
i.e. v is a valuation of linear growth.

Proof. — Corollary 4.17 shows that no valuation of linear growth is pluri-
polar. Now suppose v € X\ X lin and pick any ample line bundle L. For

any integer j > 1 there exist m; > 1 and a regular section s; € H*(X,m;L)
1

such that m; 'v(s;) > 27. If we set ¢; = mj_1 log|s;| and v; = >7_, 27y,
then (¢;); is a decreasing sequence in PSH(L) with ¢;(vuiv,e) = 0 and
¥j(v) < —j. It follows that ¢ = limp; = Y2, 27!y, satisfies ¢y € PSH(L)
and ¥ (v) = —oo, so that v is pluripolar. a

COROLLARY 4.39. — Any pluripolar set has empty interior.

Proof. — Indeed, a pluripolar set must be disjoint from the dense subset
Xdiv C Xlin. O

LEMMA 4.40. — If m: Y — X is a birational morphism, then a subset
E C X s pluripolar iff n=1(E) C Y is pluripolar.

Proof. — Write 7 as the blowup of a generically trivial ideal b C Ox.
Let Z C X be the cosupport of b, and set W := 7~ 1(Z). Then Z and
W are Zariski closed, nowhere dense subsets of X and Y, respectively, and
m: Y\W — X\ Z is an isomorphism. Then Z*" C X?" and W C X" are
pluripolar, see Lemma 4.36. Set ¢x := log |b] and pick wx € Amp(X) as in
Theorem 4.32.

First suppose F is pluripolar, and pick ¢ € PSH(wx ) such that ¢ = —c0
on E. Then v := 7*¢ € PSH(m*wx) and ¢ = —oo on the set 7~ (E), which
is therefore pluripolar.

If instead 7~ !(E) is pluripolar, then pick wy € Amp(Y) as in Corol-
lary 4.33, and ¢ € PSH(wy) such that ¢» = —oo on 7 !(E). By Corol-
lary 4.33 we can find ¢ € PSH(wy) such that ¥ + 7*px = 7*p. It follows
that ¢ = —oo on E'\ Z**, so E'\ Z*" is pluripolar. As Z?" is also pluripolar,
we conclude that E is pluripolar, see Lemma 4.37. g

Applying Lemma 4.40 to the canonical birational map [, X, — X, we
get

COROLLARY 4.41. — A set E C X*" is pluripolar iff E N X3 is a
pluripolar subset of X2* for each a.
For later use, we note:

Ezample 4.42. — Any trivial semivaluation v € X" lies in the closure of
some pluripolar subset £ C X?", that can be chosen as a countable subset
of X(k) C X?®. When X is a connected smooth curve, this follows from
Section 1.1.6, by choosing any infinite sequence of distinct closed points in
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X. In the general case, v lies in the closure of X (k) (see Section 1.1.5), and
hence in the closure of a countable subset thereof (see Remark 1.1).

Remark 4.43. — If dim X = 0, then there are no nonempty pluripolar
subsets of (the finite set) X2, If dim X = 1, then any pluripolar set must
be contained in X (k) C X", whose closure is the strict subset X'V C Xan,
In particular, pluripolar sets are never dense in that case (in stark contrast
with the complex analytic case).

When X has no irreducible component of dimension < 1, the situation
is more subtle: the set X®* \ X¥ is then dense (see Lemma 2.15), and
it is pluripolar if k is countable, being the (countable) union of all strict
irreducible subvarieties (see Lemma 4.37). However, when k is uncountable,
pluripolar sets are again never dense: see Corollary 12.21 below.

4.6. The Alexander—Taylor capacity

In order to detect pluripolar sets, we introduce the following variant(®)
of the classical Alexander—Taylor capacity [1].

DEFINITION 4.44. — For any w € Amp(X) and any subset E C X?",
we define T, (E) € [0, +00] as follows:

(1) if X is irreducible, then Ty, (E):=Sup,cpsu(w) (SUPxan ¢ — SUPE ©).
(ii) in general, T, (E) = min, Ty, (ENX3").

Recall that supya ¢ = @(vgriv) when X is irreducible, see Proposi-
tion 4.12.

THEOREM 4.45. — A subset E C X" is pluripolar iff T, (E) = oo for
some (equivalently, any) w € Amp(X).

Proof. — Pick any ample class w € N'(X). By Corollary 4.41 E is
pluripolar iff £ N X2 is pluripolar for all «, and by definition, T, (E) = oo
iff T, (BN X" = oo for all a. We may therefore assume that X is ir-
reducible. First assume that F is pluripolar. By Lemma 4.35, there exists
¢ € PSH(w) with ¢|g = —o0, and hence Ty, (E) = co. Conversely, suppose
T, (E) = oo. For each m € N we can then find ¢, € PSH(w) such that
SUP Y = @m(Viv) = 0 and supg ¢, < —2™. By convexity of PSH(w),
setting for each m

Y= 270 =Y 27l 4270
=1

i=1

(3) More precisely, exp(—Ty) corresponds to the Alexander—Taylor capacity.
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defines a decreasing sequence in PSH(w) such that t,,(viiy) = 0 and
supg ¥m(v) < —m. By Theorem 4.7,

Yi=limg, = 270
=1

is w-psh, and supy 1 = —o0. (|
For line bundles, the chosen notation is compatible with Definition 1.26:

LEMMA 4.46. — If L € Pic(X)g is ample and w = c1(L), then
T,({v}) = TL(v) for any v € X?".

Proof. — By Lemma 1.27 and the definition of the Alexander—Taylor
capacity, we may assume that X is irreducible. By definition, Ty, (v) is then
the supremum of m~'v(s) over m sufficiently divisible and s € H*(X, mL) \
{0}. Equivalently, it is the smallest constant such that all functions of the
form ¢ := m~!log|s| satisfy ¢(v) = @(viriv) — TL(v). As ¢ € PSH(L), we
get Tr(v) < T, ({v}). But adding constants and taking finite maxima shows
that the inequality ¢(v) > @(viriv) — TrL(v) also holds for all ¢ € H(L), and
then for all ¢ € PSH(L), by Theorem 4.15. O

5. Envelopes and negligible sets

By our definitions, #-psh functions are well-behaved under decreasing lim-
its. As in the complex analytic case, many important constructions involve
increasing limits, or envelopes of #-psh functions. Consider a bounded-above
family (¢;); of 6-psh functions. In general, the supremum ¢ := sup, ¢; may
fail to usc, and is therefore not #-psh. In this section, we study whether the
usc regularization ¢* is #-psh. We conjecture that this is true when X is uni-
branch, and we prove it when X is smooth, 6 is nef, and either dim X < 2
or char k = 0, see Theorem 5.20.

5.1. Negligible sets

We start by studying the following notion, imported from classical pluri-
potential theory. For the time being X is an arbitrary projective variety,
with irreducible components X,,.

DEFINITION 5.1. — A subset E C X*" is negligible if there exists 6 €
NY(X) and a bounded-above family (¢;) in PSH(6) such that E C {sup, ¢; <

supy ¢; }.
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As in Lemma 4.35, we may always choose 6 as a fixed ample class.

Replacing ¢; by exp(y; —sup; sup xas ;) — 1, see Corollary 4.11, we may
also assume —1 < ¢; < 0.

Any subset of a negligible set is trivially negligible. We also have
LEMMA 5.2. — A countable union of negligible sets is negligible.

Proof. — Let (E,;,)?° be a sequence of negligible sets, and set E := |J E,,.
Fix w € Amp(X). For each m we can find a family (¢, 4):er,, in PSH(w) such
that —1 < i < 0on X* and ¢, < ¢}, on Ep,, where @, = sup;c;  Pm,i-
Now set I =[], I, and, for i = (ip)m € I, i = > oo _1 27 ™Omm,i,,- Then
Y € PSH(w) and ¢ := sup;¢; = >, 27™¢y,. This gives ¢ < ¥* on E, so
F is negligible. O

ProposITION 5.3. — Every pluripolar subset is negligible.

The converse implication is much more subtle. We will prove it when
chark = 0 or dim X < 2, see Corollary 13.18 below.

Proof. — Suppose E C X®" is pluripolar, and pick ¥ € PSH(w) such
that ¢ < 0 and ¥ = —oo on E. We may assume E = {¢) = —oo}. For m > 1,
set o, = m~ ) € PSH(w) and ¢ := sup,, ¢mm. Then ¢ = —oo on E and
¢ =0on X?\ E. Since E has empty interior (see Corollary 4.39), ¢* =0
on X?" and E = {¢ < ¢*} is thus negligible. O

Just like pluripolar sets, the class of negligible sets is birationally invari-
ant.

LEMMA 5.4. — If m: 'Y — X is a birational morphism, then a subset
E C X2 s negligible iff 7=1(E) C Y is negligible.

Proof. — We follow the setup and notation of the proof of Lemma 4.40.

First suppose E is negligible, and pick a family (p;); in PSH(wx) uni-
formly bounded above such that sup, ¢; < sup; ¢; on E. If we set ¢; := 1% ¢;,
then (¢;); is a family in PSH(7*wx) that is uniformly bounded above. More-
over, sup; ¥; < sup? ¢; on 7 1(E)\ W2 so 7 1(E) \ W2 is negligible. As
Wan is pluripolar, and hence also negligible, it follows that 7—1(E) is negli-
gible, see Lemma 5.2.

If instead 7~ (E) is negligible, then there exists a family (¢;); in PSH(wy")
uniformly bounded above, such that sup, ¥; < sup}; on 7~ 1(E). We can
find ¢; € PSH(wx) such that ¥; + m*px = 7*¢;. Then (¢;); is uniformly
bounded above, and sup, ¢; < sup? ; on E \ Z*", so E'\ Z*" is negligible,
and we conclude as above. ]

COROLLARY 5.5. — A subset E C X" is negligible iff E N X2 is a
negligible subset of X" for all o
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The following result will play a crucial role in what follows.

THEOREM 5.6. — Divisorial points are nonnegligible.

Thus non-empty open sets are also nonnegligible, as they contain divi-
sorial points, by density of X4V, The key ingredient is the following partial
converse to Lemma 4.26.

LEMMA 5.7. — Assume that X is irreducible. Then, for each 6 € N'(X)
and v € X4V, there exists 1) € PL(X) such that
sup(p —¢) = (v = ¥)(v)
for all p € PSH(0).

Proof. — By Lemma 2.12 we may find a flag ideal a for which v is a Rees
valuation, that is, v € X,. Pick L € Pic(X)g ample such that ¢;(L) > 6.
Then PSH(¢) C PSH(L), so we may assume 6 = ¢1(L). As X is irreducible,
there exists C' > 0 such that |p(v) — ¢(w)| < C for all w € ¥, and all
¢ € PSH(L); for example, we can take C' = 2maxyexn, Tr(w), as follows
from the proof of Corollary 4.17. By Lemma 2.28 there exists m,r > 1
and p € H(L) such that if we set ¢ := r(pqa — mp), then ¥(v) = 0 and
P(w) = 2C for w € g, w # v. Then ¢ € PL(X), and for any ¢ € PSH(L),
the max of ¢ — ¢ over ¥, is attained at v. On the other hand, it follows
from Lemma 4.26 that the supremum of ¢ — ¢ on X?" is attained on X,.
The proof is complete. O

Proof of Theorem 5.6. — 1In view of Corollary 5.5 we may assume that
X is irreducible. Consider # € N*(X) and a bounded-above family (p;) in
PSH(), and set ¢ := sup, ¢;. Pick v € X4V, and choose a PL function
as in Lemma 5.7. For each i we have ¢; < ¢;(v) — ¥(v) + . Thus ¢ <
o(v) — ¥(v) + 1, and hence p* < ¢(v) — ¥(v) + 1, by continuity of 1. This
yields ¢*(v) = ¢(v), which proves that v is nonnegligible. a

5.2. The envelope property and unibranch varieties

In the rest of Section 5 we assume that X is irreducible unless stated
otherwise. (See Remark 5.15.)

DEFINITION 5.8. — We say that a class § € N*(X) has the envelope
property if, for any bounded-above family (p;) in PSH(O), the usc upper
envelope sup; @; is 0-psh.

In the complex analytic case, it is a basic fact that psh functions on do-
mains in C™ satisfy the analogue of the envelope property. As a consequence,
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0-psh functions satisfy the envelope property for any projective complex
manifold X and any closed (1,1)-form 6. More generally, the latter prop-
erty holds when X is unibranch (i.e. locally analytically irreducible), cf. [47,
Théoréme 1.7], but fails in general, for the same reason as Theorem 5.12
below.

With our global definition of #-psh functions, the envelope property turns
out to be especially delicate. The purpose of what follows is to explore various
implications, and establish it in an important special case. We first observe:

LEMMA 5.9. — Assume that € NY(X) can be written as the limit of
classes 0; > 0 that satisfy the envelope property. Then 6 has the envelope
property as well.

Proof. — Pick a bounded-above family (¢;) in PSH(6). Since 6 < 6;, we
have PSH(#) C PSH(6;). Thus sup} ¢; is 6;-psh for all j, and hence 6-psh,
by Theorem 4.5. g

COROLLARY 5.10. — If the continuity property holds for all w €
Amp(X), then it holds for all § € Nef(X).

We next prove that the envelope property is equivalent to the analogue
of a basic compactness property in the complex analytic case.

THEOREM 5.11. — For any 0 € NY(X), the following properties are
equivalent:

(i) the envelope property holds for 6;
(ii) the space PSHgup(0) := {¢ € PSH(0) | sup ¢ = 0} is compact;
(iii) every bounded-above, increasing net (y;) in PSH(O) converges in

PSH(0).

Proof. — Assume (i), and pick a net (¢;) in PSHg.,(6). By Proposi-
tion 4.38, (;(v)) is a bounded net in R for each v € X4, By Tychonoff’s
theorem, after passing to a subnet, we may thus assume that (¢;) converges
pointwise on X4V to a function ¢: X9 — R, and it suffices to show that
¢ extends to a function in PSH(#) (necessarily unique, by Corollary 4.23).
By (i), ¢; == Supjs; pj is 6-psh for each i. The net (1) is further decreasing,
and its pointwise limit v := lim; v; is thus either #-psh, or identically —oo,
by Theorem 4.5. Now Theorem 5.6 implies that ¢; = sup;s,;¢; on X4V
Thus ¥ = ¢ on X4V, In particular, ¢ # —oo, hence ¢ € PSH(#). This
proves (i) = (ii).

Next, assume (ii), and consider a bounded-above, increasing net (¢;) in
PSH(#). Then a subnet ¢;, —sup¢;, converges to some ¢ € PSH(#). Since
(sup ;) is increasing and bounded-above, it converges to some ¢ € R. Thus
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©j — p+con X4 and hence ¢; — ¢ +c on XUV since (¢;) is increasing.
This proves (ii) = (iii).

Finally, assume (iii). Let (p;);cr be a bounded-above family of 6-psh
functions, and consider the increasing net 1 ; := max;c j @; parametrized by
finite subsets J C I. Then ¢ ; admits a limit ¢ in PSH(#), and we claim that
¥ = sup? ;. On X4V we have

¥ = limmax ¢; = sup p; = sUp Pis
Jied i i

by Theorem 5.6. Since v is #-psh and sup} ¢; is usc, Theorem 4.22 yields

¥ < sup] ¢; on X*. Similarly, Theorem 4.22 yields ¢; < v, and hence
supy ¢; < 1, since 1 is usc. This proves the claim, and hence (iii) = (i). O

Recall that the variety X is said to be unibranch if the following equivalent
conditions hold (see [68, IV.7.6.3] and [81, Corollary 32]):

e the normalization morphism v: X¥ — X is a homeomorphism;
e the formal completion of X at each of its points is irreducible.

In particular, any normal variety is unibranch. When k = C, X is unibranch
iff the associated complex analytic space is locally irreducible in the analytic
topology. This is also true for the Berkovich analytification as considered in
this paper: the variety X is unibranch iff the k-analytic space X?" is locally
irreducible in the analytic topology (see [54, Lemme 5.19]).

THEOREM 5.12. — If the envelope property holds for some w € Amp(X),
then X is necessarily unibranch.

The analogue of this result is known in the complex analytic setting, too.
We have not been able to locate a precise reference, but the proof below of
Theorem 5.12 can easily be adapted to that setting.

LEMMA 5.13. — Let w: Y — X be a birational morphism. Pick 0 €
NY(X), and assume that 0 can be written as the limit of a sequence of classes
Om > 0 with the envelope property. Then m: PSH(8) = PSH(7*0) is a
homeomorphism.

Recall that 6, > 0 means that 6,, — 6 is ample.

Proof. — After passing to a subsequence, we may assume that 6, > 0,11
for all m, and hence PSH(0,,4+1) C PSH(6,,). Since 7 induces a bijection
ydiv 5 xdiv o zx. PSH(A) — PSH(7*6) is a topological embedding, and it
suffices to show that it is onto. Pick ¢ € PSH(7*#), and write 7 as the blowup
of an ideal b C Ox. By Theorem 4.32, there exists a sequence &, \, 0 such
that 1 + e, 7 log |b] = 7%, with ¢,,, € PSH(6,,). By Theorem 4.22, ¢, is
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uniquely determined, and (¢, )m>m, is an increasing sequence in PSH(6,,,)
for any given mg. By Theorem 5.11, ¢, converges pointwise on X4V to
¢ € PSH(0), which satisfies 1 = 7*¢ on Y4V, The result follows. O

Proof of Theorem 5.12. — Since the normalization morphism v: X" —
X is finite, v*w is ample, and hence H°™ (v*w) spans PL(X"), see (3.2). By
Lemma 2.3, PL(X") separates the points of (X*)*" and it is thus already the
case of H4°™ (v*w). On the other hand, Lemma 5.13 implies that all functions
in Hem(v*w) C PSH(v*w) descend to X" (take w,, = (1 +m 1w). As
a consequence, v*": (X¥)*" — X" ig injective. By the non-Archimedean
GAGA principle, this implies that v : X¥ — X is injective as well (see [7,
Section 3.4]); this is enough to conclude that v is a homeomorphism, and
hence that X is unibranch. g

As mentioned above, in the complex analytic case the envelope property
conversely holds as soon as X is unibranch. It is thus natural to conjecture:

CONJECTURE 5.14. — If X is unibranch, then the envelope property
holds for all § € N*(X).

We will establish this conjecture in the important special case where € is
ample, X is smooth, and chark = 0 or dim X < 2 (see Theorem 5.20).

Remark 5.15. — The envelope property makes sense also when X is re-
ducible. It is easy to see that § € N!(X) has the envelope property iff
0]y € N(Y) has the envelope property for every connected component Y
of X. Moreover, if X is connected, then the proof of Theorem 5.12 shows
that if the envelope property holds for some ample class in N'(X), then the
normalization morphism v: X” — X is a homeomorphism, which implies
that X is irreducible (and unibranch).

5.3. Envelopes

For ample classes, the envelope property admits a useful reformulation.
We continue to assume that X is irreducible unless stated otherwise. Fix a
class w € Amp(X).

DEFINITION 5.16. — The w-psh envelope of a function ¢: X*" — RU
{£oo} is the function P,(p): X** — R U {£oo} defined as the pointwise
supremum

Py () :==sup {¢ € PSH(w) [ ¢ < ¢} .

Thus P, (p) = —oo iff there is no ¢ € PSH(w) with ¢ < ¢. Despite
the name, P, (¢) is not always w-psh (and indeed not even usc in general).
However, it is clear that
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e p— P,(p) is increasing;
o P,(p+¢)=P,(p)+cforall ceR.

These properties formally imply the Lipschitz estimate
sup [Py () — Pu (@) < sup o — ¢ (5.1)
when ¢, ¢’ are bounded.

LEMMA 5.17. — For any w € Amp(X), the following statements are
equivalent:

(i) w has the envelope property;
(i) for any function ¢: X*» — R U {£o0}, we have

Pu(p) = —o0, Pu(p)* =400, or P,(p)* € PSH(w).

(iii) for any p € C°(X), Pu(p) is continuous.

We refer to the property in (iii) as continuity of envelopes.

Proof. — First assume (i). Pick any ¢: X** — R U {£oo}, and suppose
that the set F := {¢ € PSH(#) | v < ¢} is nonempty, so that P, (y) # —o0.
If the functions in F are uniformly bounded above, then P, (¢)* € PSH(w),
by (i). If not, then, by the definition of the Alexander—Taylor capacity we
have

Pu(p)(v) = sup {¢(v) [ € F} = sup{supy | ¢ € F} — Ty (v) = +o0
for all v € X4V, and hence P, (¢)* = +o0, by density of X4V, This proves

(i) = (ii).

Next we prove (ii) = (iii), so pick ¢ € C°(X). Then P, (¢)* € PSH(w)
is a competitor in the definition of P, (¢), and hence P, (¢)* < P, (p). We
conclude that P, (p)* = P, (p) is usc. We claim that P, (p) is also Isc, and
hence continuous. To prove the claim, it suffices to show that P, (p) is a
supremum of continuous functions, and for this it suffices to prove that for
any ¢ € PSH(w) with 1 < ¢ and any € > 0, there exists ¢’ € C°(X) with
1 <9’ < p+e. Pick a decreasing net ¢; € H°™(w) converging pointwise to
9. For each v € X?” the set {1); < ¢ + £} is an open neighborhood of v for
1 large enough, by lower semicontinuity of ¢ — ;. By compactness of X?",
it follows that 1; < ¢ + ¢ for all ¢ large enough, so we can take ¥’ = 1);.

Finally, we prove (iii) = (i), following [22, Lemma 7.30]. Let (¢;) be a
bounded-above family in PSH(w), and set ¢ := sup} ¢;. Since ¢ is usc and
X" is compact, we can find a decreasing net of continuous functions (1;)
such that ¢; — ¢. For each ¢, j, we have ¢; < 95, and hence ¢; < P, (¢;),
which in turn yields ¢ < Py (¢;) < ;. We have thus written ¢ as the
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limit of the decreasing net of w-psh functions Py, (%;), which shows that ¢ is
w-psh. O

COROLLARY 5.18. — Assume that w € Amp(X) has the envelope prop-
erty, and consider a usc function p: X** — RU {—oc}. Then:

(l) PUJ(QO) is w_pShi or Pw(@) = 005
(ii) if ¢ is the limit of a decreasing net (p;) of bounded-above, usc
functions, then Py, (v;) \¢ Pu(p).

Proof. — By Lemma 5.17, either ¢ := P, (p)* is w-psh, or P, () = —o0.
Since P, (p) < ¢ and ¢ is usc, we also have 1 < ¢. If ¢ is w-psh, then
1 < Py, (p), which proves (i).

To see (ii), note that p := lim; P, (p;) satisfies either p € PSH(w) or
p = —o0o, by Theorem 4.7. Furthermore, P, (¢;) < ¢, yields in the limit
p < ¢, and hence p < Py (¢) (by definition of P, (¢) if p € PSH(w), and
trivially if p = —o0). Thus lim; Py, (¢;) = p = P, (¢). On the other hand,
P, (p;) = Py(y) implies p > P, (¢), which completes the proof of (ii). O

For any function ¢: X** — R U {£o0}, we also introduce the pointwise
envelope
Qu () == sup{e) € CPSH(w) | ¥ < ¢}
this is Isc and bounded below if ¢ is bounded below, and = —oco otherwise.
Since each 1) € CPSH(w) is the uniform limit of functions in HI°™(w) (see
Theorem 4.7), one easily checks that

Qu(p) = sup{e) € H™(w) | ¥ < o}

LEMMA 5.19. — Suppose p: X** — R U {400} is bounded below, with
Isc reqularization @, : X*™ — RU {+o00}. Then:

(1) Qu(p) =Pu(ps);
(i) Qulp) € COX) = Q(¢) € PSH(w);
(ili) if ¢ is the pointwise limit of an increasing net (@;) of bounded-
below, Isc functions (and hence ¢ is lsc), then Py (¢;) /Py (p).
Proof. — A function @ € CPSH(w) satisfies ¥ < ¢ iff ¥ < ¢,. Thus
Q. (p) = Q(px), and we may therefore assume wlog that ¢ is Isc. Trivially,
P,(¢) = Q,(p). Pick v € PSH(w) such that ¢ < ¢, and let (¢;) be a
decreasing net in CPSH(w) converging pointwise to ¢. For each € > 0 and
v € X?" we can find ¢ such that {¢; < ¢ + ¢} is an open neighborhood of
v, by lower semicontinuity of ¢ — ;. By compactness of X2 it follows that
; < @ + € for all 4 large enough. Thus ¥ < ¢; < Q,(p +¢) = Q,(¢) + ¢,
which proves (i).

As noted above, Q, () is Isc and bounded below. If Q () is w-psh, then
it is in particular usc, and hence Q,,(¢) € C(X). Assume, conversely, that
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Q. (p) € C°(X). Since CPSH(w) is stable under finite maxima, Q,(¢) is
the pointwise limit of an increasing net (¢;) in CPSH(w). By Dini’s lemma,
;i — Q,, () uniformly on X", and hence Q,,(¢) € PSH(w), by Theorem 4.7.
This proves (ii).

Consider finally a net (p;) as in (iii). We trivially have lim; Py (p;) =
sup; P, (¢j) < Py (p). Pick e > 0 and ¢ € CPSH(w) such that ¢ < ¢. As
above, for all j large enough we have 1) < ¢; +¢, and hence ¥ < Py, (p;) +¢.
Thus P,,(¢) < sup; Pu(p;), and we are done. O

5.4. The envelope property on smooth varieties

The results earlier in this section would not be particularly useful unless
we have examples of classes where the envelope property holds. Arguing
along the lines of [27, Theorem 8.5, we will prove:

THEOREM 5.20. — Assume that X is smooth and connected, and that
either chark = 0 or dim X < 2. Then any 6 € Nef(X) has the envelope

property.

We do not know whether a class § € N'(X) that is not nef has the
envelope property.
COROLLARY 5.21. — Under the assumptions of Theorem 5.20, the set
PSH,up(0) = { € PSH(#) | sup ¢ = 0}

is compact.

In [27], the above compactness property was established in the discretely
valued case, by relying on much more involved arguments based on dual
complexes and toroidal modifications.

LEMMA 5.22. — Let L be an ample line bundle on X, and (X, L) a test
configuration for (X, L), with L an honest line bundle. Denote by a,, C Oy
the base ideal of mL, which is a vertical ideal of X for all m > 1. Then

1 . 1
Pr(oc) — o =supm™ g, = lim m™ ¢,
m>1 m—o0

pointwise on X**. Furthermore, Pr(pr) is continuous iff m~ ey, . converges

uniformly on X?".

As with flag ideals, see Section 2.1, the function ¢,, € PL(X) is de-
fined by ¢q,, (v) = —o(v)(an,), where o = ox denotes Gauss extension (see
Remark 1.9).
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Proof. — Set ¢ = oz + m Ly, . Note first that (am,)m is a graded
sequence of ideals, i.e. a,, -ty C Apy iy for all m, m’ € N. The sequence m +—
¢a,, is thus superadditive, and Fekete’s lemma yields sup,,~; mlp,, =

: 1
limy, 00 M~ @, -

Next write L = Ly + D with a vertical Cartier divisor D on X, so
that ¢, = ¢p. For each m, denote by p,,: &,, — X the integral closure
of the blowup along a,,, and by D,, the (antieffective) divisor on X, such
that Ox,, - a,, = Ox, (Dy,); thus ¢, = ¢p + m tpp, . By construction,
Ox(mL) ® a,, is globally generated. This implies that

w*(mL)+ Dy, = mLy,, + p*(mD) + Dy,
is nef, and hence ¢,, € PLNPSH(L). Furthermore, ¢p,, < 0, so ¢m < ¢,
and hence ¢, < Pr(pr), which proves
Sup m = lim ¢ < Pr(ee).

m>1 m—r

Conversely, Lemma 5.19 implies

Pr(ec) = Quler) =sup{ € H(L) [¢ < pr}.

Pick ¢ € H(L) with ¥ < . After replacing X with a higher test config-
uration, we may and do assume, for the sake of notational simplicity, that
1 is determined by a vertical Q-Cartier divisor E on X. For m large and
divisible enough, Theorem 2.31 shows that mLxy + mE = mL + m(E — D)
is globally generated, and hence Oy (m(E — D)) C a,,. This yields

m(Y —or) = OmE-D) < Pan

and hence 9 < ¢,,, which yields, as desired, the converse inequality
Prpc) =sup{y € H(L) [ ¢ < o} < supppm.

The final assertion is a simple consequence of Dini’s lemma, using the su-
peradditivity of m — mey,,. O

Proof of Theorem 5.20. — By Lemma 5.9, we may assume that = ¢ (L)
with L € Pic(X)g ample. Pick ¢ € C°(X). By Lemma 5.17, we need to show
that Pr(p) is continuous. Since PL(X) is dense in C°(X) with respect to
uniform convergence (see Theorem 2.2), we may assume ¢ € PL(X), by (5.1).
By Theorem 2.31, we have ¢ = ¢ for a test configuration (X, £) for (X, L).
After replacing L with a multiple, we may further assume that L and £ are
honest line bundles.

Using the notation of Lemma 5.22, we need to show that ¢,, = ¢, +
m~Lp,, converges uniformly to P (o). Since we assume that char k = 0 or
dim X < 2 (and hence dim X < 3), we can rely on resolution of singularities
and assume that X is smooth and A\ has simple normal crossings support.

- 730



Global pluripotential theory over a trivially valued field

We may also assume that there exists an effective vertical Q-divisor £ on X
such that A := £ — F is ample.

Assume first that chark = 0, and let b,, be the multiplier ideal of the
graded sequence ag*. The inclusion a,, C b,, is elementary, and we have
b, C b, for all m,l by the subadditivity of multiplier ideals. This implies
that

m” gy, = (M) e, = (M) @, =m v,
for all sufficiently divisible m and [. Letting I — oo shows that
oc+m s, =Prlps) = om (52)

for all sufficiently divisible m. By the uniform global generation of multiplier
ideals there exists mg € N such that

Ox(mL +mpA) @ by = Ox((m+mg)L) ® Ox(—moE) @ byy,
is globally generated for all sufficiently divisible m. This implies that

sob'm < (panL+7n0 + C

for a constant C' independent of m. Combining this with (5.2) yields

m m C
Om < PL(SOE) < <]- + O>90m+mo - 70@[ + )
m m m

for all sufficiently divisible m. This shows that Pr(¢,) is a uniform limit of
continuous functions, and hence continuous.

When chark > 0, the very same argument applies with test ideals in
place of multiplier ideals, see [72] for details. O

Remark 5.23. — In view of Remark 5.15, Theorem 5.20 is valid also when
X is smooth but possibly disconnected. A suitable version of Corollary 5.21
is also true.

6. Homogeneous functions and b-divisors

In this section, we assume for simplicity that X is irreducible. We study
homogeneous #-psh functions and their relation to nef b-divisors. Inspired by
the work of Ross and Witt Nystrom, we express an arbitrary 6-psh function
in terms of homogeneous ones, and use this to establish a version of Siu’s
decomposition theorem in our setting.
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6.1. Homogeneous PL and homogeneous Fubini—-Study functions

Recall that any ideal b C Ox determines a homogeneous, decreasing
function log [b]: X?" — [—00,0].

DEFINITION 6.1. — The space of homogeneous PL functions on X is
defined as the Q-vector space

PLpom(X) € CO(Xa)

generated by the restriction to XV*! of all functions log |b| attached to nonzero
ideals b C Ox.

Remark 6.2. — The terminology is slightly abusive, as a function ¢ €
PLpom(X) is not a PL function in the sense of Definition 2.1, except if
¢ = 0. Indeed, while functions in PL(X) C C°%(X) are always bounded, ¢
can only be bounded if ¢ = 0, by homogeneity.

By (2.1), the set
PL;

hom

(X):={m "log|b||m € Z>, 0 #b C Ox}

is a Q4 -semivector subspace of PLyom (X) that is stable under finite maxima,
and any function in PLj, (X) can be written as a difference of functions on
PL _(X).

hom

Remark 6.3. — For any v € PL;"(X) and ¢ € Q, we have max{%,c} €
PL*(X).

FEzample 6.4. — If a is a nonzero fractional ideal on X, then setting
log |a|(v) := —v(a) for v € X3 defines a function log|a| € PLpom(X).
Indeed, log |a| = log|b’| — log|b|] with b := {f € Ox | fa C Ox} and
b':=b-acC Ox.

Remark 6.5. — As mentioned in Section 1.1, the space X2 (resp. X2")
can be reconstructed from PL;" (X)) (resp. PLypom (X)) as its “tropical spec-

hom
trum”, i.e. the set of all Q -linear (resp. Q-linear) maps x: PL; (X) —
RU{—o0} (resp. x: PLpom(X) — R) that commute with taking max (com-
pare [80, Section 1.2]). In particular, PLyem(X) is a birational invariant of
X, while PL;" _(X) is not.

hom

DEFINITION 6.6. — For any L € Pic(X)gq, we define the space of ho-
mogeneous Fubini-Study functions for L as

Hnom (L) := HE'(L).
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By Definition 2.18, a homogeneous Fubini-Study function is thus a func-
tion ¢: X* — [—00,0] of the form
¢ =m ™' maxlog |s;| (6.1)
for a finite set of nonzero sections (s;) of mL with m sufficiently divisible.
Clearly, ¢ = m~1log|b| for the ideal b C Ox locally generated by the (s;),
and hence

Hhom(L) C PL+ (X)

hom

Arguing as in Proposition 2.25, we conversely have:

LEMMA 6.7. — For any L € Pic(X)g and ¢: X" — [—00,0] the fol-
lowing are equivalent:

(i) ¢ € Huom(L);

(ii) o = m~'log|b| for a nonzero ideal b C Ox and m € Zo such
that mL is an honest line bundle and mL ® b is globally generated
on X.

COROLLARY 6.8. — For any L € Pic(X)qg ample, we have Q1 Hpom (L) =

PL}fom(X), and Huom(L) spans the Q-vector space PLyom(X).
COROLLARY 6.9. — We have PL{\ (X) = U; Hnom (L), where L ranges

over ample line bundles on X.

Ezample 6.10. — For any effective Q-Cartier divisor F, set (as in Lem-
ma 2.23) log |sg| := m~!log|sm,g| for m sufficiently divisible, where s,,5 €
HY(X,Ox(mE)) denotes the canonical section. Then log |sg| € Hpom(E).

6.2. Homogenization

Recall that R acts on functions ¢: X** — RU {400} by
(t-@)(v) = to(t™"v),
so that ¢ is homogeneous iff ¢ - ¢ = ¢ for all ¢.

DEFINITION 6.11. — We define the homogenization of a function
p: X*" - RU{—o0} as the function : X*" — R U{—o0} such that
$(v) = inf(t - 9)(v)
forv e X",

Obviously, @ is homogeneous, ¥ < ¢, and @ is the largest function with
these properties.
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Ezample 6.12. — For any irreducible subvariety Y C X, vy iy € XY
is a fixed point under the action of R+, and hence

0 lf SO(UY,triV) 2 07
—oo if SQ(UY,triv) <0.

@(U}Ctriv) = {

LEMMA 6.13. — For any decreasing net (@;) of functions @;: X** —
R U {00} with pointwise limit ¢ = lim; @;, we have @ = lim; ;.

Proof. — Since ¢ < ¢;, we have ¢ < ¢; < ;. Thus ¢ = lim; @; is
homogeneous and satisfies ¢ < ¥ < ¢, and hence 1) = @, by the maximality
property of . O

Using Lemma 1.4 and Example 6.12, the next result is straightforward
to check.

LEMMA 6.14. — If ¢: X — RU {—o0} is decreasing, then @ is de-
creasing as well. Further, £ —oo iff supp > 0.

For any 6 € N}(X), we denote by
PSHpom(0) C PSHyup(0)
the set of homogeneous #-psh functions.

THEOREM 6.15. — For any ¢ € Héf([/) with L € Pic(X)g, we have
® € Hhom(L) if supy = 0, and @ = —o0 otherwise.

COROLLARY 6.16. — For any ¢ € PLT(X), we have § € PL;" (X)) if
supp > 0, and = —oo otherwise.

COROLLARY 6.17. — Pick 0 € N*(X) and ¢ € PSH(0) such that sup ¢ >
0. Then:

(i) @ € PSHpom(0);
(ii) we can find a decreasing net (1;) such that v; € Huom(L;) with
L; € Pic(X)g and lim; ¢1(L;) = 6 and ; \, ¢;
(iii) when @ = c1(L) with L € Pic(X)g ample, (ii) holds with L; = L
for all .

Remark 6.18. — By Theorem 12.16 below, Corollary 6.17 is actually valid
with (countable) sequences instead of nets.

COROLLARY 6.19. — For any w € Amp(X) and E C X pluripolar,
there exists 1) € PSHyom (w) such that E C {¢p = —oo}.

The proof of Theorem 6.15 relies on the following elementary result.
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LEMMA 6.20. — Pick A\1,..., A\ € R such that max; \; > 0, and set for
reR"

g(x) = tlgg III?X{Q?Z‘ + it}

(i) If max; A; = 0 (resp. min; A\; > 0) then g(x) = maxy,—ox; (resp.
g(x) = max; ;).

(ii) In general, g(x) = maxyew (w,z) for a finite subset W of the
(r — 1)-simplex

zi:wizl}.

(ili) If the A; are rational, then we can chose W C o N Q7.

UZ{’U)ER;O

Proof. — Note first that max; A; > 0 implies that g(x) > min; z; is finite
for all € R". The proof of (i) is straightforward. To see (ii), note that
the epigraph of ¢ is the projection to R” of the epigraph of the convex,
homogeneous PL function f(z,t) := max;{z; + At} on R” X Ry¢. This
implies that ¢ is a convex, homogeneous PL function as well, and hence

g(w) = sup (y, )
wew

with W the (finite) set of vertices of the Newton polyhedron
P:={weR" | (w,z) <glx)}.
Finally, ¢ is increasing in each variable, and
glx1+c ...,z +c)=g(x)+c

for all ¢ € R. This implies that P C o, which proves (ii). If the \; are
rational, then f is Q-PL. Thus ¢ is Q-PL as well, and P is then a rational
polyhedron, whose set W of vertices is thus rational. This proves (iii). O

Proof of Theorem 6.15. — By Lemma 6.14 we may assume sup ¢ > 0.
Write

© = m ™' max{log|s;| + \;}
K3

with m € Zsq, s1,...,8. € H(X,mL) and \; € Q, and note that max; \; >
sup ¢ = 0. Then

~

— L . .
p=m %gg max {log|s;| +tA\:},

and Lemma 6.20 thus yields a finite subset W C o N Q' such that
~ —1
— . b
pg=m gleax{ E wy 0g|sz|}
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Pick b € Z~¢ such that bw € N” for all w € W. Then
Zwi log |s;] = b log ||

with s,, := [], 87" € H(X,mbL), and hence @ = (mb) ' max,ew 10g |5,|-
Thus @ € Hupom(L), and we are done. ]

Proof of Corollary 6.16. — By Corollaries 2.26 and 6.8, for any ample
line bundle L we have PLT(X) = Q. H(L) and PL;" (X) = Q4 Huom(L).
We conclude using Theorem 6.15. |

Proof of Corollary 6.17. — By Lemma 6.14, (i) follows from (ii). By
Theorem 4.15 (i), we can write ¢ as the limit of a decreasing net ¢; € Hg(Li)
with L; € Pic(X)g and ¢1(L;) — 6. For each i, we have sup ¢; > supp >
0, and hence @; € Hpom(Li), by Theorem 6.15. By Lemma 6.13, we have
@i \v @, which proves (ii). Finally, if 6 = ¢1(L) with L € Pic(X)g ample,
Theorem 4.15 (iii) shows we can take L; = L in the above argument, and

(iii) follows. O

Proof of Corollary 6.19. — By Lemma 4.35, we can find ¢ € PSH(w)
such that £ C {¢ = —oo}. After adding a constant to ¢, we may assume
sup ¢ = 0. By Corollary 6.17, we then have @ € PSHyop,(w), and E C {g =
—oo} since @ < . O

Relying on Corollary 6.17, we now establish the following version of Siu’s
decomposition theorem (cf. [46, IT1.8.16]) for homogeneous psh functions (see
Theorem 6.31 below for a statement in the general case).

THEOREM 6.21. — Assume that X is normal. Pick § € NY(X) and E
an effective Q-Cartier divisor. For any v € PSHpom(0), we then have

Y < loglsp| <= ¢ — log|sg| € PSHyom (0 — E).

See Example 6.10 for the notation.

Proof. — By Corollary 6.17, we can write ¢ as the limit of a decreas-
ing net ©; € Hpom(Li) with L; € Pic(X)g and ¢1(L;) — 6. Since K =
{log|sg| = —1} is compact in X*" and supg ¢ < —1, we can find ¢; € Qs
such that lim; ¢; = 1 and supy ¥; < —t;, by Dini’s lemma. By homogeneity,
this implies ¢; < t;1og |sg| on RsoK = {log|sg| > —oo}, and hence on X?",
since {log|sg| > —oo} D X4V is dense and ¢; and log |sg| are continuous
(or by Theorem 4.22).

By Lemma 2.23, ¢} := 1¢; — t;log|sg| = ¥ —log |st, g| lies in Hpom (L; —
t;E). Since (1;) is a decreasing net, (1}) is decreasing on X4V C {log|sg| >
—o0}, and hence on X?", by Theorem 4.22. Further, 1; (viriv,o) = 0 for all «
and all ¢. Since ¢1(L;) —t;E — 6 — E, Theorem 4.5 shows that ¢’ := lim; ¢}
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is (0 — E)-psh, with ¢ = ¢/ + log|sg| on X9V and hence on X", by
Corollary 4.23. O

COROLLARY 6.22. — If all classes in Amp(X) have the envelope prop-
erty, then PSHyom(0) is compact for any 6 € N*(X).

Recall that the assumption holds if X is smooth and chark = 0, see
Corollary 5.21.

Proof. — Pick an effective Cartier divisor E such that 0 := 6 + F €
N!(X) is ample. Since ¢ has the envelope property, PSHgyup(0') is compact
(see Theorem 5.11). Now pick a net (¢;) in PSHyom(6). For each 4, we have
Yl = 1; + log |sg| € PSHpem(0'). After passing to a subnet, we may thus
assume ) — 10" € PSHpom(6'). Since ¢ < log|sg|, we get in the limit
Y’ <log|sg|on X4 and hence on X**, by Theorem 4.22. By Theorem 6.21,
we get 1 := 1)’ — log|sg| € PSHypom(6). Further, 1; — ¢ on X4V hence in
PSHjom (), which proves that the latter space is compact. a

6.3. The homogeneous decomposition of a psh function

For any function ¢: X*» — R U {—o0} and A € R, we set
N i— o — N =i co—
P ==X g(f) {t-p—1tA}. (6.2)
Thus @ is largest homogeneous function such that @ + A < ¢. By Corol-
lary 6.17, we have, for any ¢ € PSH(A) and A € R,
A<info = @ =0,
A <supyp = @ € PSHyom(0),
A > sup p = @ = —oo.
LEMMA 6.23. — For any 6 € N*(X) and ¢ € PSH(0), (P*)r<supy 5 @

concave and decreasing family of functions in PSHyom(0), in the sense that
A+ @M(v) is concave and decreasing for all v € X®*. Moreover, the map

(—oo,supp] 3\ —> P e PSHyom (6)
s continuous.

Proof. — The extremal characterization of ¢* shows that it is a decreas-
ing function of \, and concavity follows directly from (6.2). For any v € X4V,
we need to show that A — $*(v) is continuous on (—oo, sup ¢]. By concavity,
it is continuous on (—o0,sup ). Since A — @ is decreasing and vanishes at
Vtriv, ¥ = Infxcoupe @* is 0-psh (see Theorem 4.5), and also clearly homo-

geneous. Further, gM#* := g®"P¥ L 1), and it remains to show that equality

- 737 —



Sébastien Boucksom and Mattias Jonsson

holds. For each A < sup ¢, we have 1) < 3 < ¢p— A\, and hence 1) < ¢ —sup .
By the extremal property, we infer 1) < @™#*, which concludes the proof. [

THEOREM 6.24. — For any 6 € N*(X) and ¢ € PSH(0), we have

o= sup {P*+ A} (6.3)
A<sup ¢

pointwise on X**. Conversely, if (¥x)x<sup o 15 @ concave family of functions
in PSHyom (0) such that ¢ = supy ., o{x+A} holds on XU, then ¢y = P
for all A < sup p.

LEMMA 6.25. — For each v € X®® and ¢ € PSH(0), t — (t- ¢)(v) is
convex on Rsq, and is decreasing if ¢ < 0.

Proof. — First assume ¢ € H‘%Rf(L) with L € Pic(X)g, and write ¢ =
m~ ! max;{log |s;| + \;} for a finite set (s;) of nonzero sections of mL and
A\i € R. Then t - ¢ = m~! max;{log |s;| + t\;}, which is a convex function of
t, decreasing when sup ¢ = max A; < 0. The general case follows easily, see
Definition 4.1. ]

Proof of Theorem 6.24. — For any v € X*® ¢+ (t- p)(v) in convex on
R, with (convex) Legendre transform

A sup{th = (t - 9)(v)} = 3 (v).

By Legendre duality, we thus have
(t-¢)(v) = sup{P*(v) + tA}
AER

for all ¢ > 0. For t = 1, this is precisely (6.3). Conversely, assume we
are given a concave family (¥a)a<supe i PSHpom(8) such that ¢(v) =
SUP ) csup p1¥A (V) + A} for all v € XY Then (t-¢)(v) = SUP ) csup p1¥A (V) +
tA} for all ¢ > 0, and hence

Pal) = (- @)(0) ~ 1A} = P (0)

for all A < sup ¢, again by Legendre duality. This shows ¥, = @* on X4V,
and hence on X", by Corollary 4.23. |

Remark 6.26. — If w is ample and ¢ € £*(w), see Section 7.2, then one
can view (t - )i~0 as a geodesic ray in the space £1(w) (see [35, 98]), and
the above result is then in line with the Legendre transform approach to
geodesic rays pioneered in [100].

In analogy with Lemma 5.19, we also prove:
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LEMMA 6.27. — Assume ¢ € CPSH(L) with L € Pic(X)g ample, and
pick A < sup . Then

(/5)\ = SUP*W € Hhom(L) | ¢ Sp— )‘}
pointwise on X4V,

Proof. — By Theorem 6.24, the right-hand side 7 satisfies 7 < $*. Pick
g € (0,supp — A\). By Theorem 4.7 (iv), we can find ) € H(L) such that

p—A+e) <Y <p—A
Since 0 < supy — (A + €) < sup ), Theorem 6.15 yields ) € Hyom(L). Now

7

¥ <9 < -\, and hence ¥ < 7. On the other hand, PM€ = o — (A +¢) <
1, and hence

Pre<T<pn
By Lemma 6.23, we have lim,_,q $*t¢ = @* pointwise on X4V, and we are
done.

Ezample 6.28. — Assume ¢ = ¢, for a flag ideal a, ie. ¢ =
maxy{log|ay| + A} for a decreasing sequence (ay)aez of ideals on X. For
any A\ € Z with A < sup¢, Theorem 6.15 yields 3* € PL{ (X)), ie.
?* = m~llog|b| for an ideal b C Ox and m € Zg, and it is natural
to wonder whether in fact * = log|ay|. We do have 3 > log|ay|, with
equality if A < infy or A = supp, by Lemma 6.20(i), but equality may
fail in general. Indeed, the concavity of A — @* would otherwise imply that
ax_1 - Gy is contained in the integral closure of a§7 which need not be the
case.

Pick § € N'(X) and ¢ € PSH(0). Besides $° = §, the case of $* with
A = sup ¢ also plays a special role, and we set
P = P"PY¥ € PSHyom(0).
Thus p™** < ¢ —sup ¢, and @™
this property. In particular,

is the largest homogeneous function with

I,

P = () <= ¢ constant.

Note also that @™** is invariant under addition of a constant to ¢. As the
next result shows, ™2 can be understood as the “Gateaux differential” of

@ at Vgriy.
LEMMA 6.29. — For any 6 € N*(X), p € PSH(#) and v € X", we have

smax () _ Jipy PV~ P(Vuiv)
v (U)itl—lgﬁr t :

Recall from Proposition 4.12 that ¢ — @(tv) is convex in Rs for any
v € X2 and that sup ¢ = @(Viriv)-
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Proof. — Replacing ¢ with ¢ —sup ¢, we may assume sup ¢ = @(Vgiy) =
0. Then t + t - ¢ is decreasing, by Lemma 6.25, and hence

1

G (v) = @v) = Mm t(t™'v) = lim s~ p(sv),

which proves the result. (|

Ezample 6.30. — Pick L € Pic(X)g, ¢ € ’H%f(L), and write ¢ =
m~  max;{log|s;| + \;} as in (2.8). Then Lemma 6.20 (i) yields @& =
m~! max; log |s;|.

Thanks to Theorem 6.24, we can now extend Theorem 6.21 to arbitrary
psh functions, yielding the following analogue of Siu’s decomposition theo-
rem.

THEOREM 6.31. — Assume that X is normal. Pick @ € N'(X), an effec-
tive Q-Cartier divisor E, and assume 0 € NY(X) has the envelope property.
For any ¢ € PSH(0 + E), we then have:

¢ <log|sg|+ O(1) <= ¢ — log|sg| € PSH(6).

Recall that we expect that any # € N'(X) has the envelope property,
see Conjecture 5.14. Also note the shift by E compared to the notation of
Theorem 6.21

Proof. — For each A\ < sup ¢, " € PSHyom (64 E) satisfies < ¢ —\ <
log |sg| + O(1), and hence $* < log |sg|, by homogeneity. By Theorem 6.21,
we thus have * = 1\ + log|sg| for a unique 1) € PSHpom(#), and hence
¢ = T+log|sg| pointwise on X*" with 7 := sup, <qup (Y2 +A). The envelope
property guarantees that ¢’ := 7* lies in PSH(6), and it satisfies ¢/ =
¢ —log |sg| by Theorem 5.6. O

6.4. Homogeneous PL functions and Cartier b-divisors

In this section, X is assumed to be normal. A model Y of X is a normal
projective variety together with a birational map 7: Y — X. Recall that
(see for instance [21, Section 1]):

e a (rational) b-divisor over X is a collection B = (By) of Q-Weil
divisors By € Z!(Y)qg on all models of X, compatible under push-
forward as cycles, i.e. an element of the projective limit

ZH(X) :=lim ZYY
p(X) % (Yo
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e a b-divisor B € Z{(X) is (Q-)Cartier if there exists a model Y,
called a determination of B, such that By € Car(Y) C Z(Y) and
By is the pullback of By for all higher birational models Y.

The Q-linear subspace of Cartier b-divisors
Car,(X) C Z(X)
can thus be identified with the direct limit lim,, Car(Y)q.

A Cartier b-divisor is relatively semiample if some (equivalently any)
determination By € Z!(Y) is relatively semiample for the morphism ¥ — X.
We will write

Car;f (X) C Carp(X)

for the set of B € Car,(X) that are relatively semiample and antieffec-
tive, that is, B < 0. Note that Cary(X) is a birational invariant of X, but
Carj (X) is not.

Any b-divisor B € Z}(X) determines a homogeneous function 95 : X4V —
Q, such that ¥g(ordg) = ordg(By) for any model Y and prime divisor E C
Y. The map B + 1 sets up a 1-1 correspondence between le)(X ) and the
space of homogeneous functions ¢: X4v — Q such that ¥(ordg) is nonzero
for only finitely many prime divisors £ C X. Under this correspondence, a
net B; converges to B in the inverse limit topology on Zi (X) iff ¥5, — ¢p
pointwise on X9V: we then simply say that B, — B pointwise.

If B € Cary(X), then ¢p admits a (unique) continuous extension ¥ p :
Xval 5 R, defined by ¥p(v) = v(By) for any determination Y of B and
v € X' ~ Y8l This yields an injection Cary(X) — CO(X'¥), and the
next result specifies its image.

THEOREM 6.32. — The map B — ¢ p induces isomorphisms

Carp(X) = PLyom(X) and Car}(X) = PL{ _(X).

hom

Proof. — We start by proving the second isomorphism. First consider
B € Car(X), and pick a determination 7: Y — X of B. Thus By is
m-semiample and antieffective, so for m sufficiently divisible, the generically
trivial ideal Oy (mBy) C Oy is m-globally generated, i.e. Oy (mBy) = b-Oy
where b := 7,0y (mBy) is a generically trivial ideal. This yields vp =
m~tlog|b] € PL{,  (X).

hom

Conversely, if ¢ € PL (X), then ¢ = m~!log|b|, where m > 1 and
b C Ox is a generically trivial ideal. Let m: Y — X denotes the normalized
blowup of b, with exceptional divisor F. Then ¢ = ¢p with B € Cary(X)

determined on Y by By = —m~'E < 0.
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Next we prove the first isomorphism above. If ¢ € PLj,(X), then we
can write 1) = 11 — b9, with ¢; € PL (X). By what precedes, 1; = ¥,

for B; € Carg(X), so 1 = 1, where B = By — By € Carp(X).

Conversely, any B € Carp(X) can be written B = B; — Bg, where B; €
Carp(X) are relatively semiample. It would take some work to also arrange
B; <0, so instead we argue as follows. Pick a common determination 7: ¥ —
X of the B;. Thus B,y is m-semiample, so for m sufficiently divisible, the
generically trivial fractional ideal Oy (mB; y) C Oy is m-globally generated,
ie. Oy(mB;y) = b; - Oy where b; := m, Oy (mB; y) is a generically trivial
fractional ideal. It follows that ¢p = m~!(log|by| — log |b2|) € PLyom(X),
see Example 6.4, which completes the proof. O

Remark 6.33. — By Lemma 6.29, ¢ — @™** can be extended to a linear
map PL(X) — PLpom(X). Pick ¢ € PL(X), and write ¢ = ¢p with D €
VCar(X)g for an integrally closed test configuration X that dominates Xiyiy
(see Theorem 2.7). The strict transform Y of (Xiiv)o = X x {0} is an
irreducible component of Xj that induces the trivial valuation v, on X.
Thus ordy (D) = sup ¢, and one checks that p™** = g with B € Carp(X)
determined on Y by the Q-Cartier divisor By := (D — ordy (D)Xp) |y

Now consider L € Pic(X)g. We will describe the image of Hpom (L) C
PLpom(X) in Cary(X) under the isomorphism in Theorem 6.32. To this end,
we say that a Cartier b-divisor B € Cary(X) is semiample if By is.

LEMMA 6.34. — For any L € Pic(X)g and B € Cary(X), we have
Y € Huom(L) <= B < 0 and L + B semiample,

where the last condition means that 7*L + By is semiample for some (or,
equivalently, any) determination 7:Y — X of B.

Proof. — The direct implication follows from Lemma 6.7. Conversely,
assume B < 0 and that there exists a determination 7: Y — X such that
7*L 4+ By is semiample. Pick m such that m(x*L + By) is a globally gen-
erated line bundle. Since X is normal and By < 0, we have 7,Oy (mBy) C
7.0y = Ox, by Zariski’s main theorem. Further, the ideal b,, C Ox locally
generated by the image of

H® (Y, m(n*L + By)) ~ H* (X, mL ® 7,0y (—mE)) — H°(X, mL)
satisfies b,, - Oy = Oy (mBy), and hence ¥g = m~1log |b,,|, which lies in
Hhom(L), by Lemma 6.7. O

Similarly, if § € N'(X) we say that 6 + B is nef if 7*0 + By € Nef(Y) for
some (or, equivalently, any) determination 7: ¥ — X of B. The proof of the
next result, which describes the image of PLpom (X) N PSH(6) in Cary(X),

is more involved.
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THEOREM 6.35. — Assume that all classes in Amp(X) have the envelope
property, see Section 5.2. For any 6 € NY(X) and B € Car,(X), we then
have

¥p € PSHpom(0) <= B < 0 and 6 + B nef.

Remark 6.36. — The condition g € PSHy,,(f#) means here that
Vp|xav = ¥|xav for some ¥ € PSHym(#), which is necessarily unique
by Corollary 4.23. If char k = 0, Remark 4.27 applies, and shows that ¢p
and 1 in fact coincide on X2l

The proof relies on the following “homogeneous version” of Corollary 3.22.

LEMMA 6.37. — Pick0 €N (X). Let (B;) be a decreasing net in Cary(X)
that converges pointwise to B € Carp(X). Assume also that we are given
0; € NY(X) with B; <0, 0; + B; is nef, and 0; — 0 € N*(X). Then 6 + B is
nef.

Proof. — Let m:' Y — X be a determination of B, and C C Y an ir-
reducible curve. Following [67, Proposition 8|, denote by p: Z — Y the
normalized blowup of C, with exceptional divisor F', and pick an ample line
bundle A on Z. Then u,(F - A"~2) = aC with a € Q- as numerical classes
on Y, and it will thus be enough to show (u*m*0+ Bz)-(F-A""2) > 0. Since
0; + B; is nef, the projection formula yields (u*7*0; + B; z) - (F - A"~2) > 0,
and we will be done if we show (B; z - F - A""2) — (Bz - F - A"2). Denote
by (Es) the finite set of prime components of By. Since B < B; < 0, B; z
is also supported in the Eg’s. Thus

(Biz - F - A"%) =3 ordp,(B:)(Es - F - A")
B
— (Bz - F-A"%) = ordg,(B)(Ez - F - A"7?),
B

and we are done. O

Proof of Theorem 6.35. — Assume ¥ € PSH}om (). Then ¥ < 0, and
hence B < 0. By Corollary 6.17, we can write ¢p as the pointwise limit of
a decreasing net ¢; € Hnom(L;) with L; € Pic(X)g and ¢1(L;) — 6. Denote
by B; the Q-Cartier b-divisor associated to ;. By Lemma 6.34, L; + B; is
semiample. Thus ¢;1(L;) + B; is nef, and Lemma 6.37 shows that 6 + B is
nef.

Assume, conversely, B < 0 and 6 + B nef. We claim that it is enough to
prove g € PSH(#) when 6 is further ample. To see this, pick an effective
Cartier divisor £ on X such that w := 6 + E is ample. Denote by E €
Carp,(X) the Cartier b-divisor determined on X by E, and set B’ := B —
E. Any determination 7: Y — X of B is also a determination of B’, and
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7w+ B’ = 70 + B in N'(Y), which shows that w + B’ is nef. On the
other hand, for any v € X** we have ¢5(v) = v(E) = —log|sg|(v), and
hence ¥p = ¥p + log|sg|. Assuming the result in the ample case, we get
’(/JB + log ‘SE‘ = ’(/JB/ S PSHhom(w) = PSHh0m<9+ E) By Theorem 621, this
implies 5 € PSHpom(#), which proves the claim.

From now on we assume § = w € Amp(X). Since 7 is isomorphic to the
blowup of an ideal of X, we can choose a m-ample divisor H < 0 on Y.
Pick L € Pic(X)g such that o’ := ¢;(L) — w is ample. Since H is m-ample,
m*w’ 4+ eH is ample for all € € Qs small enough. Now 7*w + By is nef, and
hence

(m*w+ By) + (7*w’ +eH) =7"L + (By +¢H)
is ample. By Lemma 6.34, it follows that . := ¥ + ey € Hpom(L) C
PSHyom(L). Since ¢1(L) = w + w’ is ample, it has the envelope property.
As ¢¥p: X* — R U {—o0} is continuous and 1. g on X4V as e \, 0,
Lemma 5.9 thus yields ¥ g € PSHpom (L). As this holds for all L € Pic(X)q
as above, Theorem 4.5 yields, as desired, ¥ 5 € PSHyom (w). a

6.5. Nef b-divisors and homogeneous psh functions

We finally consider general nef b-divisors, and describe these in terms of
homogeneous psh functions. In this section, we assume that X is smooth and
k has characteristic zero.

If Y, Y’ are smooth models of X and Y’ dominates Y, then the corre-
sponding birational morphism g : Y’ — Y induces a linear map p,: NY(Y') —
NL(Y). The space of b-divisor classes is defined as

N} (X) := lim NY(Y
p(X) % (Y)

with Y running over all smooth models of X, endowed with the projective
limit topology (see [21, 25, 43]). Each B € Z[(X)g determines a class [B] €
NL(X).

DEFINITION 6.38. — We say that a (real) b-divisor B € Z}(X)g is ex-
ceptional if Bx = 0.

The map B +— ¥ p sets up a linear isomorphism between the space of ex-
ceptional b-divisors and the space &£ of all homogeneous functions ¢: X4V —
R such that ¢(ordg) = 0 for all prime divisors E C X. We equip the R-vector
space £ with the topology of pointwise convergence.

By the negativity lemma, the map B — [B] is injective on exceptional
b-divisors. For any o € Nll)(X ), we can thus find a unique exceptional b-
divisor B, € Z}(X)g such that [(B,)y] = ay — m*ax for all smooth models
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m:Y — X (see [21, Lemma 1.11]). We denote by ¢, = ¢p, € & the
corresponding homogeneous function. As a consequence of [21, Lemma 1.12],
we can now state:

LEMMA 6.39. — The map a — (ax,v%s) defines a topological vector
space isomorphism

NL(X) = NY(X) x €. (6.4)

As recalled above, one says that a Cartier b-divisor B € Cary,(X) is nef
if By is nef for some (or, equivalently, any) determination Y. The set

Nef, (X) € NL(X)

of nef b-divisor classes is defined as the closure of the set of nef Cartier b-
divisor classes. Thus a class & € N} (X) is nef iff there exists a net (B;) of
nef Cartier b-divisors such that [B;y] — ay for all smooth models Y — X.
Since Nef(Y") is a closed convex cone for each model Y, it is not hard to see
that Nefy,(X) is a closed convex cone.

By [21, Lemma 2.12], a class « € N} (X)) is nef iff, for each smooth model
Y, ay € NY(Y) is nef in codimension one. A typical example is provided

by the “positive part” in the divisorial Zariski decomposition of a Cartier
b-divisor [20, 25, 94].

As we next show, nef b-divisor classes admit a precise description as
homogeneous psh functions.

THEOREM 6.40. — The isomorphism (6.4) maps Nef,(X) onto the set
of pairs (0,v) with 0 € NY(X) and ¢ € PSHypom () such that ¥(ordg) = 0
for all prime divisors E C X.

As a consequence of Theorem 6.40, we recover the monotone approxima-
tion result of [43].

COROLLARY 6.41. — For any o € Nef,(X), there exists a decreasing
net (B;) of nef Cartier b-divisors such that [B;] — « in N (X).

By Remark 6.18, the result is actually valid with a sequence instead of a
net, as in [43, Theorem A].

Remark 6.42. — Both [43, Theorem A] and Corollary 6.41 ultimately rely
on the multiplier ideals technique that goes back to [55], and was already
used in a similar manner in [27, Theorem 8.5]. However, the proof of [43] is
much more direct, and the main interest of the present discussion lies rather
in Theorem 6.40.
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Proof of Theorem 6.40. — Assume first that o = [B] for a nef Cartier b-
divisor B, and pick a determination 7: Y — X of B. Then ¢, € PLyom(X)
is the function associated to the Q-Cartier b-divisor determined on Y by the
m-exceptional divisor Fy := By — n*Bx, and

70 + |Ey] = [By]

is nef. By Theorem 6.35, we thus have ¢, € PSHyom(ax)-

Consider next any « € Nefy(X). By assumption, there exists a net (B;)
of nef b-divisors such that a; := [B;] — o in N{, (X), i.e. 6; := (o) x — 0 and
Yo, — Yo pointwise on X4 (see Lemma 6.39). For any ample class w, we
have 8 +w—0; € Amp(X) for 7 large enough, and hence ¢, € PSHyom (6;) C
PSHjom (0 + w). By Corollary 6.22, the latter space is compact, and we may
thus assume, after passing to a subnet, that ©,, — ¥ € PSHpom (0 + w).
Since 1o, — Yo on X4V it follows that 1, € PSHpom(f + w), and hence
Yo € PSHpom(0), since this holds for all w € Amp(X) (see Theorem 4.5).

Conversely, pick 1» € PSHyom(0) such that ¢(ordg) = 0 for all prime
divisors E C X. Its restriction to X4V determines an element B € Z}(X)g
such that ¢¥5 = 1. We define a € N} (X) by setting ay := 7*0 + [By] for
all smooth models 7: Y — X, and we claim that « is nef.

By Corollary 6.17, we can write ¥ as the pointwise limit of a decreasing
net (1;) such that v; € Hpom(Li) with L; € Pic(X)g and lim; ¢1(L;) = 0.
For each i, we have ¢ < ¢; < 0, and hence v¢;(ordg) = 0 for all prime
divisors E C X, which means that the Cartier b-divisor B; € Cary(X)
such that g, = 1; satisfies (B;)x = 0. Choose a Q-Cartier divisor D; on
X representing the linear equivalence class L; € Pic(X)g, and set B} :=
D; + B;. By Lemma 6.34, B! is semiample, and hence nef. Since ; — 9 and
[Bilx = c1(L;) = 0 = ax in N'(X), Lemma 6.39 yields o;; — a in N} (X),
which proves, as desired, that « is nef. O

Proof of Corollary 6.41. — Pick a € Nef,(X). Write ax = [D] for an
R-divisor D on X, and pick an effective, ample R-divisor H on X such that
L := D+ H is an ample Q-divisor. By Theorem 6.40, we have ¢, — ¥y €
PSH(L). By Corollary 6.17, 1, — 1 is thus the pointwise limit on X4V of
a decreasing net (¢;) in Hpom(L). Write ¢); = ¢¢, with C; € Carp(X). By
Lemma 6.34, B; := C; + L is a decreasing net of nef Cartier b-divisors, and
we have by construction [B;] — a. O
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7. Functions of finite energy and mixed Monge—Ampére
measures

In this section, X denotes a projective variety of dimension n, with ir-
reducible components X,. We extend the energy pairing to arbitrary psh
functions, and use this to define functions of finite energy, and the mixed
Monge—-Ampere operator thereon.

7.1. Extending the energy pairing

In Section 3.2, the energy pairing

(‘90190()) Tt (enﬂpn) €ER

was defined for pairs (6;, ;) € N'(X) x PLg. When the ¢; are 6;-psh, this
is an increasing function of the ¢;, by Lemma 3.15. On the other hand, any
w-psh function with w € Amp(X) can be written as a decreasing limit of
functions in H4°™(w) C PLNPSH(w) (see Theorem 4.15). This allows us to
extend the energy pairing by monotonicity, as follows.

THEOREM 7.1. — For each (n+ 1)-tuple wy, . . .,w, € Amp(X), the en-
erqgy pairing
(@07 cee 79077,) — (wOﬁOO) et (wna(pn)
admits a unique extension to a map [];_, PSH(w;) = RU {—o0} that is

® upper semicontinuous;
e increasing in each variable.

Furthermore, this map is continuous along decreasing nets, and satisfies

= inf 7.1

(w07§00) (wm@n) ¢i€7{d°rr}&i),¢i2wi(wo’w0) (Wnﬂ/}n) ( )
for all (¢;) € ], PSH(w;).

Proof. — Any map that is both usc and increasing is automatically con-

tinuous along decreasing nets. Since all functions in PSH(w;) are limits of
decreasing nets in H°™(w;) € PL(X) N PSH(w;), uniqueness is clear. To
prove existence, it suffices to show that (7.1) has the required properties.

Monotonicity is obvious. To prove upper semicontinuity, suppose that
;i € PSH(w;), 0 < i < n, and t € R satisfy
(Wo,90) * -+« (Wnyon) < t.

By definition, we can choose 1; € HI°™(w;) and 0 < & < 1 such that o; < ¥,
and

(w07¢0)""'(wnawn) <t—e.
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Set

Ci=> (Woroo @ieernvwn) > 0.
By Proposition 4.28, ¢ — sup(p —1);) is continuous on PSH(w;), and we can
thus find an open neighborhood U; of ¢; in PSH(w;) such that ¢} < Wi+eC™1
for all ¢} € U;. By monotonicity of the energy pairing and Proposition 3.14,
this gives

(@0, 24) -+ () < (w0s 0 +£CY) o+ (wn, Y +2C1)
= (wo,%0) + -+ (Wn, ) +E <t
for all ¢} € U;, which proves upper semicontinuity. O
PROPOSITION 7.2. — The energy pairing (wo, o) - - . .+ (Wn, ©n) is sym-

metric and Rso-linear with respect to each variable (w;, @;) with w; € Amp(X)
and @; € PSH(w;). Furthermore,

(WOa<P0 + CO) et (wm(ﬂn + Cn)
= (wo,©0) * - - (Wn,n) + cilwo oo @i vrwn)x (7.2)
i=0
for all ¢; € R,
(wo,t-00) v v (Wnyt - on) = two, o) * -« (Wny©n) (7.3)
for allt € R+,
(UJOa(PO) et (wm@n) = Z (w07@0)|XQ et (wnﬂon)‘xm (7'4)
dim X,=n
and
(V*wo, v o) * oo - (VW wn, v o) = (wo,©0) -+ -+ (Wns ©n) (7.5)

with v: XY — X the normalization morphism.

Proof. — Using approximation by decreasing nets in H°™(w;), every-
thing is clear from Proposition 3.14, except that this only provides a proof
of (7.3) for t € Qsg. To get the general case, we may replace ¢; with
@; —sup ; and assume @; < 0 for all i. Write a given ¢ € Ry as the limit
of an increasing sequence t,, € Qxq. For each i, (t,, - ¢©;)m is a decreasing
sequence in PSH(w;) that converges to t - ¢;, and hence

ngnoo(wmtm : QOO) et (Wnatm ) (pn) = (UJQ,t ’ 4100) et (wnat' @n)-
The result follows. O

We also record the following useful monotonicity property with respect
to w;.
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PROPOSITION 7.3. — Fori=0,...,n, pick w;,w, € Amp(X) such that
wl > w;, and ¢; € PSH(w;) C PSH(w). Then

(i) if ¢; < 0 for all i, then (W), o)« .. (W, ¥n) < (Wo,p0) .. -
(Wn, @n) < 0;

(ii) if @i = 0 for all i, then (w(, o) < . - (whyon) = (wo,90) « .. -
(Wna Son) > 0.

Proof. — By monotone approximation, we may assume ¢; € PLN

PSH(w;). By assumption, 6; := w} — w; is nef. The result thus follows by

expanding out

and applying Corollary 3.16. ]
For any 6 € N!(X), recall that CPSH(#) = C°(X) N PSH(f) C £>(0)

respectively denote the sets of continuous and bounded #-psh functions. We

conclude this section with a general continuity result for the energy pairing

involving such functions. It is an analogue of the Chern—Levine—Nirenberg
inequality in the complex case.

THEOREM 7.4. — For all wy,...,w, € Amp(X), the energy pairing

((p()?"'?%on) — (wO,gD()) et (wna(pn)

is finite-valued and continuous on PSH(wo) x [}, CPSH(w;) with its natural
topology (pointwise convergence on X9V for the first factor, and uniform
convergence for the other ones).

LEMMA 7.5. — Pick (o, ..., ¢n) € PSH(wo) x [}, £°(w;). Then:

(i) (wo,%0) - .. (wn,pn) € R is finite;
(ii) for any (£}, ..., ¢) € [11_ £ (w;) we have
|(w07900) : (wlvcpl) R (wnvcpn) - (w07900) : (wlvcpll) R (an<P;l)|
n
< C’Zsup loi — 5| (7.6)
i=1
with C' := maxiicn(Wo « -+ - Wi - ... - Wy).

We emphasize that the estimate is uniform with respect to ¢y.

Proof. — For any ¢ € R such that ¢; >t for i > 1, (7.2) yields
(wo,90) =« (Wn, pn) = (Wo, o) - (W1,0) - ... (wp,0) + ntC. (7.7)
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To prove (i) we may therefore assume ¢; = 0 for 1 < i < n. For ¢ € Plg,
(7.4) and (3.5) yield

(@0, %0) - (@1,0) - (@n, 0) = D o(eriva) (@i -+ - wn)lx,
dim X,=n
By monotone approximation, this remains true for all pg € PSH(wy), prov-
ing (i).
For (ii), we may assume that ¢; = ¢} for ¢ > 1, by multilinearity and
symmetry. Then ¢; < ¢} + sup|p1 — ¢} | implies

(wo,0) - -+ (wWn, ¢n)
< (wo,%0) + (w1, 01) - (Wa2,02) + -+ (Wi n) + C'sup 1 — i,
using again (7.2). The result follows. O

Proof of Theorem 7.4. — Assume first that all ¢; are PL, and pick an
integrally closed test configuration X dominating X}y, and B; € VCar(X)g
such that ¢; = pp, for i =1,...,n. By (3.5), we have

(W07(P0) et (wna@n) = (UJ0,0) ! (W17901) et (WnaQOn)
+ ZbE Lpo(’l)E)(wL)( + Bl)|E L— (wn’)( + Bn)lEa (78)
E

with E ranging over all irreducible components of Ajy. By continuity along
decreasing nets, this remains true for any ¢y € PSH(wyp), and shows that
w0 — (wo, o) - (W1,01) ..+ (wn,@n) is continuous on PSH(wg) when ¢; is
PL for 7 > 1.

Assume next ¢; € CPSH(w;) for ¢ = 1,...,n. For each i > 1, we can
choose a sequence (p;;); in H4™(w;) C PLNPSH(w;) converging uniformly
to ;. By (7.6), the sequence of continuous functions on PSH(wy)

Po — (wo, o) * (W1,915) - -+ (Wn, ¥nj)

converges uniformly to

po — (WOaQDO) ' (wlagol) et (wn,gpn),
which is therefore continuous as well. Finally consider an arbitrary conver-
gent net

(Poj> 155+ > Pnj) — (005155 ¥n)
in PSH(wo) x []}_, CPSH(w;), so that ¢o; — ¢o in PSH(wy) (i.e. pointwise
on X4) and ¢;; — ¢; uniformly for i > 1. Write

(WOaWOj) T (Wm‘Pnj) — (wo,¢0) * -+ (Wn, Pn)
= [(w07<100j) : (wlawlj) Tt (Wna@nj) - (WOaQDOj) : (wl,sol) et (wn74;0n)]
+ [(wo, ®oj) - (W1,%1) + -+ -+ (Wny Pn) — (Wo, po) - (W1,01) * -+ (Wn, Pn)]-
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By (7.6), the first term tends to 0 as j — oo, while the previous step of the
proof shows that the second term tends to 0 as well, so we are done. g

7.2. Functions of finite energy

DEFINITION 7.6. — For each w € Amp(X), we define the Monge—Ampére
energy functional
E,: PSH(w) — RU{—o00}
by setting, for ¢ € PSH(w),
(w, )" ™!
(n+1)(w)
We say that ¢ has finite energy if E, (¢) > —oo.

EW(‘P) =

We denote by
E'(w) C PSH(w)
the set of w-psh functions of finite energy.

PROPOSITION 7.7. — For each w € Amp(X), the functional E,
PSH(w) = RU {—o0} satisfies:

(i) Ew is increasing, concave, usc, and continuous along decreasing
nets;
(ii) Eu(p +¢) =E,(¢) + ¢ for ¢ € PSH(w) and ¢ € R;
(iii) for each ¢ € PSH(w) and t € Rsg we have E,(t-¢) = t E,(¢) and

Er(te) = tEu(p);
(iv) for each ¢ € PSH(w) we have

Eu(p) = an Ew\xa (‘P|Xf;“) =E,u(vp) (7.10)

with ¢q = (W) x, /(W) x andv: X¥ — X the normalization mor-
phism.

Note that ¢, > 0 iff X, is top-dimensional, and }__ co = 1.

Proof. — Concavity follows from Theorem 3.25, by monotone approxi-
mation. The rest of (i)—(ii) and the first half of (iii) are consequences of
Proposition 7.2. Pick ¢ € PSH(w). For any t € R, to € PSH(tw) satisfies

(tw, tp)" ! (w, o)

Bl = G (@ ~ et e

which concludes the proof of (iii). Finally, (iv) is a consequence of (7.4). O
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THEOREM 7.8. — Given ample classes w,w’,wy, ..., w, € Amp(X), we
have:

(i) £Y(w) 4s a convex subset of PSH(w), and contains all bounded w-
psh functions;
(i) £Y(w) is stable under addition of a constant and the scaling action
Of IR>O;
(iii) if ¢ € EYw), then any ¢ € PSH(w) such that v > ¢ is also in
EN(w);
(iv) if w < w' then EY(w) C EY(W');
(v) EYtw) = tEY(w) for all t € R~g, and
E'(w) + Y W) Cc EHw +W);
(vi) if p; € EYNwi), i =0,...,n, then (Wo, o) - - . (Wn,Pn) is finite;
(vii) if ¢ € PSH(w) then
¢ € EHw) = v*p € &' (V'w)
> p|xmn € EY(w|x.,) for all top-dimensional components X, .

LEMMA 7.9. — Pick w,w’ € Amp(X) and t > 1 such that w < W' < tw.
For all nonpositive ¢ € PSH(w) C PSH(w') we have

0> (w,0)" ™ > (W, )" = " (w, )"
Proof. — By Proposition 7.3 we have
0> (W, )" > (W, )" > (tw, )™ = " (w, )

Since ¢ € PSH(w) and t~! € [0,1], concavity of the energy yields

(w,t7 L)t > 71 (w, )" and the result follows. O
LEMMA 7.10. — Pickr > 1, wo,...,w, € Amp(X), 0 > ¢; € PSH(w;)
fori=20,...,r. Assume also given t > 1 such that w; < tw; for alli,j. Then

n+1
(Z Wi, Z @l) 2 Cr,ntrn Z(Wia wi)nJrl (711)

with Cy., := (277",

Proof. — Assume first r = 1. Set @ := % (wp + w1), and observe that

1+t
wo < W < twg and w; < w < twy. Thus
+1
(wo + w1, p0 + 901)n+1 = 2"t (%(WO +wi), %(% + @1))n
- +1 ~ -
> 2" (@, 3(po + 1)) = 2" ((w, 00)" + (@, %)"H)

2 (Qt)n ((wOa QDO)TH_l + (Wl, Sol)n+1) 3
where the first inequality holds by Proposition 7.3, the second one by con-
cavity of 1 +— (@,1)"*1, and the third one by Lemma 7.9.
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Assume now r > 2, and set wj == >, Wi, P 1= P00 @i Since £ wy <
w(y < rtwg, the first part of the proof yields

n+1
(Z wi ) %') = (wo + wp, o + )"
% %

> (2rt)" ((wo,00)" T + (wh, )" ).
By induction, we have, on the other hand,
(W6, SDIO)TH—l > Crfl,nt(r_l)n Z(w’u 907,')"4_1-
i>0

The result follows, since (wp, ¢o)" ! < 0 and

Crnt™ = (2rt)"Cr_1,n = (2rt)". O
COROLLARY 7.11. — With the notation of Lemma 7.10 we have
2
. . > 4 i )L
(wo,0) -+ (wnyipn) 7 min (wi, i) (7.12)

for all nonpositive p; € PSH(w;).
Proof. — Expanding out (wo + -+ + wp, @0 + + - + n)" Tt yields
(wo + - wnyipo + -+ on) "< (0 Dhwo, o) <+ (W o),
and we conclude by Lemma 7.10 with r = n. (|

Proof of Theorem 7.8. — Properties (i)—(iii) follow from Proposition 7.7,
while (iv), (v) and (vi), respectively, follow from Lemmas 7.9, 7.10 and Corol-
lary 7.11. Finally, (vii) follows from (7.10). a

It will be convenient to extend the energy pairing to a multilinear map.
Recall that any w-psh function is finite-valued on X' see Corollary 4.17.
We now introduce

DEFINITION 7.12. — We define a function of finite energy as a function
o: X" 5 R of the form ¢ = pt — o~ with o* € E(w) for some w €
Amp(X).

By Theorem 7.8, U, c Amp(x) EY(w) forms a convex cone in the R-linear
space of all functions p: X" — R, and the set

=Y (X)
of functions of finite energy thus forms an R-vector space, which contains

PL(X)g, by (3.2). Note, further, that £ is generated by £'(w) for any given
w € Amp(X), by Theorem 7.8(iv), (v).

LEMMA 7.13. — For each w € Amp(X), we have £ (w) = E' NPSH(w).
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In other words, £'(w) consists precisely of functions that are w-psh and
of finite energy, so that the chosen terminology is consistent.

Proof. — The inclusion £'(w) € £ N PSH(w) is clear. Conversely, pick
¢ € E' NPSH(w), and write p = ot — ¢~ with ¢ € £1(w’) for some
W' € Amp(X). After adding constants, we may assume ¢, ot < 0. Then
((w, ) + (', go’))nH < (w, )" by expanding out the left-hand side. By
Theorem 7.8 (iv), we infer

_\\ntl
—00 < (W, g™ = (W, 0) + (W, 97)" T < (w0
Thus ¢ € £ (w), which proves the result. O
THEOREM 7.14. — There exists a unique multilinear symmetric pairing

n+1
(N'(X) <€) 5 ((Bo,0)s - (B ) > (B,00) - - By o) € R

that is compatible with the one defined in Theorem 7.1 for tuples (0;, ;)
NY(X) x ' such that ; € Amp(X) and ¢; € EY(0;) = E' N PSH(0;
Furthermore:

€
).

(i) this pairing is compatible with the one defined in Section 3.2 for
tuples in N*(X) x PL(X)g;
(i) (7.3), (7.4) and (7.5) remain valid on N*(X) x £';
(iii) for any w € Amp(X) and by, ...,0, € N (X), the map
(0, -+, pn) ¥ (0o, 00) - - .- (O, on)

is continuous along decreasing nets in 1 (w).

Proof. — Consider the vector space V := N1(X)x&*. By Theorem 7.8 (v),
C:= U {w} x &Y (w).
wEAmp(X)
is a convex cone in V, and the energy pairing is an Ry ¢-multilinear pairing
on C, by Proposition 7.2. Since Amp(X) spans N*(X), it is straightforward

to see, using Theorem 7.8 (iv), that C spans V. It is now a simple general fact
that the pairing on C uniquely extends to an R-multilinear pairing on V.

The first compatibility assertion follows from Lemma 7.13. The pairing

on C restricts to the one from Section 3.2 on the subcone
¢':= |J {w}x(PL(X)zNPSH(w)),
wEAmp(X)

which spans V' := N}(X) x PL(X)g; the extended pairing on V thus coin-
cides with the given one on V', which proves (i). Next, (ii) is immediate by
multilinearity. Finally (iii) holds when 6; > w, by Theorem 7.1; the general
case follows, again by multilinearity. O
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By multilinearity, (7.3), (7.4) and (7.5) remain valid on N*(X) x £*. We
also note:

LEMMA 7.15. — Iffo,...,0, € Nef(X), then (0o, o). .. (On,vn) is an
increasing function of ¢; € PSH(0;) N L.

Proof. — 1t suffices to write
(6o, 00) -+ (Ony0on) = gi_r)r%)(ﬁo +eb,00) ... (0 +€0,0,)
with 6 € Amp(X). O

Remark 7.16. — Mimicking the complex analytic case, one can define
EL(0) for any 6 € Nef(X) as the set of o € PSH(6) such that inf;(6, ;)" >
—oo with ¢; := max{p, —j} € £%°(0). The proof of Lemma 7.13 still yields
E'NPSH(A) C £(H), but the inclusion is strict in general when 6 is not
ample (compare [52]).

7.3. Mixed Monge—Ampére measures

Recall that a Radon measure p on the compact space X*" is a regu-
lar (positive) Borel measure on X?". By the Riesz representation theorem,
Radon measures are in 1-1 correspondence with positive linear forms on
C%(X), see for instance [61, Section 7.1-2]. All meesures below will be Radon
measures, and for brevity we will sometimes drop “Radon”. Any usc function
f: X — RU{—o0} satisfies

f=inf{geC’(X). 9> f}

pointwise, and
/fu:inf{/gu’gé(]%X),g}f}ERU{—OO}. (7.13)

We will sometimes need to rely on the following monotone convergence
theorem for (possibly uncountable) nets of usc functions, a simple conse-
quence of (7.13) and Dini’s lemma (see for instance [61, Proposition 7.12]).

LEMMA 7.17. — If i is a Radon measure on X** and (f;); a decreasing
net of usc functions on X, converging pointwise to a (usc) function f, then

lim; [ fjn= [ fu.

More generally, continuous linear forms in C°(X)Y correspond to signed
Radon measures on X*". Any such measure can be written as a difference
of Radon measures, and Lemma 7.17 thus applies as well when p is a signed
measure.
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With these preliminaries in hand, we now generalize the construction of
mixed Monge-Ampére measures, introduced in Section 3.2 in the PL case.

THEOREM 7.18. — For each n-tuple (0;,p;) € NY(X)x &', i=1,...,n,
there exists a unique signed Radon measure
(01 +dd®@1) A+ A (B +dd° ) = A\ (0; +dd°g;) € COX)Y (7.14)

such that

Jo e NO 020 = 00) ) o ) (119

for all ¢ € PL(X)r. If further 6, € Nef(X) and ¢; € PSH(§;) for i =
1,...,n, then (7.14) is a positive measure.

While the notation mimics the one for mixed Monge-Ampére measures in
the complex analytic case, we will not define the individual factors 6;4+dd° ;.
At least if the (; are continuous, this could, however, be done using the
approach in [40] (cf. Remark 7.23 below).

Proof. — By density of PL(X) in C°(X) (see Theorem 2.2), the prescrip-
tion (7.15) uniquely determines the measure (7.14). To show existence, we
may assume, by multilinearity, that 6; € Nef(X) and ¢; € £ N PSH(6;) for
i=1,...,n. Since any ¢ € PL(X)g can be written as a difference of func-
tions in PLg N PSH(w) for some w € Amp(X) (see (3.2)), Lemma 7.15 shows
that ¢ — (0,¢) - (61,01) - ... - (O, @n) is a positive linear form on PL(X)g.
By density of PL(X)g in CO( ), it thus uniquely extends to a positive linear
form on CY(X), and we are done. O

PROPOSITION 7.19. — Mized Monge—Ampére measures satisfy the fol-

lowing properties:

(i) the signed measure \;(0; +dd° ¢;) is a symmetric and multilinear
function of the n-tuple (6;,¢;) € N (X) x EL, of total mass

/an /\(91 +ddCp;) = (01 ... 0,)x;

(i) assume (0;,¢;) € NY(X) x PLg, and pick an integrally closed test
configuration X dominating Xy and D; € VCar(X)r such that
w; = ¢p,; then

/\(91 + dd° (,Oi) = ZCE 51}57
i E

where E ranges over the irreducible components of Xy and
cg:=ordg(Xo)(O1,x + D1)|lg ... (On.x + Du)lE;
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(iii) for all (6;,¢;) € NY(X) x €' and t € Rsq we have
I\ (0 +dd°(t - ) =t \ (6 + dd° ), (7.16)

7

/\ (91 4 dd® 901‘) = Z /\ (9i|Xa + dd€ @i‘X;}“) R (717)

i dim X,=n 1
N\ O +ddg;) = v \ (v*0; +dd°v*ey), (7.18)

with v: XY — X the normalization;

(iv) for any w € Amp(X), the map EY(w)™ 3 (p1,...,¢n) — N\;(0; +
dd® ;) is continuous along decreasing nets;

(v) for all (0;,p;) € N} (X) x EY and ¢ € EY, ¢ is integrable against
N;(0; +dd® ¢;), and (7.15) holds.

When ¢; = 0 for some i, we drop the term dd€ ¢; from the notation. As
a special case of Proposition 7.19 (ii), we then have

O A AOp= > (1o On)x Gup - (7.19)

dim X,=n

Proof of Proposition 7.19. — Points (i) and (iii) follow from Proposi-
tion 7.2, while (ii) is a reformulation of (3.5). By density of PL(X) in C°(X),
(iv) is equivalent to the fact that, for each ¢ € PL(X),

(sol,...,mH/so/\(eﬁddw=<o7so>-<917¢1>~...-<en7wn>

is continuous along decreasing nets in £*(w)"*1. Now ¢ can be written as
a difference of functions in PLNPSH(w’) for some w’ € Amp(X), and the
desired continuity is thus a consequence of Theorem 7.14. To prove (v), we
may assume 0; € Amp(X) and ¢; € £1(6;), by multilinearity. Any ¢ € £(w)
with w € Amp(X) can be written as the pointwise limit of a decreasing net
in PLNPSH(w), and (7.15) thus holds for ¢, by monotone convergence and
the continuity of the energy pairing along decreasing limits. |

Ezample 7.20. — Assume X is a smooth curve and pick w € Amp(X).
By Example 4.13, any ¢ € PSH(w) determines a positive Radon measure

(deg w)gvtriv + AQ@, with
d d 2
Ap = Z ldt p(tordp)dy,,, — En p(tordy)dv, . + @Sﬁ(t ord,)
peX (k) 0+ e

the tree Laplacian (see [56, Section 7]). As we saw in Example 3.19, we have
w+dd® ¢ = (degw)dy,,,, + Ay for any ¢ € PLr NPSH(w), and this remains
true for any ¢ € £'(w), by monotone approximation. For such functions,
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w + dd® ¢ further puts no mass on the endpoints vy, triv, which means that
the convex function ¢ — ¢(tord,) has sublinear growth (see respectively
Corollary 7.49 and Theorem 11.11).

PROPOSITION 7.21. — Pickw; € Amp(X) and p; € EY(w;),i=1,...,n,
and choose also wy € Amp(X) and @9 € PSH(wg). Then:

(i) o is integrable with respect to p := N, (w; + dd®y;) iff (wo, o) -
oo (Wnyon) > —00, and this holds as soon as p; is bounded for
1=1,...,n;

(ii) assume o € L*(p); pick for i =0,...,n, a decreasing net (p;j);
in PSH(w;) that converges pointwise to ¢;, and set p; = N, (w; +
dd® p;;); then po; € L' (p;) for all j, and @ojp; — @op weakly in
CoO(x)V.

LEMMA 7.22. — Let K be a compact topological space with a weakly
convergent net of positive Radon measures p1; — p. Assume also given an
increasing net of lsc functions f;: K — RU{+o0} such that f; € L*(u;) for
all j, f=1lim; f; € L' (pn) and [ fju; — [ fu. Then fip; — fu weakly in
CO(K)V.

Proof. — Being lsc, each f; is bounded below, and the increasing net (f;)
is thus ultimately bounded below. Since p; — u, we may therefore assume,
after adding a constant, that f; > 0 for all j. Since ffj [t; converges, the
positive Radon measures o; := f;u; stay in a fixed weakly compact subset of
CY%(X)V, and it suffices to show that any limit point oo, of o; must coincide
with ¢ := fu. By assumption, [o; — [0, hence [oo = [0, and it will
thus be enough to show that o, > o. To this end, pick 0 < g € CY(K). For
all j = k we have f; > fi, and hence

/ng :/gfjuj >/gfkm~

By lower semicontinuity of gfi and the weak convergence j; — u, we infer
[ 9000 = [ gfx p. Using monotone convergence, this now yields in turn,

/gaoo>/gfu:/go,

which concludes the proof. O

Proof of Proposition 7.21. — Set ¢ := (wo,0) - (w1,901) - (Wn,on) €
R, and pick a decreasing net (¢o;) in PLNPSH(wg) such that ¢o; — ¢o
pointwise. By construction of u, we have, for each j,

/<P0j n= (woﬂ/?oj') : (w17<P1) et (wn,sDn) —C.
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By Lemma 7.17, [¢o; ft = [ ¢o p. By Theorem 7.1, we have on the other

hand (wo, wo;) - (W1,¢1) = -+ (Wny@n) = (Wo,00) - (W1,01) * -+ (Wn, Pn)-
Thus

/W: (@0, 00) - (@1,01) - - (@ Pn) —
and (i) follows.

We turn to (ii). By Proposition 7.19 (iv), we have p; — p. Further,

/SOOJ‘ My = (wO,O) : (Wl»sﬁlj) Tt (wn,SOnj) - (WO,SDOJ') el (meOnj)

is finite for each j, and converges to

/QOOM = (00,0) - (w1,01) * -+ -+ (Wn, Pn) — (W0, 0) * - - -+ (Wns Pn)-
The result is now a consequence of Lemma 7.22. O

Remark 7.23. — For continuous w-psh functions, mixed Monge—Ampeére
measures can also be defined using the general theory developed by
Chambert-Loir and Ducros [40]. By base change invariance of their theory,
it follows from Proposition 7.19 (ii) and [22, Theorem 8.18] that the present
approach is compatible with [40] for continuous w-psh functions.

7.4. The Monge—Ampeére operator and energy functionals

In this section we fix w € Amp(X). We denote by V := (w") its volume,
and write £1 := £}(w) and E := E,,.

DEFINITION 7.24. — The Monge-Ampére operator takes o € E! to the
Radon probability measure

MA (@) = MA,(¢) := V" Hw + dd® )"

on X?&".
DEFINITION 7.25. — For any two p,v € £ we set
3u(9) = Juusl) = E(6) ~ E(9) + [ (¢~ v) MA()
and

I(p,0) = L (0 4) = / (o — ) (MA() — MA(g))
= Ju(9) + To(0).
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Note that Jy;(¢) and I(p, 1) are both invariant under translation of ¢,
by constants. When ¢ = 0 we simply write

I(g) = 1(,0) =/<pMA(0) —/wMA(w)

and
J9)i=dale) = [ @MA®) - E(p).
Ezample 7.26. — By (7.19) with 6; = --- = 0,, = w we have
MAO) = > Cabup.s (7.20)
dim X,=n

with ¢o = (wW")x, /(w™). As a consequence, [ @ MA(0) =", ca@(Viriv,a) =
Y o Casup(plx, ), see (1.4). In particular, when X is irreducible, MA(0) =
vy and [ @ MA(0) = sup ¢.

Vtriv

Thanks to Theorem 7.8, we can make sense of the definitions from Sec-
tion 3.3 for functions in £'. In particular, we set, for any two ¢, € &1,

dw(%w) = ngjngx ||30 w”(w p)(wyap)r—1-3
with
llp — ¢||?w,¢)j.(W,¢)n—1—j = (0,0 =) (w,0) - (w,)"
— /(<p — ) dd®(¢ — ¥) A (w+dd® )T A (w+ddey)" 7. (7.21)

PROPOSITION 7.27. — For all p,v¢ € E' we have:

B(p)-E() = — Zv / ) (wHdd® @)? A(w+dd® )" 7; (7.22)
/ (=) MA) <Bo) -EW) < [(o-o)MAW:  (723)

| B =Dt = [0 o) MaG) (7.24)

(¢, ) 12“90 Yl )5 (opyn1-35 (7.25)

an (plxan, P xan); (7.26)

Z IE o~ Wy orss (7120

71 (%w) X w( )\ n+1 ((p w) (728)
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V(e 9) = 1(p,9) = Jy (@) = T, (1); (7.29)
I(p1,02) S 11, 03) + L3, p2). (7.30)

Proof. — As in Lemma 3.26, (7.22), (7.24), (7.25) and (7.27) follow from
straightforward computations based on the multilinearity and symmetry of
the energy pairing on €1, while (7.26) follows from (7.4). Equation (7.23)
follows from (3.16) by monotone approximation. Equations (7.25) and (7.27)
imply (7.28) and (7.29), and (7.30) is now a consequence of Theorem 3.31
and monotone approximation. O

Taking into account (7.24), we can write (7.28) as

7.
E(¢) + E'(¥) (¢ —¥) = E(p) > 13 Up, ), (7.31)
which can be seen as a strict concavity property of E with respect to I.
Indeed, it yields the following uniform concavity estimate:

THEOREM 7.28. — For any two ¢, € E* and t € [0, 1] we have
E((1-t)e+t) = ((1-1)E(p) + tE(Y)) 2 t(1 - 1) (g, ¢).

The proof relies on the following elementary estimate, which is certainly
well-known.

LEMMA 7.29. — For all a,b € Rxq and t € [0,1] we have (1 —t)a+tb >
t(l—t)(a+Db).

Proof. — By homogeneity we may assume a+b = 1. Write t = %—i—x and
a = 3 +y with ,y € [~3, 3], where we may assume z > 0, by symmetry.
Then

it (3-2)(340) + (3+2)(3-0) = 3 2m
t(l—t)(a+b) = (;—i—x)(;—x) :i—aﬁ,
and hence

1
(1—t)a—!—tb—t(l—t)(a—i—b)=Z—Z:ljy—ka:2

Proof of Theorem 7.28. — Set ¢; := (1 — t)p + ty. By (7.31), we have

Elpr) + / (0 — o) MA(¢1) — E(9) 2 1(, 1)
and

Bpr) + / (4 — o) MA(g0) — E($) 2 1(r, 1),
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Since (1 —t)(p — 1) + (¥ — ¢¢) = 0, this yields

E(pr) = (1 =) E(p) +tE®)) 2 (1 =) I, 1) + t1(, ¢1)
> t(1— 1) (I, 1) + 1, ¥) 2 11— 1) e, 1),
by Lemma 7.29 and (7.30). O

For later use, we record the following crucial consequence of Corollary 3.34
(compare [11, Lemma 3.13]).

LEMMA 7.30. — For all ¢, , 4,9 € E' we have

[(o- ) 0aw) - MA@
ST, ) T, 9') max{I(), J(), I(8), I()} 2~
with o, == 27",

Proof. — After regularization, we may assume ¢, ¢’ 9,9’ € PLg N
PSH(w). Note that

V/(w—s&’) (MA(¥) = MA(¥)) = (0,0 —¢) - (w,¥)" = (0, 0 —¢') - (w,9")"
n—1 . )
=3 (0,0 —¢)- (0,9 =) - (w, 1) - (w, )" 1.
j=1
By the Cauchy—Schwarz inequality (3.17) we infer
(0,0 = ¢') - (W, )" = (9 = ¢') - (w, ¥')"]
< max (e = &l @wopryn-1-3 19 = %"l @ 203 (w7 1-4)
< (mjax e — sD’lw,w)r(w,ww—l—f) du(,9)?,
and Corollary 3.34 together with (7.29) yield the desired estimate. a

COROLLARY 7.31. — For all ¢, ¢4 € E' we have
[Tu(9) = T ()] S Up, ") max{J(p), J(@), ()} 7"

with o, = 27".

Proof. — Set M := max{J(¢),J(¢"),J(¢)}. We have
Ju(9) = 30(#) = B(¥') ~ Blo) + [ (¢~ ¢)MAW)

= Jo () + /(90 — ¢ )(MA(y) = MA(¢")),
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and (7.28) and Lemma 7.30 thus yield
11
[Ty (0) = T (@) S U ) + 1, @) L(3h, ") 2 M2~
By the quasi-triangle inequality, we have

I, ') =1, @) Up, ') 0 ST(ip, ") M —n
and I(¢), ) < M, and we obtain, as desired,

[T () = Ju ()] S U, ') M7 0

By Proposition 7.21 (i), Monge—Ampére measures of bounded w-psh func-
tions integrate all w-psh functions. In that setting, (7.6) yields the following
simpler variant of Lemma 7.30, which can be viewed as a version of the
classical Chern-Levine-Nirenberg inequality.

LEMMA 7.32. — If 4,9’ € PSH(w) are bounded, then

] [ o MMAW) ~MAWY)| < nswp - v/
for all p € PSH(w).

We conclude this section with two useful additional estimates.
LEMMA 7.33. — For each ¢,v € E' and t € [0,1] we have

and .
Tyt + (1= t)y) <t Ty(p).
Proof. — Adding a constant to ¢, we may assume [(p — 1) MA(¢)) = 0.

Set ¢y :=to + (1 —t)Y. Then ¢, — ¢ = t(p — 1), so [(¢r — 1) MA(¥) = 0,
and

L, ) = —t/(<p —1h) MA(g;)
= -t ;n% (?) (1 —t)" /(so — ) (w +dd° 9)7 A (w+dd° )",

Here the integral vanishes for j = 0 and is bounded below by [(p—1) MA(y)
for 7 > 0, so

I(e ) < —t(1 = (L= 07) [(o = O)MA() <nf1(0,0),
by the concavity of t — (1 — (1 —¢)™).
To prove the last inequality, note that

To(g) = B(Y) — E(pr) + ¢ / (¢ — ) MA().
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Differentiating this with respect to ¢, and using (7.28), gives

Sl = [o—0)Ma@0+ [(o-v)MAw)

=t (g, ¥) = 227 Ty ()
for 0 < t < 1, from which the desired estimate follows easily. O

7.5. Holder continuity of the energy pairing

In this section, X is irreducible. Using the estimates of Section 3.3, we
are going to establish the following general Holder continuity property of the
energy pairing. For w € Amp(X) we write

1 o 1 _
gsup(w) T {90 € g (w> | sup ¢ = 0}
THEOREM 7.34. — Pick wy,...,w, € Amp(X), and assume we are

gwen t > 1 such that w; < tw; for all i,j. For all tuples of pairs ¢;, ¢} €

1
Equp(wi), we then have

|(w07¢0) et (wm(pn) - (w07@6> et (wm(p;z)l
< " max do, (i, ¢}) " max{max d,, (;), max d, (9}) } 7.

with ay, € (0,1] only depending on n.

Recall that we have set d,(¢) = du(p,0). To each w € Amp(X) we
associate a norm on N'(X) by setting

10]| == inf {C' > 0| —CO < w < CO}.

COROLLARY 7.35. — Pickw € Amp(X), o, ..., ¢n €EH (W), Oo,...,0, €
NY(X). Then

|(907§00) et (0717()071”
S maxc{1, 10l o (9) 4+ (max fsup il ) (max 6:]2) (o).

LEMMA 7.36. — Pickr > 1, wo,...,w, € Amp(X), and t > 1 such that
w; < tw; for alli,j. Pick i, ¢} € EL (w), i =0,...,r, and set

sup
wi=Y wi, pi=> @i, ¢ =) ¢

Then

du(p,¢") < Crpnt™ max dy, (i, @) ’r max{max dy, (¢;), max d,, (#})}' ="

with By, € (0,1] and Cy.,, € (0,400) only depending on n and r,n, respec-
tively.
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Proof. — Set M := max{max; d., (¢;), max; d,, (¢;)}. By definition, we
have

” 2

> (pi— )

=1

doler ') = e

(w,0),(w, )P
The triangle inequality thus yields

dulipn @) <12 e e lips = G e
and hence
dulipy ) S 7 max (o, @)? " max{da(), du(), MY 2
by Corollary 3.34. On the one hand, we have for each 4

2
dw(‘p% @;) = ma’r)f—l ||<pl - (p;"(w,api)“-(w,goé)b

a+b=
< max o — il (!
~ at+b+c=n—1 g z (wi’<toi)a'(wi7@i) (wi,())c

i l.— e . Si ! : i
with w == w —w; =3, w;. Since w; < rtw;, we infer

duo(pis @;) S ()" a+bT3JZXn—1 llpi = @;”%Wi,sai)“'(wi,sa;)b(wi,o)c
S ()" du (i, )M
using once more Corollary 3.34. On the other hand, (7.29) implies d,,(¢) ~
—(w, )", d, (") = —(w, )", and Lemma 7.10 thus yields
max{d,(¢), du(¢'), M} < Crpt™M.

All in all we infer
dw((p sp/) < Cl t(n_1)217"+rn(1—21*")

% m?X dwi ((pz, (p;)22—2nM(1_21771)(1+21—n)

which yields the desired estimate with 3, := 22727, O
Proof of Theorem 7.34. — Set M := max{max; d,,, (¢;), max; d, (©})}.

i

Since the energy pairing is symmetric and multilinear, the general polariza-
tion formula yields

(WOa<PO) et (WnaWn) = Z (_1)n+17‘1‘(w17<p1)n+15
Ic{0,...,n}

with wy =), wi, o1 = Y ;e ¢i- Thus

|(w07§00) et (Wna<ﬂn) - (w07§06) et (wn’gdrz”

S max |(wr, o)™ —(

wr, QO/I)n+1| .
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By Corollary 7.31, we have for each I
|(w17 (p[)nJrl - (wfv 90/[)“+1 | S dwr (4,0], ¢/)27n maX{de ((,0]), dw[ (@3)}172*"’
since sup ¢; = sup ¢; = 0. Now Lemma 7.36 implies
du, (01,07) S 8" max dy, (i, @) M1 =P
and
maX{de (901)7 de (QOII)} Sz t" M.
Combining all this we get, as desired,
[(wo,%0) - (W, n) — (Wo,90) * - -+ (wWn, #})]
< 8" max dy, (s, @}) ML,
with a,, 1= 8,27 O
Proof of Corollary 7.85. — Set first ¢; := sup ¢;, @} := ¢; — ¢;. Then
(907300) R (97173011) = (QOaQDIO + CO) Teeet (91,“%0/” + cn)

~

= (00,00) - (Onypl) + > cilfo .- 0;- ...~ 0n).
=0

Now

n

S il Oien.0,)

=0

< (max | sup i) (max 64112 ) ("),

and we may thus assume wlog that sup ¢; = 0.

Set C' := max;{1, ||0i]|w,du(®;)}. Since C > 1, C71p; € £} (w) satisfies
d,(C~tp;) < 1, by the quasi-convexity estimate (3.21). After replacing 6;
and ¢; with C~10; and C~'y;, we may thus assume as well that C < 1, and
we then need to prove |(6p,¢0) < ... (On, pn)| S 1.

Set w; :=0; + (C + 1)w, so that w < w; < (2C + 1w and 6; = w + w; —
(C 4 2)w. Expanding out
(907 SOO) et (anv QOn)
= [(w, o) + (w0, 0) = (C+2)(w,0)] - ... - [(w, ) + (wn, 0) = (C' +2)(w, 0)]
now yields the desired estimate, thanks to Theorem 7.34. g

As a further consequence of Theorem 7.34, we show:

LEMMA 7.37. — Pick (6;,¢;) € NY(X) x L, i = 1,...,n, and set
poi= N, (0; + dd® ;). Suppose also that we are given w € Amp(X), and
a convergent net ¢; — ¢ in PSH(w) with J,,(¥;) uniformly bounded. Then
lim; [ p= [4p
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Proof. — By multilinearity, we may assume wlog 6; € Amp(X) and ¢; €
EY(6;). By Theorem 4.15, each ¢; can be written as the limit of a decreasing
net (¢;); in H4°™(6;). For each [, the measure y; := N\, (0;4+dd€ ¢;;) has finite
support in X4V (see Proposition 7.19(ii)), and hence lim; [; i = [ p,
since 9); — 1 pointwise on X4V by assumption. To conclude the proof, it
will thus be enough to show that lim; [ 7y = [ 7 g uniformly for 7 € £*(w)
with J,(7) < C. Now

/wl — @i7) - (01, 011) - By ont) — (0,0) - (Brs01) - - (s o),

/w: @) Brr01) - (Bnrpn) = (@,0) - (B1,01) - - (Bur o).

Since (p;); is decreasing, we have lim; dy, (¢4, ;) = 0, by (7.21) and The-
orem 7.14. The desired uniform convergence is now a consequence of Theo-
rem 7.34. 0

This yields in turn the following monotone convergence theorem.

THEOREM 7.38. — Pick w € Amp(X). For i = 0,...,n, assume we
are given 0; € N'(X) and an increasing net (p;;); in E'(w) that converges
pointwise on XU to ¢; € EY(w). Then

hjf.n(@la%@lj) oo (Ony ong) = (01,01) - (O, )

Proof. — By multilinearity, we can assume wlog 6; > w for all i, and
hence £Y(w) C E£1(6;). We proceed by induction on p = 0,...,n such that
©ij = @; is a constant net for ¢ > p. The case p = 0 is trivial, so assume p > 1.
By monotonicity of the energy pairing on [[, PSH(6;) (see Theorem 7.1),
J (0o, ¢05) - (0, pn;) is increasing, and

11;11(907900]') et (Qn;wnj) < (007@0) et (0n790n)'
Conversely, pick j > [. Then ¢g; > ¢, and hence
(00, ¢07) * -+ (O, ong) = (B0, 001) - (01, 015) - - -+ (Ons Prj)-
Using the inductive assumption, we infer

lijm(@o,%j) oo (Ony0ng) = (B0, 000) - (01,01) <o - (Onson)

- (90a0)'(91a901)"~~'(9a<ﬂn)+/8001 (61 +ddC 1) A= A (B, +ddC ).
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Since Jg, (¢o1) = sup por — Eg, (por) is ultimately bounded, Lemma 7.37 next
shows that

Hllm/@oz (91 +dd° 901) TARSRNA (Hn + dd° (pn)

=/mel+ddw1)A---A<9n+ddm>.

Thus
> (00,0): (B 01) o+ (Bsion) + [ 0(Or-+d° 1) A A B 2,)
= (907500) : (91a901) et (07“(,0”),

and we are done. O

Remark 7.39. — Lemma 7.37 and Theorem 7.38 remain valid when X is
reducible, by (7.17) and (7.4), respectively.

7.6. Locality and the comparison principle

The next result and its consequences play a crucial role in analyzing deep
properties of w-psh functions and the Monge—-Ampere operator.

THEOREM 7.40. — If w € Amp(X), then

Liosey MA(max{p, ¢'}) = Liyse MA(p) (7.32)
for all g, ¢’ € EY(w).

A first consequence is the fact that the mixed Monge-Ampeére operator
is local in nature, something that is not an immediate consequence of our
definition in Section 7.3.

COROLLARY 7.41. — Let G C X®" be open set. If w; € Amp(X) and
i, Vi € EYw;), 1 < i < n, are such that p; = 1; on G, then

(w1 +dd® 1) A A(wp+dd® @) = (w1 +dd Y1) A+ A(wp, +ddCy,) on G.

In particular, if w € Amp(X) and ¢, ¢’ € E(w) are such that ¢ = ¢’ on G,
then MA(p) = MA(¢') on G.

Proof. — By multilinearity, it suffices to prove the final statement. As
in [26, Corollary 5.2], given & > 0 we apply Theorem 7.40 to ¢ + ¢ and ¢'.
This gives MA(max{p + ¢,¢'}) = MA(¢) on G C {p + ¢ > ¢'}. Letting
e — 0 gives MA(max{p,¢'}) = MA(p) on G, since the Monge-Ampére
operator is continuous under decreasing limits. Exchanging the roles of ¢
and ¢’ completes the proof. O
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Remark 7.42. — As mentioned in Remark 7.23, when all the functions
involved are continuous, the mixed Monge-Ampeére measure coincides with
the one in [40]. Since the latter is local in nature, Theorem 7.40 and Corol-
lary 7.41 follow in this case. However, for applications it is important to
consider functions ¢, ¢’ that are not continuous, and in this case the Borel
set {¢ > ¢’} can be quite complicated. By definition, it is an open subset in
the plurifine topology, see [6].

LEMMA 7.43. — Let p,¢’ € PL(X), and pick an integrally closed test
configuration X such that ¢, ¢’ and ¢" := max{yp, ¢’} are associated to
elements D, D', D" of VCar(X)qg. Pick an irreducible component E of Xy,
and assume that p(vg) > ¢’ (vg). Then o(vp) = ¢'(vr) for any irreducible
component F of Xy that intersects E.

Proof. — First, opv_p = @pr —pp > 0 implies D” — D > 0, by
Lemma 2.8, and similarly D" — D’ > 0. Furthermore, 0 < ¢ (vg) —¢'(vg) =
o(vg)(D" — D’'), and E is thus in the support of D” — D’. Now pick any
k*-invariant divisorial valuation w on X with center £ € E'N F', normalized
by w(Xp) = 1; denote by v € X4V its restriction to k(X) < k(X), so that
w = o(v) (see Section 1.3). Then w(D" —D’) = ¢"(v) —¢'(v) > 0, and hence
¢"(v) = ¢(v). This means that D” = D at &; hence 0 = o(vp)(D"” — D) =
¢ (vr) — p(vr), which proves the result. O

Proof of Theorem 7.40. — First assume that ¢,v € PLNPSH(w). As
in Lemma 7.43, pick an integrally closed test configuration X dominating
the trivial one, such that ¢ = ¢p, ¢’ = pp and max{p, ¢’} = ppr with
D,D', D" € VCar(X)g. As in Proposition 7.19 (ii) we have

MA(¢p) =V ™'Y bg (wx + D)|g)" bu.
E

and a similar formula holds for MA(pp~). We thus need to show that
(wx + D)|g)" = ((wx + D"])|g)" for any E with pp(ve) > ¢p/(vg). Now
Lemma 7.43 yields ¢p(vp) = max{¢(vp), ¢ (vr)} = ¢pr(vp) for all com-
ponents F' of Xy that intersect E. This implies that D and D" coincide in a
neighborhood of E. Hence D|g = D”|g, which implies the result.

Now consider the general case. Set
fi=max{p - ¢',0} = max{ep, ¢’} — ¢
Then {¢ > ¢’} = {f > 0}, and it thus suffices to prove that
fMA(max{p,¢'}) = f MA(p). (7.33)
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Indeed, multiplying by f~! on {f > 0} will then yield the result. Let (p;);
and (¢}); be decreasing nets in PLNPSH(w) converging to ¢ and ¢', re-
spectively, and set

fi = max{p; — ¢}, 0} = max{yp;, o} — .

By the first part of the proof we have f; MA(max{y;,¢}}) = f; MA(yp;),
and (7.33) is now a consequence of Proposition 7.19 (iii), since max{y;, ¢’} €
EY(w) decreases to max{p, ¢’} O

Using Theorem 7.40 we obtain the very useful comparison principle.

THEOREM 7.44. — If w € Amp(X) and o, € EX(w), then

/ MA(p) > / MA(4)).
{o<y} {o<y}

Proof. — We follow [76, Theorem 1.5]. For any € > 0 we have

1= /MA(maX{QD,T/) —¢})

> / MA (max{e, — £}) + / MA (max{p, v — })
{p<p—e} {e>p—c}

—[ v [ MA@
{p<y—e} {p>y—e¢}

—1 [ MA@ - MA(),
{p<ib—e} {p<ip—c}

where the second equality follows from Theorem 7.40 and from MA (¢ —¢) =
MA(p). We complete the proof by letting e — 0. O

Another simple consequence of Theorem 7.40 is the following formula for
the I-functional.

PROPOSITION 7.45. — If w € Amp(X), and ¢, € EY(w), then
max{g, ¥} € £(w), ond

I(p,¥) = I(p, max{p,v}) + I (max{p, ¥}, 7). (7.34)
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Proof. — The first assertion follows from Theorem 7.8 (iii). For the sec-
ond, note that

(o) = / (o — ) (MA() — MA())
- / (o — ¥)(MA() — MA(%))
{e>9}

+ / (¢ — )(MA() — MA())
{>¢}

- / (max{e, ¥} — ) (MA(max{p, ¥}) — MA())

+ / (max{p, ¥} — ¢)(MA(max{p, }) — MA(¢))

=1 ((»07 max{‘ﬁ? w}) +1 (max{ap, 1/1}7 w) )
where the third inequality follows from Theorem 7.40. |

7.7. Bedford—Taylor capacity of sublevel sets

The following notion goes back to Bedford and Taylor [5] in the complex-
analytic case. A thorough study in our context will be conducted in Sec-
tion 13. Unless otherwise specified, w € Amp(X) is a fixed class.

DEFINITION 7.46. — The Bedford—Taylor capacity of a Borel set E C
X2 is defined by

Cap(E) = Cap,,(E) = sup { /E MA (1) ‘ Y€ PSH, 1< < 0} . (73)

Note that 0 < Cap(E) < 1 for all Borel sets E, and that Cap(X®") = 1.
LEMMA 7.47. — Every ¢ € PSHg,,(w) satisfies

(i) Cap(p < —t) <nt™';
(ii) J(p) <1+ [7t" Cap(p < —t)dt.

Thus -
/ t" Cap(p < —t)dt < oo = p € £'(w).
1

Proof. — Pick any ¢ € PSH(w) with —1 < ¢ < 0. Then

[ vaw <ot [omaw <ota
{p<~t}
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where the last inequality follows from Lemma 7.32. Taking the supremum
over ¥ gives (i).

To prove (ii), set ¢, = max{p, —s} and ps; = MA(ps) for s > 1.
By (7.23) we have

J(ps) < /(*cps)us = /0 ps{ps < —t}dt = /0 ps{p < —t}dt

- [mfe st <1+ [ufe <
0 1

where the third equality holds since s and p; are probability measures that
agree on the set {¢ > —t}, by the locality principle, see Theorem 7.40. For
t > 1, wehave t 1, € PSH(w) and —1 < t71p; < 0,80 Cap > MA(t71p,) >
t—" MA(py) =t~ " . Thus

J(ps) <1 +/ Cap(p < —t)dt,
1

and (ii) follows since J(ps) — J(p) as s — oo. O

COROLLARY 7.48. — For any ¢ € PSH(w) with ¢ < —1 and o € (0, 1)
we have —(—p)* € EY(w). In particular, every pluripolar set E C X is
contained in {1 = —oo} for some ¢ € E* (w).

Proof. — The function x(t) = —(—t)* is convex with 0 < x/(t) < 1
on (—oo,—1], and ¥ := x(¢) is thus w-psh, by Corollary 4.10. Further,
Lemma 7.47 (i) yields Cap{y) < —t} = O(t=* "), and hence 1) € £ (w), by
Lemma 7.47 (ii). O

COROLLARY 7.49. — Pick w; € Amp(X) and ¢; € EX(w;), i =1,...,n,
with mized Monge—Ampére measure p := (w1 +dd®p1) A+ A (wy, +dd® @y).
Then:

(i) p puts no mass on pluripolar sets;
(ii) for each irreducible component X, of X we have

(wl ‘X(, + dd€ ©1 |Xgn)
Ix, p= A A (wnlx, +dden|xan)  if dim X, =n
0 otherwise.

Proof. — By Proposition 7.19(v), u integrates all functions ¢ € £(w),
and (i) thus follows from Corollary 7.48.

By Lemma 4.36, X2" N X2} is pluripolar for all o # o, being a nowhere
dense Zariski closed subset. By (i), we thus have p(X2" N X2") = 0, and (ii)
is now a consequence of Proposition 7.19 (ii). O
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8. Differentiability of the extended energy functional

As before, X is a projective variety of dimension n, with irreducible com-
ponents X,. Fix an ample class w € Amp(X). Above we considered the
Monge-Ampeére energy functional E: PSH(w) — RU {—oc}, defined the set
& = {E > —0}, and associated a Monge-Ampére measure MA () to each
@ € £ Formally, MA is the differential of E, but £' is not a real vector
space. In this section, we extend the Monge-Ampeére energy to various spaces
of functions on X®" and prove quite precise differentiability results for these
extensions.

8.1. Extending the Monge—Ampeére energy

Unless stated otherwise, w € Amp(X) is an ample class, and we set
PSH := PSH(w), &! := £(w) etc. The increasing functional

E: PSH — RU {—o0}

admits a natural extension to arbitrary functions ¢: X*" — R U {£o0} by
setting

E(p) = Eu(p) = sup{E(¥) [ ¥ € PSH, ¢ < ¢}, (8.1)

with the convention sup () = —oo. For ¢ € PSH(w), ¥ < ¢ < ¢ < P(p), and
hence

E(p) =E(P(¥)) . (8.2)

We will mainly be concerned with the case when ¢ is bounded, or even
continuous.

PROPOSITION 8.1. — The extended functional E: C%(X) — R satisfies
the following properties:

(i) it is increasing, concave, and 1-Lipschitz continuous;
(ii) for each ¢ € C°(X), c € R and t € Ry we have

E(p+c)=E(p) +c, E(t-9)=tE(p), and Ew(tp)=1E,(p);

(iii) for any p € C°(X), w > Ey(p) is continuous on Amp(X);
(iv) for each p € C°(X) we have

E(p) =Y caE(elx,) (8.3)
with ¢ = (W) x,, /(W) x-
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Proof. — Properties (i) and (ii) are straightforward consequences of
Proposition 7.7.

To prove (iii), we may replace ¢ with ¢ —inf ¢ and assume ¢ > 0, by (ii).
Then
E(p) =sup{E(y) | ¢ € PSH, 0 < ¢ < ¢} (8.4)
Now pick a convergent sequence w; — w in Amp(X). We can then find a se-
quence (t;) in Ry such that ti_lw < w; < t;w and t; — 1. By Proposition 7.3,
any
P e PSH(wl) C PSH(tiw)
such that 0 < 1 < ¢ satisfies (w;, )" < (f;w,1)" ", and (8.4) thus yields
E..(¢) < ciEolp) = citi Eo (7 19)
with ¢; := t?(w™)/(w!") — 1, where the right-hand equality follows from (ii).
Similarly,
t7 ! Bu(tip) = E-1,(9) < 6 Eu, ()

with ¢} := t?(wp)/(w") — 1. Since t; *¢ — ¢ and t;p — ¢ uniformly, we
conclude, as desired, E,, (¢) = E, () by continuity of E,,, proving (iii).

The proof of (iv) is slightly more involved. Introduce Y := ][, Xa,
with its canonical birational morphism 7: Y — X. The data of a family
of functions ¥, € PSH(w|x,) with ¢ < ¢|xan is equivalent to that of
¢ € PSH(n*w) with ¢ < 7%y, and (7.10) implies that the right-hand side
of (8.3) coincides with E,«,(7*p). Since 7* PSH(w) C PSH(n*w), (7.10)
further yields E, (¢) < Exvw(7¢).

Conversely, pick ¢ € PSH(m*w) such that ¢ < 7*¢. After replacing
with max{t, c} for a constant ¢ < ¢, we may assume that 1 is bounded.
Choose wx € Amp(X) and ¢x € PSH(wx) as in Theorem 4.32. Replacing
wx and ¢ x with small enough multiples, we may assume wx < w, and hence
vx € PSH(w). Since ¢ and 1 are both bounded, we may further arrange,
after adding a constant to px, that ox < ¢ and 7*¢px < . For each
m € Zo, we get ¢, € PSH(w) such that

T om = (1 — %)1/) + %w*cpx.
Since px < v, we have 7%, < 7, and hence ¢,, < ¢, see Theorem 4.22.
On the other hand, since 7*¢x < 1, Theorem 4.22 shows that (¢,,) is an
increasing sequence in PSH(w), such that 7*p,, — v pointwise on YV,
Now set ¢ := min{inf ¢, inf ¢} and ¢!, := max{y,,, c}. Then (¢},) is also an
increasing sequence, this time in £ (w) C £} (w), with 7/, — 9 pointwise
on Y4V, Further, ¢/ < ¢, and hence

Y caBujx, (Pmlxan) = Eul(erm) < Eu(e),
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by (7.10). Since ¢}, |xan — 1|xsn pointwise on X3V, Theorem 7.38 yields
EW|XQ (SD/m|X;) — Ew\xa (1/)|X3n), and hence

(W = an Eu}\x(y (z/}'Xf}“) < Ew(@)

Taking the supremum over all i, we conclude, as desired, E «,(7*¢) <
E.(9). 0

8.2. Further extensions

Using the extension of the Monge-Ampeére energy E to continuous func-
tions, we now go further and extend it to (upper or lower) semicontinuous
functions.

DEFINITION 8.2. — For any ¢: X" - RU {:too} we set
E'(p) :=sup {E(¥) | ¥ € CO(X < ¢} (8.5)

and
E*(p) :=inf {E(¢) | ¢ € C°(X), ¥ > ¢} . (8.6)
While ET and E* are defined for arbitrary functions, they are mainly of
interest when restricted to lsc and usc functions, respectively.

PROPOSITION 8.3. — The functionals E' and EV satisfy the following
properties:

(i) they are increasing, concave, and satisfy the algebraic properties of
Proposition 8.1 (#);
(i) for any ¢: X*» — R U {£oo},

E'(¢) < E(p) < E*(y),

and ET(p) > —oo (resp. EX(¢) < +00) iff ¢ is bounded below
(resp. bounded above);
(iii) we have

E(¢) = E(Q(¢)) = sup {E(¥) | p € CPSH, ¥ < ¢} ;

we further have

E'(p) = E(¢x) = E(P(¢4))
if p is bounded below;
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(iv) if ¢ is bounded above, then
EY(p) = EX(@");
we further have
E*(p) = E(¢") =E(P(¢")) (8.7)
if o € CY(X), or ¢ € PSH(w), and for any ¢ bounded above if the
envelope property holds for w;

(v) ET (resp. EY) is continuous along increasing (resp. decreasing) nets
of bounded-below, lsc (resp. bounded above, usc) functions.

Proof. — (i) and (ii) are obvious. We prove (iii). For any ¢ € C°(X), we
have P(¢) = Q(¢) by Lemma 5.19, and (8.2) yields

E(y) = E(P(y)) = E(Q(v)) = sup{E(p) | p € CPSH, p <4}
This implies, in turn,
ET( = sup {E JRVAS CO cp}
=sup{E(p) | p € CPSH, p< w} = E(Q(¥)),

by monotonicity of E. If ¢ is bounded below, then Q(¢) = P(p,) by Lem-
ma 5.19, and hence E(Q(¢)) = E(P(¢4)) = E(¢x), which proves (iii).

Next we show that ET is continuous along increasing nets of bounded-
below, lsc functions. Let thus (¢;) be an increasing net of such functions,
converging to the Isc function ¢ = sup,; ¢,;. On the one hand, ¢ > ¢; implies

E'(p) > S = supE'(¢;) = im E"(;).
i i

On the other hand, for each € > 0 we can find 1 € C°(X) such that ¢ < ¢
and E(v) > ET(p) — e. Setting, for each i, V; := {¢p < ¢; + ¢} defines
an increasing family of open sets with (J, V; = X®". By compactness, we
get V; = X2 for all ¢ large enough, i.e. ¥ < ¢; + € on X*" and hence
E(y) < ET(p;) + & < S + . We thus have ET(¢) < S + 2¢ for all € > 0, and
we get, as desired, ET(¢) = S.

The proof that E+ is continuous along decreasing nets of bounded-above
usc functions is entirely similar; hence (v).

If ¢ € CO(X) then (8.7) follows from (8.2). If p € PSH(w), write it as
the limit of a decreasing net in CPSH(w). Then E(p;) — E¥(¢), by (v), and
E(¢;) = E(¢), by continuity of E along decreasing nets in PSH(w). This
proves (8.7) in that case.

Now consider the general case, assuming the envelope property. Write ¢*
as the decreasing limit of a net (;) in C°(X). For each i we have E*(¢;) =
E(P(g;)). On the one hand, E*(¢;) — E*(p), by (v). On the other hand,
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Corollary 5.18 implies that P(p;) decreases to P(¢*) in PSH(w), and hence
E(P(vi)) = E(P(¢*)) = E(p*), by continuity of E along decreasing nets in
PSH(w) and (8.2). This concludes the proof of (iv). O

COROLLARY 8.4. — If p: X - RU{—o00} is usc, then
E'(p) =) caBHplxan)-
If o: X" =5 RU {400} is Isc, then
E'(¢) =) ca B (plxan)-

e}

Proof. — Assume ¢: X** — R U {—o0} is usc, and pick a decreasing
net (¢;) in C°(X) such that ¢; N\, ¢ pointwise. For each i, (8.3) yields
E(p:i) = >4 ca E(@i|xan). By Proposition 8.3 (v), we have

E(pi) = E*(pi) N E*(p) and  E(pilxan) = E*(@ilxan) N E* (@l xan),
and the first point follows. In the Isc case, the proof is similar, using an
increasing net instead. |

8.3. Uniform differentiability of the energy

Building on [28] we prove the following uniform differentiability result,
which is crucial for what follows.

THEOREM 8.5. — Pick f € PL(X)g. For any ¢ € E', we then have

EM(p+ef) = B(p) + / FMA(g) + O(2)

as € — 0, where the implicit constant in the O is uniform with respect to .

If ¢ € CPSH(w) (and for any ¢ € £!, if the envelope property holds), the
left-hand side satisfies

EY(p+ef) =E(p +ef) = E(P(p+ef)),
by (8.7).
COROLLARY 8.6. — For any ¢ € ! and f € CO(X) we have

d

| B = [ 1)

Again, one can replace E¥ with E = EoP if ¢ € CPSH(w), or if the
envelope property holds.

For any w € Amp(X) we set V,, := (w").
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LEMMA 8.7. — Pick w,w’ € Amp(X), ¥1,1s € PLg NPSH(w'), and set
f =11 —a. For any ¢ € CPSH(w) we then have

Eu(p + f) — Bulp) - V3! / f (@t e +dd(p+ )"
< (VW71Vw+w’ - 1) sup |f|

Proof. — We may assume w = ¢1(L), w’ = ¢;(L’) for ample line bundles
L,L' on X, Indeed, by homogeneity, we then obtain the case when L, L’
are ample Q-line bundles, and the general case by a simple perturbation
argument based on Proposition 8.1 (iii).

Consider first any continuous function p € C%(X). For each m € N, p
defines a sup-norm || - [|;5,, on H°(X,mL), defined by

[8llmp = sup |s|e™™".
Xan

This norm induces a norm det || - ||, on the determinant line det H’(X, mL).
Comparing with the trivial norm, we can and will think of det || - ||, as a
number. It now follows from [42] (see [22, Theorem 9.5]) that the volume

vol(p) := — lim

logdet || - ||
M— oo mho(mL) ogae H H P

exists in R. We claim that voly(p) = EL(p). Using [22, (9.7)] and (8.3), it
is enough to prove this when X is irreducible. When p € CPSH(L), the
equality holds by [22, Theorem A] (or [32, Lemma 4.5]). In the general case,
this yields

Er(p) = sup{EL(¥) [ ¢ € CPSH(L), ¥ < p} < volr(p),

by monotonicity of voly. On the other hand, Theorem 5.1.1 of [99] (which
is valid for arbitrary non-Archimedean fields; see also [32, Theorem 4.13] for
the trivially valued case) shows that

sl

Pm = m~! log sup —
seHO(X,mL)\{0} ||8||mp

satisfies p,, € PLr NPSH(w), pm < p and Ep(pm) — volp(p); the claim
follows.

In particular, Ep (¢ + f) = volp (¢+ f) and EL(¢) = voly(¢). The desired
estimate is now a consequence of Lemma 8.8 below, itself a reformulation
of [28, Lemma 3.2]. O
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LEMMA 8.8. — Let L and L' be ample line bundles on X, and set
w=c1(L), w = c1(L). Consider functions ¢ € CPSH(w), and 1,12 €
CPSH(w'). Set f =11 — o € C¥ and C :=V,,1v — V,, > 0. Then

C}l{I&f;‘ f< flw+w +dd®(o+11))" = Vy(volr (e + f) — volr(¢))
Xan
< Csup f.
Xan
Proof. — This is a reformulation in our context of [28, Lemma 3.2] in

the special case of a trivially valued field k. The fact that k& is trivially
valued means that we can view ¢, 91,19 as continuous psh metrics on the
Berkovich analytifications of the line bundles L and L’, respectively. The
difference voly, (¢ + f) — vol () can be viewed as the relative volume of the
metrics ¢+ f and ¢ on L. Note that our current normalization of the volume
differs from the one in [28] by a factor V,, = (L™). O

Proof of Theorem 8.5. — We argue along the lines of the proof of [28,
Theorem 3.1]. Write ¢ € £! as the limit of a decreasing net (;) in CPSH(w).
Then E(p; +¢f) — E+(¢ +ef) (by Proposition 8.3 (v)), E(y;) — E(p) (by
continuity of E along decreasing nets in PSH(w)), and MA(¢;) — MA(y)
weakly (by Proposition 7.19).

It is therefore enough to prove the result for ¢ € CPSH(w). Since f €
PL(X)g, we can choose w’ € Amp(X) and 1,12 € PLg NPSH(w’) such
that f =11 — 9. By Lemma 8.7 we have, for any € > 0,

Bulp )~ Bule) ~ eV [ f (@ +dd ot e +dd°un))"
e (V; Wisew — 1) sup|f].
Now V'V iew — 1 = O(e), while
Vo (w4 dd® o + e(w +dde))"

= MA,(p) +V 12( )51 w4 dd® )" I A (W' 4 dd® ),

where (w + dd® )" A (W' +dd®¢;)7 is a positive Radon measure of mass
(w™™J - w). The result follows. O

Proof of Corollary 8.6. — For f € PL(X)g the result follows directly
from Theorem 8.5. For an arbitrary f € C°(X) we argue as in the proof of [28,
Theorem 3.1]. By Theorem 2.2, we can pick a sequence (f;,) in PL(X)g such
that e, := sup|f — fin| — 0. For each ¢ > 0, we have f,, —te,, < f <
fm + tem; Proposition 8.3 (i) thus yields

EYp +tfm) — tem <ENp +tf) SEH @ +tfn) + tem,
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and hence

[ FMAG) e < lmut e (B4 + 1) — EX0)

<limsupt™* (E¥ (o +tf) — /meA
t—0+
by Theorem 8.5 applied to f,,. Letting m — oo, we get
hm t~ 1(Ei(gathf /fMA
t—0
and replacing f w1th — f concludes the proof. |

9. Measures of finite energy

Denote as above by X a projective variety of dimension n, and fix an
ample class w € Amp(X). We define the Monge—-Ampere energy of a proba-
bility measure on X?", and begin a study of the space of measures of finite
energy.

9.1. The energy of a measure

Denote by M = M(X) the space of Radon probability measures on X?".
It is a compact convex subset of the dual C%(X)V for the weak topology. Fix
a class w € Amp(X).

DEFINITION 9.1. — The energy of a Radon probability measure y € M
is defined by

() = E(s) = sup (B0~ [on) cltod. 1)

We say that p has finite energy if EV (i) < 400, and denote by M* C M
the set of such measures.

Here we write £ = £1(w) for simplicity. As we shall see, measures in
M = M!(w) have a prescribed mass on each X% determined by w (see
Corollary 9.13). However, when X is irreducible, M® turns out to be inde-
pendent of w € Amp(X) cf. Theorem 9.24 below.

By definition, measures of finite energy integrate all functions in £'. Com-
bined with Corollary 7.48, this implies:

LEMMA 9.2. — Measures in M* put no mass on pluripolar sets.
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We will later study the dependence Amp(X) > w — EY(u) for a fixed
measure p € M. Already now, we note that Proposition 7.7 (iii) implies

LEMMA 9.3. — For w € Amp(X), t € Ryg and p € M, we have
B, (1) = tE5 (k).

PROPOSITION 9.4. — The energy functional EY : M — [0, +00] satisfies:

(i) for each p € M we have
EY(n) = sup <E(<P) - /w) ; (9:2)
@EHdom(UJ)

(i) EY is conver, Isc, and homogeneous with respect to the scaling
action of Rsq, i.e.

EY (top) = tEY (1)
forall pe M and t € Rso;

Proof. — Denote by S € [0, +o0] the right-hand side of (9.2). Trivially,
EY(n) > S. Conversely pick ¢ € £, and choose a decreasing net (p;) in
Hdom (w) such that ¢; — ¢. Then E(p) < E(p;), and hence

E(@)—/wé (M%)—/%u) +/(<Pj—<ﬂ)u<5+/(%—<ﬁ)u-

By Lemma 7.17, [ ¢; 1 — [ ¢ p; hence
EY(p) = sup (Ev(tp) —/wu) <8,
pett
which proves (i).
Convexity and lower semicontinuity of EY follow directly from (i), since
p— E(p) — [ ¢ p is affine and continuous for every ¢ € PLNPSH(w). Now

pick g € M and t € R+g. Note that ¢ + t - ¢ = tp(t~!.) is a bijection of
&'. By Proposition 7.7 we infer

B ) = sup, (Bt )~ [t o))

peé&l
= sup (tE(w) —/W) =t sup (E(w) —/w) =tE"(w),
peé&l peé&l
which concludes the proof of (ii). O
DEFINITION 9.5. — For each C' > 0 we set

Mg ={pe M|E"(n) <C}.
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By Proposition 9.4 (ii), M¢ is a (weakly) compact, convex subset of M.

The next result provides an important source of examples of measures
of finite energy. In fact, we will see in Section 12.2 that when the envelope
property holds for w, every measure 1 € M is of the form MA(p) for p € £L.

PROPOSITION 9.6. — For any ¢ € &', the measure MA(yp) has finite
energy, and ¢ achieves the supremum in (9.1), i.e.

EY(MA(p)) = E(p) — /wMA(so) =1(p) — J(¥). (9.3)
Furthermore,
n~tJ(p) <EY (MA(p)) <nl(yp), (9.4)
and
Be) = int, (5700 + [on). 95)

where the infimum is achieved for p = MA(p).
Proof. — By (7.23), we have, for each ¢ € £!,

B(p) + / (4 — ) MA(g) > E(),

and hence
Y (M) = sup (B0)— [03A()) =Bl - [ oMAG)
€
For any y € M, we have E(p) < EY (1) + [ ¢ p, with equality for u = MA(y),
proving (9.5). Finally (9.4) follows from (7.28). O
Ezxample 9.7. — If y = MA(0), then EY (1) = I(0) —J(0) = 0. Conversely,
we will show in Corollary 9.12 that if EY () = 0, then u = MA(0).

9.2. Legendre duality

The functional EV: M — RU{+4oc} is defined as the Legendre transform
of the Monge-Ampere energy functional E: £ — R. Here were prove a
couple of additional duality formulations, involving the extensions of the
Monge—Ampere energy considered in Section 8

ProrosiTION 9.8. — For any u € M we have
BV(u) = sup (E«o) -/ wu) | (9.6)
PEC(X)
and for any ¢ € C°(X) we have
E(p) = inf (EY . .
(o) =t (B0 + [ ) 0:)
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Proof. — Note that (9.2) implies

EY(n) =  sup <E(so) - /w) < sup (E(sa) - /w) :
pePLNPSH peCo(X)
Now pick ¢ € C°(X) and v € ' such that ¢ < ¢. Then

E(w)*/wuéE(ib)*/wﬂéEv(u%

and taking the supremum over 1 yields

up (E«o) -/ sou) <EY ().

p€eCO(X)
Thus (9.6) holds. Now use this equation to define EY (1) for any signed
measure g € CO(X)V. If (1) # 1, then E(c) = ¢ for ¢ € R implies that

EY (1) = sup (¢(1 = p(1))) = +oc.
ceR

Similarly, if p € C°(X)V and ¢ € C°(X) satisfy ¢ > 0 and [¢pu < 0, then
E(te) = 0 for t > 0 yields

EY (1) > sup (—t/w) = +00.

t>0

Thus EY = 400 on C°(X)V \ M!. As E is concave, Legendre duality now
yields (9.7). O

The next duality statement will be used in the proof of Theorem 9.11.

PROPOSITION 9.9. — For any usc function ¢: X** — R U {—o0}, we
have

E*(p) = inf (EV(M)+/SDM)- (98)

Proof. — Write ¢ as the limit of a decreasing net (;) in C°(X). On the
one hand, for each u € M we have

E'(¢) < E(g;) <EY(p) +/%u,

by (9.7), and hence E*(¢) < EY(u) + [ ¢ p, by Lemma 7.17. On the other

hand,
in (EV(MH/wu) < inf (Ev(u)+/% u) = E(¢:),

where the right-hand side converges to E*(), by Proposition 8.3 (v). This
proves (9.8). O
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9.3. Maximizing nets

With a view towards solving the Monge-Ampeére equation MA(p) = pu,
we introduce the following notion.

DEFINITION 9.10. — Given a measure p of finite energy, we shall
say that a net (p;) in €' is maximizing for p if it computes EY(u) =
sup,cg1 (E(@) — [@pu) in the sense that

E(w)—/wm — EY(p).

As a key consequence of the uniform differentiability property of Theo-
rem 8.5, we prove:

THEOREM 9.11. — Let p be a measure of finite energy. For any maxi-
mizing net (¢;) for p we have MA(p;) — p weakly in M.

Proof. — 1t is enough to show [ fMA(p;) = [ fpu for any f € PL(X),
by Theorem 2.2. Set &; := EY (1) — E(¢;) + [ @i p1, so that §; — 0. For any
e > 0, (9.8) shows that

B+~ [(oi+ehn < B (0) = EGe) - [ pin+ o

By Theorem 8.5, we infer
s/fMA(goi) <E/fu+5i+052

for a constant C' > 0 independent of i and e. Dividing by e, letting i — oo,
and then e — 0, we get limsup; [ f MA(y¢;) < [ f p, and replacing f with
— f yields the result. |

This yields a variational characterization of solutions to Monge-Ampere
equations:

COROLLARY 9.12. — Pick ¢ € ' and u € M*. Then MA(p) = u iff
¢ computes EY (1) = supyeer (B(v) — [ ). In particular, BY (u) = 0 iff
= MA(0).

Proof. — If MA(¢) = u then E(p) — [op = EY(u) by (9.3). If the
converse holds then the constant net ¢; = ¢ is maximizing, and hence
MA(p) = u, by Theorem 9.11. O

As another consequence, we prove that measures of finite energy have a
prescribed mass on the irreducible components of X2,

COROLLARY 9.13. — Pick u € M. Then u(X,) = (w")x,/(w")x for
all a, and w(Z) =0 for all Zariski closed subsets Z C X with dim Z < n.
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Proof. — Set ¢q := (w")x,, /(w™)x (which vanishes if dim X,, < n). Pick
a maximizing net (g;) for p. By Theorem 9.11, p; := MA(p;) converges
weakly to p. By Corollary 7.49(ii), we have u;(Xo) = ¢, for all ¢ and «a, and
hence
(Xo) = limsup pi(Xa) = ca-

As in the proof of Corollary 7.49, when o # o’ p further puts no mass on
the pluripolar set X2" N X27, by Lemma 9.2. Thus

a’

1 :/J‘(X) = ZM(Xa) = an =1,

which forces u(X,) = ¢, for all o. Finally let Z C X be a Zariski closed
subset with dim Z < n, and pick an irreducible component Y of Z. If Y
is not a component of X then Y?" is pluripolar, and hence u(Y) = 0, by
Lemma 9.2. If Y = X, for some a then u(Y) = ¢, which vanishes as
well since dim X, < n. Since this holds for all components of Z, we get, as
desired, pu(Z) = 0. O

DEFINITION 9.14. — For any p € M" we define a functional J,,: E* —
[0, +00) by

3u() = BV () — E(p) + / ou.

The notation is justified by the fact that for , v € £' we have

Tatace (9) = E(8) - / $MA() — E(p) + / PMA(S) = Ty (). (9.9)

Note also that
3u(0) = EY (), (9.10)
and that a net (¢;) in &' is maximizing for u iff J,(¢;) — 0.

LEMMA 9.15. — For all ¢, ¢’ € EY we have

. /
ugifm(‘]“(@ + Ju(¥").
In particular, we have for all ¢ € E' and p € M*

J(p) S Julp) +EY(n). (9-11)

Proof. — On the one hand, inf,,(J,(¢) + J.(¢") < Ju(¢') = L(p,¢),
thanks to (7.28). Conversely, set 7 := (¢ + ¢'). By strict concavity of E
(Theorem 7.28),

EY(n) > B(r) — [ 1> 5B +E@D) - 5 [0+ &)t O Lpd),

and hence

I(p,¢") =

Py

igf(Ju(w) +Ju(#) 2 e, ¢').
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In particular, J(¢) ~ I(¢,0) < J.(¢) +J,.(0) = J,.(¢) + EY (1), which proves

~

the final point. O

COROLLARY 9.16. — Pick i € MY, and choose a mazimizing net (¢;)
for p. Then J(p;) SEY (u) 4+ o(1) for all i large enough.

LEMMA 9.17. — For each C > 0 we have

[ ot aw)| s c 3,00

for all o,9p € {J < C} C E and p € M¢.

Proof. — By monotone approximation, we may assume ¢ € PLg. Pick a
maximizing sequence (¢;) for u. By Corollary 9.16, J(¢;) < C 4 o(1) for all
1 large enough. By Lemma 7.30, we infer

/ P(MA(;) — MAw))‘ < (C+o(1)) 1, 9) 7 < Cmax{J,u(¢i), Ju()}2,

where the right-hand inequality follows from Lemma 9.15. By Theorem 9.11,
we have MA(¢p;) — p weakly; hence [ ¢ MA(¢;) — [ ¢ p, while J,,(¢;) — 0,
so we are done. |

COROLLARY 9.18. — Pick € M. If (p;) is mazimizing for u then
lim; [ p;(MA(p;) — p) =0 and lim; EY (MA(p;)) = EY (1).

Proof. — By Corollary 9.16, J(p;) is bounded for i large enough. By
Lemma 9.17, it follows that

cim [ o= [ iMAG) = 0000
tends to 0, and hence

EV(MA () = E(p:) — / i MA () = E(i1) — / oot e — EY (),
completing the proof. O

As another useful consequence, we get:

PROPOSITION 9.19. — Let ; — ¢ be a convergent net in PSH(w), and
assume that J(p;) is eventually bounded. For any p € M we then have
pi = ¢ in L' ().

Proof. — We first claim that ¢ — [ p is continuous on {J < C} C
PSH(w) for any C > 0. To see this, pick a maximizing net (p;); for p in
PLNPSH(w). For each j, ¢ — [¢@MA(p;) is continuous on PSH(w), by
Proposition 7.19(ii). By Lemma 9.17, [¢ MA(p;) — [ p uniformly for
¥ € {J < C} € PSH(w), and the claim follows since continuity is preserved
under uniform convergence.
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The functional J is Isc, so J(¢) < liminf J(¢;) < 0o. Set ¢} := max{p;, ¢},
so that |¢; — ¢| = 2(¢} — ¢) + (¢i — ¢). Then ¢, — ¢ pointwise on X4,
ie. ¢ — ¢ in PSH(w). By (7.34) we further have I(¢}, ¢) < I(¢;, ¢), and
J(¢}) = I(¢},0) is thus eventually bounded, by the quasi-triangle inequality
for I. The first part of the proof thus yields [@;pu— [op, [@ip— [ou,
and hence [ |¢; — | — 0, which concludes the proof. O

9.4. Dependence on the ample class

In this section, X is assumed to be irreducible. As in [11, Proposition 3.4]
we then have the following useful characterization of measures of finite en-

ergy.

THEOREM 9.20. — A Radon probability measure pn € M has finite en-
ergy iff E1 C L' ().

Proof. — Assume that p is finite on £'. We first claim that for each
C > 0 there exists C’ > 0 such that [opu > —C’ for all ¢ € €Slup such that
—E(p) = J(p) < C. Arguing by contradiction, we may assume there exist
C > 0 and a sequence (¢;)5° in &, such that J(¢) < C and [ ¢;u < —27 for
all j. Set 9, = ZT:l 27J¢p; for m > 1. Then 1), is a decreasing sequence
in PSH(w) converging to ¢ := Z;’il 274 ;, which is thus either w-psh or
identically —oo (since X is irreducible). By concavity of E we have E(¢,,) >
—C for all m; hence 9 is w-psh, with E(¢) = lim;;, 00 E(¢,) = —C. On the

other hand, monotone convergence gives

/wu=rggr1m/¢mu=n}§1m227j/¢j#=—OOa
j=1

a contradiction. We next claim that there exist A, B > 0 such that

/w‘ <AJe)'*+B

for all p € £}

sup’

which will imply, as desired, that

B0 = sw (= [en-30)
PEEL,
is finite. If J() < 1 then the estimate follows from the first part of the proof.
We may thus assume t := J(¢)~/? < 1. By Lemma 7.33, J(tp) < t2J(p) =

1, and the first part of the proof yields a uniform constant A > 0 such that
t| [ ,u| < A, which gives the desired estimate. |

As in [52, Proposition 4.1], we infer:
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COROLLARY 9.21. — The set M*(w) of measures of finite energy is in-
dependent of the choice of w € Amp(X), and it is dense in the space M of
all Radon probability measures on X2".

Proof. — For any w,w’ € Amp(X), we can find s > 1 such that s 1w <
w' < sw. By Theorem 7.8 we then have s~ 1£1(w) C £Y(w') C sEH(w), and p
is thus finite on £1(w) iff it is finite on £1(w’). We conclude by Theorem 9.20
that M!(w) is independent of w.

For the second part, we note that finite atomic measures are dense in M.
As X9V is dense in X", finite atomic measures with support in X4V are
also dense in M, and Theorem 9.20 shows that any such measure has finite
energy. Indeed, any function in PSH(w) is finite on X4V, O

Remark 9.22. — In view of Corollary 9.13, the above results fail when X
has more than one top-dimensional component.

By Proposition 7.19(v) and Theorem 9.20, we also have:

COROLLARY 9.23. — For i = 1,...,n, pick w; € Amp(X) and p; €
EY(w;). Then the Radon probability measure
(W1 wp) Hwr +dd 1) A A (wy +ddC @)
has finite energy.

For further reference, we establish a more precise version of Corollary 9.21.

THEOREM 9.24. — Pick w,w’ € Amp(X) and s > 1 such that s~ 'w <
w' < sw. Then
s " EY <EY, < s“"EY
on M, with C,, :== 1+ 2nZ2.

The main ingredient in the proof is the following estimate.
LEMMA 9.25. — Suppose w,w’ € Amp(X) and w < &' < sw, where
s = 1. For any nonpositive ¢ € PSH(w) C PSH(w'), we then have
02> s"Eu(p) 2 Ew(p) 2 s" Eu(p), (9.12)
whereas
BY () > ((n+1) - ns") EX () (9.13)
for all p € M.

Of course, (9.13) is useful only when s < (1+ 2)1/™. In order to upgrade
this to the global estimate in Theorem 9.24, we use the Thompson metric ép
of the open convex cone Amp(X) C N'(X). As in [105], this is defined by

5r(w,w') =sup{d €R | e %w < W' < lwl.
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It is not hard to see that (Amp(X), dr) is a complete metric space in which
line segments are (constant speed) geodesics, see [86, Lemma 2.6.2]. Theo-
rem 9.24 is equivalent to the C,,-Lipschitz continuity of w + log E},(u) for

any 7é 6’Utriv'

LEMMA 9.26. — Let (Z,d) be a geodesic metric space. Pick a function
f: Z = R, and suppose we are given € > 0 and p : [0,e] = [0,4+00) of class
C' with p(0) = 0, such that for all z,y € Z we have

d(z,y) < e = [f(2) = f(y)| < p(d(z,y)) (9.14)
Then f is Lipschitz continuous, with Lipschitz constant |p’(0)].

Proof of Theorem 9.24. — Set § := dp(w,w’). Then e %w < W’
e®w = e?°(e7%w), so Lemma 9.3 and (9.13) yield E), (1) = e~ °((n + 1)
ne?")EY (). As a result, the function f: Amp(X) — R defined by f(w )
log E) (1) satisfies the assumptions of Lemma 9.26 with € := 5-log(1 +
and p: [0,¢] — [0, +00) defined by

p(t) =t —log ((n+ 1) — ne*").

Now p/(0) = C,, := 1 + 2n?. Lemma 9.26 shows that f is C,-Lipschitz
continuous, which is equivalent to the desired estimate. (|

Proof of Lemma 9.25. — By Lemma 7.9, we have
0> (w,0)" ™ > (W, )" 2 ™ (w, )"+,
and (9.12) follows since (w™) < (W) < s™(w™).

Now pick 1 € M. If 4 ¢ M*', then E', (1) = 400, and (9.13) is trivial.
Now assume p € M?, and pick a maximizing sequence (gal) in 5 (w) for p,
normalized by sup ¢; = 0. If we set p; := MA,(p;), then E, — [ip by
definition, and [ ¢; u = [ ¢; i + o(1), by Corollary 9.18. Thus

EL (1) > Buled) - [ oin
>8”Ew(%)—/%u
ZS"(Ew(%)—/%u)+(8”—1)/%u
=S EL) + (5" 1) [ i+ o),

where the first inequality is definitional, and the second follows from (9.12).
Finally, (9.3), (9.4) and 7.28 yield

—/% i =To(p:) < (n+ 1) ES (1) = (n+ 1) ES (1) + o(1),

and (9.13) follows. O

(IV/AN

3\*—‘
~—
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Proof of Lemma 9.26. — Pick C > |p/(0)|, and choose 5 € (0,¢] such
that |p’(0)] < C for 6 € [0,n], and hence 0 < p(d) < C6 for ¢ € [0,7]. For all
x,y € Z we thus have

d(z,y) <n = [f(z) = f(y)| < Cd(z,y).

Now pick x,y € Z at arbitrary distance, and choose a geodesic v: [0,1] = Z
connecting x to y. By compactness of [0, 1], we can find a chain 0 = ¢; <
t; < - - <ty =1in]0,1] such that the z; := ~(t;) satisfy d(z;, z;+1) < n for
i < N. Since v is a geodesic, we have d(z,y) = >, -y d(2i, Ti41). Now (9.14)
yields |f(x;) — f(x¢+1)| < C’d(:clv,xlvH) for all ¢ < N, and hence

|f(x <D @) = flwip)| < Cd(x, ).
<N
This holds for any C' > |p/(0)|, and the result follows. O

10. The strong topology on M!

As in Section 9, we denote by X a projective variety of dimension n,
and fix w € Amp(X). The set M! C M of measures of finite energy comes
equipped with the weak topology of Radon probability measures. Here we
introduce and study a stronger topology on M!.

10.1. A quasimetric on M!

Recall from Definition 9.14 that
Ju(e) = EY (1) — E(p) + /w >0
for all 4 € M' and ¢ € £'. Dualizing Lemma 9.15 we introduce:

DEFINITION 10.1. — For any two u, ' € M we set
I (p, 1) = inf (Ju(p) + ().
peslt

THEOREM 10.2. — The functional 1V is a quasi-metric on M. Further-
more,
1Y (1, MA(0)) = EY (1) (10.1)
and
Y (1, MA(9)) = Ju() (10.2)

for all p € M* and p € E*.
P
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Theorem 10.2 will be proved below, together with the following crucial
estimates.

THEOREM 10.3. — For all p, ¢’ € EY(w) and p, ' € M we have
‘/W—wﬁm—ﬁ)

ST, )™ 1Y ()} max{I(), (), EY (), EY (')} 5o

with o, := 27", In particular,

0< / o MA(0) — / o < max{1,3()}¥ max{1,EY ()} -

This last estimate should be compared with the trivial bound
0</¢MM®—/@u<M@+Ewm,

which holds by definition of EV.

As an important consequence of Theorem 10.3, we have:

COROLLARY 10.4. — Assume that X is equidimensional. If ¢, € &',
then the following properties are equivalent:

(i) MA(p) = MA(y);
(i) (o) = 0;
(iii) @ — 4 is locally constant.

Proof. — The implications (iii) = (i) = (ii) are clear. If I(p,¢) = 0, then
I(cplxg"ﬂ/f\)qn) = 0 for each irreducible component X, of X, by (7.26). In
order to prove that ¢ — 1 is locally constant, we may thus assume that X is
irreducible. After adding constant, assume sup ¢ = sup ¢. Then ¢(v) = ¢(v)
for every v € X4V, as a consequence of Theorem 10.3 with y = §, and
W = 0y, since §, € M?! by Proposition 11.1. By Theorem 4.22, we infer
¢ =1 on X* which proves (ii) = (iii). O

Corollary 10.4 in turn implies the following useful results.

COROLLARY 10.5. — Assume that X is equidimensional. If ¢, € £
satisfy o = v and E(¢) = E(¢), then ¢ = 1.

Proof. — By (7.4), we may assume that X is connected. From (7.22) and
the assumptions, it follows that

Jte=Maw) = [ (o -u)nMaw) —o.

Thus I(¢,¥) = [(p — ) (MA(¢)) — MA(y)) = 0, and hence ¢ = ¢ + ¢ for a
constant ¢, by Corollary 10.4. But then E(p) = E(¢)) = 0 gives ¢ = 0 and
we are done. 0
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COROLLARY 10.6 (Domination principle). — Assume that X is equidi-
mensional. Let ¢ € PSH(w), 1 € EY, and assume ¢ < 1 a.e. with respect to
MA(¢). Then ¢ < ¢ on X",

Proof. — Arguing on each connected component, we may assume that X
is connected. After replacing ¢ with max{p, ¥}, we may assume ¢ > ¢, and
hence ¢ € £!. The assumption then becomes ¢ = 1 a.e. for MA(¢)), and we
need to show ¢ = 1. Note that

Ip.1) = / (0 — ¥)(MA($) — MA(g)) = / (4 — o) MA () < 0.

By Corollary 10.4, we infer ¢ = ¢ + ¢ with ¢ € R, and ¢ = ¢ a.e. for MA(v))
implies ¢ = 0. ]

10.2. Proof of Theorems 10.2 and 10.3

LEMMA 10.7. — If,¢' € EY and p = MA(v), 1/ = MA(Y'), then
(v, 9") = T (s, 1)
Proof. — By (9.9) we have

Y (p, 1) (Jy (@) + Jyr (9))-

= inf
pe&l
By (7.28), this implies
I (p, ') = inf (I(4, ) +1(¢', 9)),
pe&l

and the result follows thanks to the quasi-triangle inequality for I, see
(7.30). |

LEMMA 10.8. — For each C > 0 there exists C' < C' such that
I (p, ') = inf {J,(0) + () | € €L, I(p) < C'}
for all p, ' € ML,
Proof. — By definition of IV we have
1Y (1, 1) < Ju(0) + 3 (0) = EY () + EY (') < 20,
thanks to (9.10). Thus
I (g, ') = inf {J,(0) + I () | ¢ € Exups Tu() <3C}
Now J,.(¢) < 3C implies J(p) < J,(¢) +EY (1) < 4C, by (9.11), and we are
done. ]
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LEMMA 10.9. — Given p,pu’ € M with mazimizing nets (v;), (),
respectively, we have

I (MA(v:), MA(9])) — TV (n, ') (10.3)

and

Ty (0) — Ju(ep) (10.4)
for all p € EL.

Proof. — By Corollary 9.18, the measures MA(¢);), MA(¢}) have uni-
formly bounded energy for i large enough. By Lemma 10.8, we can thus
find C' > 0 such that

I (1) = inf {J,(¢) + T (0) | 0 € €Y, I(p) < C}

and
1Y (MA($2), MA())) = inf {4, (¢) + Jug(¢) | 0 € €1, J(p) < C
for all 7 large enough. By Corollary 9.18 and Lemma 9.17,
Juu(e) = B (MA@W) ~ E() + [ ¢ MA(w)
converges to
1(0) =E'(n) - E() + [ o

uniformly with respect to ¢ € {J < C} C &' hence (10.4). The same holds
for Jy/ (¢) = Jyw(p), and (10.3) follows. O

Proof of Theorem 10.3. — Pick maximizing sequences (¢, ), (¢}) for u, p'.
By (10.4) we have

J(Wi) = EY (n) +o(1),  J(w)) = EY (1) +o(1),
while Lemma 10.7 and (10.3) give
I(d)z’?/};) ~ IV(MMU/) + 0(1)

Thanks to Lemma 7.30, we infer
o= )0t - MawD)

ST, @) (1Y (') +0(1)) 2
x max{J(¢), J(¢'), BY (1) + (1), BV (1) + o(1)} 2.
By Lemma 9.17 we have

and the result follows. O

- 793 —



Sébastien Boucksom and Mattias Jonsson

Proof of Theorem 10.2. — Let u1, po, u3 € MY, and for i = 1,2,3 pick
a maximizing sequence (y;;); for y;. By Theorem 3.31, we have for each ¢
L), p25) < max{I(p15, ¢35), Lwss, 025)
As in the proof of Theorem 10.3, this yields
Iv (/1/17 /1/2) 5 maX{Iv(ula IU/3)> Iv(,u?n MQ)}7
thanks to Lemma 10.7 and (10.3).

Suppose now that IV (j,x/) = 0. By Theorem 10.3 and (3.2), it follows
that [@u = [p for all ¢ € PL(X), and hence g = 4/, by density of
PL(X) in C%(X) (Theorem 2.2).

To establish (10.1) and (10.2), choose again a maximizing sequence (1);)
for p1, and set p; := MA(v);). For each ¢, Lemma 10.7 and (9.4) yield

1Y (113, MA(0)) ~ I(;) = BY (us)
and
I (1, MA(9)) =~ ()i, @) & s, ().
By (10.3), Corollary 9.18 and Lemma 9.17, we have
1Y (11, MA(0)) — I" (1, MA(0)),  EY(p1s) — E"(n),
I (i, MA()) — 17 (1, MA()) ,

and
Joule) =B () ~E() + [0 — B () = Blo) + [ o =Ju(0),
which proves the result. (|

10.3. Strict convexity of the dual energy

The dual energy functional EV: M — [0, +o0] is convex (see Proposi-
tion 9.4). As we next show, its restriction to M? is even uniformly convex
with respect to the quasi-metric I (compare Theorem 7.28 for the energy E).

PROPOSITION 10.10. — For all p, i’ € M and t € [0,1] we have
BY (1= i+ 1) < (1— ) BY () + £ BV (') — (1 — )1 (o, ).

Proof. — Pick a maximizing sequence (i;) in ! for py = (1 —t)u+tp'.
Then

Juler) = EY (1) — E(pr) + / it () =BV () — (i) + / i it
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and hence
(L =) Ju(ps) +t T (i) = (1 =) EY(u) + tEY (1) — E(y) + /% it
By Lemma 7.29, we have
(L =0) Juli) + tJw(pi) 2 (1 —1) (Julpi) + I (1))
> t(1 =) 1Y (u, 1),

while E(¢;) — [ @i it — EY (11¢); the result follows. O

10.4. The strong topology of M!

Following [10, Definition 2.5] we introduce:

DEFINITION 10.11. — The strong topology on M! is defined as the
coarsest refinement of the weak topology for which EY: M' — R becomes
continuous.

Thus a net (u;) in M?* converges strongly to u € M iff p; — u weakly
and EY (11;) — EY ().

When X is irreducible, Corollary 9.21 shows that the set M! C M is
independent of the choice of w € Amp(X). As we shall see below, this is
then also true of the strong topology of M*, cf. Proposition 10.16.

THEOREM 10.12. — For a net (u;) and pu in MY, the following are equiv-
alent:

(i) p; — p strongly in M*;
(iii) for each C' > 0 we have [ o p; — [ @ p uniformly for ¢ € EY with
J(p) < C.

By (ii), the strong topology is associated to a canonical (metrizable)
uniform structure defined by the quasi-metric I".

COROLLARY 10.13. — Pick p € MY, and a net (¢;) in EL. Then (p;)
is maximizing for p iff MA(p;) — p strongly in M*.

Proof. — By definition, (y;) is maximizing for u iff J,(p;) = EY(u) —
E(pi) + [ ¢ip tends to 0. Now (10.2) yields J,(¢;) =~ IV (u, MA(p;)), and
the result is thus a consequence of Theorem 10.12. (|
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Proof of Theorem 10.12. — Assume (i), i.e. 1; — p weakly and EY (11;) —
EY(u), and pick e > 0. By (9.2), we can choose ¢ € PLg NPSH(w) such that

T,(0) = E¥ () - E(p) + /w <e

For all i large enough we have [ u; < [¢p+¢e and EV(u;) < EY(p) + ¢,
and hence

T () = BY (i) — B(p) + / o1 < 3e.

Thus IV (ui, p) < max{J,(¢),J..(¢)} < 3¢ for all i large enough, and we
have proved (i) = (ii).

Next assume (ii). Theorem 10.3 shows that for each C' > 0 we have
[ o pi = [ ¢ up uniformly for ¢ € {J < C} C €', hence (i) = (iii).

Finally assume (iii). First, [ ¢ u; — [ pfor all ¢ € £ implies [ @ p; —
Jeup for all ¢ € PL(X), by (3.2), and hence p; — p weakly, by density
of PL(X) in C%(X). Next, we claim that EY(u;) is eventually bounded. By
Corollary 9.18, for each i we can choose p; € €', normalized by [ ¢; MA(0) =
0, such that

BYOMAG) ~ B G| <1, | [ ot - MAG)| <1,

and hence

EY(ui) < EY(MA(¢:)) +1

SHe) +1= [0 MA@ +1< [(eomi+z. (105

Pick A > 0, to be determined in a moment, and set

t; ;= min{l, A/EY(u;)} € [0,1], s;:=t;EY(u;) = min{E" (u;), A}.
By concavity of E, t;p; € £! satisfies
J(tipi) = tisup o; — E(tip;) <t J(p;) = t; EY(MA(p;)) < s; +1 < A+ 1.

The condition in (iii) thus yields [(—t;pi)pwi < [(—tipi)p + 1 for i large
enough (depending on A). By Theorem 10.3, we have on the other hand

/(_ti%‘)u < Cmax{1,J(t;p:)}'/? < Clsi + 1)/?
for a constant C' = C(u) > 0 only depending on p. Combining these es-
timates with (10.5), we get s; = t; EY (u;) < C'(s; 1z + 1) for a constant
C’' = C'(p) > 0, and hence s; < C”" = C" (). Choosmg A > C”, this yields,
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as desired, EY (u;) < C” for i large enough. By Corollary 9.16, we can now
find a uniform constant B > 0 such that

EY (u;) = S (E(w) —/wn)

for all 7 large enough, and the condition in (iii) now implies EY (u;) — EY (u),
which proves (iii) = (i). O

We finally show that the uniform structure of M? is complete.

THEOREM 10.14. —  Let (pu;) be a Cauchy net in M', i.e.
lim; ; IV (wi, i) = 0. Then (u;) converges in the strong topology.

Remark 10.15. — In [34] we exhibit a natural complete metric d; on M?
that defines the strong topology.

Proof. — By the quasi-triangle inequality, it is enough to show that some
subnet of (u;) converges strongly in M!. After passing to a subnet, we can
thus assume wlog that (u;) converges weakly to a Radon probability measure
i € M, by weak compactness of M. By Theorem 10.2, EY (y;) is eventually
bounded, and hence EY (i) < 400, i.e. p € M', by lower semicontinuity
of EY in the weak topology of measures. We thus have p € M?', and it
remains to prove that for each C > 0 we have [ ¢ u; — [ ¢ p uniformly for
o € {J < C} C &, by Theorem 10.12. To see this, pick ¢ > 0. For all i, j
large enough, Theorem 10.3 yields | [ — [ p;| < e for all ¢ € {J <
C} N PLg. Since p; — p weakly, it follows that for all ¢ large enough we
have | [ u; — [ou| < € for all ¢ € {J < C} N PLg, and hence also for
o € {J < C} C &L, by monotone convergence. a

10.5. Dependence on the ample class

In this section, X is assumed to be irreducible. Recall from Corollary 9.21
that the set M! = M1 (w) of measures of finite energy is independent of
w € Amp(X).

PROPOSITION 10.16. — The strong topology on M' = M*(w) does not
depend on the choice of w € Amp(X).

Proof. — Pick p € M, and a net (u;) in M?!. By Theorem 9.24, the
condition that E,(y;) is eventually bounded is independent of w € Amp(X).
On the other hand, pick w,w’ € Amp(X) and choose s > 1 such that s~ tw <
w' < sw. By Lemma 9.25, for each C' > 0 there exists C’ > 0 such that
{Jo < C} C s{Ju < C'}. As a result, the condition that [pu; — [opu
uniformly for ¢ € {J, < C} for all C' > 0 is also independent of w, and
Theorem 10.12 yields, as desired, that the strong convergence of (p;) to p is
independent of the choice of w. O
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Remark 10.17. — In view of Theorem 9.24, one may ask whether for
any two w,w’ € Amp(X) we have C711 < I, < CI) for some C =
C(w,w’) > 1, in which case the uniform structure on M = M!(w) would
also be independent of w. Theorem 9.24 at least shows that the class of
bounded subsets of M*, i.e. subsets of M§&(w) = {u € M | E)}(n) < C} for
some C > 0, is independent of the choice of w.

LEMMA 10.18. — For all p, i’ € MY, the map w + L (u, i) is contin-
uous on Amp(X), uniformly for p, i’ in any bounded subset of M?.

Proof. — By Lemma 9.25, there exists a function s : [1,1 +¢] — [1,2]
with lim; 1 s(t) = 1, only depending on n, such that for all w,w’ € Amp(X)
with

7w <w < tw, te[l,14¢] (10.6)
we have
s() T ES < Ey <s()E;, Ew(tle) = s(t) Eu(p)
for all ¢ € &L, (w) C t&L,,(W).

Pick w,w’ € Amp(X) satisfying (10.6). Let C > 0 and p, u' € Mg (w).
By Lemma 10.8, we can find C’ < C such that

L (s 1)
= inf {EZ(M) +ES (1) —2Eu(p) + / p(p+p') ‘ p € E (w)} - (10.7)
For each ¢ € £L/(w), we have

/ o+ 1) > 2B (9) — BY () - EX(1) > —2(C + C).
Thus

L (1) SES (1) + B (1) — 2B (o) + /t‘lw(u +u)

<) (BL0) + ELG) ~ 2Bufo) + [ plact )
+2(s(t) =t H)(C + ),
and (10.7) yields
I, (s ) < 50T, 1)+ 2(5(0) — £7)(C + C") < g ) + e(8)C

with limy 1 e(t) = 0, since IV (u, ') < C by Theorem 10.2. Since u, ' €
ME(w) € Mo (w'), the desired result follows by symmetry. O
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11. Valuations of linear growth

Assume that X is of dimension n and érreducible, and fix w € Amp(X)
ample. The purpose of this section is to show that the set X" of valuations of
linear growth is endowed with a natural metric induced by w-psh functions,
with respect to which it sits as a bi-Lipschitz subspace of (M*!,1").

11.1. The energy of a Dirac mass

Recall from Section 4.5 that a point v € X?" is nonpluripolar iff

sup (¢ (viriv) — ¢(v)) (11.1)
PSH

T(v) = sup (supp — ¢(v)) = 2

pe

is finite, and that the set of such points coincides with the set X' of valu-
ations of linear growth.

ProOPOSITION 11.1. — For any v € X*", the Dirac mass §, € M has
finite energy iff v € X", Moreover,
1 n
T(v) < EY(5,) < T(v). 11.2
L T() S BY(B) < - T() (1.2
Proof. — Let us first show that
1
T(v) < EY(4,) < T(v), 11.
1 T (0,) < T(v) (11.3)

which will already imply J§, € M! <= v € X', The right-hand inequality
is trivial, since
EY(8,) = sup (E(p) — ¢(v))
pe&l

< sup (supy —@(v)) = sup (supp —¢(v)) = T(v).
pe&l pEPSH(w)

Here the second equality follows since every function in PSH(w) is a decreas-
ing limit of functions in HI¥°™(w) C &

The left-hand inequality in (11.3) is equivalent to ¢(v) > —(n+1)EY(4,)
for all ¢ € PSHg,p. For each m € N set ¢, := max{p, ¢(v), —m}. Then
Ym € PSHgyup and

Um 2 Ym(v) = max{e(v), —m}.
Since X is irreducible, [ 9, MA(0) = ¢, (Vtriv) = sup ¥, = 0, and (7.22)
thus yields

1
7 [ =) MAW)

E(¥m — ¥m(v)) = E(¥m) — ¥m(v) < Ev(év)'

1
- m max{p(v), —m} =
<
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As m — oo, this yields, as desired, —p(v) < (n + 1)EY(6,).

It remains to establish the stronger right-hand inequality in (11.2) for
v € X' Pick a maximizing sequence (y;) for 6, in £!. By (9.3) and (7.28)
we have
n
EY(MA(¢:)) =1(gs) — I (i) < —— L(ps),
(MA(p:)) = L) = (i) < 7 Uea)
with

I(ps) = sup s — / i MA(;) < T(0) + / i (8, — MA(g1)).

By Corollary 9.18, EY(MA(p;)) — EY(d,), and [ ¢i(6, —MA(¢p;)) — 0. The
result follows. O

Remark 11.2. — When X has at least two top-dimensional components,
point masses never have finite energy, by Corollary 9.13.

As we next show, the image of the embedding X' < M! can further
be characterized as the set of extremal points.

PROPOSITION 11.3. — A measure p € M is an extremal point of the
convex set M iff u = 6, with v e X',

Proof. — As is well-known, the extremal points of the space M of all
Radon probability measures are the Dirac masses d,, v € X?"; if v € Xl
then &, is a fortiori an extremal point of M?!. Conversely, assume p € M! is
not a Dirac mass. Then u is not an extremal point of M, and hence can be
written as p = (1 —t)po +tpy with pg # pu1 € Mand t € (0,1). For any ¢ €
Eslup we then have (1 —1¢) [ opuo > [ou>—oo,t [ou = [op > —o0. By
Theorem 9.20, this implies g, 41 € M?, which contradicts the extremality
of p in M*. O

11.2. Weak convergence of psh functions

Every ¢ € PSH(w) is finite-valued on X' see Corollary 4.17, but the
topology of PSH(w) is defined as the topology of pointwise convergence on
the strict subset X4V ¢ X", However, we show:

THEOREM 11.4. — The topology of PSH(w) coincides with the topology
of pointwise convergence on X',

See also Corollary 12.15 for other characterizations of the topology of
PSH(w), assuming the envelope property.
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Proof. — Given a convergent net ¢; — ¢ in PSH(w) and v € X" we
need to show ¢;(v) — ©(v). Since sup p; = @;(viriv) converges to sup p =
©(Veriv) and sup@; < @;(v) + T(v), the net (p;(v)) is eventually bounded.
Replacing ¢; and ¢ with max{y;, —t} and max{y, —t} for t > 1, we may
thus assume wlog that (p;) is uniformly bounded, and hence that J(y;) is
bounded. The result is now a consequence of Proposition 9.19, since ¢, has
finite energy by Proposition 11.1. O

Remark 11.5. — Theorem 11.4 remains true for a general projective va-
riety X, simply by restricting to each of its irreducible components.

11.3. The d..-metric

For any two v, w € X" we set

doo(v,w) == sup |p(v) — p(w)]. (11.4)
pePSH
PROPOSITION 11.6. — The following properties hold.

(i) deo is a metric on X', and is the smallest one with respect to
which <p X' — R s 1-Lipschitz for each ¢ € PSH(w);
i) T(v) = doo (v, Virivy) for all v € X'1;
(111) doo (tv, tw) = tduo (v, w) for all v,w € X' and t € Rso;
) deo

(v, w) = SUP,ePL N PSH lp(v) — p(w)];
(v) doo is Isc on X' x X',

Proof. — The function d, is finite-valued, since doo (v, w) < T(v)+T(w)
by (11.1). It is further obviously symmetric, and satisfies the triangle inequal-
ity. If deo (v, w) = 0, then ¢(v) = ¢(v) for all ¢ € PLg NPSH(w). By (3.2),
this implies ¢(v) = ¢(w) for all ¢ € PLg, and hence v = w, since PL(X)
separates points by Lemma 2.3. The second half of (i) is tautological. (ii)
and (iii) follow directly from the definition. An easy approximation argument
yields (iv), which in turn implies (v). O

We refer to the metric space topology defined by do, as the strong topology
of X" while the weak topology of X' means the topology inherited from
X2, By (iv), the weak topology is coarser than the strong one.

If w < W', then deow < doo,w- The metrics deo,, With w € Amp(X) are
thus all LlprhltZ equivalent, and the strong topology of X'" is independent
of the choice of w.

In the case of classes of Q-line bundles, the do, metric admits the following
alternative description.
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LEmMmA 11.7. — If L is an ample Q-line bundle, then dew = doo ¢y (1)
satisfies

doo (v, w) = sup {m~"v(s) — v(w)||m € Zso, s € H*(X,mL) \ {0}}
= W}gnoo sup {m_l [v(s) —w(s) ‘ s € H'(X,mL) \ {0}}

for any v,w € X",

Proof. — TFor each s € HY(X,mL), ¢ := m~tlog|s| is w-psh, and
lv(s) —w(s)| = |p(v) — p(w)|, which proves
doo (v, w) > S == sup {m ™ v(s) — v(w)| | m € Z=o, s € H'(X,mL) \ {0}}.
Next pick ¢ € H(L), i.e. ¢ = m~ ! max;{log|s;| + A} for a basepoint free,
finite set of sections (s;) of HO(X,mL) and )\; € Q. For each i we have
m~1log|s;|(v) < m~tlog|s;|(w) + S, thus p(v) < p(w) + S. Assume ¢ €
PSH(L). By Theorem 4.15, ¢ is the pointwise limit of a decreasing net (¢;) in
H(L), and hence p(v) < ¢(w)+S, which proves doo (v, w) < S, by symmetry.

Finally, the second equality follows from
[v(s) —w(s)] = max{v(s) —w(s),w(s) —v(s)}

and the superadditivity of

m— sup (v(s) —w(s)),
s€HO(X,mL)\{0}
thanks to Fekete’s lemma. O
FEzample 11.8. — If X is a smooth curve, then the parametrizations de-

scribed in Section 1.1.6 endow X' = XVal = Xan\ X (k) = Upex tp([0,4+00))
with a metric which equals do , up to a factor degw. In this case, the metric
space (X' d ) is an R-tree.

THEOREM 11.9. — The metric space (X" d..) is complete.

Proof. — Let (v;) be a Cauchy net for (X' d.). Upon passing to a
subnet, we may assume that v; admits a limit v € X?* in the topology of
X?". Pick € > 0, and choose i such that doo(vi,v;) < € for all 4, j > ig. We
claim that v € X'"™ and du(vs,v) < € for all i > ig, which will prove, as
desired, that the Cauchy net (v;) admits a limit in (X', d). Indeed, for
all ¢ € PSH(w) and 4,5 > iy, we have |¢(v;) — ¢(v;)| < €. Letting j — oo,
this first shows that ¢(v) < +oco for all ¢ € PSH(w), and hence v € X',
Furthermore, |p(v;) — ¢(v)| < &, and taking the supremum over ¢ yields the
claim. ]

As noted above, the Lipschitz equivalence class of (X' d.) is indepen-
dent of w € Amp(X). It is also a birational invariant of X:
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ProOPOSITION 11.10. — FEwery birational morphism w:Y — X induces
a bi-Lipschitz isomorphism (Y% d) ~ (X" dy.).
This refines [36, Lemma 2.8].

Proof. — To see that Y'n — X0 i5 Lipschitz, pick wx € Amp(X) and
wy € Amp(Y) such that 7*wx < wy. Then 7* PSH(wx) C PSH(wy ), which
implies deo oy (v, W) < doo wy (v, w) for all v,w € YR,

In order to prove that the inverse X" — Y!i" is Lipschitz, we use Corol-
lary 4.33 to find wx € Amp(Y), wy € Amp(Y) and px € PSH(wx) such
that

PSH(wy) + m*px C 7* PSH(wx).

For all v,w € Y, this implies deo oy (v, W) < 2deo wy (v, w), and the result
follows. O

11.4. Growth and weak continuity of psh functions

By definition of T, any w-psh function ¢ satisfies a linear growth estimate
()] < T(v) + O(1) = doo (v, Viriv) + O(1)

on X' and this cannot be improved in general. For functions in £!, the
growth is sublinear:

THEOREM 11.11. — FEach ¢ € £' satisfies
| < ATV 4B

on X" with o, := 27" and A, B > 0 only depending on J(¢) and sup o,
respectively.

Proof. — For each v € X' Proposition 11.1 shows that E¥(4,) ~ T(v),
and Theorem 10.3 thus gives

supp — p(v) S max{1,J(ip)}# max {1, T(v)}' ™"
The result follows. .

As already noticed, the restriction of any ¢ € PSH(w) to X'™ is strongly
continuous, and even 1-Lipschitz with respect to do,. With respect to the
weak topology we have:

THEOREM 11.12. — The restriction of any ¢ € PSH(w) to a bounded
subset of (X', dy) is weakly continuous.
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Proof. — We may assume ¢ < 0. Then exp(p) € £ C &', see Corol-
lary 4.11, and it is thus enough to prove the result for ¢ € £'. Pick a
decreasing net (y;) in PLg NPSH(w) converging pointwise to ¢. Then

0 < I(pi,0) = / (i — ©)(MA(p) — MA(gy)) < / (i — ) MA(g) — 0,

by monotone convergence. On the other hand, de(v,vyiv) = Tw) < C
implies EY(8,) < O, by Proposition 11.1, and Theorem 10.3 applied to u =
Oy, pt' = dy,,,, implies that ¢;(v) — @(v) uniformly for v in the ball {T' < C}.
Since each ¢; is weakly continuous on PSH(w), we conclude, as desired, that
¢ is weakly continuous on {T" < C'}. O

11.5. Bi-Lipschitz embedding into M!

By Proposition 11.1, v + §, defines an injection X! < M?! such that
T(v) ~ EY(0,), i-e. doo(v, Viriv) = 1Y (0y, 6,y ), by Theorem 10.2. More gen-
erally, we prove:

THEOREM 11.13. — For all v,w € X"™ we have doo (v, w) = 1Y (84, 6u).
In particular, X'"™ < M is a topological embedding with respect to the
strong topologies.

Remark 11.14. — In [34] we explore additional natural metrics on X'n;
these are all equivalent to d..

By Theorem 10.12, we infer:

COROLLARY 11.15. — The strong topology of X'™ is the coarsest refine-
ment of the weak topology in which v — E(8,) becomes continuous.

In other words, a net (v;) of X" converges strongly to v € X' iff v; — v
weakly and EY(8,,) — EY(d,).

QUESTION 11.16. — Do we have a similar characterization with T(v)
in place of EY(3,)?

LEMMA 11.17. — Assume w = ¢1(L) with L an ample line bundle, and
pick a > 1 such that mL is globally generated for all m > a. Pick v € X',
and set for each m > a

oo i =m ! 1 L).
©o, m seHO(gl,%lXL)\{O} (log|s| + v(s)) € Hr(L)

Then (Yv,m)m>a 1S @ mazimizing sequence for &,, and hence MA(py m) — 0y
strongly in M*.
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Proof. — We first claim that lim,, oo E(0y,m) = sup,,>q E(@um). To
see this, observe that
(m + m/)¢v,m+m’ 2 m@v,m + mlﬁav,m’
for all m,m’ > a. Set S := sup,,, E(puy,m), pick € > 0, and choose mg > 1
such that E(py m,) = S — €. For each m > mo + a write m —a = qmo +r
with ¢ € N and r € {0,...,mp — 1}. The above superadditivity property
yields
MPy,m Z qMOPy,me + (7' + a)‘PU,T+a~
Thus @y.m = Yu.me — O(m™1), and hence
E(ppm)=S—c—0m™ 1) >8—2
for all m > 1, proving the claim.
Since log |s|(v) = —v(s) for s € HO(X,mL) \ {0}, we have ¢, ,(v) = 0.
Thus
lim E(¢y.m) = sup E(gu.m) < EY(d,),

m—00 m>a

and we need to show that this is an equality. Pick ¢ € H(L), so that
p=m""! mgmx{log lsi| + \i}
for some m € Z~q, a basepoint free, finite set (s;) of H*(X, mL) and \; € Q.
We may assume wlog m > a, since we have for r € Z~
o= (rm)~" m?x{log |sT| + A}

For each ¢ we have

(i) + A = logsil() + A < mp(w).
This yields ¢ < @y.m + ¢(v), and hence E(¢) — ¢(v) < E(¢y,m). We infer

EY(3,) = sup (E(p) —¢(v)) < sup E(ppn),

peH(L) mza
which proves, as desired, that (¢, ) is a maximizing sequence for d,. The
final assertion now follows from Corollary 10.13. O

Proof of Theorem 11.13. — By Lemma 10.18, we may assume that w =
c1(L) with L € Pic(X)g ample. By homogeneity, we can even assume that L
is a globally generated line bundle. For each v € X'™ consider the sequence
(¢u.m) from Lemma 11.17. For w € X' we have

Pom(w)=m~" _ max (v(s) —w(s)),

s€HO(X,mL)\{0}
and Lemma 11.7 thus shows that

doo (v, w) = liin max{‘ﬂv,m(w)vww,m(”)}- (11.5)
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On the other hand, Lemma 10.7 and (10.3) yield

I(%@v,vm (Pw,m) ~ 1Y (MA(‘Pwm)vMA(‘pmm)) — IV((SM 6w)' (11'6)
Write

L(v,m> Pwm) = [ (Pom — Pwm) MA(Qw,m) — MA(Py,m)) -

By Lemma 11.17, (¢y,m) and (¢y,m) are maximizing sequences for §, and
0. By Corollary 9.18,

/va,m MA(‘Pmm) = /‘Pv,m(MA(QDmm) - 61}) —0
and
/@w,m MA(@v,m) - ‘Pw,m(v) — 0.

Exchanging the roles of v and w, we infer

10w, ms Pw,m) = Po,m (W) +@uw,m(v) +0(1) & max{pym(w), pw,m(v)}+o(1).

Combining this with (11.5) and (11.6), we conclude, as desired, do (v, w) =
1Y (00, 6u).- 0O

As an application of the above results, we prove:

THEOREM 11.18. — Assume chark = 0. Then X4V is dense in X'
with respect to the strong topology.

LEMMA 11.19. — Let v; — v be a weakly convergent net in X', If
v; < v, then v; — v strongly.

Proof. — Every w-psh function is usc and decreasing on X?" and
w— BY(6,) = sup (E(p) — p(w))
pe&l

is thus increasing and lIsc on X", This yields EY(6,,) < E¥(J,) and

EY(4,) < liminf EY(4,,),
and hence EY(6,,) — EY(6,). By Corollary 11.15, this proves v; — v
strongly. O

Proof of Theorem 11.18. — By Corollary A.3, any v € X?" is the limit
of a net (v;); in X4V such that v; < v. When v € X" this implies v; —
v strongly, by Lemma 11.19, and thus proves that X% is strongly dense
in X'in, ]

- 806 —



Global pluripotential theory over a trivially valued field
12. The strong topology on £! and the Calabi—Yau theorem

In this section, we assume until further notice that X is irreducible, and
fix an ample class w € Amp(X).

Having analyzed the strong topology on the space M! = M!(w) of Radon
probability measures of finite energy, we now perform the corresponding
analysis on the space £! = £1(w) of w-psh functions of finite energy.

12.1. The strong topology of &£!

Following [10, 11] we introduce:

DEFINITION 12.1. — The weak topology of £' is the topology inherited
from PSH(w). The strong topology is the coarsest refinement of the weak
topology for which E: £ — R becomes continuous.

Thus a net (p;) in E' converges weakly to p € EL iff p; — ¢ pointwise
on X4V (or, equivalently, on X'" cf. Remark 11.5); it converges strongly iff
we further have E(yp;) — E(y). By Proposition 7.7, E is continuous along
decreasing nets, and hence:

Ezample 12.2. — For a decreasing net (p;) in £, weak and strong con-
vergence coincide.
DEFINITION 12.3. — We define the quasi-metric I on £ by setting
Ly, @) = Li(p. @) =1(p,¢') + |supp — sup ¢'| (12.1)
for o, € EL.

By (7.30) and Corollary 10.4, I is indeed a quasi-metric. It is further
immediate to check that it satisfies the analogue of (7.34), i.e.

(g, ¥) = L(p, max{,¥}) + I (max{p, ¥}, ) (12.2)
for all p,7» € £'. As we now show, the quasi-metric I defines the strong
topology of £1.

_ THEOREM 12.4. — A net (p;) in EY converges strongly to p € EY iff
I(pj,¢) = 0.

Proof. — First assume that ¢; — ¢ strongly in €. Then sup ¢; — sup ¢,
E(¢;) = E(p), and J(¢;) = sup ¢; —E(yp;) is thus eventually bounded. Since
©; — ¢ weakly, Proposition 9.19 yields [(p; — ¢) MA(p) — 0. Thus

s, ¢) = Jo(ps) = E(p) — E(p;) + /(w —¢)MA(p) — 0, (12.3)
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in view of (7.29), and hence I(g;, p) — 0.

Assume, conversely, I(¢;,¢) — 0, i.e. supp; — supp and I(p;, ) — 0.
Since d, has finite energy for v € X%V (Proposition 11.1), Theorem 10.3
yields ¢;(v) = @(v), i.e. ¢; — ¢ weakly. By the quasi-triangle inequality,
J(p;) = I(g;,0) is further eventually bounded, and Proposition 9.19 there-
fore implies [ ¢; MA(p) — [ @ MA(¢p), which in turn shows that E(¢;) —
E(p), by (12.3). Thus ¢; — ¢ strongly, which concludes the proof. O

By Example 12.2, any weakly convergent decreasing net in £! is strongly
convergent. The next result, which is a direct consequence of Theorem 7.38,
shows that this also holds for increasing nets:

THEOREM 12.5. — Let (¢;) be an increasing net in &L, and assume that
©j —  weakly in E'. Then ¢; — ¢ strongly as well.
We end this section with a useful quantitative version of Corollary 10.5.

PROPOSITION 12.6. — Let (p;) be a net in ' and ¢ € E' such that
i < @ for alli. Then @; — ¢ strongly iff E(¢;) = E(¢).

Proof. — The “only if” part follows directly from the definition of strong
convergence. Conversely, assume E(p;) — E(p). Since ¢; < ¢,

Wi, ) = Jp(pi) = E(p) — E(ps) + /(% — @) MA(p) < E(p) — E(¢i)

tends to 0, and hence ¢} := ¢; —sup ¢; converges strongly to ¢’ := ¢ —sup ¢,
by Theorem 12.4. In particular, E(¢}) = E(p;) —sup ¢; converges to E(¢’) =
E(p) — sup ¢, hence sup ¢; — sup ¢, and we conclude, as desired, p; — ¢
strongly. O

12.2. Strong continuity and surjectivity of the Monge—Ampére op-
erator

We define the strong topology on £!/R =~ 5slup as the one induced by the

strong topology on £!. It is defined by the quasi-metric (¢, ') — I(p,¢'),
by Theorem 12.4.

As a direct consequence of Lemma 10.7, we have:

PROPOSITION 12.7. — The Monge—Ampére operator MA: £ — M' in-
duces a bi-Lipschitz embedding

(EYR,T) — (M TY).
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Recall from Theorem 5.11 that the envelope property for w € Amp(X)
(which holds if X is smooth and k has characteristic zero, cf. Theorem 5.20)
is equivalent to the compactness of PSH(w)/R. In a similar vein we have:

THEOREM 12.8. — For any w € Amp(X), the following are equivalent:

(i) the envelope property holds for w;
(ii) the Monge-Ampére operator MA,: 1 (w) — M is onto;
(iii) the Monge—Ampére operator induces a bi-Lipschitz isomorphism

(€M (w)/R, L) = (M, 1)

(iv) (El(w)/R,Iw) is complete;
(v) (EY(w), 1) is complete.

In particular, £'(w) can only be complete if X is unibranch, cf. Theo-
rem 5.12.

Proof. — Assume (i). By Corollary 9.12, (ii) holds iff the supremum defin-

ing EY(u) = up, (E(w) - / w)

is achieved for any u € M. Thus choose a maximizing sequence (y;) for u in
Eslup. By Corollary 5.21, PSHy,, is weakly compact, and we may thus assume,
after passing to a subnet, that (¢;) converges weakly to ¢ € PSHg,,. Since
Ju(pi) = 0, (9.11) shows that J(y;) is eventually bounded, and hence that
¢ € E1(w), since J is weakly lsc. By Proposition 9.19, the weak convergence

©; — ¢ implies [ ¢; p — [ ¢, and hence

E(y) —/w 2 lim sup (E(tpi) —/% u) =E"(n),
since E is weakly usc. This proves (i) = (ii). Proposition 12.7 gives (ii) <
(iii), and (iii) = (iv) follows from the completeness of (M, 1) (Theo-
rem 10.14).

Assume (iv), and pick a Cauchy sequence (;) in (£1(w),L,). Then (p; —
sup ¢;) is Cauchy in &£}, (w) ~ £'(w)/R, and hence strongly convergent in
EYw). Now (supg;) is Cauchy as well, and hence convergent in R, so we

conclude that (¢;) is strongly convergent, proving (iv) = (v).

Finally we prove (v) = (i). Assume that £!(w) is complete. By Theo-
rem 5.11, (i) is equivalent to the fact that any bounded, increasing net (¢;)
in PSH(w) converges weakly in PSH(w). Since the increasing net (sup ;)
converges in R, it will be enough to show that (¢;) is Cauchy in £'(w)/R,
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i.e. that
Lo(0 ) & T (97) = Bulpi) — Eu(i)) + / (5 — 01) MAL (1)

tends to 0 as 7, j — oo, where by symmetry of I,, we may assume i < j. The
increasing net (E,(¢;)) converges in R. Given € > 0, choose iy such that
0 < Eu(pj) —E,(pi) <efor j =i>idg. As ¢; < j, (7.22) yields

0< [ (03 = ) MAL(91) < (0+ 1) (Bu(oy) — Eul) < (n+ D
Thus
Ey(pi) — Eulp;) + /(‘Pj — i) MA,(#:) < me,
which proves, as desired, that (p;) is Cauchy in £'(w)/R. O

As a direct consequence of Theorem 12.8 and Theorem 5.20, we have the
following result, cf. Theorem A.

THEOREM 12.9. — Suppose that X 1is smooth, that chark = 0 or
dimX < 2, and fir w € Amp(X). Then the Monge-Ampére equation
MA(p) = u admits a solution ¢ € EY(w), unique up to translation, for
every pn € M*.

Ezample 12.10. — Assume the envelope property for w € Amp(X). For
each v € X' there exists a unique ¢, € £'(w) such that MA(p,) = d, and
©y(v) = 0, which we call the Green’s function of v. See Proposition 12.14 for
more on these functions.

Ezample 12.11. — Let X be an irreducible curve with a nodal singu-
larity at p € X(k), and denote by p1,ps € X¥(k) the preimages of p (see
Figure 1.1). Then v := ord,, € X* 4V ~ X4V and §, € M!(X) is not in the
image of MA: €' — M!. Using Example 7.20 and v, MA(v*¢) = MA(p)
(see (7.18)), one sees indeed that a function ¢ € PSH(w) such that MA(p) =
51} must SatiSfy V*Qo(vtriv) = V*Q(Upg,triv) = @(Up,triv) = V*W(Upl,triv)y and
hence must be constant on the ray through v, a contradiction.

12.3. Continuity of solutions to Monge—Ampeére equations

THEOREM 12.12. — Let ¢ € £, and suppose that u = MA(p) is sup-
ported in a bounded subset of (X" dy), i.e. suppu C {T < C} for some
C > 0. Then ¢ € CPSH(w).

Example 12.13. — The condition on p is satisfied if chark = 0, X is
smooth, and p is supported on the dual complex of an snc test configuration
for X (see Theorem A.4 below).
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Proof of Theorem 12.12. — Write ¢ as the limit of a decreasing net (;)
in CPSH(w). By Theorem 11.12, ¢ is continuous on the (weakly) compact
set K :=supp p C X", and hence p; — ¢ uniformly on K, by Dini’s lemma.
For any € > 0 we therefore have p; < ¢ + ¢ on K for i large enough. Thus
vi < ¢+ e ae for MA(p + &) = p, and hence ¢; < ¢ 4+ € on X2, by the
domination principle (Corollary 10.6). This shows ¢; — ¢ uniformly on X"
and hence ¢ € C°(X). O

PROPOSITION 12.14. — Assume the envelope property for w. Pick v €
X' and recall from Example 12.10 that the Green’s function o, € E' is the
unique function such that MA(p,) = §, and ¢, (v) = 0. Then:

(i) ¢, € CPSH(X);
(ii) ¢u =sup{p € PSH(w) | ¢(v) < 0};
(iii) for all v,w € X" we have deo(v,w) = max{p,(w), w(v)} =
SUP xan [P0 — Puwl;
(iv) sup ¢, = T(v).

If w = ¢1(L) for an ample bundle L, then @, is the uniform limit as m — oo
of the functions

i -1
Po,m =M seHU(gl,%i(L)\{O} (log [s| +v(s)) € Hr(L)

from Lemma 11.17.

Thus (iii) yields an isometric embedding (X' d.,) < CPSH(w) with
respect to the supnorm.

Proof. — Assertions (i) and (ii) are direct consequences of Theorem 12.12
and the domination principle (Corollary 10.6), respectively. To establish (iii),
note first that p,(w) = @, (w) — @, (v) < doo (v, w), and hence do, (v, w) >
max{y,(w), Y, (v)}, by symmetry. Conversely pick ¢ € PSH(w). By (ii),
© — @(v) < p,. Thus p(w) — p(v) < @,(w), and hence

doo (v, w) = sup [p(v) = p(w)] < max{py (w), pu(v)},
pePSH
which proves (iii), of which (iv) is the special case w = vy, see Proposi-
tion 11.6 (ii).

To establish the last statement in the proposition, we first note, as in the
proof of Lemma 11.17, that the sequence m — my, ., is superadditive, and
hence

lim @ym = sup @u,m
m—o0 m—o0o

pointwise on X2, by Fekete’s lemma. On the one hand, ¢, ,(v) = 0 yields
SUD,—y00 Pu.m < @, by (ii). On the other hand, the proof of Lemma 11.17
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shows that any ¢ € H(L) with ¢(v) = 0 satisfies ¢ < ¢, y, for some m > 1,
and hence

v = sup{p € H(L) | p(v) = 0} < suppy,m,
m
where the left-hand equality is an easy consequence of (ii). We conclude
©u,m — ©y pointwise on X?", and a simple variant of Dini’s lemma, based

on the superadditivity of m ~— my, n, shows that the convergence is
uniform. O

We conclude this section with the following consequence of Proposi-
tion 12.14:

COROLLARY 12.15. — Assume that w € Amp(X) has the envelope prop-
erty. Let ¢ € PSH(w), and let (¢;) be a net in PSH(w). Then the following
are equivalent:

(i) ¢j = ¢ in PSH(w);
(ii) lim; [ p; MA(¢) = [ @ MA(¥) for every ¢ € PLNPSH(w);
(iii) lim; [ ¢; MA(¢) = [ ¢ MA(9) for every ¢ € CPSH(w).

Proof. — By Proposition 7.19(ii), for each ¥ € PLNPSH(w) the mea-
sure MA () is supported in a finite subset of X4V, and the pointwise con-
vergence ¢; — ¢ on X9V thus implies lim; [¢; MA(¢)) — [ MA(¢), ie.
(i) = (ii). Assume (ii), pick ¢ € CPSH(w), and choose a sequence (¢,,) in
PLNPSH(w). By Lemma 7.32, we have

‘/memm/@MAwﬂsnmm¢mn
and
\/wmmw%>l/wMAwﬂ<nwmwwu

for all ¢, and (ii) = (iii) follows easily. Finally, (iii) implies in particular

wm:/wMM%wawm:/wan

for each v € X4V, by Proposition 12.14. Hence (iii) = (i). O

12.4. Countable regularization and Choquet’s lemma

In this final section, X is again allowed to be reducible. Using the energy
functionals, we establish the following countable convergence result.

THEOREM 12.16. — Pick § € NY(X). Let (¢;)icr be a monotone (i.e.
increasing or decreasing) net in PSH(0), and assume that it converges to
v € PSH(#). Then there exists an increasing map N — I m +— i(m) such
that im0 Pi(m) = @ in PSH(0).
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Remark 12.17. — Note that (©;(m))men is not claimed to be a subnet
of (¢i)icr, as the directed set I might not admit any countable cofinal sub-
set. On the other hand, by monotonicity of (¢;), the sequence (©;/(,)) also
converges to ¢ for any increasing map m — i'(m) such that i'(m) > i(m).

Proof. — Assume first that X is irreducible. Pick 8 € Amp(X) such that
0" — 0 is nef. Then PSH(A) C PSH(#'), and it is enough to show the result
when w := 6 is ample, which we now assume.

Suppose first that ¢ and all the ; lie in £'(w). By Example 12.2 (resp.
Theorem 12.5), we have ¢; — ¢ strongly, i.e. lim;er I(¢;, ) = 0. We can thus
inductively construct an increasing map m + i(m) such that I(;(m), ) <
1/m. Then lim,, p;;,) = ¢ strongly in £'(w), and hence in PSH(w) (i.e.
pointwise on X41V).

Consider now the general case. Observe first that we may assume wlog
v < 0and p; <0 for all 4. If (¢;) is increasing, it suffices to replace p; with
;i —supg. If (¢;) is decreasing, replace I with {i € I | i > ip} for some
10 € I, and ¢; with ¢; — sup ¢;,.

By Corollary 4.11, we then have

¢ = exp(p), @i = exp(p;) € E%(w) C €' (w).
By what precedes, we can find an increasing map m +— i(m) such that
@i(m) — @ pointwise on X4V, Since the ¢; and ¢ are finite-valued on X4,
this implies ;) — ¢ on X4V and we are done.

Assume finally that X is reducible. For each «, the previous step yields
an increasing m — i (m) such that o; () — ¢ on X5". By Remark 12.17, it
remains to pick any increasing map m — i(m) such that i(m) > maxg, io(m)
for all m; such a map is easily constructed by induction on m. |

Combining Theorem 12.16 with Theorem 4.15, we infer:
COROLLARY 12.18. — Pick § € N'(X) and p € PSH(). Then:

(i) ¢ can be written as the limit of a decreasing sequence @, €
H%f(Lm) with Ly, € Pic(X)q such that ¢1(Ly,) — 0 is ample and
lim,, ¢1 (L) = 0;

(i) if 0 € Nef(X) then (i) holds with ¢n, € H(L.y,) and L, ample;

(iii) if 0 € Amp(X), then ¢ can be written as the limit of a decreasing
sequence in HI°™(0) (see Definition 3.8).

Remark 12.19. — A version of (iii) was proved in [26, Proposition 4.7],
using the Bedford-Taylor capacity instead of the energy functionals.

This implies in turn that psh functions are non-constant only on relatively
small subsets of X" when the ground field k is uncountable.
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THEOREM 12.20. — For any 0 € NY(X) and ¢ € PSH(0), there exists
a countable intersection of non-empty Zariski open subsets U C X such that
o =supp onc H(U).

Recall that ¢: X*" — X denotes the center map, which is anticontinuous.

Proof. — By Corollary 12.18, we can write ¢ as the limit of a decreasing
sequence of generically finite Fubini-Study functions ¢,,. By Lemma 2.24,
for each m there exists a non-empty Zariski open subset U,, C X such that
Om = SUP @i, on ¢ H(Uy,). Now sup ¢, — supp (see Example 4.21), and
the result follows with U := (), Uy,. O

COROLLARY 12.21. — Any pluripolar set E C X®" is contained in a
countable union of open sets of the form ¢~ 1(Z), with Z C X a strict Zariski
closed subset. If k is uncountable, then E cannot be dense.

Proof. — There exists § € N'(X) and ¢ € PSH(f) such that E C {¢ =
—o0} C {¢ < sup e}, and the first point thus follows from Theorem 12.20.
When £k is uncountable, X cannot be written as a countable union of strict
Zariski closed subsets, and we can thus find p € X (k) such that FE is disjoint
from ¢~ 1({p}) C X", Now the latter is open and non-empty (as it contains,
for instance, the trivial semivaluation vy triv). This prevents E from being
dense. 0

As a further consequence of Theorem 12.16, we also get a version of
Choquet’s lemma, which will be put to use in Section 13.

COROLLARY 12.22. — Assume that § € N*(X) have the envelope prop-
erty. Let (pa)aca be a family in PSH(O) that is uniformly bounded from
above. Then there exists an at most countable subset B C A such that

* ke
SUp” Po = SUP Pu-
acA aEeB

Proof. — By assumption, ¢ := sup}c, @a is 6-psh. Denote by (A;)icr
the net of all finite subsets of A, and for each i € I set 9; := maxpea; Po-
Then (;);er is an increasing net in PSH(w), which converges to ¢. By The-
orem 12.16, we can find an increasing map m + i(m) such that ¥;(,) — ¢.

Then B := J,, Aitm) is at most countable, and we have sup,cp ¢ =
SUDyec 4 Pa OL X4V and hence SUPLcp Pa = SUDPLeq Pa On X2 by Corol-
lary 4.23, since both functions are 6-psh. O

— 814 —



Global pluripotential theory over a trivially valued field
13. Capacities, pluripolar sets, and negligible sets

Assuming the envelope property, we make a more detailed study of pluri-
potential theory, adapting to our setting classical arguments from the com-
plex analytic case. In particular, we prove the fundamental result that neg-
ligible sets are the same as pluripolar sets.

In what follows, X is of dimension n and érreducible. We fix an ample
class w € Amp(X), and we assume that the envelope property holds for
w, see Section 5.2. As before, we write V. =V, = (w") and MA(p) :=
V= Hw+ddp)" for ¢ € £ = EH(w).

13.1. Envelopes of Isc functions

Consider an arbitrary function ¢ : X*® — R U {+o0}, and assume that
¢ is bounded below. By Lemma 5.17, the usc regularization

P(p)" = sup”{¢ € PSH | ¢ < ¢}
of the w-psh envelope P(y) is either w-psh and bounded, or satisfies P(¢)* =
+o00.

THEOREM 13.1. — Pick any lsc function ¢ : X** — R U {4+oc0}, and
assume P(p)* #Z +oo. Then

P(p)" =P(p) = ¢ a.e. for MA(P(p)").
In particular, the orthogonality property
| =P MAPG)) =0 (13.1)

holds (compare [26, 28]).

LEMMA 13.2. — If N C X®" is a negligible Borel set (see Definition 5.1),
then (N) = 0 for all measures of finite energy u € M*.

This strengthens in particular Lemma 9.2, since pluripolar sets are neg-
ligible (Proposition 5.3),

Proof. — By Choquet’s lemma (see Corollary 12.22), there exists an in-
creasing, uniformly bounded sequence (¢,,)7° in PSH(w) such that N C
{¢ < ¢*}, where ¢ := lim,, ., pointwise. Recall that ¢* € PSH(w), thanks
to the standing assumption that the envelope property holds. On X4V we
have ¢* = ¢, by Theorem 5.6. Thus ¢,, — ¢* weakly in €' (and in fact
strongly as well, by Theorem 12.5), and hence [ ¢, p — [ ¢* p, by Propo-
sition 9.19. On the other hand, the monotone convergence theorem shows
that [ @m pu— [ u. Thus [(¢* — ¢)p = 0, which implies p(N) = 0. O
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Proof of Theorem 13.1. — Set ¢ := P(¢)* and pu := MA(¢)). Assume
first ¢ € C°(X), so that 1 = P(¢) is continuous and w-psh. Arguing as
in the proof of [28, Lemma 3.5], set f := ¢ — ¢ > 0, and observe that for
t €10,1],

=9 +tf = (1—1)P(p) +ty
satisfies P(¢) < ¢: < ¢, and hence P(¢;) = P(yp). Thus E(¢+¢f) = E(P())
for t € [0,1], and Corollary 8.6 yields

d
Je-vmaw = 5| Ew+en =0
t=0
and hence ¢ = ¥ p-a.e.

Now consider the general case. Since the Borel set {¢) > P(¢)} is negligi-
ble, Lemma 13.2 shows that ) = P(y¢) p-a.e. In particular, ¥ < ¢ p-a.e., and
it thus remains to show that p puts no mass on the open set U := {¢ < p}.

Since ¢ is Isc and X?" is compact, there exists an increasing net (¢;) in
C%(X) that converges pointwise to . By Lemma 5.19, the increasing net
1, := P(p;) converges pointwise to P(¢). By Theorem 5.6, we thus have
P; — 1 on X9V and Theorem 12.5 implies that pj = MA(¢;) converges
weakly to p. By the first part of the proof, ;1; puts no mass on the open set
U; :={¢; < ¢;}, and we want to take the limit and deduce that p(U) = 0;
this will conclude the proof. To do so, suppose p(U) > 0, and pick a point
v € UNsupp p. Thus ¢(v) < (v), so there exists jo such that ¥ (v) < ¢;(v)
for j > jo. Set V := {¢ < ¢;,}. Then V is open, v € V and V C U; for
J = jo. Since v € supp u, we have p(V) > 0. As p; — p weakly, we must
have p;(V') > 0 for j > 0, which contradicts u;(U;) = 0. O

13.2. The Bedford—Taylor capacity, reprise

Recall from Section 7.7 that we have set, for each Borel set £ C X?",
Cap(E) = Cap,,(F) := sup {/ MA () ‘w e PSH, -1 <9 < O} .
E

Note that 0 < Cap(FE) < 1 for all Borel sets E C X*?, and that Cap(X) = 1.

ProroSITION 13.3. — The function Cap is a precapacity, i.e. it satis-

fes:
E C E' = Cap(E) < Cap(E’) (13.2)

for all Borel subsets E,E’, and
Cap (U Em> = sup Cap(Fy,) (13.3)
m
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for any increasing sequence (E,,) of Borel subsets.

It is further subadditive, i.e.
Cap (U Em) <Y Cap(En) (13.4)
J

for any sequence (E,) of Borel subsets, and inner regular, i.e.
Cap(F) =sup {Cap(K) | K C E compact} (13.5)
for any Borel subset E.

Proof. — The first three properties follow immediately from the defini-
tion of the capacity as the supremum of the Borel measures MA (1)), and the
last one likewise follows from the fact that these Borel measures are Radon
measures, and hence inner regular on all Borel sets. O

We define the outer capacity of any subset £ C X?" as

Cap*(E) := inf {Cap(U) | U D E open}.
Trivially, Cap*(U) = Cap(U) for any open U C X?" and Cap” is outer
regular, i.e.
Cap™(E) = inf  Cap*(U 13.6
ap’(B) = inf - Cap™(U) (13.6)
for all E. Proposition 13.3 immediately yields:

PROPOSITION 13.4. — The function Cap” is monotone and subadditive,
i.e. the analogues of (13.2) and (13.4) hold for arbitrary subsets of X",

As we shall see, Cap* also satisfies the continuity condition (13.3), but
this is much more involved, see Theorem 13.29 below.

Ezample 13.5. — Every nonempty open subset U C X" has Cap(U) >
0. Indeed, U must contain a divisorial valuation v, by density of XV, For
0<e<1,9¢:=ep, —1is a candidate in (7.35), and hence

Cap(U /MA /MA oy) =" (13.7)

By Proposition 9.6 and Lemma 13.2, we have, on the other hand:
Ezample 13.6. — Every negligible Borel set N C X?" satisfies Cap(N)=0.

As we shall see below, this holds in fact for Cap™ as well, see Lemma, 13.19.

To conclude this section, we consider the dependence of Cap = Cap,, on
w € Amp(X).

THEOREM 13.7. — For any ample classes w,w’ € Amp(X) there exists
a constant C' = C(w,w’) > 1 such that C~! Cap,, < Cap,, < C Cap,,.
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This is a direct consequence of the following more precise result.

LEMMA 13.8. — Let w,w’ € Amp(X). Then:

(i) if w < W', then V, Cap, < V,» Cap,,;
(ii) ¢ft > 1, then t—" Cap,, < Cap,, < Cap,,;

Proof. — If w < ', then PSH(w) C PSH(w') and
Vo MA,(¥) = (w+dd®¢)" < (o' +dd®¢)" = Vi, MA /()
for any ¢ € PSH(w) with —1 < ¢ < 0. This proves (i).
The first inequality in (ii) follows from (i). For the second, suppose
¢ € PSH(w) and —1 < v < 0. Then t~1¢ € PSH(w), —1 < ¢t~ < 0,

and the Radon probability measures MA,,(t~14) and MAy, (1) coincide.
Thus Cap,,, < Cap,,,. O

13.3. Quasicontinuity

While w-psh functions are not continuous in general, they satisfy the fol-
lowing quasicontinuity property, reminiscent of Lusin’s theorem in measure
theory.

THEOREM 13.9. — For each ¢ € PSH(w) and € > 0, there exists a
compact K C X such that Cap(K¢) < € and ¢|x € C*(K).

Here K¢ := X*"\ K.

COROLLARY 13.10. — Given a sequence () in PSH(w) and € > 0
there exists a compact K C X® such that Cap(K°¢) < € and o,|r € CO(K)
for all m.

Proof of Theorem 13.9. — After adding a constant, we may assume
sup ¢ =0, i.e. ¢ € PSHgy,p. First suppose that ¢ is bounded. Let (¢;); be a
decreasing net in PL(X) N PSH(w) converging to ¢, and pick ¢ € PSH(w)
with —1 < 4 < 0. By Theorem 10.3 [(¢; — ¢) MA(¢) — 0 uniformly with
respect to 1. Using Chebyshev’s inequality and the definition of the Bedford—
Taylor capacity we can thus find, for every integer m > 1, an index j,, €
such that j,,+1 > jm and the compact set

Ko o= {g;,, —o<m™'}

satisfies Cap(Kj,) < 27™e. If we set K := (), Ky, then Cap(K°¢) <
>, Cap(KE,) < e by countable subadditivity of Cap, and ¢;,, — ¢ uni-
formly on K, so that ¢|x is continuous.
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Consider now a possibly unbounded ¢ € PSHg,, and ¢ > 0. By Lem-
ma 7.47, we can find ¢ > 0 such that K" := {¢ > —t} satisfies Cap(K'®) < e.
Applying what precedes to the bounded function max{p, —t} gives a com-
pact K C K’ such that Cap(K°) < 2¢ and ¢|x = max{yp, —t}|x is continu-
ous, and we are done. O

Proof of Corollary 13.10. — Pick € > 0. For each m we find a compact
K,, C X such that Cap(K¢,) < €2™™ and ¢,|k,, € C°(X). Then K :=
N, K is a compact such that Cap(K¢) <), Cap(K,) < ¢, and ¢, |k is
continuous for all m. ]

Remark 13.11. — Corollary 13.10 implies Theorem 11.12. Indeed, argu-
ing as in Example 13.5 (or using the Alexander-Taylor inequality (13.10)
below) shows that given C' > 0 there exists ¢ > 0 such that any v € X'®
with T(v) < C satisfies Cap({v}) > 2e. For any ¢ € PSH(w), the compact
K provided by Theorem 13.9 must then contain {T" < C}, and ¢ must thus
be weakly continuous thereon.

13.4. Extremal functions

We now look for functions achieving the supremum in (7.35). Let E C
X2 be any subset. The extremal function of E is

¢p =sup{p € PSH | ¢ < 0,¢|r < —1} = P(~ 15). (13.8)

Note that —1 < ¢ < 0, and pg = —1 on F, since the function ¢ = —1
is a competitor in (13.8). Its usc regularization %, lies in PSH(w), by the
envelope property, and also satisfies —1 < ¢}, < 0, but it may happen that
¢y #Z—1lon E.

THEOREM 13.12. — If K C X is compact, then

Can(K) = | MAGsic) = [ (=ei) MG = [ (—pi) MAGsR). (139)

an

We refer to Theorem 13.26 below for a version of this result for arbitrary
subsets of X?2".

Proof. — Since pg is the psh envelope of the Isc function — 1 g, Theo-
rem 13.1 implies that ¢} = — 1 a.e. for MA(yJ ), and hence

[ erniaio = [ (—eioMai) = [ MAG).

Since —1 < ¢} < 0, we have Cap(K) > [, MA(¢})). To prove the
reverse inequality, pick any ¢ € PSH(w) with —1 < ¢ < 0, and ¢t € (0,1).
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By Lemma 13.2, tip > —1 = ¢}, on K a.e. for MA(t¢), and hence
o [ MA@ < [ Mag) < [ MA@)
K K {3 <t}

< / MA(}) < / MA (),
{p5 <t} K

where the third inequality follows from the comparison principle, and the
last inequality from the fact that ti) < 0 = ¢} outside K a.e. for MA(t1)).
Letting ¢t — 1 yields the reverse inequality Cap(K) < [, MA (¢} ). O

COROLLARY 13.13. — The Bedford—Taylor capacity is outer reqular on
compact sets, i.e. Cap*(K) = Cap(K) for all compact K C X,

Proof. — On the one hand, Cap*(K) is the decreasing limit of Cap(L)
for L ranging over the directed sets of all compact neighborhoods of K. On
the other hand, (— 1) forms an increasing net of lsc functions converging
pointwise to —1g. By Lemma 5.19, ¢5 = P*(—1;) therefore converges
strongly to ¢% = P*(—1k) in !, and hence

Cap(L) = [ (~¢3) MA(s}) — Cap(K) = [ (~¢k) MAgFo).

by Theorem 10.3. Thus Cap*(K) = Cap(K). O

13.5. Negligible sets are pluripolar

Recall from Section 4.5 that
T(E) = sup {supp —supg ¢ | ¢ € PSH} € [0, +00]

for any subset £ C X?". The next result is a direct analogue of [75, Propo-
sition 7.1], itself an adaptation of the Alexander—Taylor inequality [1].

THEOREM 13.14. — For any subset E C X*" we have
min{1, T(E) "} < Cap*(E) < nT(E)". (13.10)
Before entering the proof, we attach to each subset E another extremal
function Vg : X?" — [0, +00], defined as
Ve :=sup{p € PSH| ¢ <0 on E} =P(fg)

with fg: X - RU {400} such that fg =0 on F and fg = oo on X \ E.
Note that
sup Vg =sup V5 = T(E). (13.11)
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LEMMA 13.15. — Let E C X?" be any subset.

) If E is pluripolar then Vj = +00;

i) if E is not pluripolar, then V% € PSH(6);

) if E is open, then V} = Vg;

) if E is compact and non-pluripolar, then MA(VE) is supported
in b.

Proof. — Suppose that E is pluripolar, and pick ¢ € PSH(w) such that
Y|p = —oo. For any ¢t > 0, we have ¢, := 1 +t € PSH(w) and ¢¢|g < 0, so
Vi = 1. Thus Vi = Vg = +oo on X4V, and hence V3 = 400, by density
of X4V, This proves (i), while (ii) holds by the envelope property. If E is
open, then fg is usc, and hence Vj = Vg, implying (iii). If £ is compact
and nonpluripolar, then fg is lsc, so Theorem 13.1 shows that MA(V}) is

supported on the set {V% > fg} C E, which proves (iv). O
LEMMA 13.16. — For each subset E C X*" we have
T(E) =sup{T(U) | U D E open}, (13.12)
and
T(U) =inf{T(K) | K CU compact} (13.13)

for every open U C X?".

Proof. — Denote the right-hand side of (13.12) by S € [0, +00]. Clearly,
T(E) > S. Pick ¢ € PSH(w) and € > 0. Since ¢ is usc, U := {p < supy ¢+¢}
is an open set containing E, and hence

supyp < supp + T(U) < supp +¢e+ S.
U E

It follows that T(E) < S + ¢ for all € > 0, which proves (13.12).

To prove (13.13), it is enough to show that the decreasing net (V%) with
K in the directed set of compact subsets of U converges to V7 = V. By
Theorem 4.7, the decreasing limit ¢ := limg V}; is w-psh. For each compact
K C U, we have Vg > Vi, and hence ¢ > Viy > 0. On the other hand,
e < Vg < VI?{ = Vg, and hence ¢ = 0 on K. As this holds for all compact
K c U, we infer ¢ =0 on U, and hence ¢ < V. ]

Proof of Theorem 13.1/. — Assume first that £ = K is compact. In
this case Cap”*(K) = Cap(K), by Corollary 13.13. Set T := T(K) = sup V%,
and suppose first T < 1. We claim that Cap(K) = 1, which implies (13.10).
Indeed, we always have Cap(K) < 1, and V} — 1 is a candidate in the
definition of Cap(K). By Lemma 13.15, MA(Vj —1) = MA(V}) is supported
on K, and hence

Cap(K) > /KMA(V,; 1) = /MA(v,g) =1
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Now suppose T > 1. Then 77!V} — 1 € PSH(w) is a competitor in the
definition of Cap(K), so

Cap(K) >/ MA(T'VE-1) > T‘"/ MA(VE)=T"",
K K

which proves the left-hand inequality in (13.10). On the other hand, we have
TV} —1 < ¥, so by Theorem 13.26 we have

Cap(k) = [ (~o) MAGi) <771 [ (T~ Vi) MA(g) <nT

where the last inequality follows from Lemma 7.32, since Vi —T € PSHgyp,
which implies [(V —T)MA(0) = 0. This proves the right-hand inequality
in (13.10) when F = K is compact.

Assume next that £ = U is open. By inner regularity of Cap, we have
Cap*(U) = Cap(U) = sup Cap(K)
KcU

with K ranging over the compact subsets of U, while T(U) = inf gy T(K),
by (13.13). Thus (13.10) for compact sets implies the case of open sets.

Finally for an arbitrary subset F we have Cap*(E) = infy~g Cap(U)
by definition of the outer capacity, and T(E) = supy~g T(U) by (13.12).
Thus (13.10) for open sets implies the general case. O

We are finally in a position to establish the converse of Proposition 5.3.

THEOREM 13.17. — FEvery negligible subset E C X" is pluripolar.

Recall that our assumptions here are that X is irreducible and that w €
Amp(X) is a class for which the envelope property holds. However, the
conclusion of Theorem 13.17 holds in other cases too.

COROLLARY 13.18. — Let X be any projective variety, and assume that
chark =0 or dim X < 2. Then any negligible subset of X is pluripolar.

Proof. — By Corollaries 4.41 and 5.5 we may assume X is irreducible.
Our assumptions imply that X admits a resolution of singularities, so by
Lemmas 4.40 and 5.4 we may assume that X is smooth. In this case, The-
orem 5.20 implies that any ample class has the envelope property, and we
conclude using Theorem 13.17. g

To prove Theorem 13.17 we need
LEMMA 13.19. — If E C X" 4s a negligible subset, then Cap*(E) = 0.

Proof. — By Choquet’s lemma (see Corollary 12.22) there exists
bounded, countable family (¢,,,) in PSH(w) such that E C {¢ < ¢*}, where
© = sup,, ¥m pointwise. Pick any ¢ > 0. By Corollary 13.10, we can find a
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compact K C X?" such that Cap*(K°¢) = Cap(K°¢) < € and such that ¢, |k
is continuous for all m. Thus ¢|k is Isc. For each | € Z~( define
K =Kn{p+17' <p*}

Since (¢ — ¢*)|x is Isc, K is compact. It is also negligible, so Cap*(K;) =
Cap(K;) =0, by Corollary 13.13 and Example 13.6. Furthermore, EN K C
U, Ki, and hence

Cap*(E) < Cap*(K°) + »_ Cap*(K)) <,
1

by subadditivity of Cap*; the result follows. O

Proof of Theorem 13.17. — 1In view of Theorem 4.45, we need to show
that every negligible subset E C X" satisfies T(E) = oco. This follows from
Lemma 13.19 and the Alexander—Taylor inequality (13.10). |

13.6. More on envelopes

As a consequence of Theorem 13.17, we have:

THEOREM 13.20. — If ¢: X?* — R U {400} is bounded below, then
P(p)* is the largest function ¢ € PSH(w) such that ¢ < ¢ outside a pluripo-
lar set.

Proof. — On the one hand, P(¢)* = P(¢) < ¢ outside the set {P(p) <
P(p)*}, which is negligible, and hence pluripolar by Theorem 13.17. Assume
conversely that ¢ € PSH(w) satisfies 1) < ¢ outside a pluripolar set E. Pick
p € PSHy,, with p = —oo on E. For each ¢ > 0, we have (1 —¢) +ep <
(1 —€)p < ¢ + Ce on the whole of X?" with C' := —inf ¢, and hence

(1—e)p+ep—Ce <P(p) <P(p)".

Letting ¢ — 0 yields ¢ < P(p)* outside the pluripolar set {p = —oc}. In
particular, ¢ < P(p)* on X9V, and hence ¥ < P(p)* on X®", by Theo-
rem 4.22. O

As a consequence, we obtain the following partial generalization of Corol-
lary 5.18.

COROLLARY 13.21. — Consider a decreasing sequence of functions o, :
X2 — RU {400} that is uniformly bounded below, and set ¢ := lim,, @,,.
Then P(pm)* \( P(p)* in PSH(w).

Proof. — By Theorem 4.7, 1, := P(¢,,)* converges in PSH(w) to ¢ :=
inf,, ¥, > P(p)*, and we need to show that equality holds. For each m,
we have v, < ¢; outside a pluripolar set FE,,, by Theorem 13.20. By
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Lemma 4.37, E := |J,, E is pluripolar, and ¢ < ¢ outside E. By The-
orem 13.20, we infer 1) < P(¢)*, and we are done. a

DEFINITION 13.22. — We say that a bounded w-psh function p € PSH(w)
is regularizable from below if there exists an increasing net (¢;) of functions
in CPSH(6) converging to ¢ in PSH(w).

Thus ¢; ¢ pointwise on X9 and ¢ = sup; ¢;. It is equivalent to
demand the same property with ¢; € PLNPSH(w).

FEzxzample 13.23. — Pick a pluripolar subset £ C X3" that contains vy
in its closure (see Example 4.42). Choose p € PSHgy;, such that p = —oo
on F, and set ¢ := e?. Then ¢ € PSH(w) is bounded, but not regularizable
from below. Indeed, any ¢ € CPSH(w) such that ¢ < ¢ satisfies ¢ < 0 on
E, and hence sup 1 = ¥ (vyiv) <0 < supp = 1.

Inspired by the main result in [4], we now prove the following charac-
terization of psh functions regularizable from below, reminiscent of that of
Riemann integrable functions among Lebesgue integrable functions.

THEOREM 13.24. — For a bounded function ¢ € PSH(w), the following
are equivalent:

(i) ¢ is reqularizable from below;
(i) »=Q(p)*;

(iii) the discontinuity locus of y is pluripolar.

Here Q(y)* denotes the usc regularization of

Q(p) =sup{y € CPSH | ¢ < ¢} = P(p.),
cf. Lemma 5.19.

Proof. — That (i) < (ii) is straightforward. Further, (ii) holds iff ¢ <
Q(¢)* = P(p4)*, which is equivalent to ¢ < ¢, outside a pluripolar set, by
Theorem 13.20. This is also equivalent to ¢ = ¢, outside a pluripolar set,
which is a reformulation of (iii), since ¢ is usc. Thus (ii) < (iii). O

In dimension n = 1, any ¢ € PSH(w) is continuous outside vy, S0 since
{Vtriv} 18 non-pluripolar, any ¢ € £°°(w) that is regularizable from below is
automatically continuous. In higher dimension, the situation is different.

Example 13.25. — Assume dim X > 1, let C' C X be an irreducible
curve, and pick an ample Q-line bundle. We can find m > 1 and sections
81,5 8pyto, 1 € HY(X,mL) such that C' = (;{s; = 0}, tolc,t1|c # 0, and
t1/to defines a nonconstant rational function on C'. Pick a sequence (a;)$° of
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distinct elements of k. Then the function
I
= ;2 Tlogmax{|si|,...,|s |, |[t1 — ajto]}
is L-psh, and it is continuous outside C?". However, it is not continuous
at Ve riv, since (Vo pmiv) = 0 but ¢ = —oo on a Zariski dense subset of
C?. As ¢ < 0, and C?" is pluripolar, the function exp(y) is L-psh (see
Corollary 4.11) and regularizable from below, but not continuous.

13.7. More on the outer capacity

The next result generalizes Theorem 13.12.

THEOREM 13.26. — For any subset E C X" we have
Cap'(B) = [ (~0) MA(o) (13.14)

LEMMA 13.27. — For any open U C X™, oy = ¢y, is the limit of the
decreasing net (¢ )k, where K runs over the directed set of compact subsets

of U.

Proof. — We obviously have ¢}, > ¢f; = ¢y for all K C U. The limit
¥ = limg @7 therefore satisfies ¢ > ¢y, and it remains to show 9 (v) < —1
forallv € U. As X" is compact and Hausdorff, we can find an open V' C X?"
such that v € V € U. Since oy = —1 on U, we must have ¢}, = —1 on U,
and hence

as claimed. O

LEMMA 13.28. — Let E C X®" be any subset. Then there exists a de-
creasing sequence (U, )2°_; of open neighborhoods of E such that Cap(Uy,) —
Cap™(E) and pu,, = @i,/ ¢F as m — oo.

Proof. — We first claim that there exists a decreasing sequence (U] )50_,

of open neighborhoods of E such that ¢y, 7 ¢F as m — oo. By Choquet’s
lemma, we can find an increasing sequence (¢,)5°_; in PSH(w) such that
¢m = —1 on E and ¢,, converges weakly to 7. Set

Uy, = {om < -1+ L}.

Then ¢, — 7~ < ¢u: < ¢, and hence ., — % < ¢f < @), which proves

the claim.

L
m

We can also, evidently, find a decreasing sequence (U}),)2°_; of open neigh-
borhoods of E such that Cap(U/) decreases to Cap*(E). If we set Uy, :=
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U, N0, then Cap*(E) < Cap(Uy,) < Cap(Uy),) and ¢f, < ¢p; < ¢ for
all m, and the result follows. O

Proof of Theorem 13.26. — When E = K is compact, Cap*(K) =
Cap(K) (Corollary 13.13), and the result thus amounts to Theorem 13.12.

Next consider the case when E = U is open. By inner regularity of
Cap, Cap*(U) = limg Cap*(K), where K runs over the directed set of com-
pact subsets of U. On the other hand, Lemma 13.27 implies that ¢} —
ou strongly in €', and hence [(—p%) MA(¢%) = [(pv) MA(py), which
proves (13.14) for open sets. A similar reasoning, based on Lemma 13.28,
yields the case of a general subset F. |

THEOREM 13.29. — If (E,,) is an increasing sequence of subsets of X"
and E :=J,, Em, then:
(1) ¢ ¢y, and Cap*(E,,) / Cap*(E);

(i) Vi \ Vi, and T(Ey) \ T(E).

Proof. — The sequence m — 1g, is increasing, and converges pointwise
to 1g. By Corollary 13.21, the decreasing sequence ¢p, = P(—1g, )* thus
converges to ¢ = P(—1g)*, and hence Cap*(E,,) — Cap*(E), by (13.14)
and the continuity of Monge-Ampeére integrals along decreasing nets (The-
orem 7.1). This proves (i).

The proof of (ii) is entirely similar, and left to the reader. O

Appendix A. Dual complexes and PL functions

In this section, we assume chark = 0, and show how the well-known
description of Berkovich spaces over discretely valued fields as limits of dual
complexes carries over to the trivially valued case. In what follows, X is a
projective variety of dimension n.

A.1. Snc test configurations and dual complexes

We use [80] as a reference for what follows. An snc pair (Y, B) over X is
defined as a smooth birational model 7: Y — X togeither with a reduced snc
divisor B =), _; By on Y. The dual cone complex A(Y, B) is the simplicial
cone complex whose faces are in 1-1 correspondence with the strata Z of B,
i.e. connected components of a non-empty intersection By := ﬂie ; B; for
some J C I, the cone 7 attached to Z being identified with Rio- In the
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simpler case where all B; are connected, A(Y, B) can be identified with the
rational fan
U R, cRL,.
Bj#£0

There is a canonical Rsg-equivariant topological embedding A(Y, B) —
XVal which maps a € 57 ~ Rio to the unique valuation val, on X that
is monomial with respect to local equations of the F;, centered on Z, and
satisfies val, (E;) = «;. There is also a continuous retraction

P,y X — A(Y, B),
defined as follows. If the center c(v) € X lies outside B, i.e. v(B) = 0, p(y, )
maps v to the apex of A(Y, B). Assume now c(v) € B, let (B;);c be the set
of irreducible components of B containing ¢(v), and let Z be the connected
component of B; containing c¢(v). Then p(y, g)(v) is the element of 77 ~ Réo
with coordinates (v(B;))ic.-

Snc pairs over X form a directed poset, and the retractions p(y, gy induce

a homeomorphism
X~ 1im A(Y, B),

see [80, Theorem 4.9]. This is further compatible with the PL structure of
Xval in the sense that a function ¢ on X' is in PLyom(X) iff ¢ is the
pullback of a usual homogeneous PL function on ﬁ(Y7 B) for some (Y, B);
indeed, this follows from the description of PLyp,(X) in terms of Q-Cartier
b-divisors.

Assume now that X is smooth, and consider an snc test configuration X
for X, i.e. a test configuration such that X is nonsingular and Xj ;eq is snc.
By Hironaka’s theorem, snc test configurations are cofinal in the directed set
of all test configurations for X.

Let Xy = ), ; biEJ; be the irreducible decomposition. Applying the above
considerations to the reduced snc divisor Xy yeq provides a natural realization
of the dual cone complex

Ay = A(X, Xored)

as a set of monomial valuations val, € XV2!, which are further k*-invariant,
by G-invariance of Xy. The condition val, (zw) = 1 cuts out a finite simpli-
cial complex

N 1
AXcAXcha,

whose faces

Oz ~ {aeRiO

Zbiai = 1} Coz 2R§0

icJ
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are equipped with the integral affine structure inherited from Z” C R” (see
e.g. [31, Section 1.3] for details). In particular, the vertices (e;) of Ay are
in 1-1 correspondence with the irreducible components (E;) of Xy. For any
«a € Ay, the restriction of val, to

k(X) > k(X) ~ k(X)(w)

is a valuation v, € X"® with Gauss extension o(v,) = val,, and the map
« — v, thus provides a factorization

AX < Xval N Xval
As above, there is also a natural continuous retraction
Px: X — Ax,
and we can now state the following trivially valued version of the well-
known description of the Berkovich analytification as the limit of dual com-

plexes of snc models, something that goes back to the fundamental work of
Berkovich [8].

THEOREM A.l. — For any smooth projective variety X over k of char-
acteristic 0, the retraction maps px: X*"* — Ay induce a homeomorphism
. an ~_ 1;
pr XM~ %ﬂ Ax,

where the limit is over the directed set of all snc test configurations X for
X. For each v € X? we further have px(v) < v, and limy px (v) = v.

For each snc test configuration X, denote by Affg(Ax) C C°(Ay) the
Q-vector space of functions on Ay that are rational affine on each face (with
respect to the canonical integral affine structure).

LEMMA A.2. — The space PL(X) C C%X) satisfies PL(X) =
Ux P Affo(Ax).

Proof. — Mapping a function f € Affg(Ax) to Dy := . f(e;)b;E; €
VCar(X)q defines an isomorphism Affg(Ay) ~ VCar(X)g, and it is easy
to see from the definition of py that fopx = ¢p,. The rest follows from
Theorem 2.7. ]

Proof of Theorem A.1. — The map p is continuous, and X4 maps onto
the dense subset 1£1 X Ax(Q) of 1&1 " Ay. Since X?" is compact (Hausdorf),
it is thus remains to show that p is injective. This is a simple consequence
of Lemma A.2, since PL(X) separates the points of X*" (Lemma 2.3).

Now pick v € X*". That px(v) < v is immediate from the definition of p.
Since PL(X) is dense in CY(X), it remains to see that limx ¢(px(v)) = ¢(v)
for all ¢ € PL(X), which again follows from Lemma A.2. O
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COROLLARY A.3. — Let X be a projective variety over k with char k = 0.
Then any v € X® is the limit of a net (v;) in XY such that v; < v for
all 1.

Proof. — 1t suffices to prove that for any tg > 1 and any neighborhood
U of v in X?*, there exists vg € X with vy < tov.

First assume X is smooth. By Theorem A.1, we can find an snc test
configuration X such that w := px(v) € Ay NU. Moreover, w < v. If
w € XU, then we can take vy = w, so suppose w & XUV and let 0 C Ay
be the unique simplex containing w in its interior. Then dim o > 0, or else
we X4,

We claim there exists a continuous function ¢: & — [1,00) such that
t(w) =1 and w’ < t(w')w for all w’ € 6. In view of the embedding Ay —
Xxval <y xval ahove, this follows from the elementary fact that if a € Rio,
then there exists a continuous function t: RZ, — Ry such that t(a) = 1
and o; < t(a’)a; for all o € RZ; and all j € J. This function can be chosen
as t(a) = max; o} /a;, for example.

Now X4V is dense in o, so we can pick w’ € X4V N ¢ close enough to w
so that t(w’) < to, and then we can pick vg = w’.

In the general case, let p: X’ — X be a resolution of singularities, and
pick v' € X' with p*(v') = v. By what precedes, there exists vy € X’4VN
(u2)~1(U) such that v) < tov’. We can then choose vy = p(vy). O

A.2. Psh functions and dual complexes

Building on the uniform Izumi-type estimates of [27], we show:

THEOREM A.4. — Let X be an snc test configuration, with dual complex
Ay — X?*. Then:

i) for each ¢ € PSH(w A, 18 finite-valued, continuous, and con-
() f QD ) QD X ) )
vex on each face of Ax;
ii) the set {¢|a € PSH(w)} is equi-Lipschitz continuous;
x| ¥
(iii) Ax is a strongly compact subset of X',

Proof. — Set K := k((w)). This is a non-Archimedean field with valu-
ation ring K° = k[w]. Consider the Berkovich analytification X3". Gauss
extension can be viewed as a continuous section o: X** — X3 of the nat-
ural projection 7: X% — X"

The pullback of w is an ample class wx € N'(Xo/K®), which is inter-
preted as a closed (1, 1)-form with ample de Rham class in [27], and it follows
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immediately from the definitions that ¢ o 7 is a wx-psh model function on
X3 for each ¢ € PLNPSH(w). By [27, Theorem 6.1], ¢|a, is thus contin-
uous, convex on each face of Ay, and Lipschitz continuous with Lipschitz
constant C' > 0 only depending on w.

Since each ¢ € PSH(w) is a decreasing limit of functions in PL N PSH(w),
(i) and (ii) follow. By (i), Ax is contained in X" and (ii) precisely says
that the embedding Ay < X' is Lipschitz continuous with respect to du,
see Definition 11.4. By compactness of Ay, it follows that the inclusion is a
homeomorphism onto its image with respect to the strong topology, which
proves (iii). O

Appendix B. The toric case

The goal of this section is to provide a brief description of various objects
considered in this paper in the context of toric varieties [38, 65].

e Consider an algebraic torus T' ~ GJ, with associated dual lattices
M = Hom(T,G,,) and N := Hom(G,,,T). We have a canonical
embedding M < k(T)* onto the set of T-invariant functions, and a
dual canonical embedding Ng < T onto the set of T'(k)-invariant
valuations, such that v(u) = (v,u) for all v € Ng and u € M —
k(T)*. There is also a canonical retraction p: TV — Ng, which maps
v to the linear form on M given by u — v(u).

e A proper (normal) toric variety X corresponds to a rational fan de-
composition ¥ of Ng, and an ample class w € Amp(X) to a polyhe-
dron P C My (up to translation) with normal fan ¥. The support
function of P is the convex PL function fp: Ng — R defined by

fp(w) := sup(v,u),
ucP
which is linear precisely on the cones of 3.
e For any w-psh function ¢, the function f, : Ng — R defined by

fo = (o + fpP)Ina

is convex. This sets up a 1-1 correspondence between the set PSHyo, (w)
of T(k)-invariant w-psh functions ¢ on X?" and the set of all convex
functions f : Ng — R such that f < fp 4+ O(1), the inverse being
given by

fr—=o=p"(f-fP)
with p: Xval = TVval _ Ny the retraction.
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e The latter set of convex functions is in turn in 1-1 correspondence
with the set P of all Isc convex functions g : P — R U {400}, via the
Legendre transform

g(u) = f¥(u) = sup ((v,u) - f(v)),

v€E Ngr

f) =g"(v) = sup ((v,u) — g(u)).

ueP

e For any bounded ¢ € PSHi,,(w), the real Monge—Ampére measure
MARg(f,) of the convex function f, = fp + O(1) is a positive mea-
sure on Ny of total mass Vp := vol(P) = (w™)/n!, and the non-
Archimedean Monge-Ampere measure of ¢ satisfies

MA, () = V't MAR(f,.)
with
L N]R o Tval — Xval C Xxan

the inclusion. Furthermore, fv is bounded on P, and

][ 7Y (B.1)

e Equation (B.1) remains valid for all ¢ € PSHio,(w), and shows that
€ (W) <= f € L'(P).
Furthermore, @; — ¢ strongly in &, (w) iff fY. — fY in L'(P).
e For any v € Ng C X", the function ¢, € CPSH(w) satisfies
fo, (W) = fp(w —v) + fp(v).

In particular, Ty, (v) = fp(v) + fr(—v) = frr(—p)(v).

e As in [9, Proposition 5.7], the energy of a probability measure p on
Ngr C X?" coincides with the optimal cost Cp(u) of transporting the
measure /1 to Ap with respect to the cost function cp : Ng x P — Ry
given by

ep(v,u) == fp(v) — (v,u).
Indeed,

<oz (),
(1) Weiupw) ][f NR

tor

= sup ( ffp+<p /s@u)
©€CY(Nr) Nr

and Monge-Kantorovich duality yields

ELG0 =inf [ ep(vu) A= Cr(u),
R X
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where A ranges over all probability mesures on Ng x P with
marginals p and Ap. In particular, we have for any v € Ny

EY(6,) = fp(v) — (v,up) = supw — ]{3 ,

P

with up € P the center of mass.
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