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Global pluripotential theory over a trivially valued field
Sébastien Boucksom (1) and Mattias Jonsson (2)

Dedicated to Ahmed Zeriahi for all his contributions to complex analysis and geometry

ABSTRACT. — We develop global pluripotential theory in the setting of Berkovich
geometry over a trivially valued field. Specifically, we define and study functions and
measures of finite energy and the non-Archimedean Monge–Ampère operator on
any (possibly reducible) projective variety. We also investigate the topology of the
space of valuations of linear growth, and the behavior of plurisubharmonic functions
thereon.

RÉSUMÉ. — Nous développons une théorie du pluripotentiel global dans le
contexte de la géométrie de Berkovich sur un corps trivialement valué. Plus pré-
cisément, nous définissons et étudions des fonctions et mesures d’énergie finie et un
opérateur de Monge–Ampère non-archimédien sur toute variéte projective (éventuel-
lement réductible). Nous explorons également la topologie de l’espace des valuations
à croissance linéaire, et le comportement des fonctions plurisousharmoniques sur
celui-ci.

Introduction

The main purpose of the present paper is to lay the foundations of
pluripotential theory in the setting of Berkovich geometry over a trivially
valued field, paralleling as much as possible the known theory in the com-
plex analytic case.

Pluripotential theory is a crucial tool in complex analysis and geometry,
and A. Zeriahi has been a central protagonist in the story of its develop-
ment. For an excellent introduction, see the book by V. Guedj and A. Zeri-
ahi [77]. This theory lies at the heart of the variational approach to complex
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Monge–Ampère equations [11], which proved particularly fruitful in relation
to Kähler–Einstein metrics, and ultimately led to a new proof of the Yau–
Tian–Donaldson (YTD) conjecture for Fano manifolds [12], later generalized
to (log terminal) Fano varieties [89, 91].

There are several reasons for developing a corresponding theory over
a trivially valued field, that is, any field equipped with the trivial (non-
Archimedean) valuation. First, the Berkovich approach to non-Archimedean
geometry is the one closest to the complex analytic intuition, and it is natu-
ral to see to what extent the complex analytic theory admits a counterpart in
the setting of Berkovich spaces. Second, Berkovich spaces over a trivially or
discretely valued field can often be used to study degenerations in complex
geometry [30, 31, 57, 58, 59, 60, 101], and such degenerations are central to
the variational approach to the YTD conjecture [12, 90], through the notion
of geodesic rays.

The thrust of the YTD conjecture is to relate the existence of a solution
to a non-linear PDE to an algebro-geometric condition known as K-stability,
which has recently also come to play a key role in the study of moduli
spaces, especially for Fano varieties. [2, 15, 17, 93, 107]. The relation of
K-stability with spaces of valuations and non-Archimedean geometry over
trivially valued fields, originally pointed out in [29], is one major motivation
to endeavor the present study, and will be further exploited in the companion
papers [35, 34].

K-stability of a polarized projective variety (X,L) over an algebraically
closed field k is a condition phrased in terms of Gm-equivariant degenerations
(X ,L)→ A1 of (X,L) known as test configurations [53]. Our basic proposal,
which goes back to [29], consists in interpreting (X ,L) in terms of a piecewise
linear function ϕL on the Berkovich analytification Xan with respect to the
trivial absolute value on the ground field k. To readers familiar with non-
Archimedean geometry, this will sound very natural indeed: the base change
of a test configuration (X ,L) by Spec k[[$]] → A1 = Spec k[$] provides
a model for the base change (XK , LK) to the non-Archimedean field K =
k(($)), and hence a model/PL metric on the Berkovich analytification Lan

K →
Xan
K . This metric can further be canonically identified with a PL function on

Xan
K , thanks to the reference metric on Lan

K induced by the trivial model, and
ϕL is simply the restriction of this function to Xan ↪→ Xan

K , the embedding
being realized by Gauss extension.

While this point of view was basically the one adopted in a previous
version of this article [33], we have tried here to take a more elementary and
self-contained approach, avoiding for the most part any explicit reference to
general Berkovich geometry (which accounts in part for the length of the
present article).
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Functions and measures of finite energy

Let k be an arbitrary algebraically closed field, and X an irreducible(1)

projective variety over k, with function field k(X). In order to describe more
precisely our main results, recall first that the Berkovich analytification Xan

of X with respect to the trivial valuation on k is a compactification of the
space Xval of valuations v : k(X)× → R, trivial on k, endowed with the
topology of pointwise convergence. Points of Xan can be understood as semi-
valuations v on X, i.e. valuations v ∈ Y val for some subvariety Y ⊂ X. The
set Xdiv ⊂ Xval of divisorial valuations, which are attached to prime divisors
over X, is dense in Xan.

For every v ∈ Xan and every section s ∈ H0(X,mL), m ∈ N, we can
make sense of v(s) ∈ [0,+∞] by trivializing L at the center of v. Setting
|s|(v) := exp(−v(s)) defines a continuous function |s| : Xan → [0, 1], and the
topology of Xan is in fact defined by the set of such functions. Building on
these, we introduce the following classes of functions on Xan:

• Fubini–Study functions for L are continuous functions ϕ : Xan → R
of the form

ϕ = m−1 max
i
{log |si|+ λi},

where (si) is a finite set in H0(X,mL) without common zeroes, and
λi ∈ Q. This defines a subset H = H(L) of C0(X) := C0(Xan,R),
and we show that the map (X ,L) 7→ ϕL alluded to above sets up a
1–1 correspondence between H(L) and the set of ample, integrally
closed test configurations (X ,L) for (X,L) (see Section 1.4 for the
definition when X is not normal).

• piecewise linear (PL) functions on Xan are elements of the Q-linear
subspace PL(X) of C0(X) spanned by H = H(L); this subspace
turns out to be independent of L, and is dense in C0(X). In the
present setting, PL functions play the role of smooth functions from
the complex analytic case. It is proved in Appendix A that PL func-
tions are induced by usual piecewise linear functions on dual com-
plexes of snc test configurations, when X is smooth and char k = 0.

• L-psh functions are usc functions ϕ : Xan → R ∪ {−∞}, not iden-
tically −∞, that can be obtained as limits of decreasing nets in
H(L). The set PSH = PSH(L) of L-psh functions is stable under
addition of a real constant, finite maxima, decreasing limits, and is
the smallest such class of functions that contains all functions of the

(1) While the main body of the article deals with possibly reducible varieties, we assume
here for simplicity that X is irreducible.
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form m−1 log |s|, s ∈ H0(X,mL) \ {0}. It follows from Dini’s lemma
that C0(X) ∩ PSH is the closure of H in the topology of uniform
convergence. We prove that the restriction of an L-psh function ϕ
to Xdiv is finite-valued, and determines ϕ. We endow the set PSH
with the topology of pointwise convergence on Xdiv.

In the main body of the text, we actually work with ω-psh functions, where
ω ∈ N1(X) is any (real) ample (and sometimes even arbitrary) numerical
class on X. However, here we will stick to the above setting, for simplicity.

As in [29], the Monge–Ampère energy E: H → R is defined on ϕ ∈ H as
the normalized intersection number (or height)

E(ϕ) := (Ln+1)
(n+ 1)V ,

where n = dimX, V = (Ln), and (X ,L) → P1 is the canonical Gm-
equivariant compactification of the ample, integrally closed test configura-
tion (X ,L) → A1 that represents ϕ. The above normalization ensures that
E(ϕ+ c) = E(ϕ) + c for c ∈ Q.

Adapting to our setting the original approach of [39, 71], we also attach to
ϕ its Monge–Ampère measure MA(ϕ), a Radon probability measure on Xan

with finite support in Xdiv, defined using intersection numbers computed on
X0. We then have

d
dt

∣∣∣∣
t=0

E((1− t)ϕ+ tψ) =
ˆ
Xan

(ψ − ϕ) MA(ϕ)

for all ψ ∈ H, and this actually characterizes the measure MA(ϕ), since H
spans the dense subset PL(X) ⊂ C0(X).

This formula shows that E is increasing on H, and we canonically extend
it by monotonicity to a usc functional E: PSH → R ∪ {−∞}, continuous
along decreasing nets. We denote by

E1 := {ϕ ∈ PSH | E(ϕ) > −∞}

the set of L-psh functions of finite energy. Thus ϕ ∈ E1 iff ϕ : Xan → R ∪
{−∞} is a decreasing limit of functions ϕi ∈ H with E(ϕi) bounded. Note
that the complex analytic analogue of E1 has been well studied, see [10, 11,
44, 45, 76].

The weak topology of E1 is the subset topology from PSH (i.e. the topology
of pointwise convergence on Xdiv), and the strong topology is the coarsest
refinement of the weak topology that makes E: E1 → R continuous. De-
creasing nets in E1 are strongly convergent, and H is thus strongly dense
in E1.
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As in [11], we dually introduce an energy functional E∨ : M → [0,+∞]
on the spaceM of Radon probability measures µ on Xan, by setting

E∨(µ) := sup
ϕ∈H

(
E(ϕ)−

ˆ
ϕµ

)
= sup
ϕ∈E1

(
E(ϕ)−

ˆ
ϕµ

)
,

where the right-hand equality follows from a simple approximation argu-
ment. Thus E∨ is convex, and lsc with respect to the usual weak topology
ofM. The space

M1 :=
{
µ ∈M | E∨(µ) <∞

}
of measures of finite energy has a weak topology inherited from M, and a
strong topology, defined as the coarsest refinement of the weak topology for
which E∨ becomes continuous. In contrast to E1, we prove that both M1

and its strong topology are independent of L.

For any two ϕ,ϕ′ ∈ H, we further have E(ϕ)−E(ϕ′) >
´

(ϕ−ϕ′) MA(ϕ),
a reflection of the concavity of E. This precisely means that ϕ computes the
supremum defining the energy of MA(ϕ), which thus lies inM1.

The main contribution of the present article can be summarized as fol-
lows.

Theorem A. — The Monge–Ampère operator MA: H →M1 admits a
unique continuous extension MA: E1 →M1, where both sides are equipped
with the strong topology.

It further induces a topological embedding with dense image E1/R ↪→M1,
which is onto if X is smooth, and either char k = 0 or dimX 6 2.

Theorem A can be viewed as a trivially valued analogue of the main
result of [11], which itself is a version of the celebrated result of Yau [108]
and a later version by Kołodziej [83]. In the non-Archimedean setting, earlier
results include [26, 92, 109].

Theorem A actually brings together several main steps, of various flavors,
that we now proceed to describe.

Monotone extension of the Monge–Ampère operator to E1

In a first step, we prove that the Monge–Ampère operator MA: H →
M1 admits a unique extension MA: E1 → M1 that is continuous along
decreasing nets (with respect to the weak topology ofM1).

Since any function in E1 is, by definition, the limit of a decreasing net in
H, uniqueness is clear. Our proof of existence is rather different from previ-
ously used approaches [23, 26, 76], and proceeds via a direct monotonicity
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argument. It is phrased in terms of a multilinear energy pairing

(L0, ϕ0) · . . . · (Ln, ϕn) ∈ Q

defined on tuples (Li, ϕi) with Li ∈ Pic(X)Q and ϕi ∈ PL(X) (and which
basically amounts to the Deligne pairing, see Remark 3.13 and compare [102,
Definition 2.1] in the Kähler case), but we reformulate it here in a language
that will perhaps be more familiar to some readers. The key point is to
observe that, for any ψ ∈ H, the functional Fψ : H → R defined by

Fψ(ϕ) := (n+ 1) E(ϕ) +
ˆ

(ψ − ϕ) MA(ϕ)

(which is equal to V −1(L,ψ) · (L,ϕ)n in terms of the energy pairing) is
increasing, and further satisfies

Fψ(ϕ)− F0(ϕ) =
ˆ
ψMA(ϕ), Fψ(ϕ) > (n+ 1) E(ϕ) + inf ψ − supϕ.

Like the energy E, Fψ can thus be monotonically extended to a finite-valued
functional Fψ : E1 → R, continuous along decreasing nets. Since H spans
the dense subpace PL(X) ⊂ C0(X), it is then easy to infer the existence,
for each ϕ ∈ E1, of a unique measure MA(ϕ) ∈ M such that

´
ψMA(ϕ) =

Fψ(ϕ)− F0(ϕ) for all ψ ∈ H.

This provides an extension MA: E1 → M that is continuous along de-
creasing nets. As above, the concavity of E further implies, for each ϕ ∈ E1,
that E∨(MA(ϕ)) = E(ϕ)−

´
ϕMA(ϕ), and hence MA(ϕ) ∈M1.

Maximizing sequences

Pick µ ∈M1, and consider a sequence (ϕi) in E1 that computes E∨(µ) =
supϕ∈E1

(
E(ϕ)−

´
ϕµ
)
; we call this a maximizing sequence for µ. In the

complex analytic case, it follows a posteriori from the variational approach
developed in [11] that MA(ϕi)→ µ weakly inM. Here we show this directly,
by relying on a uniform differentiability property of a natural monotone
extension E↓ of E to arbitrary usc functions. More precisely, we infer from a
key estimate in [28] that we have, for all ϕ ∈ E1, ψ ∈ PL(X) and ε > 0,

E↓(ϕ+ εψ) = E(ϕ) + ε

ˆ
ψMA(ϕ) +O(ε2),

where the estimate is uniform with respect to ϕ. We can then apply the
variational argument of [11] to infer that

´
ψMA(ϕi)→

´
ψ µ, which yields

weak convergence MA(ϕi)→ µ.
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Quasimetrics

Following [10, 11], the next step is to show that Aubin’s functional

I(ϕ,ϕ′) :=
ˆ

(ϕ− ϕ′)(MA(ϕ′)−MA(ϕ))

satisfies a quasi-triangle inequality, and descends to a quasi-metric on E1/R
that defines the strong topology. As in [10], the quasi-triangle inequality is
based on fairly sophisticated estimates obtained by repeated applications of
a Cauchy–Schwarz inequality for the energy pairing. But a new feature here
is that we also dually introduce

I∨(µ, µ′) := inf
ϕ∈E1

(Jµ(ϕ) + Jµ′(ϕ))

onM1, where Jµ(ϕ) := E∨(µ)−E(ϕ)+
´
ϕµ > 0 tends to zero precisely along

maximizing sequences for µ. We prove that the Monge–Ampère operator is
bi-Lipschitz with respect to I and I∨, i.e. I∨(MA(ϕ),MA(ϕ′)) ≈ I(ϕ,ϕ′),
and also that I∨(MA(ϕi),MA(ϕ′i)) → I∨(µ, µ′) if (ϕi), (ϕ′i) are maximizing
sequences for µ, µ′. This allows us to show that I∨ is a quasi-metric onM1

that defines the strong topology, and hence that MA: E1/R → M1 is a
topological embedding with dense image.

In [34] we will show that E1 andM1 can be equipped with natural metrics
(rather than quasimetrics) that define the strong topologies, in such a way
that the induced (pseudo)metric on E1/R is a metric, and MA: E1/R→M1

is an isometry. The spaceM1 and subspaces thereof will play a key role for
the approach to K-stability in [35].

The envelope property

In the complex analytic case, it is a basic fact that the (usc) envelope
sup?i ϕi of any family (ϕi) of psh functions on a (smooth) complex manifold
remains psh. This remains true for psh functions on any complex space that
is locally irreducible in the analytic topology, but fails in general without
this assumption. In our setting, we say that L has the envelope property if
the previous property holds. We prove that it implies that X is unibranch,
which means that the normalization ν : Xν → X is a homeomorphism (in
the Zariski topology), and is equivalent to X being locally analytically ir-
reducible in the complex case. Conversely, we conjecture that the envelope
property holds as soon as X is unibranch (e.g. normal), and prove that it
holds when X is smooth and either char k = 0 or dimX 6 2, by adapting
arguments from [27, 72].
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We further show that the envelope property is equivalent to the analogues
of several fundamental known facts in the complex analytic case:

• weak compactness of PSH /R;
• completeness of E1/R with respect to the quasi-metric I;
• surjectivity of MA: E1 →M1.

It is also equivalent to the property that for any ϕ ∈ C0(X), the psh
envelope

P(ϕ) := sup{ψ ∈ PSH, ψ 6 ϕ}
is continuous (or, equivalently, L-psh).

Valuations of linear growth

The results mentioned so far have been quite similar to the complex
analytic picture; we now focus on some aspects that are specific to the non-
Archimedean setting. We say that a subset E ⊂ Xan is pluripolar if E ⊂
{ϕ = −∞} for some ϕ ∈ PSH, this condition being independent of L. As
opposed to the complex analytic case, a point v ∈ Xan can be nonpluripolar.
This is for instance the case for a divisorial valuation v ∈ Xdiv, and we show
more generally that a point v ∈ Xan is nonpluripolar iff v is a valuation of
linear growth in the sense of [36], i.e. v(s) 6 Cm for all s ∈ H0(X,mL)\{0},
for a uniform constant C > 0.

We turn the set X lin of valuations of linear growth into a metric space
(later shown to be complete) by setting

d∞(v, w) := sup
{
m−1|v(s)− w(s)| | m > 1, s ∈ H0(X,mL) \ {0}

}
.

We refer to the metric space topology of X lin as the strong topology, the
weak topology being the one inherited from Xan. This interacts nicely with
the spaceM1, as follows:

Theorem B. — A point v ∈ Xan lies in X lin iff the Dirac mass δv lies in
M1. Furthermore, the map v 7→ δv defines a closed embedding X lin ↪→M1,
with respect to both the weak and the strong topologies (on both sides), onto
the set of extremal points of the convex set M1.

Thus a net (vi) in X lin converges strongly to v iff vi → v weakly and
E∨(δvi) → E∨(δv). As we shall see in the companion paper [34], the energy
E∨(δv) coincides with the expected vanishing order S(v) [16, 64], an invariant
that appears in the definition of the stability threshold (or δ-invariant) that
has come to play a key role in recent works on K-stability of Fano varieties,
such as [18, 19] to name just a few.
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Our final main result analyzes the behavior of L-psh functions on X lin.

Theorem C. — Pick any L-psh function ϕ. Then:

(i) the restriction of ϕ to X lin is strongly continuous, and even 1-
Lipschitz with respect to d∞;

(ii) the restriction of ϕ to any d∞-bounded subset of X lin is weakly con-
tinuous;

(iii) if ϕ ∈ E1, then ϕ has sublinear growth with respect to d∞, i.e.
|ϕ| 6 Ad1−ε

∞ +B on X lin for some A,B > 0 and 0 < ε < 1;
(iv) if ϕ ∈ E1 and MA(ϕ) is supported in a d∞-bounded subset of X lin,

then ϕ ∈ C0(X).

In (iii), d∞ denotes the distance to any fixed point v0 ∈ X lin. The as-
sumption in (iv) holds, for instance, if MA(ϕ) has finite support in Xdiv.
More generally, as we show in Appendix A, dual complexes of snc test con-
figurations (when X is smooth and char k = 0) provide strongly compact
subsets of X lin, and (iv) therefore applies to Monge–Ampère measures with
support in such a dual complex, as in [26].

Relation to other works and outlook

This article is in part a continuation of our joint work with T. Hisamoto
[29], which, along the work of K. Fujita [62, 63] and C. Li [87, 88], first
emphasized the role of valuations in the study of K-stability. Besides the
clear influence from previous works in the complex setting, especially [10,
11, 76], this article owes a great debt to our joint work with C. Favre [26, 27].
Inspired in part by the local analysis of [24, 56, 57], and by the unpublished
work of M. Kontsevich and Y. Tschinkel [84], it paved the way to non-
Archimedean pluripotential theory, for smooth varieties over a discretely
valued field of residue characteristic 0. These developments built upon the
notion of a semipositive continuous metric on a line bundle, as developed
by S.-W. Zhang [110], Bloch–Gillet–Soulé [13], Gubler [69, 70], Chambert-
Loir [39], and others.

In the last few years, a number of works on non-Archimedean pluripoten-
tial theory have appeared, including [22, 28, 37, 72, 74], as well as the first
version of this paper [33]. Among these, [22, 28] work over arbitrary non-
Archimedean fields, including the trivially valued case, and thus have some
amount of overlap with the present work. As mentioned above, the main re-
sult of [28] in fact plays a key role in our analysis of maximizing sequences.
We conversely expect all results in the present article to extend (once prop-
erly formulated) to the case of an arbitrary non-Archimedean ground field.
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This is work in progress, but some results in this generality have in fact
already appeared in [33], and R. Reboulet has initiated an interesting study
of the metric geometry of E1 in this generality [98, 99], perhaps more closely
related to the companion paper [34] of the present work.

As opposed to our approach to pluripotential theory, which adopts a
global definition of psh functions justified by analogous results in the com-
plex case, it is important to point out that a theory of a local nature is
also emerging, thanks to the foundational work of A. Chambert-Loir and
A. Ducros [40]; see also [73]. The one-dimensional situation was studied in
detail in the thesis of A. Thuillier [106] (see also [3]). In our theory, functions
in PSH are defined as decreasing limits of nicer functions, namely those in H.
In the complex setting, the global notions rely on the local ones, and what
is a definition in the trivially valued case becomes an important theorem in
the complex situation, see [14, 48].

In a different direction, the approach followed in this paper is likely to
carry over to the general case of (1, 1)-classes on compact Kähler manifolds,
where the basic formalism of test configurations and K-stability was intro-
duced in [50, 102]. In that case, Berkovich analytification is of course not
available, but a good replacement for it can be constructed as a limit of dual
complexes of snc test configurations, as in [31, Section 4].

Structure of the paper

This article is organized as follows.

• Besides recalling some basic facts on Berkovich analytification, test
configurations and valuations of linear growth, Section 1 extends the
relation between divisorial valuations and test configurations that
was drawn in [29] to possibly non-normal varieties, emphasizing the
role of what we call integrally closed test configurations.
• Section 2 introduces Fubini–Study and PL functions, and describes
their relation to test configurations. “Almost trivial” test configura-
tions are also revisited from this perspective (fixing, in particular, a
minor issue in [29]).
• In Section 3 we define and study plurisubharmonicity for PL func-
tions, and undertake a thorough investigation of the energy pair-
ing, for which various estimates are derived from a basic Cauchy–
Schwarz inequality.
• Sections 4 and 5 are devoted to general psh functions. In the former
section, we establishing some basic properties and introduce the
notion of pluripolar sets. In the latter, we make a detailed study of
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envelopes of psh functions, and the associated notion of negligible
sets. We prove that divisorial points are negligible.
• In Section 6 we study psh functions that are homogeneous with re-
spect to the scaling action of R>0. The relation with (nef) b-divisors
is discussed, and a general decomposition theorem for psh functions
is established.
• Section 7 extends the energy pairing to psh functions by monotonic-
ity, and studies mixed Monge–Ampère measures and various energy
functionals on functions of finite energy.
• In Section 8 we extend the Monge–Ampère energy functional to
more general functions, and prove a crucial uniform differentiability
result, using [28].
• Section 9 is devoted to the Monge–Ampère energy of a Radon proba-
bility measure, and a preliminary study of the spaceM1 of measures
of finite energy. In particular, we introduce the important notion of
a maximizing net for a measure.
• In Section 10, we introduce the strong topology on M1, and prove
that it is defined by the quasi-metric I∨, with respect to which it
is complete. We further show that M1 and its strong topology are
independent of the choice of polarization, when X is irreducible.
• Section 11 is devoted to the space X lin of valuations of linear growth.
It establishes Theorem B above, as well as (most of) Theorem C.
• In Section 12 we turn to the strong topology and quasi-metric for
E1. We complete the proof of Theorem A, and also investigate the
continuity of solutions to Monge–Ampère equations, completing the
proof of Theorem C.
• Assuming the envelope property, Section 13 endeavors a detailed
study of the Bedford–Taylor capacity, and proves that negligible
sets are pluripolar.
• Finally, Appendix A adapts to the trivially valued setting the well-
known description of the Berkovich analytification as a limit of dual
complexes, while Appendix B provides a condensed description of
various objects considered in the paper in the case of toric varieties.
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Notation and conventions

• We use the standard abbreviations usc for “upper semicontinuous”,
lsc for “lower semicontinuous”, wlog for “without loss of generality”,
and iff for “if and only if”. We also use PL for “piecewise linear”,
snc for “simple normal crossing”, and psh for “plurisubharmonic”.
• Following the Bourbaki convention, all compact and locally compact
topological spaces are required to be Hausdorff.
• A net in a set X is a family (xi)i∈I of elements of X indexed by a
directed set, i.e. a partially preordered set in which any two elements
are dominated by a third one. A subnet of (xi)i∈I is a net of the
form (xϕ(j))j∈J where ϕ : J → I is increasing and final, i.e. for each
i ∈ I there exists j ∈ J with ϕ(j) > i. A (Hausdorff) topological
space X is compact iff every net in X admits a convergent subnet.
• If X is a Hausdorff topological space, and ϕ : X → R ∪ {±∞} is
any function, then the usc regularization ϕ? of ϕ is the smallest usc
function with ϕ? > ϕ. Concretely, ϕ?(x) = lim supy→x ϕ(y). The lsc
regularization is defined by ϕ? = −(−ϕ)?.
• We work over an algebraically closed field k, for the most part of
arbitrary characteristic. In this paper, a variety (over k) is a sep-
arated k-scheme of finite type that is reduced, but not necessarily
irreducible, nor even equidimensional.
• For any variety X, we denote by Pic(X) the Picard group of isomor-
phism classes of line bundles. Elements of the associated Q-vector
space Pic(X)Q := Pic(X)⊗ZQ can be viewed as isomorphism classes
of Q-line bundles.
• If X is a projective variety, we denote by N1(X) the finite dimen-
sional R-vector space of numerical classes of R-Cartier divisors on
X. It comes with a surjective linear map Pic(X)R → N1(X) induced
by L 7→ c1(L).
• Ample classes form a nonempty open convex cone Amp(X)⊂N1(X),
whose closure is the closed convex cone Nef(X) ⊂ N1(X) of nef
classes. For θ, θ′ ∈ N1(X), we write θ > θ′ if θ − θ′ is nef. We
generally denote by θ an element of N1(X), and by ω an element of
Amp(X).
• The cone Psef(X) ⊂ N1(X) of pseudoeffective classes is defined as
the closed convex cone generated by classes of effective R-Cartier
divisors; its interior Big(X) is the cone of big classes.
• A section of a line bundle on X is regular if it does not vanish
identically along any irreducible component of X. Its zero scheme
is then a Cartier divisor on X.
• An ideal a on X is a coherent ideal sheaf a ⊂ OX , and similarly for
fractional ideals.
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• We denote by $ the coordinate of the affine line A1 = Spec k[$]
and of the torus Gm = Spec k[$±1].
• For x, y ∈ R>0, x . y means x 6 Cny for a constant Cn > 0 only
depending on n, and x ≈ y if x . y and y . x. Here n will be the
dimension of a fixed variety X over k.
• A quasi-metric on a set Z means a function d : Z × Z → R>0 that
is symmetric, separates points, and satisfies the quasi-triangle in-
equality

d(x, y) 6 C (d(x, z) + d(z, y))
for some constant C > 0. This is equivalent to requiring the quasi-
ultrametric inequality d(x, y)) 6 C max{d(x, z), d(z, y)} for some
other constant C > 0, and dα is then also a quasi-metric for any α ∈
R>0. A quasi-metric space (Z, d) comes with a Hausdorff topology,
and even a uniform structure. In particular, Cauchy sequences and
completeness make sense for (Z, d). Such uniform structures have a
countable basis of entourages, and are thus metrizable, by general
theory. A subset E ⊂ Z is bounded if d is bounded on E × E.

1. Berkovich analytification and test configurations

In what follows, X denotes a (possibly reducible) projective variety over k
(see the conventions above). The main purpose of this section is to review the
relation between the Berkovich analytification of X and test configurations,
following the approach of [29].

1.1. The Berkovich analytification

Here we note some facts about the Berkovich analytification of X with
respect to the trivial absolute value on k.

1.1.1. The space of valuations

Assume first that X is irreducible, with function field k(X). In this paper,
a valuation on X means a real-valued valuation v : k(X)× → R, trivial on
k. The trivial valuation vtriv = vX,triv ∈ Xval is defined by vtriv(f) = 0 for
all f ∈ k(X)×.
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We denote by Xval the space of valuations on X, endowed with the topol-
ogy of pointwise convergence on k(X)×. As soon as dimX > 1, Xval is not
locally compact (see Section 1.1.6 below).

By the valuative criterion of properness, each valuation v on X admits a
center c(v) = cX(v) ∈ X, characterized as the unique (scheme) point ξ ∈ X
such that v > 0 on the local ring OX,ξ and v > 0 on its maximal ideal. Note
that c(v) is the generic point of X iff v = vtriv.

In this paper, a divisorial valuation v on X is a valuation of the form
v = t ordE , where t ∈ Q>0 and E is a prime divisor on a normal, projective
birational model X ′ → X. The center of v on X is then the generic point of
the image of E in X. It will be convenient to also count the trivial valuation
vtriv = limt→0 t ordE as a divisorial valuation. We write Xdiv for the set of
divisorial valuations on X.

1.1.2. The Berkovich analytification

Returning to the case of a possibly reducible variety X, we denote by
Xan the Berkovich analytification of X with respect to the trivial absolute
value on k, as in [7]. For our purposes, it will be sufficient to view Xan as a
compact(2) topological space, whose points can be interpreted as semivalu-
ations on X, i.e. valuations v on some irreducible subvariety Y ⊂ X, called
the support of v and denoted s(v). As a set, we thus have Xan =

∐
Y Y

val

with Y ranging over all irreducible subvarieties of X, and the topology of
Xan is the coarsest one such that for each (Zariski) open U ⊂ X we have:

• the set Uan ⊂ Xan of semivaluations whose support meets U is open;
• for each f ∈ O(U), the function |f | : Uan → R>0 defined by |f |(v) :=

exp(−v(f)) is continuous.

Sets of the form Uan are open for the Zariski topology of Xan.

The Berkovich analytification is functorial. Any morphism h : Y → X of
varieties induces a continuous map han : Y an → Xan. For simplicity, we will
write h instead of han. The analytification functor satisfies various GAGA
properties, see [7, Section 3.4]. For example, if (Xβ)β are the connected
components of X, then Xan =

∐
β(Xβ)an, and each (Xβ)an is connected.

(2) Recall that all compact spaces are required to be Hausdorff in this paper.
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1.1.3. Valuations and divisorial valuations

Mapping v ∈ Xan to the generic point s(v) of its support defines a con-
tinuous map

s : Xan −→ X.

On the other hand, mapping v to its center c(v) ∈ X defines a map
c : Xan −→ X,

which is this time anticontinuous, in the sense that c−1(U) ⊂ Uan is closed
(hence compact) for any open subset U ⊂ X (in the language of Berkovich
geometry, c−1(U) is actually a k-analytic domain of Xan).

We say that v ∈ Xan is a valuation on X (as opposed to a semivaluation)
if its support is an irreducible component of X, i.e. s(v) is a generic point of
X. Denoting by (Xα) the irreducible components of X, the set of valuations
can be written as

Xval =
∐
α

Xval
α .

We define the set of divisorial valuations on X as
Xdiv :=

∐
α

Xdiv
α .

It is a dense subset of Xan (see Theorem 2.14).

Remark 1.1. — Assume dimX > 1. When k is countable, the set Xdiv

is countable as well. The compact space Xan is thus separable, and hence
metrizable. This fails when k is uncountable, as Xan is not even first count-
able in that case. However, it nevertheless follows from [97] that any point
lying in the closure of a subset E ⊂ Xan is the limit of a sequence in E; in
particular, any closed subset of Xan is sequentially compact.

Given any ideal b ⊂ OX and v ∈ Xan with center c(v) ∈ X, one sets
v(b) := min{v(f) | f ∈ bc(v)} ∈ [0,+∞], (1.1)

the minimum being achieved among any given set of generators of bc(v).
Denoting by Z ⊂ X the zero locus of b, we have

v(b) > 0⇐⇒ c(v) ∈ Z, v(b) = +∞⇐⇒ s(v) ⊂ Z.
For any two ideals b, b′, we have

v(b · b′) = v(b) + v(b′), v(b + b′) = min{v(b), v(b′)}. (1.2)
The map v 7→ v(b) is continuous on Xan, and such functions generate the
topology of Xan. In fact, denoting by I the set of ideals of X, it is easy to
check that Xan can be identified with the “tropical spectrum” of I, i.e. the

– 661 –



Sébastien Boucksom and Mattias Jonsson

space of all functions χ : I → [0,+∞] that satisfy (1.2), endowed with the
topology of pointwise convergence (compare [80, Section 1.2]).

1.1.4. Partial order and scaling action

The space Xan is endowed with a natural partial order relation, most
easily described from the tropical spectrum perspective by

v > v′ ⇐⇒ v(b) > v′(b) for all ideals b ⊂ OX .
As in [80, Lemma 4.4], one checks that v > v′ iff c(v) ∈ {c(v′)} and v(f) >
v′(f) for all f ∈ OX,c(v).

There is also a natural continuous, order preserving scaling action
R>0 ×Xan −→ Xan (t, v) 7−→ tv,

which induces, in turn, an action on functions ϕ : Xan → R ∪ {±∞} by
setting for t ∈ R>0 and v ∈ Xan

(t · ϕ)(v) := t ϕ(t−1v). (1.3)
Note that t ·ϕ = ϕ for all t iff ϕ is homogeneous, which means, in this paper,
ϕ(tv) = tϕ(v) for all t > 0 and v ∈ Xan. This action of course preserves the
set

C0(X) := C0(Xan,R)
of continuous functions ϕ : Xan → R. The reason for adding a factor t in (1.3)
will become clear with Proposition 2.19(iii) and Theorem 4.7(ii) (see also
Lemma 2.34 for a geometric interpretation in terms of base change).

1.1.5. Trivial semivaluations

For each closed point p ∈ X(k), {p}val consists of a single (trivial) semi-
valuation vp,triv, and X(k) is thus naturally realized as a subset of Xan.
More generally, to each irreducible subvariety Y ⊂ X is associated the triv-
ial semivaluation vY,triv ∈ Xan with support Y . The set

Xtriv ⊂ Xan

of trivial semivaluations can be identified with the set of functions χ : I →
{0,+∞} satisfying (1.2) and equals the set of fixed points of the scaling
action of R>0 on Xan. One easily checks that Xtriv is the closure of X(k) ⊂
Xan.

Any scheme point ξ ∈ X is the generic point of a subvariety Y ⊂ X, and
taking ξ to vY,triv defines a bijection X ∼→ Xtriv, which is a section of both
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maps s : Xan → X, c : Xan → X. The inverse Xtriv → X is continuous but
not a homeomorphism.

Example 1.2. — Pick v ∈ Xan, denote by Y its support and by Z the
closure of its center c(v). Then Z ⊂ Y , and vY,triv 6 v 6 vZ,triv. Further,

lim
t→0+

tv = vY,triv, lim
t→+∞

tv = vZ,triv.

The set Xtriv ∩ Xval of trivial valuations is in 1–1 correspondence with
the irreducible components Xα of X; its elements will be denoted by

vtriv,α := vXα,triv ∈ Xdiv.

When X is irreducible, there is only one such valuation, denoted by vtriv.

The following condition will arise many a time in this paper.

Definition 1.3. — A function ϕ : Xan → R∪{−∞} is generically finite
if ϕ|Xan

α
6≡ −∞ for all α.

Lemma 1.4. — Let ϕ : Xan → R ∪ {−∞} be decreasing. Then:

(i) for any irreducible subvariety Y ⊂ X, ϕ|Y an satisfies the “maximum
principle”

sup
Y an

ϕ = ϕ(vY,triv); (1.4)

(ii) ϕ is generically finite iff it is finite at vtriv,α for each α;
(iii) if ϕ is further usc and Z ⊂ X denotes the closure of the center of

v ∈ Xan, then

ϕ(tv)↘ ϕ(vZ,triv) = sup
Zan

ϕ

as t→ +∞.

Proof. — For any v ∈ Y an, we have v > vY,triv, see Example 1.2. Thus
ϕ(v) 6 ϕ(vY,triv), which yields (i), and hence (ii). To see (iii), note that for
t ∈ R>0 we have

tv 6 vZ,triv =⇒ ϕ(tv) > ϕ(vZ,triv) = sup
Zan

ϕ,

since ϕ is decreasing, and lim supt→+∞ ϕ(tv) 6 ϕ(vZ,triv), since ϕ is usc. �

1.1.6. The Berkovich analytification of a curve

Here we describe Xan in the case when X is a curve, i.e. of pure dimension
one. We may and will assume X is connected.
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If X is smooth, then Xan is a star-shaped R-tree rooted at vtriv, see
Figure 1.1. Further, the Berkovich topology coincides with the weak tree
topology as defined in [56, Section 3.1.4] or [79, Section 2.1.1], for example.

More specifically, each closed point p ∈ X(k) determines a compactified
ray ιp : [0,+∞] ↪→ Xan, with ιp(0) = vtriv, ιp(t) = t ordp for t ∈ (0,+∞),
and ιp(+∞) = vp,triv. The half-open rays ιp((0,+∞]) = c−1(p) form an open
partition of Xan \ {vtriv}, and we have

Xan = Xval tX(k), Xtriv = X(k) = X(k) t {vtriv},

Xdiv = {vtriv} t
∐

p∈X(k)

ιp(Q>0).

A neighborhood basis of vtriv is formed by complements of the union of
finitely many segments ιpj ([tj ,+∞], where tj ∈ R>0. In particular, every
neighborhood of vtriv contains at least one (in fact, infinitely many) com-
pactified rays; this prevents Xval from being locally closed in Xan, and Xval

is therefore not locally compact.

In the general case, let (Xα) be the irreducible components of X. Then
the normalization morphism Xν → X induces a surjective map

Xν, an =
∐
α

Xν,an
α −→ Xan

that identifies the endpoints vpi,triv of all rays corresponding to a point pi ∈
ν−1(p), p ∈ X(k).

ordp
vp,triv vp,triv

ordp1

ordp2

Figure 1.1. The Berkovich analytification of a smooth curve (left) and
a nodal curve (right), see Section 1.1.6.

This simple piecewise linear picture admits a far-reaching generalization:
as we shall see in Appendix A, if X is smooth of dimension n and char k = 0,
then Xan can be written as the projective limit of the family of simplicial
complexes (of dimension at most n) attached to all snc test configurations.

– 664 –



Global pluripotential theory over a trivially valued field

1.2. Test configurations

A test configuration X for X consists of:

(i) a flat, projective morphism of schemes π : X → A1;
(ii) a Gm-action on X lifting the canonical action on A1;
(iii) an isomorphism X1 ' X.

By [29, Proposition 2.6], the scheme X is reduced, and hence a variety. The
central fiber X0 is a principal Cartier divisor, defined by the regular function
π?$, with $ denoting the coordinate on A1. The open set X \X0 is Zariski
dense, and (iii) amounts to the data of a Gm-equivariant isomorphism

X \ X0 ' X ×Gm (1.5)
over Gm ⊂ A1. As a result, π : X → A1 admits a canonical Gm-equivariant
compactification π : X → P1, obtained by simply extending (1.5) to X \X0 '
X × (P1 \ {0}) over P1 \ {0}. Thus X is a projective variety, of dimension
dimX + 1.

For each subvariety Y ⊂ X, the closure Y ⊂ X of the image of Y × Gm
under (1.5) is a test configuration for Y . This applies to the irreducible
componentsXα ofX, and induces the irreducible decomposition X =

⋃
α Xα.

In particular, X is irreducible iff X is.

If L is a Q-line bundle on X, a test configuration (X ,L) for (X,L) consists
of a test configuration X for X, a Gm-linearized Q-line bundle L on X , and
an identification (X ,L)1 ' (X,L) compatible with X1 ' X. We also say that
L is a test configuration for L, determined on X . We then have a canonical
Gm-equivariant isomorphism

(X \ X0,L) ' (X,L)×Gm, (1.6)
and a canonical extension L of L to a Gm-linearized Q-line bundle on X .

When L (and hence L) are honest line bundles, (1.6) induces an isomor-
phism of k[$±1]-modules

H0(X ,L)k[$±1] ' H0(X,L)k[$±1],

which allows to view H0(X ,L) as a k[$]-submodule of H0(X,L)k[$±1].
Example 1.5. — Test configurations (X ,L) for (X,OX) are in 1–1 cor-

respondence with vertical Q-Cartier divisors D on X , by which we mean
Gm-invariant Q-Cartier divisors on X with support in X0.

Example 1.6. — The trivial test configuration Xtriv for X is the product
X × A1, with the trivial Gm-action on X. If L is a Q-line bundle on X, the
trivial test configuration (Xtriv,Ltriv) for (X,L) is defined by Ltriv := p?1L,
with p1 : Xtriv → X the first projection.
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Example 1.7. — Consider a closed subscheme Z ⊂ X, with ideal b ⊂ OX .
The blowup µ : X → Xtriv of Z×{0} ⊂ X×{0} = Xtriv is a test configuration
for X, known as the deformation to the normal cone of Z. The central fiber
splits into a sum of two effective Cartier divisors X0 = X̃ + P , where X̃
is the strict transform of X × {0}, which is isomorphic to the blowup of Z
in X, and P is the exceptional divisor of µ, which can be identified with
the projective compactification P (CZ/X ⊕ 1) of the normal cone CZ/X =
SpecZ

(⊕
m∈N bm/bm+1) (see [66, Section 5.1]).

Test configurations forX form a category, a morphism µ : X → X ′ being a
Gm-equivariant morphism over A1, compatible with the isomorphisms X ′1 '
X ' X1. There is at most one morphism X → X ′ between any two given
test configurations, and we say that X dominates X ′ when it exists. Two test
configurations that dominate each other are canonically isomorphic, and can
thus safely be identified. Any two test configurations can be dominated by a
third, and the set of (isomorphism classes of) test configurations for X thus
forms a directed poset.

Lemma 1.8. — Let X be a test configuration that dominates Xtriv via a
morphism µ : X → Xtriv. Then X admits a vertical Q-Cartier divisor D that
is µ-ample.

Proof. — Since the structure morphism π : X → A1 is Gm-equivariant
and projective (by definition of a test configuration), we can pick a Gm-
linearized, π-ample line bundle L on X . Let L be its restriction to X ' X1,
so that (X ,L) is a test configuration for (X,L). If we denote by LX the
pullback of L by X → Xtriv → X, then D := L − µ?LX is a vertical Q-
Cartier divisor on X , and it is µ-ample. �

1.3. Gauss extension

Each test configuration X for X comes with a topological embedding

σ : Xan ↪→ (X \ X0)an ⊂ X an,

called Gauss extension, with image the set of k×-invariant semivaluations
w ∈ X an such that w($) = 1 (and hence centered on X0), and defined as
follows. For each irreducible subvariety Y ⊂ X, the associated test configu-
ration Y ⊂ X provides a canonical embedding of function fields

k(Y ) ⊂ k(Y )($) = k(Ytriv) ' k(Y).
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The Gauss extension of a valuation v : k(Y )× → R is then defined as the
unique valuation σ(v) : k(Y)× → R such that

σ(v)
(∑
d∈N

fd$
d

)
= min

d
(v(fd) + d)

on k(Y )[$] ↪→ k(Y).

By [29, Lemma 4.2], σ defines a 1–1 correspondence between Xval

(resp. Xdiv) and the set of k×-invariant valuations (resp. divisorial valu-
ations) w on X such that w($) = 1.

Remark 1.9. — Gauss extension is in fact independent of the choice of
X , in the following sense: the base change XK of X to the non-Archimedean
field K := k(($)) admits a Berkovich analytification Xan

K , whose points can
again be interpreted as semivaluations w on XK , compatible with the given
valuation on K, i.e. trivial on k and such that w($) = 1. Given any test
configuration X for X, we thus have a canonical identification of Xan

K with
the image of σ : Xan → X an, and the corresponding map σ : Xan → Xan

K is
a continuous section of the natural projection π : Xan

K → Xan.

For any non-Archimedean field extension F/k, [97, Corollaires 3.7 & 3.14]
more generally yields a canonical continuous section σ : Xan → Xan

F of the
projection π : Xan

F → Xan, that takes v ∈ Xan to the unique point σ(v) in
the Shilov boundary of π−1(v) =M(H(v)⊗̂F ).

1.4. Integrally closed test configurations and divisorial valuations

Definition 1.10. — We say that a test configuration X for X is inte-
grally closed if the scheme X is integrally closed in the generic fiber Xk($)
of π : X → A1.

In other words, X is integrally closed iff it can be covered by affine open
subsets U = SpecA such that the k[$]-algebra A is integrally closed in
Ak($). Note that X is normal iff X is normal and X is integrally closed.

Example 1.11. — The trivial test configuration Xtriv = X × A1 is inte-
grally closed.

The integral closure of any test configuration X in Xk($) defines a finite,
Gm-equivariant morphism X̃ → X (because the scheme X , being of finite
type over a field, is excellent), which induces an isomorphism on the generic
fibers over A1. Thus X̃ is an integrally closed test configuration for X, which
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we simply call the integral closure of X . It is characterized as the unique
integrally closed test configuration that dominates X via a finite morphism.

When X is normal, the integral closure X̃ of any test configuration X
coincides with its normalization X ν (see also Remark 1.22).

Lemma 1.12 (Zariski’s main theorem). — If X is integrally closed and
µ : X ′ → X is a morphism of test configurations, then µ?OX ′ = OX .

Proof. — By coherence of direct images, µ?OX ′ is a finite OX -module.
Sections of µ?OX ′ on an open U ⊂ X are thus rational functions on U that
are regular on the generic fiber and integral over OU , and hence belong
to OU . �

Integral closedness admits the following characterization, a “vertical ver-
sion” of the usual Serre criterion for normality.

Theorem 1.13. — A test configuration X is integrally closed iff it is:

(i) vertically R1, in the sense that X is regular at each generic point
of X0;

(ii) vertically S2, in the sense that depthOX ,ξ > min{2, dimOX ,ξ} for
all ξ ∈ X0.

Remark 1.14. — Condition (i) was called partially normal in [95, Defini-
tion 3.7].

Lemma 1.15. — For any test configuration X for X, we have:

(i) X is vertically S2 ⇐⇒ X0 is S1, i.e. without embedded points;
(ii) X is S2 ⇐⇒ X is S2 and X is vertically S2.

Proof. — Since X0 is a Cartier divisor, each ξ ∈ X0 satisfies
depthOX ,ξ = depthOX0,ξ + 1, dimOX ,ξ = dimOX0,ξ + 1.

This yields (i), while (ii) is a direct consequence of the isomorphism
X \ X0 ' X ×Gm. �

Corollary 1.16. — For any test configuration X , the following are
equivalent:

(i) X0 is reduced;
(ii) X is integrally closed, and X0 is generically reduced.

Proof. — The scheme X0 is reduced iff it is generically reduced and S1.
By Lemma 1.15, X0 is thus reduced iff it is generically reduced and X is
vertically S2. Finally, X0 generically reduced implies that X is regular at
each generic point of X0, since the latter is a Cartier divisor. The result is
now a consequence of Theorem 1.13. �
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Before entering the proof of Theorem 1.13, we introduce some terminology
that will be used throughout this paper.

Definition 1.17. — Let X be a test configuration for X.

(i) A vertical fractional ideal a on X is a coherent fractional ideal sheaf
that is Gm-invariant, and trivial outside X0.

(ii) The polar scheme P ⊂ X of a vertical fractional ideal a is the closed
subscheme of X defined by the ideal of poles p := {f ∈ OX | fa ⊂
OX }.

(iii) A vertical Cartier divisor D on X is a Gm-invariant Cartier divisor
with support in X0.

Note that P in (ii) is supported in X0, a being trivial outside X0.

Vertical Cartier divisors on X are in 1–1 correspondence with locally
principal vertical fractional ideals of X , via D 7→ OX (D). If D is further
effective, then it coincides with the polar scheme of OX (D).

Lemma 1.18. — A test configuration X is integrally closed iff every ver-
tical fractional ideal a on X that is integral over OX satisfies a ⊂ OX .

Proof. — The “only if” part is obvious. Conversely, consider the integral
closure µ : X̃ → X . Then a := µ?OX̃ is a vertical fractional ideal that is
integral over OX , and the “if part” follows. �

The next result is the key step in the proof of Theorem 1.13.

Lemma 1.19. — Let X be an integrally closed test configuration for X,
and a be a vertical fractional ideal on X . Then:

(i) every associated point of the scheme of poles of a is a generic point
of X0;

(ii) X is vertically R1.

Proof. — We follow the usual proof of Serre’s criterion for normality. Let
p = {f ∈ OX | fa ∈ OX } be the ideal of poles, and pick an associated point
ξ ∈ X0 of the polar scheme P ⊂ X . By definition of an associated point,
there exists f ∈ OX ,ξ such that f /∈ pξ but fmξ ⊂ pξ, with mξ the maximal
ideal of OX ,ξ. Then fmξ · aξ is an ideal of OX ,ξ, and hence fmξ · aξ ⊂ mξ or
fmξ ·aξ = OX ,ξ. In the former case, the usual determinant trick implies that
faξ is integral over OX ,ξ. Since X is integrally closed, we infer faξ ⊂ OX ,ξ,
i.e. f ∈ pξ, a contradiction. We thus necessarily have fmξ · aξ = OX ,ξ, which
proves that mξ is invertible, and hence that OX ,ξ is a DVR. This proves (i),
as well as (ii), taking a = OX (X0). �
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Proof of Theorem 1.13. — Assume that X is integrally closed. By Lem-
ma 1.19, X is vertically R1, and the polar scheme X0 of OX (X0) has no
embedded points. By Lemma 1.15, X is thus vertically S2, which proves
(i) =⇒ (ii).

Assume, conversely, that X is vertically R1 and S2, and pick a vertical
fractional ideal a on X that is integral over OX . According to Lemma 1.18,
we need to show that a ⊂ OX , which means that its ideal of poles p :=
{f ∈ OX | fa ⊂ OX } is trivial. Arguing by contradiction, suppose that the
polar scheme P is non-empty, and pick an associated point ξ ∈ X0 of P . If
dimOX ,ξ = 1, then ξ is a generic point of X0. Since X is vertically R1, OX ,ξ
is regular, and hence integrally closed. Thus aξ ⊂ OX ,ξ, which contradicts
ξ ∈ P . We thus have dimOX ,ξ > 2, and hence depthOX ,ξ > 2, since X is
vertically S2.

Since ξ is an associated point of P , we can find, as above, f ∈ OX ,ξ such
that f /∈ pξ but fmξ ⊂ bξ, i.e. fmξ · aξ ⊂ OX ,ξ. Since f /∈ pξ, there exists
g ∈ aξ such that h := fg /∈ OX ,ξ. Write h = a/b with a, b ∈ OX ,ξ and b a
non-zerodivisor. Then a /∈ (b), but amξ ⊂ (b). Thus ξ is an associated point
of the Cartier divisor D = (b = 0), which contradicts depthOD,ξ > 1. �

Generalizing [29, Section 4.2], we associate to every irreducible compo-
nent E of the central fiber X0 of an integrally closed test configuration X a
divisorial valuation vE ∈ Xdiv, as follows.

By Theorem 1.13, the local ring of X at the generic point of E is a DVR
(compare [41, Lemme 2.1]), and hence defines a divisorial valuation ordE :
k(X )× → Z. As in [29, Definition 4.4], we set bE := ordE($) = ordE(X0),
and define a valuation vE on X as the restriction of wE := b−1

E ordE to
k(X) ⊂ k(X)($) = k(Xtriv) ' k(X ).

Since wE is k×-invariant and wE($) = 1, we have σ(vE) = wE .

Lemma 1.20. — A valuation v on X is divisorial iff v = vE for an
irreducible component E of some integrally closed test configuration X for X.

This follows from [29, Theorem 4.6]. While the latter assumes X nor-
mal, its proof is a rather simple consequence of a theorem of Zariski [82,
Lemma 2.45], which does not depend on this assumption.

Example 1.21. — Assume X is smooth, and let Z ⊂ X be a smooth
irreducible subvariety. The vanishing order at the generic point of Z is then a
divisorial valuation ordZ ∈ Xdiv; indeed, denoting by π : X̃ → X the blowup
of Z and E its exceptional divisor, we have ordZ = ordE . Alternatively,
ordZ = vP with P the exceptional divisor of the blowup X → Xtriv of Z×{0},
i.e. the deformation to the normal cone of Z in X (see Example 1.7).
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Remark 1.22. — The normalization X ν of a test configuration X for X
is a test configuration for the normalization Xν of X. The normalization
morphism X ν → X factors through the integral closure X̃ , and the induced
morphism X ν → X̃ is an isomorphism over each generic point of X̃0, X̃
being regular at such points (compare [95, Lemma 3.9]). As a consequence,
the irreducible components of X̃0 and those of X ν0 induce the same set of
valuations in Xdiv = (Xν)div.

Lemma 1.23. — A vertical fractional ideal a on an integrally closed test
configuration X satisfies a ⊂ OX iff ordE(a) > 0 for each irreducible com-
ponent E of X0.

Proof. — If a ⊂ OX , then trivially w(a) > 0 for all w ∈ X an. Conversely
assume ordE(a) > 0 for all E. We need to show that the polar scheme P
of a is empty. Suppose this is not the case, and pick an associated point ξ
of P . By Lemma 1.19(ii), ξ is the generic point of some component E of
X0, and the assumption ordE(a) > 0 thus yields aξ ⊂ OX ,ξ, i.e. ξ /∈ P , a
contradiction. �

1.5. Valuations of linear growth

Let L be a line bundle on X. A semivaluation v ∈ Xan can be naturally
evaluated on any section s ∈ H0(X,L), by defining v(s) as the value of v
on the germ in OX corresponding to s in any local trivialization of L at the
center of v. Thus v(s) ∈ [0,+∞], v(s) = ∞ iff s vanishes along the support
of v, and v(s) > 0 iff s vanishes at the center of v. Setting |s|(v) := e−v(s)

defines a continuous function |s| : Xan → [0, 1].

Remark 1.24. — This construction reflects the existence of the trivial
metric | · | of Lan, a continuous metric characterized by |τ | ≡ 1 on the com-
pact set c−1(U) for any trivializing section τ ∈ H0(U,L) on an open subset
U ⊂ X.

In what follows, we fix an ample line bundle L on X.

Lemma 1.25. — A semivaluation v ∈ Xan is a valuation iff v(s) < +∞
for all regular sections s ∈ H0(X,mL), m ∈ N.

Proof. — Suppose v /∈ Xval, so that its support Y ⊂ X is not an irre-
ducible component of X. Since L is ample, we can find for m� 1 a nonzero
section s ∈ H0(X,mL) that vanishes along Y , but not along any irreducible
component of X. Then s is regular, and v(s) =∞. The converse direction is
clear. �
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Following [16, 36], we introduce:

Definition 1.26. — The maximal vanishing order of L at v ∈ Xan is
defined as

TL(v) := sup
{
m−1v(s)

∣∣m > 1, s ∈ H0(X,mL) regular
}
∈ [0,+∞].

We say that v has linear growth if TL(v) < +∞, and denote by X lin the
corresponding subset of Xan.

The linear growth condition is easily seen to be independent of the choice
of an ample line bundle L. By Lemma 1.25, we have X lin ⊂ Xval, and the
inclusion is strict in general [36, Example 2.19]. We will later interpret X lin

as the set of nonpluripolar points of Xan, cf. Proposition 4.38 below.

Lemma 1.27. — Pick an irreducible component Xα of X, and set Lα :=
L|Xα . For each v ∈ Xan

α ⊂ Xan we then have TLα(v) = TL(v). In particular,

X lin =
∐
α

X lin
α .

Proof. — Since the restriction to Xα of a regular section on X is regular,
we trivially have TLα(v) > TL(v). Conversely pick a nonzero section s ∈
H0(Xα,mLα). For r � 1, sr extends to a regular section s̃ ∈ H0(X, rmL).
Then rv(s) = v(sr) = v(s̃) 6 TL(v)mr, and hence m−1v(s) 6 TL(v), which
proves that TLα(v) 6 TL(v). �

Proposition 1.28. — Every divisorial valuation has linear growth, i.e.
Xdiv ⊂ X lin.

Proof. — Pick v ∈ Xdiv, and choose a projective birational morphism
µ : X ′ → X withX ′ normal and a prime divisor E ⊂ X ′ such that v = t ordE ,
t ∈ Q>0. Let H be an ample line bundle on X ′. Pick a regular section
s ∈ H0(X,mL) and set a := ordE(s). Then div(µ?s) − aE is an effective
Weil divisor on X ′, and hence

a(E ·Hn−1) 6 (div(µ?s) ·Hn−1) = m(µ?L ·Hn−1).

Thus a 6 Cm for a uniform constant C > 0, which proves that ordE , and
hence also v, has linear growth. �

More generally, any v ∈ Xan such that v 6 v′ for some v′ ∈ Xdiv is a
valuation of linear growth. Conversely, [36, Theorem 2.16] implies:

Example 1.29. — If v ∈ Xval is centered at a closed point of X, then
v ∈ X lin iff v 6 v′ for some v′ ∈ Xdiv.
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2. Piecewise linear and Fubini–Study functions

As before, X denotes a projective variety. We introduce the classes of
piecewise linear and Fubini–Study functions on the Berkovich space Xan,
and interpret them in terms of test configurations, along the lines of [29].

2.1. Flag ideals and piecewise linear functions

Recall from Section 1.1 that to any ideal b ⊂ OX is associated a con-
tinuous function Xan → [0,+∞] given by v 7→ v(b). For reasons that will
become clearer later, we define

log |b| : Xan −→ [−∞, 0]

by setting log |b|(v) := −v(b). The function log |b| is homogeneous with
respect to the scaling action of R>0, and (1.2) yields

log |b · b′| = log |b|+ log |b′|, log |b + b′| = max{log |b|, log |b′|} (2.1)

for all ideals b, b′ ⊂ OX .

Following [29, 95], we define a flag ideal a as a vertical fractional ideal
on Xtriv = X × A1, i.e. a Gm-invariant, coherent fractional ideal sheaf that
is trivial on X × Gm, according to our conventions. We then have a weight
decomposition

a =
∑
λ∈Z

aλ$
−λ (2.2)

for a decreasing sequence of ideals aλ ⊂ OX such that aλ = OX for λ � 0
and aλ = 0 for λ� 0. For any v ∈ Xan with Gauss extension σ(v), we have

σ(v)(a) = min
λ
{v(aλ)− λ}.

We define a continuous function ϕa : Xan → R by setting ϕa(v) = −σ(v)(a),
i.e.

ϕa = max
λ
{log |aλ|+ λ}. (2.3)

For any two flag ideals a, a′, we have

ϕa·a′ = ϕa + ϕa′ , ϕa+a′ = max{ϕa, ϕa′}. (2.4)

Definition 2.1. — We define the space of piecewise linear (PL) func-
tions on Xan as the Q-linear subspace

PL(X) ⊂ C0(X)

generated by all functions ϕa attached to flag ideals a.
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By (2.4), the subset

PL+(X) :=
{
m−1ϕa

∣∣m ∈ Z>0, a flag ideal
}
⊂ PL(X) (2.5)

is stable under sums and finite maxima, and contains all Q-valued constant
functions. It is also stable under multiplication by Q+: if c ∈ Q+, then
cϕa = m−1ϕamc for any m ∈ Z>0 such that mc ∈ Z. Further, it is stable
under the scaling action of Q>0: if t ∈ Q>0 and a =

∑
λ aλ$

−λ, then
t·ϕa = m−1ϕa′ , wherem ∈ Z>0 is such thatmt ∈ Z, and a′ =

∑
λ a

m
λ $

−mtλ.

It follows that the Q-vector space PL(X) is stable under finite maxima
and minima, and under the scaling action of Q>0, and it contains all constant
Q-valued functions. Further, any function in PL(X) can be written as a
difference of functions in PL+(X), and is Q-valued on Xdiv.

We refer to Theorem 2.7 and Appendix A for an interpretation of PL
functions in terms of test configurations and PL functions on simplicial com-
plexes, respectively. In our setting, PL functions play the role of smooth
functions in the complex analytic case, as illustrated by the next result.

Theorem 2.2. — The space PL(X) is dense in C0(X) for the topology
of uniform convergence.

By the “lattice version” of the Stone–Weierstrass theorem, this is a direct
consequence of the following result.

Lemma 2.3. — The Q-linear subspace PL(X) ⊂ C0(X) is stable under
max (and hence min), contains the constants in Q, and separates the points
of Xan.

Proof. — The first two properties are clear. As mentioned in Section 1.1,
the topology of Xan is generated by the functions log |b| attached to ideals
b ⊂ OX . For any two v, v′ ∈ Xan we can thus find an ideal b such that
log |b|(v) 6= log |b|(v′) (since Xan is Hausdorff), and it follows that ϕ :=
max{log |b|,−m} ∈ PL(X) separates v, v′ for m� 1. �

Remark 2.4. — We will occasionally consider the R-vector space
PL(X)R ⊂ C0(X) generated by PL(X). As opposed to the latter, PL(X)R
is not closed under max.

Example 2.5. — Given a closed subscheme Z ⊂ X with ideal b ⊂ OX ,
the function

ϕZ := max{log |b|,−1}
lies in PL+(X), since ϕZ = ϕa with a = b + ($). Note that

t · ϕZ = max{log |b|,−t} (2.6)
for all t ∈ Q>0.
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Example 2.6. — Assume X is a smooth irreducible curve, and recall the
description of Xan in Section 1.1.6. As a special case of Example 2.5, each
p ∈ X(k) defines a function ϕp ∈ PL+(X) that satisfies, for all q ∈ X(k)
and t ∈ [0,+∞],

ι?qϕp(t) =
{

max{−t,−1} if q = p;
0 otherwise.

Using (2.6) and the fact that every nontrivial ideal of X is of the form
b = OX(−

∑
i aipi) for a finite set (pi) in X(k) and ai ∈ Z>0, one checks

that the functions t ·ϕp with t ∈ Q>0 and p ∈ X(k) span PL(X). A function
ϕ ∈ C0(X) is PL iff ϕ is constant on all but finitely many rays of Xan and
Q-PL on these rays, and ϕ ∈ PL+(X) iff ϕ is further convex (and hence
decreasing, being bounded) on each ray.

2.2. PL functions and test configurations

Let X be a test configuration for X, and recall that Gauss extension
of (semi)valuations yields an embedding σX : Xan ↪→ X an onto the set of
k×-invariant semivaluations w ∈ X an such that w(X0) = w($) = 1.

Recall also that a vertical Q-Cartier divisor on X means a Gm-invariant
Q-Cartier divisor with support in X0 (see Example 1.5). Such divisors form
a finite dimensional Q-vector space, denoted by

VCar(X )Q.

To each D ∈ VCar(X )Q we associate a continuous function ϕD ∈ C0(X)
by setting

ϕD(v) := σX (v)(D)
for v ∈ Xan, where the right-hand side is defined as m−1σX (v)(OX (−mD))
for any choice of m ∈ Z>0 such that mD is a Cartier divisor (and hence
D > 0⇒ ϕD > 0).

The map D 7→ ϕD is Q-linear, and invariant under pull-back: if µ : X ′ →
X is a morphism of test configurations then σX ′(v)(µ?D) = σX (v)(D) for
all v ∈ Xan, and hence ϕµ?D = ϕD. It thus gives rise to a Q-linear map

lim−→
X

VCar(X )Q −→ C0(X), (2.7)

where the direct limit ranges over the directed poset of (isomorphism classes
of) test configurations (or merely integrally closed ones, since they form a
cofinal subset).
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Theorem 2.7. — The map D 7→ ϕD in (2.7) induces a Q-linear iso-
morphism

lim−→
X

VCar(X )Q ' PL(X).

Lemma 2.8. — Let X be an integrally closed test configuration for X,
and D ∈ VCar(X )Q. Then D is effective iff ϕD(vE) > 0 for each irreducible
component E of X0.

Proof. — After passing to a multiple, we may assume that D is
Cartier. Since σX (vE) = b−1

E ordE , Lemma 1.23 shows that −ϕD(vE) =
b−1
E ordE(OX (−D)) is nonnegative for all E iff OX (−D) ⊂ OX , which is
also equivalent to D being effective. �

Lemma 2.9. — For any ϕ ∈ C0(X), the following properties are equiva-
lent:

(i) ϕ ∈ PL+(X);
(ii) there exists a test configuration X that dominates Xtriv via µ : X →
Xtriv, and a µ-semiample vertical Q-divisor D ∈ VCar(X )Q such
that ϕ = ϕD.

Proof. — Assume (i), and write ϕ = m−1ϕa for a flag ideal a on Xtriv and
m ∈ Z>0. Denote by µ : X → Xtriv the blowup of a, so that a · OX = OX (E)
with E ∈ VCar(X ). Then ϕ = ϕD with D := m−1E ∈ VCar(X )Q, which
is µ-semiample. This proves (i) ⇒ (ii). Conversely, assume (ii), and pick
m sufficiently divisible such that OX (mD) is µ-globally generated. Then
OX (mD) = a · OX with a := µ?OX (mD), and hence ϕ = m−1ϕa, which
proves (ii)⇒ (i). �

Proof of Theorem 2.7. — Lemma 2.8 implies that (2.7) is injective. Any
D ∈ VCar(X )Q with µ : X → Xtriv can be written as a difference of µ-
(semi)ample divisors; on the other hand, any ϕ ∈ PL(X) is a difference of
functions in PL+(X), and Lemma 2.9 thus shows that the image of (2.7) is
precisely PL(X). �

Next we prove a result that will be used in Section 4.4.
Definition 2.10. — Given a flag ideal a, we define the set Σa ⊂ Xdiv

of Rees valuations of a as the finite set of divisorial valuations associated to
the irreducible components of X0, where X → Xtriv is the integral closure of
the blowup of a.

As the blowup of any ideal is canonically isomorphic to the blowup of
any power of that ideal, we have Σar = Σa for any r > 1.

Remark 2.11. — Let X → Xtriv be the integral closure of the blowup
along a flag ideal a ⊂ OXtriv , and (Ei) the irreducible components of X0.
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The Rees valuations of a are then the valuations vEi ∈ Xdiv on X. Note that
the terminology is a bit abusive, as (assuming X is normal) the divisorial
valuations ordEi on X can also be seen as the Rees valuations of the ideal a.

Lemma 2.12. — Every divisorial valuation is a Rees valuation of some
flag ideal. More generally, for any finite subset Σ ⊂ Xdiv there exists a flag
ideal a of X such that Σ ⊂ Σa.

Proof. — It suffices to consider the case Σ = {v}, v ∈ Xdiv. By Lem-
ma 1.20, there exists an integrally closed test configuration X for X, and an
irreducible component E of X0 such that vE = v. Passing to a higher test
configuration, we may assume that X is the integral closure of the blowup
of Xtriv along a flag ideal a, and then v ∈ Σa. �

Lemma 2.13. — For any flag ideal a and any ϕ ∈ PL+(X), we have
sup
Xan

(ϕ− ϕa) = max
Σa

(ϕ− ϕa).

Proof. — Write ϕ = m−1ϕa′ , where m > 1 and a′ is a flag ideal. Then
ϕ− ϕa = m−1(ϕa′ − ϕam). As Σam = Σa, we may assume m = 1.

Let {Ei}i be the irreducible components of X0, so that Σa = {vEi}i.
Write a · OX = OX (D) with D ∈ VCar(X )Q. For each i we have σ(vEi) =
ordEi(X0)−1 ordEi , and hence

c := max
Σa

(ϕ− ϕa) = max
i

{
ordEi(D)− ordEi(a′)

ordEi(X0)

}
.

Pick r ∈ Z>0 such that rc ∈ Z. For all i we then have
ordEi ((a′)r(rcX0 − rD)) > 0,

and hence (a′)r(rcX0 − rD) ⊂ OX , by Lemma 1.23. This yields, in turn,
rc+ rσ(v)(a′) > rσ(v)(a)

for all v ∈ Xan, and we conclude, as desired, supXan(ϕ− ϕa) = c. �

2.3. Density of divisorial valuations

Using PL functions, we establish some topological properties of Xan. Most
importantly, we prove

Theorem 2.14. — The set Xdiv is dense in Xan.

Proof. — By density of PL(X) in C0(X) (see Theorem 2.2), it suffices to
prove that if ϕ ∈ PL(X) vanishes on Xdiv, then ϕ ≡ 0. By Theorem 2.7 we
have ϕ = ϕD for some vertical Q-Cartier divisor D on an integrally closed
test configuration X . The result now follows from Lemma 2.8. �
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Using this, we further show:

Lemma 2.15. — For any projective variety X, we have:

(i) the set of semivaluations v ∈ Xan with one-dimensional support is
dense in Xan iff every irreducible component of X has dimension at
least 1;

(ii) Xan \Xval is dense in Xan iff every irreducible component of X has
dimension at least 2.

Proof. — We may assume that X is irreducible. Indeed, a subset of Xan

is dense iff its intersection with Xan
α is dense in Xan

α for every irreducible
component Xα of X.

The case dimX = 0 is trivial, and if dimX = 1, then the set of valuations
with one-dimensional support equals Xval, which is dense, whereasXan\Xval

is not, see Section 1.1.6.

We may therefore assume dimX > 1. In this case, we claim that the set
C of semivaluations with one-dimensional support is dense in Xan. This will
prove (i), and hence also (ii), since any such semivaluation is contained in
Xan \Xval.

Pick a prime divisor E on a normal birational model π : Y → X. By
Theorem 2.14, it is enough to show that ordE ∈ Xdiv lies in the closure of C.
By definition of the topology of Xan, this amounts to the following: given an
affine open subvariety U ⊂ X that intersects π(E) and f1, . . . , fr ∈ O(U),
we need to exhibit v ∈ C such that v(fi) is arbitrarily close to ordE(fi) for
i = 1, . . . , r. We claim that we can actually find v ∈ C such that v(fi) =
ordE(fi) for all i. To see this, denote by Z the union of the irreducible
components of

∑
i π

?div(fi) that are distinct from E. Since E and Y are
smooth at the generic point of E, we can find an irreducible curve C ⊂ Y ,
not contained in the exceptional locus of π, and a closed point p ∈ C that
does not lie on Z, such that E and C intersect transversely at p. Setting
ord(C,p)(f) := ordp(f |C) for f ∈ OY,p defines a semivaluation ord(C,p) ∈ Y an,
which lies outside Y val since Y has dimension at least 2 at p, by assumption.
The image of ord(C,p) in Xan is a semivaluation with support π(C), and
hence v ∈ C. By construction, we further have ordE(fi) = ordE(π?fi) =
ord(C,p)(π?fi) = v(fi) for all i, and we are done. �

2.4. Fubini–Study functions

We now introduce classes of functions defined by global sections of line
bundles.
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Recall that the base ideal of a line bundle L on X is the ideal bL ⊂ OX
locally generated by the global sections H0(X,L). The corresponding closed
subscheme of X is called the base scheme of L, while its base locus Bs(L) is
the underlying Zariski closed set, i.e.

Bs(L) = {x ∈ X | s(x) = 0 for all s ∈ H0(X,L)}.

Lemma 2.16. — A line bundle L admits a regular section s ∈ H0(X,L)
iff Bs(L) is nowhere dense.

Proof. — The set of regular sections in H0(X,L) is the complement of the
union of linear subspaces Vα := {s ∈ H0(X,L) | s|Xα ≡ 0}. Thus L admits
a regular section iff each Vα is a strict subspace; this is also equivalent to
saying that Bs(L) does not contain any component Xα, i.e. Bs(L) is nowhere
dense. �

Consider now a Q-line bundle L. The asymptotic base locus of L is the
Zariski closed subset B(L) := Bs(mL) for m sufficiently divisible. One says
that L is effective (resp. semiample) if B(L) is nowhere dense (resp. empty).
Note that

L effective =⇒ L pseudoeffective, i.e. c1(L) ∈ Psef(X);
L semiample =⇒ L nef, i.e. c1(L) ∈ Nef(X).

Indeed, the first implication follows from Lemma 2.16, which yields a regular
section s ∈ H0(X,mL) for m sufficiently divisible, so that m−1div(s) is an
effective Q-Cartier divisor in the numerical class of L.

Consider next an additive subgroup Λ ⊂ R (the main cases being {0}, Q,
or R), and a function ϕ : Xan → R ∪ {−∞} of the form

ϕ = m−1 max
j
{log |sj |+ λj} (2.8)

with m ∈ Z>0 such that mL is an honest line bundle, (sj) a finite set
of sections of H0(X,mL), and λj ∈ Λ. (Recall that (2.8) means ϕ(v) =
m−1 maxj{−v(sj) + λj} for all v ∈ Xan). Using Lemma 1.4, the next result
is straightforward:

Lemma 2.17. — Every function ϕ : Xan → R∪ {−∞} of the form (2.8)
is continuous, decreasing, and satisfies B(L)(k) ⊂ {ϕ = −∞}. Furthermore,
the following are equivalent:

(i) ϕ is generically finite, i.e. ϕ|Xan
α
6≡ −∞ for all α (see Defini-

tion 1.3);
(ii) ϕ is finite at vtriv,α for all α (see Section 1.1.5);
(iii) ϕ is finite valued on Xval.

– 679 –



Sébastien Boucksom and Mattias Jonsson

Definition 2.18. — Given a subgroup Λ ⊂ R and a Q-line bundle L on
X, we say that a function ϕ : Xan → R ∪ {−∞} is

(i) a Λ-rational, generically finite Fubini–Study function for L if ϕ is
of the form (2.8) and generically finite, i.e. finite valued on Xval

(see Lemma 2.17);
(ii) a Λ-rational Fubini–Study function for L if ϕ is further finite valued

on all of Xan.

We denote by HΛ(L) ⊂ Hgf
Λ (L) the spaces so defined.

Note that these sets only depend on the isomorphism class of L, i.e. its
image in Pic(X)Q. Further,

HΛ(L) = Hgf
Λ (L) ∩ C0(X).

For any ϕ as in (2.8), we have

ϕ = (rm)−1 max
j
{log |srj |+ rλj} (2.9)

for all r ∈ Z>0. Thus

Hgf
Λ (L) = Hgf

QΛ(L), HΛ(L) = HQΛ(L), (2.10)

which means that the subgroup Λ ⊂ R can always be assumed to be divisible
in the above definition. Finally, we trivially have

Hgf
0 (L) ⊂ Hgf

Λ (L) ⊂ Hgf
R (L), H0(L) ⊂ HΛ(L) ⊂ HR(L).

These sets can be empty; more precisely, it is straightforward to check that

Hgf
R (L) 6= ∅ ⇐⇒ Hgf

0 (L) 6= ∅ ⇐⇒ L effective; (2.11)

HR(L) 6= ∅ ⇐⇒ H0(L) = {0} ⇐⇒ L semiample. (2.12)
The next result summarizes further properties that are also readily checked
(compare [22, Proposition 5.4]).

Proposition 2.19. — Pick any L ∈ Pic(X)Q. Then:

(i) each ϕ ∈ Hgf
Λ (L) is decreasing on Xan, and hence satisfies the maxi-

mum principle (1.4) (see Lemma 1.4); further, ϕ ≡ −∞ on B(L)an;
(ii) Hgf

Λ (L) and HΛ(L) are both invariant under the scaling action (1.3)
restricted to the subgroup {t ∈ R>0 | tΛ ⊂ Λ} of R>0;

(iii) for all L′ ∈ Pic(X)Q and a ∈ Q>0 we have

Hgf
Λ (aL) = aHgf

Λ (L), Hgf
Λ (L) +Hgf

Λ (L′) ⊂ Hgf
Λ (L+ L′),

and similarly for HΛ;
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(iv) for any morphism f : Y → X from a projective variety we have

f?HΛ(L) ⊂ HΛ(f?L),

and the same holds for Hgf
Λ if f is surjective.

When ϕ ∈ Hgf
Λ (L) is written as in (2.8), the scaling action in (ii) is simply

given by
t · ϕ = m−1 max

j
{log |sj |+ tλj}.

For any v ∈ Xan, we similarly have

ϕ(tv) = m−1 max
j
{−tv(sj) + λj},

which yields:

Lemma 2.20. — For any ϕ ∈ Hgf
R (L) and v ∈ Xan, t 7→ ϕ(tv) is convex

and decreasing on R>0.

Proposition 2.19(iv) admits the following partial converse, a key ingredi-
ent in the proof of Theorem 4.32 below.

Lemma 2.21. — Let π : Y → X be the blowup of an ideal b ⊂ OX , with
exceptional divisor E. Denote by sE ∈ H0(Y,OY (E)) the canonical section,
so that π? log |b| = log |sE | ∈ Hgf

0 (E). For any L ∈ Pic(X)Q we then have

Hgf
Λ (π?L− E) + log |sE | ⊂ π?Hgf

Λ (L).

Lemma 2.22. — In the notation of Lemma 2.21, we have bm ⊂
π?OY (−mE) for all m ∈ N, and equality holds for all m large enough.

Proof. — This follows from the fact that Y is the relative Proj of the
graded OX -algebra R =

⊕
m∈N bm, which is generated in degree 1, and that

OY (−E) = OY (1) (see for instance [78, Exercise II.5.9]). �

Proof of Lemma 2.21. — Pick ϕ ∈ Hgf
Λ (π?L−E), and write it as in (2.8),

with si ∈ H0(Y,m(π?L−E)). After replacing m and the si with rm and sri
for r large enough as in (2.9), we may assume that π?OY (−mE) = bm, by
Lemma 2.22. For each i, sismE ∈ H0(Y,mπ?L) locally belongs to the ideal
OY (−mE), and hence sismE = π?σi with σi ∈ H0(X,OY (mL) ⊗ bm). This
yields ϕ + log |sE | = π?ψ with ψ := m−1 maxi{log |σi| + λi}. Since π is
birational, ψ is finite valued at each vtriv,α iff π?ψ = ϕ + log |sE | satisfies
the analogous condition on Y , which is indeed the case since sE is a regular
section. Thus ψ ∈ Hgf

Λ (L), and we are done. �

For later use (see Theorem 6.21), we also establish the following “division”
property:
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Lemma 2.23. — Assume that X is normal. Pick L ∈ Pic(X)Q, an effec-
tive Q-Cartier divisor E on X, and ϕ ∈ Hgf

Λ (L). Then

ϕ 6 log |sE |+O(1)⇐⇒ ϕ− log |sE | ∈ Hgf
Λ (L− E).

We have somewhat abusively set log |sE | := m−1 log |smE | ∈ Hgf
0 (E)

for m sufficiently divisible, where smE ∈ H0(X,mE) denotes the canonical
section.

Proof. — Write ϕ as in (2.8). Replacing m and si with rm and sri for
r large enough, we may assume that mE is a Cartier divisor. For each i,
we have log |si| + λi 6 mϕ 6 log |smE | + O(1), i.e. v(si) > v(mE) − C
for all v ∈ Xan and a uniform constant C. Replacing v with tv and letting
t → +∞, we infer v(si) > v(mE) for all v. This holds in particular with
v = ordF for any irreducible component F of E, which shows that si locally
belongs to the ideal OX(−mE) ⊂ OX , since X is normal. For each i, we thus
have si = σismE with σi ∈ H0(X,m(L − E)), which yields ϕ − log |sE | =
m−1 maxi{log |σi| + λi}. This function is further generically finite, since so
are ϕ and log |sE |, and we conclude, as desired, ϕ−log |sE | ∈ Hgf

Λ (L−E). �

We further observe that generically finite Fubini–Study functions are au-
tomatically constant on a substantial part of Xan:

Lemma 2.24. — Pick L ∈ Pic(X)Q and ϕ ∈ Hgf
R (L). Then there exists

a non-empty Zariski open subset U ⊂ X such that ϕ ≡ supϕ on c−1(U).

Recall that the center map c : Xan → X is anticontinuous. Thus c−1(U)
is closed in Xan (in fact, a k-analytic domain), but it has non-empty interior,
as it contains the non-empty open subset c−1({p}) for any closed point p ∈
U(k).

Proof. — Write ϕ = m−1 maxi{log |si| + λi} as in (2.8), with si 6= 0 for
all i. For any v ∈ Xan, v(si) = − log |si|(v) is nonzero iff si vanishes at the
center c(v). If c(v) /∈ Z :=

⋃
i(si = 0), we thus have ϕ(v) = maxi λi = supϕ,

which yields the result with U := X \ Z. �

The space
H(L) := HQ(L)

of (rational) Fubini–Study functions plays a central role in this paper. As
we shall see, when L is ample, H(L) is in 1–1 correspondence with the set
of integrally closed, ample test configurations (see Corollary 2.32 below).
On the other hand, HR(L) is closely related to the notion of an “R-test
configuration” as considered for instance in [51]; see [34] for details.
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2.5. Fubini–Study functions and PL functions

We now study the relation betweenH(L) and the space PL(X) introduced
in Section 2.1.

Proposition 2.25. — For any L ∈ Pic(X)Q and ϕ : Xan → R∪{−∞},
we have ϕ ∈ H(L) iff ϕ = m−1ϕa for a flag ideal a and m ∈ Z>0 such that
mL is an honest line bundle and mLtriv ⊗ a is globally generated on Xtriv.

Here (Xtriv,Ltriv) is the trivial test configuration for (X ,L), see Exam-
ple 1.6. In terms of the weight decomposition (2.2), note that mLtriv ⊗ a is
globally generated iff mL⊗ aλ is globally generated for all λ ∈ Z.

Proof. — Assume first ϕ ∈ H(L) and write ϕ = m−1 maxi{log |si|+ λi}
for a finite set (si) in H0(X,mL) and λi ∈ Z. The rational sections (si$−λi)
of mLtriv on Xtriv generate a flag ideal a such that mLtriv ⊗ a is globally
generated on Xtriv, and ϕ = m−1ϕa.

Assume, conversely, that ϕ = m−1a with a a flag ideal such that mLtriv⊗
a is globally generated. As above, write a =

∑
λ∈Z aλ$

−λ. For each λ ∈
Z, OX(mL) ⊗ aλ is globally generated by a finite set (sλ,i)i of sections in
H0(X,mL), and (2.3) shows that

ϕ = m−1 max
λ,i
{log |sλ,i|+ λ},

which proves that ϕ ∈ H(L). �

Corollary 2.26. — For any L∈Pic(X)Q, we have Q+H(L)⊂PL+(X),
and equality holds if L is ample. In particular, H(L) spans the Q-vector space
PL(X) whenever L is ample.

In view of Proposition 2.19(iii), this implies

Corollary 2.27. — We have PL+(X) =
⋃
LH(L), where L ranges

over ample classes in Pic(X).

Given a flag ideal a, we get an evaluation map PL(X) → QΣa . We now
show that this map is surjective. Using Lemma 2.12, this will imply that the
evaluation map PL(X) → QΣ is surjective for any finite subset Σ ⊂ Xdiv.
For later purposes, we prove a more precise result.

Lemma 2.28. — For any flag ideal a, and L ∈ Pic(X)Q ample, the fol-
lowing property holds for m sufficiently divisible. For any c ∈ QΣa , there
exists r > 1 and ρ ∈ H(L) such that ψ := r(ϕa − mρ) ∈ PL(X) satisfies
ψ(v) = cv for all v ∈ Σa.
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Before proving the lemma, we establish the following version of [29, The-
orem 1.10].

Lemma 2.29. — Let a be a flag ideal. Denote by µ : X → Xtriv the inte-
gral closure of the blowup along a, and by E1, . . . , EN the irreducible compo-
nents of X0. Then⋂

i

{f ∈ OXtriv | ordEi(f) > ordEi(am)}

 
⋂
i>1
{f ∈ OXtriv | ordEi(f) > ordEi(am)} (2.13)

for all m ∈ N large enough.

Proof. — The (antieffective) vertical Cartier divisor D on X such that
OX (D) = a · OX is µ-ample, and the left-hand side of (2.13) coincides with
µ?OX (mD). For m� 1,

OX (mD)  OX (mD) · OX (E1)
are both µ-globally generated, and taking µ? yields the result. �

Proof of Lemma 2.28. — Let X → Xtriv be the integral closure of the
blowup of Xtriv along a, and {Ei}i the irreducible components of X0, so that
Σa = {vi}i, where vi = vEi . By Lemma 2.29, after replacing a with some
power, we may assume that for any j, we have⋂

i

{f ∈ OXtriv | ordEi(f) > ordEi(a)}

 a′j :=
⋂
i6=j
{f ∈ OXtriv | ordEi(f) > ordEi(a)} .

For m sufficiently divisible, mLtriv⊗a′j is globally generated for any j. After
replacing L bymL, we may assumem = 1. Then, for each j, there exists sj ∈
H0 (Xtriv,Ltriv) such that ordEj (sj) < ordEj (a) and ordEi(sj) > ordEi(a) for
all i 6= j. Write sj =

∑
λ∈N sj,λ$

λ with sλ,j ∈ H0(X,L), and define functions
ρ′j : Xan → R ∪ {−∞} by

ρ′j := max
λ
{log |sj,λ| − λ}.

Then ρ′j(vi) = −b−1
i ordEi(sj) and ϕa(vi) = −b−1

i ordEi(a); hence ρ′j(vj) >
ϕa(vj) while ρ′j(vi) 6 ϕa(vi) for i 6= j. If we pick a = mini ϕa(vi) and set
ρj := max{ρ′j , a}, then ρj ∈ H(L) and

max
i6=j

(ρj(vi)− ϕa(vi)) 6 0 < εj := ρj(vj)− ϕa(vj).

For r > 1, we now set
ρ := max

j
{ρj−εj−cj/r} ∈ H(L) ⊂ PL+(X) and ψ = r(ϕa−ρ) ∈ PL(X).
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If r � 1, then rεi + ci > cj for all i, j, which easily implies ψ(vj) = cj for
all j. �

2.6. Equivalence of test configurations

Let L be a Q-line bundle on X. As in [29, Definition 6.1], we say that
two test configurations (X ,L), (X ′,L′) for (X,L) are equivalent if L and
L′ agree after pulling back to a test configuration X ′′ dominating both X
and X ′.

For simplicity, we say that a test configuration (X ,L) is integrally closed
(resp. semiample, ample) if X (resp. L) is. Slightly generalizing [29, Lem-
ma 6.3] (which assumed X normal), we have:

Proposition 2.30. — If L is an ample Q-line bundle, then every semi-
ample test configuration for (X,L) is equivalent to a unique ample, integrally
closed test configuration.

Proof. — By [29, Proposition 2.17], every semiample test configuration is
equivalent to an ample test configuration, which can further be assumed to be
integrally closed after passing to the integral closure. This proves existence.

To prove uniqueness, let (X ,L), (X ′,L′) be two ample, integrally closed
test configurations for (X,L) that are equivalent. After replacing L with a
multiple, we may assume that L,L′ are honest line bundles. By ampleness, it
will then be enough to show that H0(X ,mL) = H0(X ′,mL′) for all m ∈ N,
as k[$]-submodules of H0(X,mL)k[$±1] (see Section 1.2). Choose a test
configuration X ′′ dominating X and X ′ via µ : X ′′ → X , µ′ : X ′′ → X ′, such
that L′′ := µ?L = µ′?L′. Since X and X ′ are integrally closed, Lemma 1.12
yields µ?OX ′′ = OX , µ′?OX ′′ = OX ′ , and the projection formula shows that

H0(X ,mL) = H0 (X ′′,mL′′) = H0(X ′,mL′).
The proof is complete. �

2.7. Fubini–Study functions and test configurations

Let L be a Q-line bundle on X. For any test configuration (X ,L) for
(X,L), we can choose a test configuration X ′ with two morphisms µ : X ′ →
X , ρ : X ′ → Xtriv. Then

D := µ?L − ρ?Ltriv ∈ VCar(X )Q,
and mapping L to D yields a 1–1 correspondence between the set of equiva-
lence classes of test configurations for (X,L) and the Q-vector space
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lim−→X VCar(X )Q, which in turn is isomorphic to PL(X), by Theorem 2.7.
We write ϕL for the element of PL(X) associated to L. The restriction of
ϕL to Xdiv coincides with the function associated to the equivalence class of
(X ,L) in [29, Section 6].

Theorem 2.31. — For any Q-line bundle L on X, the map L 7→ ϕL
sets up a 1–1 correspondence between:

(i) the set of equivalence classes of test configurations for L and PL(X);
(ii) the set of equivalence classes of semiample test configurations for L

and H(L).

Note that the sets in (ii) are nonempty only if L is semiample. Combined
with Proposition 2.30, we infer:

Corollary 2.32. — If L is an ample Q-line bundle, then L 7→ ϕL
defines a 1–1 correspondence between the set of ample, integrally closed test
configurations for L and H(L).

The set H(L) thus corresponds to HNA(L) in the notation of [29, Defini-
tion 6.2].

Proof of Theorem 2.31. — By construction, the map L 7→ ϕL is the
composition of D 7→ ϕD with the canonical bijection between equivalence
classes of test configurations for L and lim−→X VCar(X )Q. Thus (i) is a direct
consequence of Theorem 2.7.

To prove (ii), let (X ,L) be a semiample test configuration for (X,L).
After replacing L with a multiple and pulling-back to a higher test configu-
ration, we may assume without loss that L is a globally generated line bundle,
and that X dominates the trivial test configuration via µ : X → Xtriv. Set
D := L − µ?Ltriv ∈ VCar(X ), so that ϕL = ϕD. Since L is globally gener-
ated, OX (D) is µ-globally generated, and the flag ideal a := µ?OX (D) thus
satisfies a · OX = OX (D), and hence ϕa = ϕD = ϕL. Denote by a′ ⊂ a the
flag ideal locally generated by

H0 (Xtriv,Ltriv ⊗ a) ' H0(X ,L).
Since L is globally generated, we have a′ · OX = OX (D) = a · OX ; hence
ϕa′ = ϕL. By construction, L⊗a′ is globally generated, and Proposition 2.25
thus yields, as desired, ϕL ∈ H(L).

Conversely pick ϕ ∈ H(L). After replacing L with a multiple, Proposi-
tion 2.25 yields ϕ = ϕa for a flag ideal a on Xtriv such that Ltriv ⊗ a is
globally generated. Denoting by µ : X → Xtriv the blowup along a, we have
a · OX = OX (D) for a vertical Cartier divisor D such that L := µ?Ltriv +D
is globally generated, and ϕL = ϕD = ϕa = ϕ. �
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The next result will be needed in Section 3.1.

Lemma 2.33. — If L is an ample Q-line bundle on X and X any test
configuration for X that dominates Xtriv, then L admits an ample test con-
figuration L determined on X .

Proof. — By Lemma 1.8, we can find D ∈ VCar(X )Q that is relatively
ample over Xtriv. Denoting by LX the pullback of L to X , it follows that
L := LX + εD is ample for ε ∈ Q>0 small enough, and we are done. �

2.8. Geometric interpretation of the scaling action

As noted in Section 2.1, the spaces PL(X) and PL+(X) admit a natural
scaling action by Q>0. We now give a geometric interpretation of the scaling
action of Z>0 in terms of base change.

Using flag ideals, this is easy: any function ϕ ∈ PL+(X) can be written
ϕ = m−1ϕa for some m ∈ Z>0 and some flag ideal a on Xtriv = X × A1.
It then follows from the discussion after (2.5) that if d ∈ Z>0, then d · ϕ =
m−1ϕa(d) , where a(d) is the pullback of a under the map Xtriv → Xtriv given
by $ 7→ $d.

Following [29, Section 6.3], we can give a smilar interpretation of the
scaling action when the functions are associated to test configurations.

Let L be a Q-line bundle on X. For any test configuration (X ,L) for
(X,L) and d ∈ Z>0, denote by Xd → A1 the base change of X → A1 by
$ 7→ $d, and let Ld be the pull-back of L to Xd.

Lemma 2.34. — For each d ∈ Z>0 we have d · ϕL = ϕLd .

Proof. — After passing to a higher test configuration, we may assume,
by linearity, that L = OX and L = OX (D) with D ∈ VCar(X ). Denote by
ρ : Xd → X the natural morphism. For any v ∈ Xan, we then need to show
that

σXd(v)(ρ?D) = d σX (d−1v)(D),
where σX and σXd denote the Gauss extensions. Let Y ⊂ X be the support
of v. Then w := ρ?σXd(v) is a valuation on the induced test configuration
Y ⊂ X , and it will be enough to show that w = d σX (d−1v). To this end,
note that w is k×-invariant, and satisfies w($) = σXd(v)($d) = d. We thus
have d−1w = σX (v′) for a unique valuation v′ on Y . For all f ∈ k(Y ) we
have ρ?f = f , and hence

v′(f) = d−1w(f) = d−1v(f),
which proves, as desired, that w = d σX (d−1v). �
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Corollary 2.35. — Let L be an ample Q-line bundle, and pick ϕ ∈
H(L). For all d ∈ Z>0 divisible enough, the unique ample, integrally closed
representative of d · ϕ has a reduced central fiber.

Proof. — Let (X ,L) be the ample, integrally closed representative of ϕ.
By Lemma 2.34, the ample, integrally closed representative of d · ϕ is the
integral closure (X̃d, L̃d) of (Xd,Ld), and we thus need to show that the
central fiber X̃d,0 is reduced for d divisible enough.

By [103, Tag 09IJ], the central fiber of the normalization X νd is generi-
cally reduced for d divisible enough. Since X̃d is integrally closed, the nor-
malization morphism X νd → X̃d is an isomorphism over the generic points of
X̃d,0 (see Remark 1.22), which is thus also generically reduced. We conclude
thanks to Corollary 1.16. �

2.9. Almost trivial test configurations

We end this section with an analysis of “almost trivial” test configura-
tions. Following [29, 96, 104], we introduce:

Definition 2.36. — We say that a test configuration X for X is

(i) almost trivial if the normalization X ν of X is trivial;
(ii) trivial in codimension 1 if the canonical Gm-equivariant birational

map X 99K Xtriv is an isomorphism in codimension 1.

Note that (i) corresponds to [29, Definition 2.9], while (ii) corresponds
to [104, Definition 1] and [96, Definition 3.3].

Recall that X ν is a test configuration for the normalization Xν of X. If
X is trivial in codimension 1, then X0 is generically reduced, and X is thus
regular at each generic point of X0.

As we shall see, (ii) implies (i), but the converse fails in general, even
when X is smooth, despite what was claimed in [29, Proposition 2.11]. This
was kindly pointed to us by Masafumi Hattori, together with the following
simple example:

Example 2.37. — Let X ⊂ P2 be a smooth conic such that [0 : 0 : 1] /∈ X,
and consider the test configuration X defined the 1-parameter subgroup
ρ(t)[x0 : x1 : x2] = [x0 : x1 : tx2], which degenerates X = X1 to a double
line X0. It comes with a morphism of test configurations Xtriv → X , which is
finite, and hence coincides with the normalization. Thus X is almost trivial,
but not trivial in codimension 1, as X0 is generically non-reduced.
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The next result clarifies the situation, and also provides a simple inter-
pretation of almost triviality in terms of PL functions.

Theorem 2.38. — Let L be a Q-line bundle on X and (X ,L) a test
configuration for (X,L), with associated function ϕL ∈ PL(X). Then:

(i) if X is almost trivial, then ϕL is locally constant. When L is further
ample, the converse holds as well;

(ii) X is almost trivial iff its integral closure X̃ is trivial;
(iii) X is trivial in codimension 1 iff X is almost trivial and X0 is gener-

ically reduced.

When X is equidimensional and L is ample, (i) is also equivalent to
J(ϕL) = 0, cf. Corollary 10.4 below (compare also [29, Theorem A(ii)]).

Proof. — Assume that X is almost trivial, i.e. X ν =
∐
α X να is trivial.

Since X να is integrally closed and its central fiber is irreducible, Lemma 2.8
implies that VCar(X να )Q is 1-dimensional, and hence

ν?(L − Ltriv)|Xα = cαX να,0
for some cα ∈ Q. This implies that ϕL ≡ cα on Xdiv

α ' (Xν
α)div; hence

ϕL ≡ cα on Xan
α , by density of divisorial points, and we infer that ϕL is

constant on each connected component of Xan, which proves the first part
of (i).

Assume conversely that L is ample, and ϕL is locally constant. Arguing
on each connected component of Xan, we may assume that X is connected,
and hence ϕL ≡ c ∈ Q. After replacing L with L − cX0, we may assume
c = 0. Then ϕν?L = ν?ϕL ≡ 0, and Corollary 2.32 implies that the ample,
integrally closed test configuration (X ν , ν?L) is trivial, which concludes the
proof of (i).

We next turn to (ii). If X̃ is trivial, then its normalization X ν is trivial
as well. To prove the converse, we may assume wlog that L is ample (as any
test configuration admits a Gm-equivariant, ample line bundle). Assuming
that X ν is trivial, (i) shows that ϕL is locally constant, and Corollary 2.32
yields as above that X̃ is trivial as well, which proves (ii).

Finally we prove (iii). If X0 is generically reduced, then X is regular at
each generic point of X0. Thus X ν → X is an isomorphism over these points,
and X is therefore trivial in codimension 1 iff X ν is. To prove (iii), we may
thus assume wlog that L is ample and X is normal, irreducible, and trivial in
codimension 1, and we then need to show that X is trivial. Since X is trivial
in codimension 1, X0 is irreducible, and ordX0 = ordXtriv,0 = σ(vtriv). After
adding to L a multiple of X0, we assume ϕL(vtriv) = 0, and we then need to
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show that ϕL ≡ 0, by Corollary 2.32. To see this, pick a test configuration
X ′ that dominates both X and Xtriv, with morphisms µ : X ′ → X and
ρ : X ′ → Xtriv, and set

D := µ?L − ρ?Ltriv ∈ VCar(X ′)Q,

so that ϕL = ϕD. Since ordX0(D) = ordXtriv,0(D) = ϕD(vtriv) = 0, D is
exceptional with respect to both µ and ρ. For m divisible, we thus have

am := µ?OX ′(mD) ⊂ OX (mµ?D) ⊂ OX ,

and similarly a′m := ρ?OX ′(−mD) ⊂ OXtriv . On the other hand, D
(resp. −D) is semiample with respect to µ (resp. ρ), and hence am · OX ′ =
OX ′(mD), a′m·OX ′ = OX ′(−mD) form large and divisible enough. It follows
that OX ′(±mD) ⊂ OX ′ ; hence D = 0, which concludes the proof. �

3. Plurisubharmonic functions and energy pairing: the PL case

In this section, X is any projective variety, with irreducible components
(Xα). Set n := dimX. We introduce and study the class of PL functions
that are θ-psh for a numerical class θ ∈ N1(X). We also introduce the energy
pairing, defined, for the moment, on (n+ 1)-tuples of pairs (θ, ϕ) ∈ N1(X)×
PL(X), and study its finer properties when ϕ is θ-psh.

3.1. Plurisubharmonic PL functions

In what follows, it will be convenient to allow real coefficients. We thus
denote by

PLR := PL(X)R ⊂ C0(X)
the R-vector space generated by PL := PL(X). Theorem 2.7 induces an
isomorphism

lim−→
X

VCar(X )R ' PLR . (3.1)

For any test configuration π : X → A1, we denote by

N1(X/A1)

the space of π-numerical equivalence classes of all (not necessarily vertical)
R-Cartier divisors D on X , i.e. the quotient of Car(X )R by the subspace
defined by D · C = 0 for all irreducible curves C ⊂ X contained in some
fiber of π. Since π is projective, it follows from general theory that the
R-vector space N1(X/A1) is finite dimensional (this is also a consequence
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of Lemma 3.1 below). We equip it with the corresponding R-vector space
topology.

A class α ∈ N1(X/A1) is nef if α · C > 0 for each irreducible curve C in
a fiber of π : X → A1. Nef classes form a closed convex cone

Nef(X/A1) ⊂ N1(X/A1).

Given a morphism µ : X ′ → X of test configurations and α ∈ N1(X/A1), we
have

α ∈ Nef(X/A1)⇐⇒ µ?α ∈ Nef(X ′/A1).

Lemma 3.1. — For a class α ∈ N1(X/A1), the following conditions are
equivalent:

(i) α ∈ Nef(X/A1);
(ii) α|X0 ∈ Nef(X0) = Nef(X0,red);
(iii) α · C > 0 for all Gm-invariant irreducible curves C ⊂ X0.

In particular, the restriction map N1(X/A1)→ N1(X0) is injective.

Proof. — Trivially, (i) ⇒ (ii)⇒ (iii). Assume (ii), and pick a Gm-linear-
ized, ample line bundle A on X . For each ε > 0, (α + εA)|X0 is ample, and
α+εA is thus relatively ample over a neighborhood of 0 ∈ A1, see [85, 1.2.7].
Thus (α+εA)|Xt is ample for some t ∈ Gm, and hence for all t ∈ Gm, thanks
to the Gm-equivariant isomorphism X \ X0 ' X × Gm over Gm (note that
Gm, being connected, acts trivially on N1(X/A1)). It follows that α + εA
is nef for all ε > 0, and hence α is nef as well, proving (ii) ⇒ (i). Finally
assume (iii). To prove (ii), we need to show that α · C > 0 for every (not
necessarily Gm-invariant) irreducible curve C ⊂ X0, which we accomplish
by way of a standard degeneration argument: denote by Ct the image of C
under t ∈ Gm, and note that α · C = α · Ct, by Gm-invariance of α. By
properness of the components of the Chow scheme of X0, C0 := limt→0 Ct
exists as an effective 1-cycle. It is Gm-invariant, and hence a positive linear
combination of Gm-invariant irreducible curves. Thus

α · C = lim
t→0

α · Ct = α · C0 > 0,

and we are done. �

If a test configuration X dominates Xtriv = X × A1, then each class
θ ∈ N1(X) pulls back to a class θX ∈ N1(X/A1) via the composition

X −→ Xtriv = X × A1 −→ X.

In line with [27, 39, 69, 110], we introduce:
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Definition 3.2. — We say that a function ϕ ∈ PLR is θ-plurisub-
harmonic (θ-psh for short) if it is determined by a divisor D ∈ VCar(X )R
on a test configuration X dominating Xtriv such that θX +D ∈ Nef(X/A1).

We sometimes also say that the pair (θ, ϕ) ∈ N1(X) × PLR is psh. Here
θX +D denotes, slightly abusively, the sum of θX and of the image of D in
N1(X/A1).

This definition is independent of the choice of X . Indeed, for any mor-
phism of test configurations µ : X ′ → X , we have

θX ′ + µ?D = µ? (θX +D) ,

which is thus nef iff θX +D is nef. Restricting to X1 ' X further shows that
a θ-psh function in PLR can only exist when θ ∈ Nef(X).

We will use the notation

PLR ∩PSH(θ) and PL∩PSH(θ)

for the sets of θ-psh functions in PLR and PL, respectively. At this point,
the notation is purely formal, but it will be justified in Section 4, by defining
the set PSH(θ).

When θ = c1(L) ∈ N1(X) is the numerical class of L ∈ Pic(X)Q on X,
we simply speak of L-psh functions. By Theorem 2.31, we have:

Example 3.3. — For any Q-line bundle L on X, L 7→ ϕL sets up a 1–1
correspondence between the set of semipositive non-Archimedean metrics
in the sense of [29, Definition 6.4], i.e. equivalence classes of nef test con-
figurations L for L, and PL∩PSH(L). By Theorem 2.31(ii), we thus have
H(L) ⊂ PL∩PSH(L), the inclusion being strict in general.

Remark 3.4. — Following [26, 27] we could define a closed (1, 1)-form on
Xan to be an element η ∈ lim−→X N1(X/A1), and declare a function ϕ ∈ PLR
to be η-psh if it is of the form ϕ = ϕD, with D ∈ VCar(X )R such that η+D
is nef. In this paper we only consider the case when η ∈ N1(Xtriv/A1) is
determined by the pullback of a class θ ∈ N1(X).

As a direct consequence of the fact that Nef(X/A1) ⊂ N1(X/A1) is
closed, we have:

Lemma 3.5. — Let θi → θ be a convergent sequence in N1(X). Pick
ϕ,ψ ∈ PLR, and assume that ϕ+ ciψ is θi-psh for a sequence ci → 0. Then
ϕ is θ-psh.
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Proposition 3.6. — Pick θ, θ′ ∈ N1(X), and assume that ϕ,ϕ′ ∈ PLR
are θ-psh and θ′-psh, respectively. Then:

(i) ϕ+ ϕ′ is (θ + θ′)-psh, and tϕ is tθ-psh for all t ∈ R>0;
(ii) for each c ∈ R and t ∈ Q>0, ϕ+ c and t · ϕ are θ-psh;
(iii) if θ = θ′ and ϕ,ϕ′ ∈ PL, then max{ϕ,ϕ′} ∈ PL is θ-psh;
(iv) ϕ is decreasing with respect to the partial order on Xan, and hence

satisfies (1.4) (see Lemma 1.4);
(v) for any morphism f : Y → X from a projective variety, f?ϕ is f?θ-

psh;
(vi) if we further assume that f : Y → X is surjective, then

ϕ θ-psh⇐⇒ ϕ|Xan
α
θ|Xα-psh for all α⇐⇒ f?ϕ f?θ-psh.

In particular, (i) shows that PLR ∩PSH(θ) is a convex subset of PLR.

Lemma 3.7. — For any θ ∈ N1(X) and ϕ ∈ PLR ∩PSH(θ), there exists
a sequence ϕm ∈ H(Lm) with Lm ∈ Pic(X)Q such that ϕm → ϕ uniformly
on Xan and c1(Lm)→ θ.

Proof. — Pick a test configuration X dominating Xtriv and D ∈
VCar(X )R such that ϕ = ϕD. By openness of the (relatively) ample cone
of N1(X/A1), we can find a sequence of Q-line bundles Lm on X and
Dm ∈ VCar(X )Q such that c1(Lm) → θ in N1(X), Dm → D in VCar(X )R,
and c1(Lm)X + Dm ∈ N1(X/A1) is ample for all i. In particular, Lm :=
(Lm)X+Dm is a semiample test configuration for L, and hence ϕm := ϕLm =
ϕDm ∈ H(Lm). Furthermore, Dm → D implies ϕm → ϕ uniformly. �

Proof of Proposition 3.6. — Pick a test configuration X dominating Xtriv
and D,D′ ∈ VCar(X )R that determine ϕ,ϕ′. By assumption, θX + D and
θ′X +D′ are nef. Thus

(θ+θ′)X +D+D′ = (θX +D)+(θ′X +D′) and (tθ)X + tD = t (θX +D)

are nef as well, proving (i).

For each c ∈ R we have ϕ + c = ϕD+cX0 . Since X0 = π?(0) vanishes
in N1(X/A1), θX + D + cX0 is nef, and ϕ + c is thus θ-psh. To prove the
remaining part of (ii), it suffices to prove that if d ∈ Z>0, then ϕ is θ-psh
iff d · ϕ is θ-psh. In view of Lemma 2.34, this follows from the fact that
θX +D ∈ N1(X/A1) is nef iff its pullback under the base change of X with
respect to $ 7→ $d is nef.

Assume now θ = θ′ and D,D′ ∈ VCar(X )Q. By openness of Amp(X), we
can find an Q-line bundle L on X such that c1(L)−θ is ample and arbitrarily
small. Then ϕ,ϕ′ are L-psh, and it will be enough to show that max{ϕ,ϕ′}
is L-psh as well, by Lemma 3.5. After perhaps passing to a higher test
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configuration, we may assume that X supports an ample test configuration
L for L (Lemma 2.33). For each ε ∈ Q>0, the Q-line bundle LX + D + εL
is ample, and hence semiample. Thus ϕ+ εϕL is Fubini–Study for (1 + ε)L,
and similarly for ϕ′ + εϕL. By Proposition 2.19, it follows that

max{ϕ+ εϕL, ϕ
′ + εϕL} = max{ϕ,ϕ′}+ εϕL

is Fubini–Study for (1 + ε)L, and hence (1 + ε)L-psh. Using Lemma 3.5 we
conclude, as desired, that max{ϕ,ϕ′} is L-psh. This proves (iii).

By Proposition 2.19, any Fubini–Study function is decreasing, and (iv)
thus follows from Lemma 3.7.

To prove (v), note that the Gm-equivariant rational map Y ×Gm 99K X
induced by f admits a Gm-equivariant resolution of indeterminacies, which
is thus a test configuration Y for Y dominating Ytriv. Also denoting by
f : Y → X the corresponding morphism, we have f?ϕ = ϕf?D, and the
result thus follows from the fact that θY + f?D = f?(θX + D) is nef, as
the pullback of a nef class. If f : Y → X is surjective, then f : Y → X is
surjective as well, and (vi) follows. �

Given a test configuration π : X → A1, we denote by Amp(X/A1) ⊂
Nef(X/A1) the set of π-ample classes α ∈ N1(X/A1), that is, classes whose
restriction to X0 is ample.

Definition 3.8. — For any ω ∈ Amp(X), we denote by Hdom(ω) ⊂
PL∩PSH(ω) the set of ω-psh PL functions of the form ϕD with D ∈
VCar(X )Q for a test configuration X dominating Xtriv and ωX + D ∈
Amp(X/A1).

After pulling back by the (finite) integral closure morphism X̃ → X , one
may always arrange that X is integrally closed in this definition.

Example 3.9. — If ω = c1(L) for an ample Q-line bundle, then H(L) is
in 1–1 correspondence with the set of ample, integrally closed test configu-
rations (X ,L) for (X,L) (see Corollary 2.32), and

Hdom(L) := Hdom(c1(L)) ⊂ H(L)
corresponds to the subset such that X dominates Xtriv.

As in Corollary 2.26, we have
Q+Hdom(ω) = PL+(X) (3.2)

for any ω ∈ Amp(X), so that Hdom(ω) spans the Q-vector space PL(X).

Proposition 3.10. — If ω ∈ Amp(X), then every ϕ ∈ PLR ∩PSH(ω)
is a uniform limit of functions in Hdom(ω).
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Lemma 3.11. — For any ω ∈ Amp(X), the set of test configurations
X dominating Xtriv such that there exists H ∈ VCar(X )Q with ωX + H ∈
Amp(X/A1) is cofinal in the set of all test configurations.

Proof. — By Lemma 1.8, any test configuration for X is dominated by
a test configuration X with a morphism µ : X → Xtriv such that VCar(X )Q
contains a µ-ample divisor A. Since ωXtriv ∈ N1(Xtriv/A1) is ample, ωX +
εA = µ?ωXtriv + εA ∈ N1(X/A1) is ample for ε ∈ Q>0 small enough, and
setting H := εA yields the result. �

Proof of Proposition 3.10. — Pick any ϕ ∈ PLR ∩PSH(ω), and write
ϕ = ϕD for some D ∈ VCar(X )R, where X is an integrally closed test
configuration. Thus ωX + D ∈ N1(X/A1) is nef. By Lemma 3.11 we may
assume that there exists H ∈ VCar(X )R such that ωX + H is ample. Pick
a basis (Ci) for VCar(X )Q and write D =

∑
i ciCi, H =

∑
i c
′
iCi with

ci, c
′
i ∈ R. For m � 1, the class ωX + D + 1

mH ∈ N1(X/A1) is ample, and
we can pick εm,i ∈ (0, 1

m ) such that if Dm :=
∑
i(ci + c′i

m + εm,i)Ci, then
Dm ∈ VCar(X )Q and ωX + Dm is ample. It follows that ϕDm ∈ Hdom(ω),
and that ϕDm − ϕ = 1

mϕH +
∑
i εm,iϕCi tends to 0 uniformly on Xan. �

3.2. The energy pairing

Recall that every test configuration π : X → A1 admits a canonical com-
pactification π : X → P1. If X dominates Xtriv, then any θ ∈ N1(X) pulls
back to a class θX ∈ N1(X ), whose image in N1(X/A1) coincides with θX
considered above.

Pick an (n + 1)-tuple of pairs (θi, ϕi) ∈ N1(X) × PLR, i = 0, . . . , n, and
choose a test configuration X dominating Xtriv and divisors Di ∈ VCar(X )R
that determined the ϕi. Following [29, Definition 6.11], we introduce:

Definition 3.12. — The energy pairing takes an (n+ 1)-tuple of pairs
(θi, ϕi) ∈ N1(X)× PLR, i = 0, . . . , n to

(θ0, ϕ0) · . . . · (θn, ϕn) :=
(
θ0,X +D0

)
· . . . ·

(
θn,X +Dn

)
∈ R. (3.3)

The right-hand side is an intersection number against the fundamental
class

[X ] =
∑

dimXα=n
[Xα] (3.4)

of the (n+1)-dimensional projective variety X , with θi,X +Di ∈ N1(X ) now
denoting (slightly abusively again) the sum of θi,X and of the image of Di

in N1(X ). By the projection formula, this definition is independent of the
choice of X .
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Remark 3.13. — Assume θi = c1(Li) with Li a line bundle on X, i =
0, . . . , n. In that case, the energy pairing can be interpreted as a metric on
the Deligne pairing 〈L0, . . . , Ln〉, as follows. Pick ϕi ∈ PLR, i = 0, . . . , n.
Using the trivial metric on Li, ϕi can be identified with a continuous dpsh
metric φi on Li in the sense of [22, Definition 8.7]. By [22, Theorem 8.16],
one gets an induced metric 〈φ0, . . . , φn〉 on the line 〈L0, . . . , Ln〉, that can
in turn be viewed as a real number, thanks to the trivial metric. Using [22,
Theorem 8.18], one can check that this number coincides with (θ0, ϕ0) · . . . ·
(θn, ϕn).

Proposition 3.14. — The energy pairing is a symmetric, multilinear
form on N1(X)× PLR. For all tuples (θi, ϕi) ∈ N1(X)× PLR, i = 0, . . . , n,
we further have:

(i) (0, 1) · (θ1, ϕ1) · . . . · (θn, ϕn) = (θ1 · . . . · θn)X ;
(ii) for all c0, . . . , cn ∈ R we have

(θ0, ϕ0 + c0) · . . . · (θn, ϕn + cn) = (θ0, ϕ0) · . . . · (θn, ϕn)

+
n∑
i=0

ci(θ0 · . . . · θ̂i · . . . · θn)X ;

(iii) (θ0, 0) · . . . · (θn, 0) = 0;
(iv) (θ0, t · ϕ0) · . . . · (θn, t · ϕn) = t(θ0, ϕ0) · . . . · (θn, ϕn) for all t ∈ Q>0;
(v) denoting by ν : Xν → X the normalization morphism, we have

(θ0, ϕ0) · . . . · (θn, ϕn) =
∑

dimXα=n
(θ0, ϕ0)|Xα · . . . · (θn, ϕn)|Xα

= (ν?θ0, ν
?ϕ0) · . . . · (ν?θn, ν?ϕn);

(vi) pick an integrally closed test configuration X dominating Xtriv,
D1, . . . , Dn ∈ VCar(X )R, and set ϕi := ϕDi for i = 1, . . . , n. For
all ϕ ∈ PLR we then have

(0, ϕ) · (θ1, ϕ1) · . . . · (θn, ϕn)

=
∑

bE ϕ(vE)(θ1,X +D1)|E · . . . · (θn,X +Dn)|E , (3.5)

where the sum runs over the irreducible components E of X0 and
bE := ordE(X0) = ordE($).

The right-hand side in (i) is an intersection number against the funda-
mental class [X] =

∑
dimXα=n[Xα]. We emphasize that X in (vi) does not

depend on ϕ.

Proof. — The first assertion is an immediate consequence of the multi-
linearity and symmetry of the right-hand side of (3.3). In the notation of
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Definition 3.12,

(0, 1) · (θ1, ϕ1) · . . . · (θn, ϕn) = [X0] · (θ1,X +D1) · . . . · (θn,X +Dn)
= [X1] · (θ1,X +D1) · . . . · (θn,X +Dn)
= (θ1,X )|X1 · . . . · (θn,X )|X1 = (θ1 · . . . · θn)X ,

where the second equality holds by flatness of π : X → P1. This proves (i),
which implies (ii), by multilinearity, while (iii) follows from the projection
formula applied to X × P1 → X.

To prove (iv), we may assume that t ∈ Z>0, since we are dealing with a
group action of Q>0. The result is now a simple consequence of the geometric
description of t ·ϕ in terms of base change in Lemma 2.34 and the projection
formula (compare [29, Lemma 6.13]). Next, (v) follows (3.4), ν?[X ν ] = [X ],
and the projection formula. Finally, for (vi), pick a morphism µ : X ′ → X of
test configurations and D0 ∈ VCar(X ′)R such that ϕ = ϕD0 . Then

(0, ϕ) · (θ1, ϕ1) · . . . · (θn, ϕn)

= D0 ·
(
θ1,X ′ + µ?D1

)
· . . . ·

(
θn,X ′ + µ?Dn

)
= D0 · µ?

((
θ1,X +D1

)
· . . . ·

(
θn,X +Dn

))
= µ?[D0] ·

(
θ1,X +D1

)
· . . . ·

(
θn,X +Dn

)
=
∑
E

ordE(D0)[E] ·
(
θ1,X +D1

)
· . . . ·

(
θn,X +Dn

)
=
∑
E

bE ϕ(vE)[E] ·
(
θ1,X +D1

)
· . . . ·

(
θn,X +Dn

)
,

where we used the projection formula in the third equality. �

For psh pairs, (3.5) implies the following crucial monotonicity property:

Lemma 3.15. — Consider psh pairs (θi, ϕi)∈Nef(X)×PLR, i = 1, . . . , n,
and pick also θ0 ∈ N1(X) and ϕ0, ϕ

′
0 ∈ PLR. Then

ϕ0 6 ϕ
′
0 =⇒ (θ0, ϕ0) · (θ1, ϕ1) · . . . · (θn, ϕn) 6 (θ0, ϕ

′
0) · (θ1, ϕ1) · . . . · (θn, ϕn).

Combined with Proposition 3.14(iii), this yields:

Corollary 3.16. — For all psh pairs (θi, ϕi) ∈ Nef(X) × PLR, i =
0, . . . , n, we have

∀ i ϕi 6 0 =⇒ (θ0, ϕ0) · . . . · (θn, ϕn) 6 0;
∀ i ϕi > 0 =⇒ (θ0, ϕ0) · . . . · (θn, ϕn) > 0.
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Anticipating the general construction of Section 7.3, it is convenient to
interpret (3.5) by attaching to any tuple (θi, ϕi) ∈ N1(X)×PLR, i = 1, . . . , n
its mixed Monge–Ampère measure

n∧
i=1

(θi + ddc ϕi) :=
∑
E

cEδvE (3.6)

with cE := bE(θ1,X + D1)|E · . . . · (θn,X + Dn)|E . It is thus a signed Radon
measure on Xan, with support a finite subset of Xdiv, and characterized byˆ

Xan
ϕ

n∧
i=1

(θi + ddc ϕi) = (0, ϕ) · (θ1, ϕ1) · . . . · (θn, ϕn) (3.7)

for all ϕ ∈ PL (recall that PL is dense in C0(X), see Theorem 2.2). By
Proposition 3.14(i),

ˆ
Xan

n∧
i=1

(θi + ddc ϕi) = (θ1 · . . . · θn)X . (3.8)

The symmetry of the intersection pairing yields the “integration by parts”
formulaˆ

Xan
ϕ0 ddc ϕ1 ∧

n∧
i=2

(θi + ddc ϕi) =
ˆ
Xan

ϕ1 ddc ϕ0 ∧
n∧
i=2

(θi + ddc ϕi) (3.9)

for all ϕi ∈ PLR, while Proposition 3.14(iv) yields∧
i

(θi + ddc(t · ϕi)) = t?
∧
i

(θi + ddc ϕi) (3.10)

for all t ∈ Q>0. When ϕi = 0 for some i, we drop the term ddc ϕi from the
notation.

Example 3.17. — We have

θ1 ∧ · · · ∧ θn =
∑

dimXα=n
(θ1 · . . . · θn)Xα δvtriv,α . (3.11)

Example 3.18. — Assume Z ⊂ X are both smooth and irreducible, with
associated valuation ordZ ∈ Xdiv. Set d := dimZ, and consider the function
ϕZ of Example 2.5. Denoting by µ : X → Xtriv the blowup of Z×{0} and P
its exceptional divisor, we have X0 = X̃ + P (see Example 1.7), ϕZ = −ϕP ,
v
X̃

= vtriv and vP = ordZ (see Example 1.21). For any θ ∈ N1(X), we have

(θ + ddc ϕZ)n = c δordZ + ((θn)− c) δvtriv ,

where

c := (θX − P )|nP = (µ?θ|Z +OP (1))n =
d∑
j=0

(
n

j

)(
θ|jZ · sd−j(Z)

)
,
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with si(Z) the i-th Segre class of Z (see [66, Chapter 4]).

Example 3.19. — Assume that X is a smooth irreducible curve. Then
each ϕ ∈ PLR is a PL function on any ray (t ordp)t>0 with p ∈ X(k),
constant on all but finitely many of these. Moreover, for any θ ∈ N1(X), we
have

θ + ddc ϕ = (deg θ)δvtriv + ∆ϕ, (3.12)
where

∆ϕ :=
∑

p∈X(k)

[
d
dt

∣∣∣∣
0+
ϕ(t ordp)δvtriv + d2

dt2ϕ(t ordp)
]

is (up to a sign) the tree Laplacian. To see all this, note that the case ϕ = 0
follows from 3.11, so by linearity we may assume θ = 0. We may further
assume ϕ = a · ϕp with a ∈ Q>0 and p ∈ X(k), since these functions span
PLR (see Example 2.6) and the operators ddc and ∆ are R-linear. By (3.10),
we can also assume a = 1. Then ϕ(t ordp) = max{−t,−1}, and ϕ(t ordq) = 0
for q 6= 0. This implies ∆ϕ = δordp − δvtriv , which coincides with ddc ϕ, by
Example 3.18.

When (θi, ϕi) ∈ N1(X) × PLR is psh for i = 1, . . . , n, the measure (3.6)
is positive (which is equivalent to Lemma 3.15). Conversely:

Theorem 3.20. — Pick ω ∈ Amp(X) and (θ, ϕ) ∈ N1(X)×PLR. Then
ϕ is θ-psh iff

(θ + ddc ϕ) ∧ (ω + ddc ψ)n−1 > 0
for all ψ ∈ Hdom(ω).

Example 3.21. — IfX is a smooth irreducible curve and (θ, ϕ) ∈ N1(X)×
PLR, then ϕ is θ-psh iff θ + ddc ϕ > 0. In view of Example 3.19, this
amounts to:

(i) for each p ∈ X(k), t 7→ ϕ(t ordp) is convex—and hence decreasing,
being bounded above;

(ii) deg θ +
∑
p∈X(k)

d
dt
∣∣
0+ϕ(t ordp) > 0.

As an important consequence of Theorem 3.20, we infer the following
analogue of [27, Theorem 5.11] and [74, Theorem 5.5]:

Corollary 3.22. — For each θ ∈ N1(X), PLR ∩PSH(θ) is closed in
PLR with respect to the topology of pointwise convergence on Xdiv.

Proof of Theorem 3.20. — By Lemma 3.11, we can pick a test configura-
tion X dominating the trivial one, such that there exists H ∈ VCar(X )Q with
ωX + H ∈ Amp(X/A1) and D ∈ VCar(X )R with ϕ = ϕD. By Lemma 3.1,
we need to show that (θX + D) · C > 0 for each Gm-invariant irreducible
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curve C ⊂ X0. Consider, as in the proof of [67, Proposition 8], the blowup
µ : X ′ → X along C, with exceptional divisor F . Then X ′ is a test configu-
ration for X, and −F is µ-ample, so that

α := ωX ′ + µ?H − εF ∈ Amp(X ′/A1)

for 0 < ε � 1. Since F is an effective Cartier divisor dominating C, there
exists a ∈ Q>0 such that

µ?
(
F · αn−1) = aC

in N1(X/A1), and the projection formula thus yields

(θX +D) · C = a−1F · (θX ′ + µ?D) · αn−1.

Now

F · (θX ′ + µ?D) · αn−1 =
ˆ
ϕF (θ + ddc ϕ) ∧ (ω + ddc ψ)n−1

with ψ := ϕµ?H−εF ∈ Hdom(ω). By assumption, the right-hand integral is
nonnegative. Thus (θX +D) · C > 0, and we are done. �

In view of Theorem 3.20, Corollary 3.22 is a direct consequence of the
following continuity result.

Lemma 3.23. — Consider a tuple (θi, ϕi) ∈ N1(X)× PLR, i = 1, . . . , n,
and assume that ϕ1 is the pointwise limit on Xdiv of a net (ϕ1j)j in PLR.
Then

(θ1 + ddc ϕ1j) ∧
n∧
i=2

(θi + ddc ϕi) −→ (θ1 + ddc ϕ1) ∧
n∧
i=2

(θi + ddc ϕi)

weakly as measures on Xan.

Proof. — By density of PL in C0(X) (cf. Theorem 2.2), we need to show
ˆ
ϕ0 (θ1 + ddc ϕ1j) ∧

n∧
i=2

(θi + ddc ϕi)

−→
ˆ
ϕ0 (θ1 + ddc ϕ1) ∧

n∧
i=2

(θi + ddc ϕi) (3.13)

for all ϕ0 ∈ PL. Now
ˆ
ϕ0 (θ1 + ddc ϕ1j) ∧

n∧
i=2

(θi + ddc ϕi)

=
ˆ
ϕ0 θ1 ∧

n∧
i=2

(θi + ddc ϕi) +
ˆ
ϕ0 ddc ϕ1j ∧

n∧
i=2

(θi + ddc ϕi),
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and (3.9) yields
ˆ
ϕ0 ddc ϕ1j ∧

n∧
i=2

(θi + ddc ϕi) =
ˆ
ϕ1j ddc ϕ0 ∧

n∧
i=2

(θi + ddc ϕi)

−→
ˆ
ϕ1 ddc ϕ0 ∧

n∧
i=2

(θi + ddc ϕi) =
ˆ
ϕ0 ddc ϕ1 ∧

n∧
i=2

(θi + ddc ϕi),

since ddc ϕ0 ∧
∧n
i=2(θi + ddc ϕi) is supported in a finite subset of Xdiv. This

proves (3.13), and concludes the proof. �

3.3. Convexity and Hodge-type estimates

The following consequence of the Hodge index theorem is one main build-
ing block of all the results to follow.

Lemma 3.24. — For all psh pairs (θi, ϕi) ∈ N1(X)×PLR, i = 1, . . . , n−1
and ϕ ∈ PLR, we have

(0, ϕ)2 · (θ1, ϕ1) · . . . · (θn−1, ϕn−1) 6 0.

Proof. — When (θi, ϕi) ∈ N1(X)Q ×VCar(X )Q and ϕ ∈ PL, this follows
from [29, Lemma 6.14], itself a consequence of the Hodge index theorem.
The general case easily follows by approximation, arguing as in the proof of
Corollary 3.22 and using Proposition 3.10. �

Theorem 3.25. — Pick p ∈ {0, . . . , n + 1}. For i = 0, . . . , n − p, let
(θi, ϕi) ∈ N1(X) × PLR be a psh pair, and write for brevity Γ := (θ0, ϕ0) ·
. . . · (θn−p, ϕn−p). For any class θ ∈ N1(X), the function

ϕ 7−→ (θ, ϕ)p · Γ
is then concave on PLR ∩PSH(θ).

Here Γ is a purely notational device, and we are not trying to make sense
of it as a cycle class, for example.

Lemma 3.26. — For all ϕ,ψ ∈ PLR we have

(θ, ϕ)p · Γ− (θ, ψ)p · Γ =
p−1∑
j=0

(0, ϕ− ψ) · (θ, ϕ)j · (θ, ψ)p−1−j · Γ (3.14)

and
d
dt

∣∣∣∣
t=0

(θ, ϕ+ tψ)p · Γ = p(0, ψ) · (θ, ϕ)p−1 · Γ. (3.15)

Proof. — This follows from straightforward computations based on the
multilinearity and symmetry of the energy pairing. �
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Lemma 3.27. — For all ϕ,ψ ∈ PLR ∩PSH(θ), the sequence

aj := (0, ϕ− ψ) · (θ, ϕ)j · (θ, ψ)p−1−j · Γ

is decreasing on {0, . . . , p− 1}, and

pap−1 6 (θ, ϕ)p · Γ− (θ, ψ)p · Γ 6 pa0. (3.16)

Proof. — For j = 0, . . . , p− 1, we have

aj+1 − aj = (0, ϕ− ψ)2 · (θ, ϕ)j · (θ, ψ)p−j−2 · Γ 6 0,

by Lemma 3.24. In view of (3.14) this implies (3.16), �

Proof of Theorem 3.25. — By (3.15) and (3.16), we have, for any two
ϕ,ψ ∈ PLR ∩PSH(θ),

(θ, ϕ)p · Γ 6 (θ, ψ)p · Γ + d
dt

∣∣∣∣
t=0

(θ, (1− t)ψ + tϕ)p · Γ.

This is equivalent to the concavity of ϕ 7→ (θ, ϕ)p · Γ on PLR ∩PSH(θ). �

By Lemma 3.24, we may introduce:

Definition 3.28. — To each (n−1)-tuple of psh pairs (θi, ϕi) ∈ N1(X)×
PLR, i = 1, . . . , n− 1, we associate a seminorm on PLR by setting

‖ϕ‖(θ1,ϕ1)·...·(θn−1,ϕn−1) :=
√
−(0, ϕ)2 · (θ1, ϕ1) · . . . · (θn−1, ϕn−1).

For all ϕ,ψ ∈ PLR, we then have the Cauchy–Schwarz inequality

|(0, ϕ) · (0, ψ) · (θ1, ϕ1) · . . . · (θn−1, ϕn−1)|
6 ‖ϕ‖(θ1,ϕ1)·...·(θn−1,ϕn−1)‖ψ‖(θ1,ϕ1)·...·(θn−1,ϕn−1). (3.17)

For the remainder of this section we fix a nef class θ ∈ Nef(X).

Definition 3.29. — For all ϕ,ψ ∈ PLR ∩PSH(θ) we set

dθ(ϕ,ψ) := max
06j6n−1

‖ϕ− ψ‖2(θ,ϕ)j ·(θ,ψ)n−1−j . (3.18)

When ψ = 0 we simply set

dθ(ϕ) := dθ(ϕ, 0).

We first note the following basic monotonicity property.

Lemma 3.30. — Assume θ′ ∈ N1(X) satisfies θ′ > θ. For all

ϕ,ψ ∈ PLR ∩PSH(θ) ⊂ PLR ∩PSH(θ′),

we then have
dθ′(ϕ,ψ) > dθ(ϕ,ψ).
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Proof. — By assumption, θ′′ := θ′−θ is nef. For j = 0, . . . , n−1, we thus
have

‖ϕ− ψ‖2(θ′,ϕ)j ·(θ′,ψ)n−1−j

= −(0, ϕ− ψ)2 · ((θ, ϕ) + (θ′′, 0))j · ((θ, ψ) + (θ′′, 0))n−1−j
.

Expanding out, Lemma 3.24 yields

(0, ϕ− ψ)2 · ((θ, ϕ) + (θ′′, 0))j · ((θ, ψ) + (θ′′, 0))n−1−j

6 (0, ϕ− ψ)2 · (θ, ϕ)j · (θ, ψ)n−1−j ,

and the result follows. �

In analogy to [10, Theorem 1.8], we shall prove that dθ satisfies a quasi-
triangle inequality.

Theorem 3.31. — For all ϕ1, ϕ2, ϕ3 ∈ PLR ∩PSH(θ) we have
dθ(ϕ1, ϕ2) . dθ(ϕ1, ϕ3) + dθ(ϕ3, ϕ1).

Recall that we write x . y if x 6 Cny for a constant Cn > 0 only
depending on n, and x ≈ y if x . y and y . x.

As we shall see later, if θ is ample, then dθ(ϕ,ψ) = 0 iff ϕ−ψ is constant,
cf. Corollary 10.4.

Lemma 3.32. — For all ϕ,ϕ′, ψ ∈ PLR ∩PSH(θ) we have
dθ(ϕ,ψ) ≈ ‖ϕ− ψ‖2(θ,ϕ+ψ

2 )n−1 , (3.19)

dθ(ϕ,ψ) ≈ (θ, ψ)n+1 − (θ, ϕ)n+1 + (n+ 1)(ϕ− ψ) · (θ, ψ)n, (3.20)
and

dθ ((1− t)ϕ+ tϕ′, ψ) . (1− t)dθ(ϕ,ψ) + t dθ(ϕ′, ψ) (3.21)
for all t ∈ [0, 1].

Proof. — Expanding out
‖ϕ− ψ‖2(θ,ϕ+ψ

2 )n−1 = −21−n(0, ϕ− ψ)2 · ((θ, ϕ) + (θ, ψ))n−1

directly proves (3.19). On the other hand, an elementary computation yields

(θ, ψ)n+1 − (θ, ϕ)n+1 + (n+ 1)(0, ϕ− ψ) · (θ, ψ)n

= −
n−1∑
j=0

(j + 1)(0, ϕ− ψ)2 · (θ, ϕ)j · (θ, ψ)n−1−j

=
n−1∑
j=0

(j + 1)‖ϕ− ψ‖2(θ,ϕ)j ·(θ,ψ)n−1−j , (3.22)
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which implies (3.20). By Theorem 3.25, the right-hand side of (3.20) is a
convex function of ϕ, and (3.21) follows. �

The key estimate is as follows.

Lemma 3.33. — For all ϕ,ϕ′, ψ ∈ PLR ∩PSH(θ) we have

‖ϕ− ϕ′‖2(θ,ψ)n−1 . dθ(ϕ,ϕ′)αn max{dθ(ϕ,ψ), dθ(ϕ′, ψ)}1−αn

with αn := 21−n ∈ (0, 1].

Proof. — Set τ := 1
2 (ϕ + ϕ′), f := ϕ − ϕ′, A := dθ(ϕ,ϕ′), B :=

max{dθ(ϕ,ψ), dθ(ϕ′, ψ)}, and, for j = 0, . . . , n− 1,

bj := ‖f‖2(θ,ψ)j ·(θ,τ)n−1−j = −(0, f)2 · (θ, ψ)j · (θ, τ)n−1−j .

By (3.19), we have b0 ≈ A, and our goal is to show that

bn−1 . A
1

2n−1 B1− 1
2n−1 .

Since f = (ϕ − ψ) + (ψ − ϕ′), the triangle inequality for the seminorm
‖ · ‖(θ,ψ)n−1 yields

bn−1 6
(
‖ϕ− ψ‖(θ,ψ)n−1 + ‖ϕ′ − ψ‖(θ,ψ)n−1

)2
6 4B. (3.23)

If A > B, then bn−1 6 4B 6 4A
1

2n−1 B1− 1
2n−1 , providing the desired es-

timate. We thus henceforth assume A 6 B, and prove by induction on
j = 0, . . . , n− 1 that

bj . A
1

2j B1− 1
2j . (3.24)

For j = 0 this holds since b0 ≈ A. Now fix 0 6 j 6 n− 2, and note that

bj+1 − bj = −(0, f)2 · (ψ − τ) · (θ, ψ)j · (θ, τ)n−2−j

= −(0, f) · (0, ψ − τ) · (θ, ϕ) · (θ, ψ)j · (θ, τ)n−2−j

+ (0, f) · (0, ψ − τ) · (θ, ϕ′) · (θ, ψ)j · (θ, τ)n−2−j . (3.25)

Here we can use Cauchy–Schwarz to bound the last two terms. For example,∣∣(0, f) · (0, ψ − τ) · (θ, ϕ) · (θ, ψ)j · (θ, τ)n−2−j∣∣
6 ‖f‖(θ,ϕ)·(θ,ψ)j ·(θ,τ)n−2−j‖ψ − τ‖(θ,ϕ)·(θ,ψ)j ·(θ,τ)n−2−j .

Using (θ, ϕ) 6 2(θ, τ) we can bound the first factor by
√

2bj , and the second
factor by √

2‖ψ − τ‖(θ,ψ)j ·(θ,τ)n−1−j 6
√

2 dθ(τ, ψ).
We have a similar bound for the last term in (3.25). Adding the two bounds
yields bj+1 − bj 6 4dθ(τ, ψ)

√
bj . By (3.21) dθ(τ, ψ) .

√
B, and we conclude

bj+1 − bj .
√
Bbj (3.26)
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for 0 6 j 6 n− 2. Using the induction hypothesis (3.24), we get

bj+1 . bj +
√
Bbj . A

1
2j B1− 1

2j +A
1

2j+1 B1− 1
2j+1

= A
1

2j+1 B1− 1
2j+1

((
A

B

) 1
2j+1

+ 1
)
.

By assumption, A 6 B, so bj+1 . A
1

2j+1 B1− 1
2j+1 . The proof is complete. �

Proof of Theorem 3.31. — Set τ := (ϕ1 + ϕ2)/2. By (3.19), we have
dθ(ϕ1, ϕ2) . ‖ϕ1 − ϕ2‖2(θ,τ)n−1 . max

i=1,2
‖ϕi − ϕ3‖2(θ,τ)n−1 .

By Lemma 3.33 we have, for i = 1, 2,
‖ϕi − ϕ3‖2(θ,τ)n−1 . dθ(ϕi, ϕ3)αn max{dθ(ϕi, τ), dθ(ϕ3, τ)}1−αn .

By Lemma 3.32
dθ(ϕi, τ) . dθ(ϕ1, ϕ2) and dθ(ϕ3, τ) . max

i=1,2
dθ(ϕi, ϕ3).

Altogether, this yields
dθ(ϕ1, ϕ2) . max

i=1,2
dθ(ϕi, ϕ3)αn max{dθ(ϕ1, ϕ2),max

i=1,2
dθ(ϕi, ϕ3)}1−αn . (3.27)

When dθ(ϕ1, ϕ2) > maxi=1,2 dθ(ϕi, ϕ3), (3.27) yields dθ(ϕ1, ϕ2) .
maxi=1,2 dθ(ϕi, ϕ3). The same inequality trivially holds when dθ(ϕ1, ϕ2) 6
maxi=1,2 dθ(ϕi, ϕ3). �

Corollary 3.34. — For all ϕ0, . . . , ϕn ∈ PLR ∩PSH(θ) we have
‖ϕ0 − ϕ1‖2(θ,ϕ2)·...·(θ,ϕn) . dθ(ϕ0, ϕ1)αn max

06i6n
dθ(ϕi)1−αn

with αn = 21−n.

Recall that dθ(ϕ) = dθ(ϕ, 0).

Proof. — Set τ := 1
n−1

∑n
i=2 ϕi ∈ PLR ∩PSH(θ). Then

‖ϕ0 − ϕ1‖2(θ,ϕ2)·...·(θ,ϕn) . ‖ϕ0 − ϕ1‖2(θ,τ)n−1

. dθ(ϕ0, ϕ1)αn max{dθ(ϕ0, τ), dθ(ϕ1, τ)}1−αn ,
by Lemma 3.33. The result follows since

max{dθ(ϕ0, τ), dθ(ϕ1, τ)} . max
{

max
i
dθ(ϕ,ϕi),max

i
dθ(ϕ′, ϕi)

}
. max

{
dθ(ϕ), dθ(ϕ′),max

i
dθ(ϕi)

}
by quasi-convexity of dθ (cf. (3.21)) and the quasi-triangle inequality. �
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4. Plurisubharmonic functions

As before, X is a projective variety, and (Xα) denotes its set of irreducible
components.

In this section, we introduce the class PSH(θ) = PSH(X, θ) of θ-psh
functions associated to an arbitrary numerical class θ ∈ N1(X). We also
study pluripolar sets, i.e. loci where θ-psh functions take the value −∞.

4.1. The class of θ-psh functions

Recall that:

• a function ϕ : Xan → R∪{−∞} is called generically finite if ϕ|Xan
α
6≡

−∞ for all α (see Definition 1.3);
• for any L ∈ Pic(X)Q, Hgf

R (L) denotes the set of generically finite
(continuous) functions ϕ : Xan → R ∪ {−∞} of the form

ϕ = m−1 max
i
{log |si|+ λi}

where (si) is a finite set of sections of mL with m sufficiently divis-
ible, and λi ∈ R (see Definition 2.18). This set is non-empty iff L is
effective.

Given any numerical class θ ∈ N1(X), we are seeking to define a class PSH(θ)
of θ-plurisubharmonic functions (θ-psh functions for short) ϕ : Xan → R ∪
{−∞}. By analogy with the complex analytic setting, these functions should
be usc and generically finite, and the following properties should hold:

(PSH1) for any L ∈ Pic(X)Q, we have Hgf
R (L) ⊂ PSH(L) := PSH(c1(L));

(PSH2) if a generically finite function ϕ : Xan → R ∪ {−∞} arises as the
pointwise limit of a decreasing net (ϕi) with ϕi ∈ PSH(θi) and
limi θi = θ, then ϕ ∈ PSH(θ).

Note that (PSH2) implies the following two properties:

(PSH2a) for any function ϕ : Xan → R ∪ {−∞}, the set of θ ∈ N1(X) such
that ϕ ∈ PSH(θ) is closed (possibly empty);

(PSH2b) for any θ ∈ N1(X), the set PSH(θ) is closed under decreasing limits
(provided the limit function is generically finite).

Taking (PSH1) and (PSH2) as minimal requirements directly leads to the
following definition:
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Definition 4.1. — For any θ ∈ N1(X), we define a θ-psh function
ϕ : Xan → R∪{−∞} as a generically finite, usc function that can be written
as the pointwise limit of a decreasing net ϕi ∈ Hgf

R (Li) with Li ∈ Pic(X)Q
such that limi c1(Li) = θ in N1(X).

We denote by PSH(θ) the set of θ-psh functions, and by

CPSH(θ) := C0(X) ∩ PSH(θ) ⊂ E∞(θ) ⊂ PSH(θ)

the subsets of continuous and bounded θ-psh functions, respectively. When
needed, we also write PSH(X, θ) = PSH(θ) etc. Using the notation in the
definition, we have:

• since Hgf
R (Li) is non-empty, Li is necessarily effective, by (2.11),

and hence

PSH(θ) 6= ∅ =⇒ θ ∈ Psef(X); (4.1)

• if ϕ is bounded, then ϕi is finite valued, i.e. ϕi ∈ H(Li); this
implies that Li is semiample, by (2.12), and hence

E∞(θ) 6= ∅ =⇒ θ ∈ Nef(X); (4.2)

• if ϕ ∈ CPSH(θ) is further continuous, then ϕi → ϕ uniformly on
Xan, by Dini’s lemma.

Remark 4.2. — In the complex analytic case, psh functions and metrics
are defined in a different way, which is local in nature. However, when X
is smooth, well-known arguments due to Demailly [48] and relying on the
Ohsawa–Takegoshi extension theorem show that any psh metric on a (nec-
essarily pseudoeffective) line bundle L can be approximated from above by
metrics attached to sections of mL+A, where A is a fixed ample line bundle
and m is large (compare for instance [20, Theorem 5.4] or [75, Appendix]).
As a result, any such metric satisfies the analogue of Definition 4.1.

Lemma 4.3. — For functions in PL(X)R, Definition 4.1 is consistent
with Definition 3.2. In other words, given θ ∈ N1(X), a test configuration X
that dominates Xtriv and D ∈ VCar(X )R, we have

ϕD ∈ PSH(θ)⇐⇒ θX +D ∈ Nef(X/A1).

Indeed, this follows from Lemma 3.5, Lemma 3.7 and Corollary 3.22. For
any θ ∈ N1(X), we get, in particular,

PSH(θ) contains all constant functions⇐⇒ θ ∈ Nef(X), (4.3)

which provides a converse to (4.2).
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Remark 4.4. — If L is a Q-line bundle, then functions in PSH(L) =
PSH(c1(L)) can be interpreted as psh metrics on L, using the trivial metric.
By (4.3), any nef line bundle L admits a bounded (continuous) psh metric,
to wit the trivial metric. This is in stark contrast with the complex analytic
case, where a nef and big line bundle may not admit any bounded psh metric
(see [23, Example 5.4], based on [49, Example 1.7]).

Theorem 4.5. — Properties (PSH1) and (PSH2) above are satisfied.

As a consequence, Definition 4.1 is indeed the minimal one for which
(PSH1) and (PSH2) are satisfied.

Lemma 4.6. — Let K be a compact topological space, and assume we are
given:

• a set S and, for each s ∈ S, a family Fs of continuous functions
f : K → R ∪ {−∞}, stable under addition of a constant;

• a map ρ : S → T to a metrizable topological space T .

For each t ∈ T , denote by F̃t the set of all (usc) functions g : K → R∪{−∞}
that can be written as the pointwise limit of a decreasing net (fi) with fi ∈ Fsi
for a net (si) of S such that limi ρ(si) = t in T . Then

≈
Ft = F̃t for any

t ∈ T . In other words, if a function g : K → R∪{−∞} can be written as the
pointwise limit of a decreasing net (gi)i∈I with gi ∈ F̃ti for a net (ti) of T
such that limi ti = t, then g ∈ F̃t.

Proof. — Pick a metric d on T inducing the given topology. For each
i ∈ I, gi is the pointwise limit of a decreasing net (fi,j)j∈Ji with fi,j ∈ Fsi,j
for a net (si,j)j∈Ji in S such that ti,j := ρ(si,j) satisfies limj ti,j = ti. Denote
by A the set of triples α = (i, j, ε) with i ∈ I, j ∈ Ji and ε ∈ R>0, and define
a partial preorder on A by setting

(i, j, ε) > (i′, j′, ε′)⇐⇒


i > i′

fi,j + ε 6 fi′,j′ + ε′ on K
d(ti,j , ti) + ε 6 d(ti′,j′ , ti′) + ε′,

(4.4)

We claim that A is directed. To see this, pick α1 = (i1, j1, ε1), α2 = (i2, j2, ε2)
in A. Since I is directed, we can choose i3 ∈ I with i3 > i1, i2. Pick also
ε3 > 0 with ε3 < min{ε1, ε2}. Since (gi)i is decreasing, we have gi3 6
min{gi1 , gi2} 6 min{fi1,j1 , fi2,j2}, and hence

gi3 + ε3 < min{fi1,j1 + ε1, fi2,j2 + ε2} (4.5)

pointwise on K. For each j ∈ Ji3 , define hj : K → R by

hj := exp (fi3,j + ε3)− exp (min{fi1,j1 + ε1, fi2,j2 + ε2}) .

– 708 –



Global pluripotential theory over a trivially valued field

Then (hj) is a decreasing net of continuous functions such that limj hj < 0
pointwise on K, by (4.5). The compact space K can thus be written as the
increasing union of the open sets {hj < 0}, and hence K = {hj3 < 0} for
some j3 ∈ Ji3 , i.e.

fi3,j3 + ε3 < min{fi1,j1 + ε1, fi2,j2 + ε2} on K.

Since limj ti3,j = ti3 and ε3 < min{ε1, ε2}, we can further arrange, after
increasing j3 if needed, that

d(ti3,j3 , ti3) + ε3 < min{ε1, ε2} 6 min {d(ti1,j1 , ti1) + ε1, d(ti2,j2 , ti2) + ε2} .

Thus α3 := (i3, j3, ε3) ∈ A satisfies α3 > α1, α2, which proves, as desired,
that A is directed.

Now, for each α = (i, j, ε) ∈ A, set

sα := si,j ∈ S, tα = ρ(sα) ∈ T, and gα := fi,j + ε ∈ Fsα ,

where the last containment holds because Fsα is assumed to be stable under
addition of a constant. By construction, (gα)α∈A is a decreasing net, and it
will suffice to show limα gα = g pointwise on K and limα tα = t. Pick δ > 0
and x ∈ K. Since limi gi(x) = g(x) and limi ti = t, we can find i0 ∈ I such
that gi0(x) < g(x) + δ and d(ti, t) < δ for all i > i0. Using limj fi0,j(x) =
gi0(x) and limj ti0,j = ti0 , we next pick j0 ∈ Ji0 and 0 < ε0 � 1 such that
fi0,j0(x) + ε0 < g(x) + δ and d(ti0,j0 , ti0) + ε0 < δ. Set α0 := (i0, j0, ε0) ∈ A.
For each α = (i, j, ε) ∈ A such that α > α0, we then have, by (4.4),

gα(x) = fi,j(x) + ε 6 fi0,j0(x) + ε0 < g(x) + δ,

d(tα, ti) = d(ti,j , ti) 6 d(ti,j , ti) + ε 6 d(ti0,j0 , ti0) + ε0 < δ,

as well as i > i0, which implies d(ti, t) < δ and hence d(tα, t) < 2δ. This
shows, as desired, limα gα(x) = g(x) and limα tα = t, which concludes the
proof. �

Proof of Theorem 4.5. — That (PSH1) holds is clear from Definition 4.1.
As for (PSH2), it corresponds to the special case of Lemma 4.6 in which
K := Xan, FL := Hgf

R (L) for L ∈ S := Pic(X)Q, and ρ : S → T := N1(X)
maps L ∈ Pic(X)Q to c1(L). Indeed, for any θ ∈ N1(X), PSH(θ) is precisely
the set of functions in F̃θ that are generically finite. �

4.2. Basic properties

The next few results provide some basic but important properties of θ-psh
functions.
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Theorem 4.7. — For all θ, θ′ ∈ N1(X) and t ∈ R>0, we have:

(i) PSH(θ) + PSH(θ′) ⊂ PSH(θ + θ′) and PSH(tθ) = tPSH(θ);
(ii) the set PSH(θ) is convex, and stable under uniform limits, finite

maxima, the additive action of R, and the scaling action of R>0;
(iii) for any morphism f : Y → X and ϕ ∈ PSH(X, θ), either f?ϕ ∈

PSH(Y, f?θ) or f?ϕ ≡ −∞ on some irreducible component of Y an;
(iv) for any ϕ ∈ PSH(θ) and any α, we have ϕ|Xan

α
∈ PSH(Xα, θ|Xα).

Remark 4.8. — If X is disconnected, with connected components Xβ ,
then it is easy to see that PSH(X, θ) =

∏
β PSH(Xβ , θ|Xβ ).

Lemma 4.9. — For any θ ∈ N1(X) and ϕ,ϕ′ ∈ PSH(θ), we can find a
net (Li) of Q-line bundles and ϕi, ϕ′i ∈ H

gf
R (Li) such that limi c1(Li) → θ,

ϕi ↘ ϕ, ϕ′i ↘ ϕ′.
Proof. — By definition, we can find decreasing nets (ϕi)i∈I , (ϕ′j)j∈I′ and

Q-line bundlesMi,M ′j such that ϕi ∈ Hgf
R (Mi), ϕ′j ∈ H

gf
R (M ′j), limi c1(Mi) =

limj c1(M ′j) = θ and limi ϕi = ϕ, limj ϕ
′
j = ϕ′. Replacing I, I ′ with the

directed set I × I ′ (equipped with the product preorder), we may assume
I = I ′. Fix an ample line bundle A. Since limi(c1(Mi) − c1(M ′i)) = 0, we
can find εi ∈ Q>0 such that Mi −M ′i + εiA is ample and limi εi = 0. If
Li := Mi + εiA, then c1(Li)→ θ, and since Li −Mi and Li −M ′i are both
ample, Proposition 2.19 yields ϕi ∈ Hgf

R (Mi) ⊂ Hgf
R (Li), ϕ′i ∈ H

gf
R (Li), and

we are done. �

Proof of Theorem 4.7. — We will repeatedly use Proposition 2.19. Pick
ϕ ∈ PSH(θ), ϕ′ ∈ PSH(θ′). As ϕ and ϕ′ are finite on vtriv,α for all α, so
is the function ϕ + ϕ′, which is therefore generically finite. Further, ϕ and
ϕ′ can be written as the limits of decreasing nets (ϕi)i∈I and (ϕ′j)j∈I′ with
ϕi ∈ Hgf

R (Li), ϕ′j ∈ H
gf
R (L′j) for Li, L′j ∈ Pic(X)Q such that limi c1(Li) = θ

and limj c1(L′j) = θ′, respectively. The net (ϕi + ϕ′j)(i,j)∈I×I′ is decreasing,
and converges pointwise to ϕ+ ϕ′. Now ϕi + ϕ′j ∈ H

gf
R (Li + L′j), and hence

ϕ + ϕ′ ∈ PSH(θ + θ′), since lim(i,j)(c1(Li) + c1(L′j)) = θ + θ′. This proves
the first inclusion in (i).

For any c ∈ R and t ∈ R>0, ϕi + c and t · ϕi belong to Hgf
R (Li), and

decrease, respectively, to ϕ+ c and t · ϕ, which therefore belong to PSH(θ).

We next show that tϕ ∈ PSH(tθ). If t is rational, this is clear, since each
tLi is a Q-line bundle, tϕi ∈ Hgf

R (tLi) and tϕi ↘ tϕ. In the general case, we
may assume, after replacing ϕ with ϕ− supϕ, that ϕ 6 0. Writing t as the
limit of an increasing sequence tm ∈ Q>0, we then have tmϕ ∈ PSH(tmθ) and
tmϕ ↘ tϕ, tmθ → tθ, and hence tϕ ∈ PSH(tθ), by (PSH2). This concludes
the proof of (i), which implies that PSH(θ) is convex.
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To prove that PSH(θ) is stable under maxima, pick ϕ,ϕ′ ∈ PSH(θ). By
Lemma 4.9, we can find a net (Li) of Q-line bundles and ϕi, ϕ

′
i ∈ H

gf
R (Li)

such that limi c1(Li) → θ, ϕi ↘ ϕ, ϕ′i ↘ ϕ′. Then max{ϕi, ϕ′i} ∈ H
gf
R (Li)

decreases to max{ϕ,ϕ′}, which therefore belongs to PSH(θ).

If a net in PSH(θ) converges uniformly to a function ψ : Xan → R∪{−∞},
then ψ is generically finite, and is also the uniform limit of a sequence (ψm)
in PSH(θ). After passing to a subsequence, it is then easy to find constants
cm → 0 such that (ψm + cm) is decreasing, and we infer ψ ∈ PSH(θ), by
(PSH2). This concludes the proof of (ii).

Next we prove (iii). Write ϕ ∈ PSH(θ) as the decreasing limit of a net
ϕi ∈ Hgf

R (Li) such that limi c1(Li) = θ. Then each ϕi ∈ Hgf
R (Li) satisfies

either f?ϕi ∈ Hgf
R (f?Li) or f?ϕi ≡ −∞ on some irreducible component

of Y an. If f?ϕ is generically finite, then the latter case never occurs, since
f?ϕ 6 f?ϕi. Since f?ϕi ↘ f?ϕ and c1(f?Li) → f?θ, (PSH2) yields f?ϕ ∈
PSH(f?θ).

Finally, (iv) follows from (iii) since ϕ is generically finite. �

Corollary 4.10. — Pick θ ∈ N1(X), ϕ,ψ ∈ PSH(θ) with ϕ 6 ψ, and
let χ : (−∞, 0] → R be a continuous convex function such that 0 6 χ′ 6 1.
Then χ ◦ (ϕ− ψ) + ψ ∈ PSH(θ).

Proof. — Note that χ ◦ (ϕ − ψ) + ψ is generically finite. Now, χ can
be written as a decreasing limit of functions χm that are finite maxima of
affine functions of the form `(t) = at + b, where a ∈ [0, 1] and b ∈ R. For
each m, χm ◦ (ϕ − ψ) + ψ is a finite maximum of functions of the form
` ◦ (ϕ− ψ) + ψ = (1− a)ψ + aϕ+ b, and hence χm ◦ (ϕ− ψ) + ψ ∈ PSH(θ),
by Theorem 4.7. Now χm ◦ (ϕ − ψ) + ψ ↘ χ ◦ (ϕ − ψ) + ψ, and the result
follows, by (PSH2). �

Corollary 4.11. — If θ ∈ Nef(X) and 0 > ϕ ∈ PSH(θ), then exp(ϕ) ∈
E∞(θ).

Indeed, we can pick ψ = 0 (since θ is nef, see (4.2)). This corollary will
allow us to reduce certain statements about general θ-psh functions to the
case of bounded ones.

Proposition 4.12. — For any θ ∈ N1(X) and ϕ ∈ PSH(θ), we have:

(i) ϕ is decreasing and usc on Xan;
(ii) for each irreducible subvariety Y ⊂ X, the “maximum principle”

sup
Y an

ϕ = ϕ(vY,triv)
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holds; in particular,

supϕ = max
α

ϕ(vtriv,α). (4.6)

(iii) for any v ∈ Xan, t 7→ ϕ(tv) is convex and decreasing on [0,+∞),
and ϕ(tv)↘ ϕ(vZ,triv) = supZan ϕ as t→ +∞, with Z the closure
of the center of v.

Proof. — By Proposition 2.19(i), each ϕi ∈ Hgf
R (Li) is decreasing, and

t 7→ ϕi(tv) is convex, by Lemma 2.20. Since (ϕi) converges pointwise to ϕ,
the latter inherits these properties. The rest follows from Lemma 1.4. �

Example 4.13. — Let X be a smooth irreducible curve, and recall the
description of Xan given in Section 1.1.6. For any θ ∈ N1(X), a usc function
ϕ : Xan → R ∪ {−∞} is then θ-psh iff

(i) for each p ∈ X(k), ϕp(t) := ϕ(t ordp) is convex on [0,+∞) (and
hence decreasing, being bounded above);

(ii) deg θ+
∑
p∈X(k) ϕ

′
p(0+) > 0 (which implies ϕ′p(0+) = 0, and hence

t 7→ ϕ(t ordp) constant, for all but countably many p ∈ X(k)).

Indeed, when ϕ is PL, this follows from Example 3.21, and the general case
is obtained by writing a function satisfying (i) and (ii) as a decreasing limit
of PL functions with the same properties (compare [56, Section 7] and [79,
Section 2.5]).

This characterization implies PSH(0) = R whenX is a smooth irreducible
curve. As in the complex analytic case, this holds in fact on any connected
variety, see Corollary 4.24 below.

Remark 4.14. — Any ϕ ∈ PL(X)R is η-psh with respect to some closed
(1, 1)-form η, in the sense of Remark 3.4. However, ϕ is in general not θ-
psh for any θ ∈ N1(X), since such functions must be decreasing in the
partial ordering on Xan (see Proposition 4.12). As a result, several potential
definitions of quasi-psh functions coexist in our context.

4.3. The regularization theorem

Many properties of θ-psh functions are obtained by regularization, that
is, approximation by nicer θ-psh functions. In our present approach, regu-
larization of θ-psh functions is built into their definition. One can, however,
improve the properties of the approximants as follows:
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Theorem 4.15. — Pick θ ∈ N1(X) and ϕ ∈ PSH(θ). Then:

(i) ϕ can be written as the limit of a decreasing net ϕi ∈ Hgf
Q (Li) with

Li ∈ Pic(X)Q such that c1(Li)− θ is ample and limi c1(Li) = θ;
(ii) if θ ∈ Nef(X) then (i) holds with ϕi ∈ H(Li) = HQ(Li) and Li

ample;
(iii) if ω := θ ∈ Amp(X), then ϕ can be written as the limit of a

decreasing net in Hdom(ω) (see Definition 3.8).

We shall later prove that these results actually hold with (countable)
sequences instead of nets, see Corollary 12.18.

As already indicated by (iii), the class of θ-psh functions has particularly
good properties when θ ∈ Amp(X) is ample. In this case, we typically write
ω instead of θ.

Corollary 4.16. — For any ω ∈ Amp(X), the space CPSH(ω) =
C0(X) ∩ PSH(ω) is the closure of Hdom(ω) ⊂ C0(X) in the topology of
uniform convergence.

Proof. — By Theorem 4.7, CPSH(ω) is closed in the topology of uniform
convergence. By Theorem 4.15 and Dini’s lemma, any ϕ ∈ CPSH(ω) is the
uniform limit of a net in Hdom(ω), and the result follows. �

Corollary 4.17. — For any θ ∈ N1(X) and any ϕ ∈ PSH(θ) we have
ϕ > −∞ on X lin.

Proof. — Pick an ample line bundle L such that c1(L) − θ is nef. Then
ϕ ∈ PSH(L). Using Theorem 4.7 and X lin =

∐
αX

lin
α , we may assume X

is irreducible. Now pick v ∈ X lin. Then TL(v) < ∞, and we claim that
ϕ(v) > ϕ(vtriv) − TL(v). Indeed, TL(v) is the supremum of m−1v(s) over
m ∈ Z>0 and s ∈ H0(X,mL) \ {0}. Equivalently, ψ := m−1 log |s| satisfies
ψ(v) > ψ(vtriv)− TL(v). Adding constants and taking finite maxima shows
that this also holds for all ψ ∈ H(L), and then for all ϕ ∈ PSH(L), by
Theorem 4.15. �

As another consequence, we get:

Corollary 4.18. — Assume that X is irreducible, and let L be an am-
ple Q-line bundle. Then PSH(L) is the smallest class of functions ϕ : Xan →
R ∪ {−∞}, not identically −∞, that contains all functions of the form
m−1 log |s| with m ∈ Z>0 and s ∈ H0(X,mL) \ {0}, and is stable under
addition of a real constant, finite maxima, and decreasing limits.

Proof of Theorem 4.15. — By definition, ϕ is the limit of a decreasing
net ϕi ∈ Hgf

R (Li) with c1(Li) → θ. Using (2.8) it is straightforward to see
that each ϕi can further be written as a decreasing limit of functions in
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Hgf
Q (Li). By Lemma 4.6, we may thus assume that ϕi ∈ Hgf

Q (Li). We can
also arrange that c1(Li)−θ ∈ Amp(X). Indeed, given any ample line bundle
A, we can find εi ∈ Q>0 such that limi εi = 0 and Li− θ+ εiA is ample. By
Proposition 2.19, we have ϕi ∈ Hgf

Q (Li) ⊂ Hgf
Q (Li + εiA), and replacing Li

with Li + εiA yields the claim. This proves (i).

Assume next that θ is nef. In the notation of (i), it follows that each Li
is ample. Further, each ϕi is the decreasing limit of max{ϕi,−m} ∈ H(Li),
and Lemma 4.6 yields (ii).

Finally assume that ω := θ is ample. Replacing ϕ with ϕ − supϕ, we
may assume ϕ 6 0. By Proposition 3.10, any function in PL∩PSH(ω) is
a decreasing limit of functions in Hdom(ω). Relying again on Lemma 4.6,
it will thus be enough to show that ϕ is the decreasing limit of functions
in PL∩PSH(ω). Use the notation of (ii), and pick t ∈ Q>1. For all i large
enough we then have tω − c1(Li) ∈ Amp(X) for i large enough, and hence
H(Li) ⊂ PL∩PSH(tω). It follows that t−1ϕ is the decreasing limit of a net
in PL∩PSH(ω). Since ϕ 6 0, we have t−1ϕ↘ ϕ as t↘ 1, and another ap-
plication of Lemma 4.6 shows that ϕ is also the decreasing limit of functions
in PL∩PSH(ω). This proves (iii). �

Remark 4.19. — Assume that char k = 0 and that X is smooth and
connected. Consider the field of Laurent series K = k((t)), and denote by
Xan
K the Berkovich analytification of the base change XK ; this comes with a

natural projection π : Xan
K → Xan. The base change ωK of any ω ∈ Amp(X)

defines a closed (1, 1)-form on Xan
K with ample de Rham class, in the sense

of [27]. Using Theorem 4.15(iii) and Theorem A.4 in the Appendix, one can
show that a function ϕ : Xan → R ∪ {−∞} is ω-psh in the present sense iff
π?ϕ is ωK-psh on Xan

K in the sense of [27].

4.4. The topology of PSH(θ)

Let us fix θ ∈ N1(X) for the moment. By Corollary 4.17, any ϕ ∈ PSH(θ)
is finite-valued on Xdiv =

∐
αX

div
α .

Definition 4.20. — We endow PSH(θ) with the topology of pointwise
convergence on Xdiv.

As we shall later see in Theorem 11.4, this topology coincides with the
topology of pointwise convergence on X lin =

∐
αX

lin
α . In view of (4.6), we

have:

Example 4.21. — The map ϕ 7→ supϕ = maxα ϕ(vtriv,α) is continuous
on PSH(θ).
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Theorem 4.22. — For any ϕ ∈ PSH(θ) and any usc function ψ : Xan →
R ∪ {−∞}, we have

ϕ 6 ψ on Xdiv ⇐⇒ ϕ 6 ψ on Xan.

In particular, ϕ is the smallest usc extension of ϕ|Xdiv to Xan.

Corollary 4.23. — Every θ-psh function is uniquely determined by its
restriction to Xdiv, and the topology of PSH(θ) is Hausdorff.

Because of this, we will occasionally say that a function ϕ : Xdiv → R
is θ-psh if it admits a (necessarily unique) extension to a θ-psh function on
Xan.

Corollary 4.24. — If X is connected, then any 0-psh function is con-
stant, i.e. PSH(0) = R.

Proof. — By GAGA, Xan is connected, and after replacing X with an
irreducible component, we may assume that X is irreducible. By Corol-
lary 4.23, it is then enough to show that any ϕ ∈ PSH(0) with supϕ =
ϕ(vtriv) = 0 satisfies ϕ(v) = 0 for any v ∈ Xdiv. Consider the decreasing se-
quence (mϕ)m∈N and its pointwise limit ψ := limm(mϕ). Since ψ(vtriv) = 0,
we have ψ ∈ PSH(0) (see Theorem 4.5). By Corollary 4.17, we thus have
ψ(v) > −∞, i.e. ϕ(v) = 0. �

Corollary 4.25. — Pick a decreasing net (ϕi) in PSH(θ), and assume
that it converges to ϕ ∈ PSH(θ). Then ϕ = limi ϕi pointwise on Xan.

Proof. — The pointwise limit ψ of (ϕi) on Xan coincides with ϕ on Xdiv.
In particular, ψ(vtriv,α) is finite for any α, and hence ψ ∈ PSH(θ), by Theo-
rem 4.5. By Corollary 4.23, we infer ϕ = ψ, which means that ϕi converges
to ϕ pointwise on Xan �

Lemma 4.26. — For each ψ ∈ PL(X), there exists a finite set Σ ⊂ Xdiv

such that
sup
Xan

(ϕ− ψ) = max
Σ

(ϕ− ψ) (4.7)

for all ϕ ∈ PL+(X), and the same result then holds for all ϕ ∈ PSH(θ),
θ ∈ N1(X). Moreover, if ψ = r(ϕa − ρ), where r ∈ Q>0, a is a flag ideal,
and ρ ∈ PL+(X), then we can pick Σ = Σa, the set of Rees valuations of a.

Proof. — We can always write ψ = r(ϕa − ρ) as above, and by homo-
geneity we may assume r = 1. The case ϕ ∈ PL+(X) now follows from
Lemma 2.13, since ϕ+ ρ ∈ PL+(X).

Now assume ϕ ∈ PSH(θ) for some θ ∈ N1(X). After replacing θ with
ω ∈ Amp(X) such that ω − θ is nef, we may assume θ = ω is ample. By
Theorem 4.15, we can find a decreasing net (ϕi) in Hdom(ω) ⊂ PL+(X) such
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that ϕi ↘ ϕ. For each v ∈ Xan, we then have ϕi(v)−ψ(v) 6 maxΣa
(ϕi−ψ)

for all i, and hence ϕ(v)− ψ(v) 6 maxΣa
(ϕ− ψ). �

Proof of Theorem 4.22. — If ψ ∈ PL(X), the result follows from Lem-
ma 4.26. Assume next ψ ∈ C0(X). By Theorem 2.2, ψ is a uniform limit of
functions in PL(X), and the result thus holds for ψ as well. In the general
case, we can find a decreasing net (ψi) in C0(X) with ψi → ψ. Then ϕ 6
ψ 6 ψi on Xdiv implies ϕ 6 ψi on Xan, and hence ϕ 6 ψ on Xan as well. �

Remark 4.27. — Assume char k = 0. By Corollary A.3, any v ∈ Xan is
the limit of a net (vi) in Xdiv such that vi 6 v for all i. As any ϕ ∈ PSH(θ)
is decreasing and usc, it follows that ϕ(vi)→ ϕ(v), which provides a slightly
more precise version of Corollary 4.23 in that case.

We record another useful consequence of Lemma 4.26.

Proposition 4.28. — For any ψ ∈ C0(X), ϕ 7→ supXan(ϕ− ψ) is con-
tinuous on PSH(θ).

Proof. — When ψ is PL, this is a direct consequence of Lemma 4.26. As
above, the general case follows by density of PL(X) in C0(X) with respect
to uniform convergence. �

Corollary 4.29. — For any v ∈ Xan, the evaluation map ϕ 7→ ϕ(v) is
usc on PSH(θ).

In other words, each convergent net ϕi → ϕ in PSH(θ) satisfies ϕ >
lim supi ϕi pointwise on Xan.

Proof. — Pick a convergent net ϕi → ϕ in PSH(θ). Since ϕ is usc and
Xan is compact, we have ϕ = inf{ψ ∈ C0(X) | ψ > ϕ} pointwise. For each
candidate ψ and ε > 0, Proposition 4.28 implies that ϕi 6 ψ+ ε on Xan for
all i large enough. Thus lim supi ϕi 6 ψ+ε pointwise on Xan, and the result
follows by taking the infimum over ψ and letting ε→ 0. �

Remark 4.30. — The evaluation map ϕ 7→ ϕ(v) ∈ R ∪ {−∞} can fail
to be continuous in general. For example, take X = P1 and L = O(1).
In homogeneous coordinates [z0 : z1], set ϕm := max{m−1 log |z1|,−1} for
m > 1. Then ϕm → 0 in PSH(L), but for p := {z1 = 0} ∈ X(k) we have
ϕm(vp,triv) = −1 for all m, see Section 1.1.6.

We also note:

Lemma 4.31. — Let f : Y → X be a morphism from a projective variety,
such that any irreducible component of Y is mapped onto a component of X.
For any θ ∈ N1(X), the map f? : PSH(θ)→ PSH(f?θ) is then continuous.
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Proof. — The assumption guarantees that f maps Y div to Xdiv, and the
result follows. �

We conclude this section with an “almost birational invariance” prop-
erty of θ-psh functions. Recall that any projective birational morphism is
(isomorphic to) the blowup of some (generically trivial) ideal, see [78, The-
orem II.7.17].

Theorem 4.32. — For any birational morphism π : Y → X, there exists
ωX ∈ Amp(X) and ϕX ∈ PSH(ωX) such that

PSH(π?θ) + π?ϕX ⊂ π? PSH(θ + ωX).

for all θ ∈ N1(X). If π is realized as the blowup of a generically trivial ideal
b ⊂ OX , then one can take ϕX = log |b|.

As we shall see in Lemma 5.13 below, we actually have PSH(π?θ) =
π? PSH(θ) when the envelope property holds for θ. However, the “error term”
π?ϕX is necessary in general (for instance if π is the normalization of a
reducible variety).

Corollary 4.33. — In the notation of Theorem 4.32, there exists ωY ∈
Amp(Y ) such that PSH(ωY ) + π?ϕX ⊂ π? PSH(ωX).

Proof of Theorem 4.32. — Write π as the blowup of an ideal b ⊂ OX .
Denote by E the exceptional divisor, and choose an ample line bundle H on
X such that H ⊗ b is globally generated. As −E is π-ample, we can further
arrange that H ′ := π?H − E is ample. We claim that the result holds with
ϕX := log |b| and ωX := c1(H). Since H ⊗ b is globally generated, we can
choose a finite subset (si) of H0(X,H⊗b) that locally generates b, and hence
log |b| = maxi log |si| ∈ Hgf

0 (H) ⊂ PSH(ωX).

Assume first that θ = c1(L) with L ∈ Pic(X)Q. Pick ϕ′ ∈ PSH(π?L), and
write ϕ′ as the limit of a decreasing net ϕ′i ∈ H

gf
R (L′i) with L′i ∈ Pic(X)Q and

c1(L′i)→ c1(π?L). Since H ′ is ample, H ′+(π?L−L′i) = (π?(L+H)−E)−L′i
is ample for all i large enough, and hence ϕ′i ∈ H

gf
R (π?(L + H) − E), by

Proposition 2.19. By Lemma 2.21, there exists ϕi ∈ Hgf
R (L + H) such that

ϕ′i+π?ϕX = π?ϕi. As π induces an isomorphism Y div ∼→ Xdiv, ϕi is uniquely
determined, and the net (ϕi) is decreasing on Xan, by Theorem 4.22. Its
pointwise limit ϕ := limi ϕi satisfies ϕ′+π?ϕX = π?ϕ on Xdiv. In particular,
ϕ(vtriv,α) is finite for all α. This shows that ϕ is generically finite, and hence
ϕ ∈ PSH(L+H) (see Theorem 4.5), which proves the result in that case.

In the general case, we can choose a sequence Lm ∈ Pic(X)Q such that
c1(Lm) − θ is nef and converges to 0. By Theorem 4.7, we have PSH(θ) ⊂
PSH(Lm), and the previous step thus shows that any ϕ′ ∈ PSH(π?θ) ⊂
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PSH(π?Lm) satisfies ϕ′ + π?ϕX = π?ϕm with ϕm ∈ PSH(Lm + H). As
noted above, ϕm is uniquely determined by ϕ, and hence independent of m.
Since c1(Lm) → θ, Theorem 4.5 yields ϕ ∈ PSH(θ), which concludes the
proof. �

Proof of Corollary 4.33. — Use the same notation as above, and set
ωY := 1

2 (π?ωX − E) ∈ Amp(Y ). Since π?ϕX = log |sE | ⊂ PSH(E), we have
PSH(2ωY ) + π?ϕX ⊂ PSH(π?ωX), and Theorem 4.32 yields

PSH(2ωY ) + 2π?ϕX ⊂ π? PSH(π?(2ωX)),
which is equivalent to the desired the result. �

4.5. Pluripolar sets

Mimicking classical pluripotential theory, we introduce:

Definition 4.34. — A subset E ⊂ Xan is pluripolar if there exist θ ∈
N1(X) and ϕ ∈ PSH(θ) such that E ⊂ {ϕ = −∞}.

Lemma 4.35. — Pick ω ∈ Amp(X). Then E ⊂ Xan is pluripolar iff
E ⊂ {ϕ = −∞} for some ϕ ∈ PSH(ω).

Proof. — Assume E ⊂ {ψ = −∞} for some ψ ∈ PSH(θ), θ ∈ N1(X).
For t > 0 large enough we have tω > θ. Thus ϕ := t−1ψ is ω-psh (see
Theorem 4.7), and satisfies E ⊂ {ϕ = −∞}. �

Lemma 4.36. — For any Zariski closed subset Z ⊂ X, Zan is pluripolar
iff Z is nowhere dense, i.e. does not contain any irreducible component Xα.

Proof. — If Zan ⊂ {ϕ = −∞} with ϕ ∈ PSH(θ), then Z does not contain
any component Xα, since ϕ is generically finite. Conversely, if Z is nowhere
dense then we can find a section s of some ample line bundle L that vanishes
along Z, but not along any irreducible component of X. Then ϕ := log |s| is
L-psh, and Zan ⊂ {ϕ = −∞}. �

By the next result, any countable subset of X(k) ⊂ Xan is therefore also
pluripolar, but some are Zariski dense.

Lemma 4.37. — Any countable union of pluripolar sets is pluripolar.

Proof. — Let (Em)m>1 be a sequence of pluripolar subsets, and fix ω ∈
Amp(X). For each m, pick ϕm ∈ PSH(ω) such that Em ⊂ {ϕm = −∞}, and
set am,α := supXan

α
ϕm > −∞. We can pick cm > 0 such that

∑
m cm 6 1

and
∑
m,α cm|am,α| < ∞. Then ϕ :=

∑
cmϕm ∈ PSH(ω) and

⋃
mEm ⊂

{ϕ = −∞}. �

– 718 –



Global pluripotential theory over a trivially valued field

Proposition 4.38. — A point v ∈ Xan is nonpluripolar iff v ∈ X lin,
i.e. v is a valuation of linear growth.

Proof. — Corollary 4.17 shows that no valuation of linear growth is pluri-
polar. Now suppose v ∈ Xan \ X lin and pick any ample line bundle L. For
any integer j > 1 there exist mj > 1 and a regular section sj ∈ H0(X,mjL)
such that m−1

j v(sj) > 2j . If we set ϕj = m−1
j log |sj | and ψj =

∑j
l=1 2−lϕl,

then (ψj)j is a decreasing sequence in PSH(L) with ψj(vtriv,α) = 0 and
ψj(v) 6 −j. It follows that ψ = limψj =

∑∞
l=1 2−lϕl satisfies ψ ∈ PSH(L)

and ψ(v) = −∞, so that v is pluripolar. �

Corollary 4.39. — Any pluripolar set has empty interior.

Proof. — Indeed, a pluripolar set must be disjoint from the dense subset
Xdiv ⊂ X lin. �

Lemma 4.40. — If π : Y → X is a birational morphism, then a subset
E ⊂ Xan is pluripolar iff π−1(E) ⊂ Y an is pluripolar.

Proof. — Write π as the blowup of a generically trivial ideal b ⊂ OX .
Let Z ⊂ X be the cosupport of b, and set W := π−1(Z). Then Z and
W are Zariski closed, nowhere dense subsets of X and Y , respectively, and
π : Y \W → X \Z is an isomorphism. Then Zan ⊂ Xan and W an ⊂ Xan are
pluripolar, see Lemma 4.36. Set ϕX := log |b| and pick ωX ∈ Amp(X) as in
Theorem 4.32.

First suppose E is pluripolar, and pick ϕ ∈ PSH(ωX) such that ϕ = −∞
on E. Then ψ := π?ϕ ∈ PSH(π?ωX) and ψ = −∞ on the set π−1(E), which
is therefore pluripolar.

If instead π−1(E) is pluripolar, then pick ωY ∈ Amp(Y ) as in Corol-
lary 4.33, and ψ ∈ PSH(ωY ) such that ψ = −∞ on π−1(E). By Corol-
lary 4.33 we can find ϕ ∈ PSH(ωX) such that ψ + π?ϕX = π?ϕ. It follows
that ϕ = −∞ on E \Zan, so E \Zan is pluripolar. As Zan is also pluripolar,
we conclude that E is pluripolar, see Lemma 4.37. �

Applying Lemma 4.40 to the canonical birational map
∐
αXα → X, we

get

Corollary 4.41. — A set E ⊂ Xan is pluripolar iff E ∩ Xan
α is a

pluripolar subset of Xan
α for each α.

For later use, we note:

Example 4.42. — Any trivial semivaluation v ∈ Xtriv lies in the closure of
some pluripolar subset E ⊂ Xan, that can be chosen as a countable subset
of X(k) ⊂ Xan. When X is a connected smooth curve, this follows from
Section 1.1.6, by choosing any infinite sequence of distinct closed points in
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X. In the general case, v lies in the closure of X(k) (see Section 1.1.5), and
hence in the closure of a countable subset thereof (see Remark 1.1).

Remark 4.43. — If dimX = 0, then there are no nonempty pluripolar
subsets of (the finite set) Xan. If dimX = 1, then any pluripolar set must
be contained in X(k) ⊂ Xan, whose closure is the strict subset Xtriv ⊂ Xan.
In particular, pluripolar sets are never dense in that case (in stark contrast
with the complex analytic case).

When X has no irreducible component of dimension 6 1, the situation
is more subtle: the set Xan \ Xval is then dense (see Lemma 2.15), and
it is pluripolar if k is countable, being the (countable) union of all strict
irreducible subvarieties (see Lemma 4.37). However, when k is uncountable,
pluripolar sets are again never dense: see Corollary 12.21 below.

4.6. The Alexander–Taylor capacity

In order to detect pluripolar sets, we introduce the following variant(3)

of the classical Alexander–Taylor capacity [1].

Definition 4.44. — For any ω ∈ Amp(X) and any subset E ⊂ Xan,
we define Tω(E) ∈ [0,+∞] as follows:

(i) if X is irreducible, then Tω(E) := supϕ∈PSH(ω)(supXan ϕ− supE ϕ).
(ii) in general, Tω(E) = minα Tω|Xα (E ∩Xan

α ).

Recall that supXan ϕ = ϕ(vtriv) when X is irreducible, see Proposi-
tion 4.12.

Theorem 4.45. — A subset E ⊂ Xan is pluripolar iff Tω(E) = ∞ for
some (equivalently, any) ω ∈ Amp(X).

Proof. — Pick any ample class ω ∈ N1(X). By Corollary 4.41 E is
pluripolar iff E ∩Xan

α is pluripolar for all α, and by definition, Tω(E) =∞
iff Tω|Xα (E ∩ Xan

α ) = ∞ for all α. We may therefore assume that X is ir-
reducible. First assume that E is pluripolar. By Lemma 4.35, there exists
ϕ ∈ PSH(ω) with ϕ|E ≡ −∞, and hence Tω(E) = ∞. Conversely, suppose
Tω(E) = ∞. For each m ∈ N we can then find ϕm ∈ PSH(ω) such that
supϕm = ϕm(vtriv) = 0 and supE ϕm 6 −2m. By convexity of PSH(ω),
setting for each m

ψm :=
m∑
l=1

2−lϕl =
m∑
i=1

2−lϕl + 2−m · 0

(3) More precisely, exp(−Tω) corresponds to the Alexander–Taylor capacity.
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defines a decreasing sequence in PSH(ω) such that ψm(vtriv) = 0 and
supE ψm(v) 6 −m. By Theorem 4.7,

ψ := lim
m
ψm =

∞∑
l=1

2−lϕl

is ω-psh, and supE ψ = −∞. �

For line bundles, the chosen notation is compatible with Definition 1.26:

Lemma 4.46. — If L ∈ Pic(X)Q is ample and ω = c1(L), then
Tω({v}) = TL(v) for any v ∈ Xan.

Proof. — By Lemma 1.27 and the definition of the Alexander–Taylor
capacity, we may assume that X is irreducible. By definition, TL(v) is then
the supremum of m−1v(s) over m sufficiently divisible and s ∈ H0(X,mL) \
{0}. Equivalently, it is the smallest constant such that all functions of the
form ϕ := m−1 log |s| satisfy ϕ(v) > ϕ(vtriv) − TL(v). As ϕ ∈ PSH(L), we
get TL(v) 6 Tω({v}). But adding constants and taking finite maxima shows
that the inequality ϕ(v) > ϕ(vtriv)−TL(v) also holds for all ϕ ∈ H(L), and
then for all ϕ ∈ PSH(L), by Theorem 4.15. �

5. Envelopes and negligible sets

By our definitions, θ-psh functions are well-behaved under decreasing lim-
its. As in the complex analytic case, many important constructions involve
increasing limits, or envelopes of θ-psh functions. Consider a bounded-above
family (ϕi)i of θ-psh functions. In general, the supremum ϕ := supi ϕi may
fail to usc, and is therefore not θ-psh. In this section, we study whether the
usc regularization ϕ? is θ-psh. We conjecture that this is true when X is uni-
branch, and we prove it when X is smooth, θ is nef, and either dimX 6 2
or char k = 0, see Theorem 5.20.

5.1. Negligible sets

We start by studying the following notion, imported from classical pluri-
potential theory. For the time being X is an arbitrary projective variety,
with irreducible components Xα.

Definition 5.1. — A subset E ⊂ Xan is negligible if there exists θ ∈
N1(X) and a bounded-above family (ϕi) in PSH(θ) such that E ⊂ {supi ϕi <
sup?i ϕi}.
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As in Lemma 4.35, we may always choose θ as a fixed ample class.

Replacing ϕi by exp(ϕi− supj supXan ϕj)−1, see Corollary 4.11, we may
also assume −1 6 ϕi 6 0.

Any subset of a negligible set is trivially negligible. We also have
Lemma 5.2. — A countable union of negligible sets is negligible.
Proof. — Let (Em)∞1 be a sequence of negligible sets, and set E :=

⋃
Em.

Fix ω ∈ Amp(X). For eachm we can find a family (ϕm,i)i∈Im in PSH(ω) such
that −1 6 ϕm,i 6 0 on Xan and ϕm < ϕ?m on Em, where ϕm = supi∈Im ϕm,i.
Now set I =

∏
m Im and, for i = (im)m ∈ I, ψi =

∑∞
m=1 2−mϕm,im . Then

ψi ∈ PSH(ω) and ψ := supi ψi =
∑
m 2−mϕm. This gives ψ < ψ? on E, so

E is negligible. �

Proposition 5.3. — Every pluripolar subset is negligible.

The converse implication is much more subtle. We will prove it when
char k = 0 or dimX 6 2, see Corollary 13.18 below.

Proof. — Suppose E ⊂ Xan is pluripolar, and pick ψ ∈ PSH(ω) such
that ψ 6 0 and ψ = −∞ on E. We may assume E = {ψ = −∞}. For m > 1,
set ϕm := m−1ψ ∈ PSH(ω) and ϕ := supm ϕm. Then ϕ ≡ −∞ on E and
ϕ ≡ 0 on Xan \ E. Since E has empty interior (see Corollary 4.39), ϕ? ≡ 0
on Xan, and E = {ϕ < ϕ?} is thus negligible. �

Just like pluripolar sets, the class of negligible sets is birationally invari-
ant.

Lemma 5.4. — If π : Y → X is a birational morphism, then a subset
E ⊂ Xan is negligible iff π−1(E) ⊂ Y an is negligible.

Proof. — We follow the setup and notation of the proof of Lemma 4.40.

First suppose E is negligible, and pick a family (ϕi)i in PSH(ωX) uni-
formly bounded above such that supi ϕi < sup?i ϕi on E. If we set ψi := π?ϕi,
then (ψi)i is a family in PSH(π?ωX) that is uniformly bounded above. More-
over, supi ψi < sup?i ψi on π−1(E) \W an, so π−1(E) \W an is negligible. As
W an is pluripolar, and hence also negligible, it follows that π−1(E) is negli-
gible, see Lemma 5.2.

If instead π−1(E) is negligible, then there exists a family (ψi)i in PSH(ωY )
uniformly bounded above, such that supi ψi < sup?i ψi on π−1(E). We can
find ϕi ∈ PSH(ωX) such that ψi + π?ϕX = π?ϕi. Then (ϕi)i is uniformly
bounded above, and supi ϕi < sup?i ϕi on E \ Zan, so E \ Zan is negligible,
and we conclude as above. �

Corollary 5.5. — A subset E ⊂ Xan is negligible iff E ∩ Xan
α is a

negligible subset of Xan
α for all α.
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The following result will play a crucial role in what follows.

Theorem 5.6. — Divisorial points are nonnegligible.

Thus non-empty open sets are also nonnegligible, as they contain divi-
sorial points, by density of Xdiv. The key ingredient is the following partial
converse to Lemma 4.26.

Lemma 5.7. — Assume that X is irreducible. Then, for each θ ∈ N1(X)
and v ∈ Xdiv, there exists ψ ∈ PL(X) such that

sup
Xan

(ϕ− ψ) = (ϕ− ψ)(v)

for all ϕ ∈ PSH(θ).

Proof. — By Lemma 2.12 we may find a flag ideal a for which v is a Rees
valuation, that is, v ∈ Σa. Pick L ∈ Pic(X)Q ample such that c1(L) > θ.
Then PSH(θ) ⊂ PSH(L), so we may assume θ = c1(L). As X is irreducible,
there exists C > 0 such that |ϕ(v) − ϕ(w)| 6 C for all w ∈ Σa and all
ϕ ∈ PSH(L); for example, we can take C = 2 maxw∈Σa

TL(w), as follows
from the proof of Corollary 4.17. By Lemma 2.28 there exists m, r > 1
and ρ ∈ H(L) such that if we set ψ := r(ϕa − mρ), then ψ(v) = 0 and
ψ(w) = 2C for w ∈ Σa, w 6= v. Then ψ ∈ PL(X), and for any ϕ ∈ PSH(L),
the max of ϕ − ψ over Σa is attained at v. On the other hand, it follows
from Lemma 4.26 that the supremum of ϕ − ψ on Xan is attained on Σa.
The proof is complete. �

Proof of Theorem 5.6. — In view of Corollary 5.5 we may assume that
X is irreducible. Consider θ ∈ N1(X) and a bounded-above family (ϕi) in
PSH(θ), and set ϕ := supi ϕi. Pick v ∈ Xdiv, and choose a PL function ψ
as in Lemma 5.7. For each i we have ϕi 6 ϕi(v) − ψ(v) + ψ. Thus ϕ 6
ϕ(v)− ψ(v) + ψ, and hence ϕ? 6 ϕ(v)− ψ(v) + ψ, by continuity of ψ. This
yields ϕ?(v) = ϕ(v), which proves that v is nonnegligible. �

5.2. The envelope property and unibranch varieties

In the rest of Section 5 we assume that X is irreducible unless stated
otherwise. (See Remark 5.15.)

Definition 5.8. — We say that a class θ ∈ N1(X) has the envelope
property if, for any bounded-above family (ϕi) in PSH(θ), the usc upper
envelope sup?i ϕi is θ-psh.

In the complex analytic case, it is a basic fact that psh functions on do-
mains in Cn satisfy the analogue of the envelope property. As a consequence,
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θ-psh functions satisfy the envelope property for any projective complex
manifold X and any closed (1, 1)-form θ. More generally, the latter prop-
erty holds when X is unibranch (i.e. locally analytically irreducible), cf. [47,
Théorème 1.7], but fails in general, for the same reason as Theorem 5.12
below.

With our global definition of θ-psh functions, the envelope property turns
out to be especially delicate. The purpose of what follows is to explore various
implications, and establish it in an important special case. We first observe:

Lemma 5.9. — Assume that θ ∈ N1(X) can be written as the limit of
classes θj > θ that satisfy the envelope property. Then θ has the envelope
property as well.

Proof. — Pick a bounded-above family (ϕi) in PSH(θ). Since θ 6 θj , we
have PSH(θ) ⊂ PSH(θj). Thus sup?i ϕi is θj-psh for all j, and hence θ-psh,
by Theorem 4.5. �

Corollary 5.10. — If the continuity property holds for all ω ∈
Amp(X), then it holds for all θ ∈ Nef(X).

We next prove that the envelope property is equivalent to the analogue
of a basic compactness property in the complex analytic case.

Theorem 5.11. — For any θ ∈ N1(X), the following properties are
equivalent:

(i) the envelope property holds for θ;
(ii) the space PSHsup(θ) := {ϕ ∈ PSH(θ) | supϕ = 0} is compact;
(iii) every bounded-above, increasing net (ϕj) in PSH(θ) converges in

PSH(θ).

Proof. — Assume (i), and pick a net (ϕi) in PSHsup(θ). By Proposi-
tion 4.38, (ϕi(v)) is a bounded net in R for each v ∈ Xdiv. By Tychonoff’s
theorem, after passing to a subnet, we may thus assume that (ϕi) converges
pointwise on Xdiv to a function ϕ : Xdiv → R, and it suffices to show that
ϕ extends to a function in PSH(θ) (necessarily unique, by Corollary 4.23).
By (i), ψi := sup?j>i ϕj is θ-psh for each i. The net (ψi) is further decreasing,
and its pointwise limit ψ := limi ψi is thus either θ-psh, or identically −∞,
by Theorem 4.5. Now Theorem 5.6 implies that ψi = supj>i ϕj on Xdiv.
Thus ψ = ϕ on Xdiv. In particular, ψ 6≡ −∞, hence ψ ∈ PSH(θ). This
proves (i)⇒ (ii).

Next, assume (ii), and consider a bounded-above, increasing net (ϕj) in
PSH(θ). Then a subnet ϕji − supϕji converges to some ϕ ∈ PSH(θ). Since
(supϕj) is increasing and bounded-above, it converges to some c ∈ R. Thus

– 724 –



Global pluripotential theory over a trivially valued field

ϕji → ϕ+ c on Xdiv, and hence ϕj → ϕ+ c on Xdiv since (ϕj) is increasing.
This proves (ii)⇒ (iii).

Finally, assume (iii). Let (ϕi)i∈I be a bounded-above family of θ-psh
functions, and consider the increasing net ψJ := maxi∈J ϕi parametrized by
finite subsets J ⊂ I. Then ψJ admits a limit ψ in PSH(θ), and we claim that
ψ = sup?i ϕi. On Xdiv we have

ψ = lim
J

max
i∈J

ϕi = sup
i
ϕi = ?sup

i
ϕi,

by Theorem 5.6. Since ψ is θ-psh and sup?i ϕi is usc, Theorem 4.22 yields
ψ 6 sup?i ϕi on Xan. Similarly, Theorem 4.22 yields ϕi 6 ψ, and hence
sup?i ϕi 6 ψ, since ψ is usc. This proves the claim, and hence (iii)⇒ (i). �

Recall that the varietyX is said to be unibranch if the following equivalent
conditions hold (see [68, IV.7.6.3] and [81, Corollary 32]):

• the normalization morphism ν : Xν → X is a homeomorphism;
• the formal completion of X at each of its points is irreducible.

In particular, any normal variety is unibranch. When k = C, X is unibranch
iff the associated complex analytic space is locally irreducible in the analytic
topology. This is also true for the Berkovich analytification as considered in
this paper: the variety X is unibranch iff the k-analytic space Xan is locally
irreducible in the analytic topology (see [54, Lemme 5.19]).

Theorem 5.12. — If the envelope property holds for some ω ∈ Amp(X),
then X is necessarily unibranch.

The analogue of this result is known in the complex analytic setting, too.
We have not been able to locate a precise reference, but the proof below of
Theorem 5.12 can easily be adapted to that setting.

Lemma 5.13. — Let π : Y → X be a birational morphism. Pick θ ∈
N1(X), and assume that θ can be written as the limit of a sequence of classes
θm > θ with the envelope property. Then π? : PSH(θ) ∼→ PSH(π?θ) is a
homeomorphism.

Recall that θm > θ means that θm − θ is ample.

Proof. — After passing to a subsequence, we may assume that θm > θm+1
for all m, and hence PSH(θm+1) ⊂ PSH(θm). Since π induces a bijection
Y div ∼→ Xdiv, π? : PSH(θ) → PSH(π?θ) is a topological embedding, and it
suffices to show that it is onto. Pick ψ ∈ PSH(π?θ), and write π as the blowup
of an ideal b ⊂ OX . By Theorem 4.32, there exists a sequence εm ↘ 0 such
that ψ+ εmπ

? log |b| = π?ϕm with ϕm ∈ PSH(θm). By Theorem 4.22, ϕm is
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uniquely determined, and (ϕm)m>m0 is an increasing sequence in PSH(θm0)
for any given m0. By Theorem 5.11, ϕm converges pointwise on Xdiv to
ϕ ∈ PSH(θ), which satisfies ψ = π?ϕ on Y div. The result follows. �

Proof of Theorem 5.12. — Since the normalization morphism ν : Xν →
X is finite, ν?ω is ample, and hence Hdom(ν?ω) spans PL(Xν), see (3.2). By
Lemma 2.3, PL(Xν) separates the points of (Xν)an, and it is thus already the
case ofHdom(ν?ω). On the other hand, Lemma 5.13 implies that all functions
in Hdom(ν?ω) ⊂ PSH(ν?ω) descend to Xan (take ωm = (1 + m−1)ω). As
a consequence, νan : (Xν)an → Xan is injective. By the non-Archimedean
GAGA principle, this implies that ν : Xν → X is injective as well (see [7,
Section 3.4]); this is enough to conclude that ν is a homeomorphism, and
hence that X is unibranch. �

As mentioned above, in the complex analytic case the envelope property
conversely holds as soon as X is unibranch. It is thus natural to conjecture:

Conjecture 5.14. — If X is unibranch, then the envelope property
holds for all θ ∈ N1(X).

We will establish this conjecture in the important special case where θ is
ample, X is smooth, and char k = 0 or dimX 6 2 (see Theorem 5.20).

Remark 5.15. — The envelope property makes sense also when X is re-
ducible. It is easy to see that θ ∈ N1(X) has the envelope property iff
θ|Y ∈ N1(Y ) has the envelope property for every connected component Y
of X. Moreover, if X is connected, then the proof of Theorem 5.12 shows
that if the envelope property holds for some ample class in N1(X), then the
normalization morphism ν : Xν → X is a homeomorphism, which implies
that X is irreducible (and unibranch).

5.3. Envelopes

For ample classes, the envelope property admits a useful reformulation.
We continue to assume that X is irreducible unless stated otherwise. Fix a
class ω ∈ Amp(X).

Definition 5.16. — The ω-psh envelope of a function ϕ : Xan → R ∪
{±∞} is the function Pω(ϕ) : Xan → R ∪ {±∞} defined as the pointwise
supremum

Pω(ϕ) := sup {ψ ∈ PSH(ω) | ψ 6 ϕ} .

Thus Pω(ϕ) ≡ −∞ iff there is no ψ ∈ PSH(ω) with ψ 6 ϕ. Despite
the name, Pω(ϕ) is not always ω-psh (and indeed not even usc in general).
However, it is clear that
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• ϕ 7→ Pω(ϕ) is increasing;
• Pω(ϕ+ c) = Pω(ϕ) + c for all c ∈ R.

These properties formally imply the Lipschitz estimate

sup |Pω(ϕ)− Pω(ϕ′)| 6 sup |ϕ− ϕ′|. (5.1)

when ϕ,ϕ′ are bounded.

Lemma 5.17. — For any ω ∈ Amp(X), the following statements are
equivalent:

(i) ω has the envelope property;
(ii) for any function ϕ : Xan → R ∪ {±∞}, we have

Pω(ϕ) ≡ −∞, Pω(ϕ)? ≡ +∞, or Pω(ϕ)? ∈ PSH(ω).

(iii) for any ϕ ∈ C0(X), Pω(ϕ) is continuous.

We refer to the property in (iii) as continuity of envelopes.

Proof. — First assume (i). Pick any ϕ : Xan → R ∪ {±∞}, and suppose
that the set F := {ψ ∈ PSH(θ) | ψ 6 ϕ} is nonempty, so that Pω(ϕ) 6≡ −∞.
If the functions in F are uniformly bounded above, then Pω(ϕ)? ∈ PSH(ω),
by (i). If not, then, by the definition of the Alexander–Taylor capacity we
have

Pω(ϕ)(v) = sup {ψ(v) | ψ ∈ F} > sup {supψ | ψ ∈ F} − Tω(v) = +∞

for all v ∈ Xdiv, and hence Pω(ϕ)? ≡ +∞, by density of Xdiv. This proves
(i)⇒ (ii).

Next we prove (ii) ⇒ (iii), so pick ϕ ∈ C0(X). Then Pω(ϕ)? ∈ PSH(ω)
is a competitor in the definition of Pω(ϕ), and hence Pω(ϕ)? 6 Pω(ϕ). We
conclude that Pω(ϕ)? = Pω(ϕ) is usc. We claim that Pω(ϕ) is also lsc, and
hence continuous. To prove the claim, it suffices to show that Pω(ϕ) is a
supremum of continuous functions, and for this it suffices to prove that for
any ψ ∈ PSH(ω) with ψ 6 ϕ and any ε > 0, there exists ψ′ ∈ C0(X) with
ψ 6 ψ′ 6 ϕ+ε. Pick a decreasing net ψi ∈ Hdom(ω) converging pointwise to
ψ. For each v ∈ Xan, the set {ψi < ϕ+ ε} is an open neighborhood of v for
i large enough, by lower semicontinuity of ϕ − ψi. By compactness of Xan,
it follows that ψi < ϕ+ ε for all i large enough, so we can take ψ′ = ψi.

Finally, we prove (iii) ⇒ (i), following [22, Lemma 7.30]. Let (ϕi) be a
bounded-above family in PSH(ω), and set ϕ := sup?i ϕi. Since ϕ is usc and
Xan is compact, we can find a decreasing net of continuous functions (ψj)
such that ψj → ϕ. For each i, j, we have ϕi 6 ψj , and hence ϕi 6 Pω(ψj),
which in turn yields ϕ 6 Pω(ψj) 6 ψj . We have thus written ϕ as the
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limit of the decreasing net of ω-psh functions Pω(ψj), which shows that ϕ is
ω-psh. �

Corollary 5.18. — Assume that ω ∈ Amp(X) has the envelope prop-
erty, and consider a usc function ϕ : Xan → R ∪ {−∞}. Then:

(i) Pω(ϕ) is ω-psh, or Pω(ϕ) ≡ −∞;
(ii) if ϕ is the limit of a decreasing net (ϕj) of bounded-above, usc

functions, then Pω(ϕj)↘ Pω(ϕ).
Proof. — By Lemma 5.17, either ψ := Pω(ϕ)? is ω-psh, or Pω(ϕ) ≡ −∞.

Since Pω(ϕ) 6 ϕ and ϕ is usc, we also have ψ 6 ϕ. If ψ is ω-psh, then
ψ 6 Pω(ϕ), which proves (i).

To see (ii), note that ρ := limj Pω(ϕj) satisfies either ρ ∈ PSH(ω) or
ρ ≡ −∞, by Theorem 4.7. Furthermore, Pω(ϕj) 6 ϕj yields in the limit
ρ 6 ϕ, and hence ρ 6 Pω(ϕ) (by definition of Pω(ϕ) if ρ ∈ PSH(ω), and
trivially if ρ ≡ −∞). Thus limj Pω(ϕj) = ρ = Pω(ϕ). On the other hand,
Pω(ϕj) > Pω(ϕ) implies ρ > Pω(ϕ), which completes the proof of (ii). �

For any function ϕ : Xan → R ∪ {±∞}, we also introduce the pointwise
envelope

Qω(ϕ) := sup{ψ ∈ CPSH(ω) | ψ 6 ϕ};
this is lsc and bounded below if ϕ is bounded below, and ≡ −∞ otherwise.
Since each ψ ∈ CPSH(ω) is the uniform limit of functions in Hdom(ω) (see
Theorem 4.7), one easily checks that

Qω(ϕ) = sup{ψ ∈ Hdom(ω) | ψ 6 ϕ}.
Lemma 5.19. — Suppose ϕ : Xan → R ∪ {+∞} is bounded below, with

lsc regularization ϕ? : Xan → R ∪ {+∞}. Then:

(i) Qω(ϕ) = Pω(ϕ?);
(ii) Qω(ϕ) ∈ C0(X)⇐⇒ Qω(ϕ) ∈ PSH(ω);
(iii) if ϕ is the pointwise limit of an increasing net (ϕj) of bounded-

below, lsc functions (and hence ϕ is lsc), then Pω(ϕj)↗ Pω(ϕ).
Proof. — A function ψ ∈ CPSH(ω) satisfies ψ 6 ϕ iff ψ 6 ϕ?. Thus

Qω(ϕ) = Qω(ϕ?), and we may therefore assume wlog that ϕ is lsc. Trivially,
Pω(ϕ) > Qω(ϕ). Pick ψ ∈ PSH(ω) such that ψ 6 ϕ, and let (ψi) be a
decreasing net in CPSH(ω) converging pointwise to ψ. For each ε > 0 and
v ∈ Xan, we can find i such that {ψi < ϕ + ε} is an open neighborhood of
v, by lower semicontinuity of ϕ−ψi. By compactness of Xan, it follows that
ψi < ϕ + ε for all i large enough. Thus ψ 6 ψi 6 Qω(ϕ + ε) = Qω(ϕ) + ε,
which proves (i).

As noted above, Qω(ϕ) is lsc and bounded below. If Qω(ϕ) is ω-psh, then
it is in particular usc, and hence Qω(ϕ) ∈ C0(X). Assume, conversely, that
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Qω(ϕ) ∈ C0(X). Since CPSH(ω) is stable under finite maxima, Qω(ϕ) is
the pointwise limit of an increasing net (ψi) in CPSH(ω). By Dini’s lemma,
ψi → Qω(ϕ) uniformly onXan, and hence Qω(ϕ) ∈ PSH(ω), by Theorem 4.7.
This proves (ii).

Consider finally a net (ϕj) as in (iii). We trivially have limj Pω(ϕj) =
supj Pω(ϕj) 6 Pω(ϕ). Pick ε > 0 and ψ ∈ CPSH(ω) such that ψ 6 ϕ. As
above, for all j large enough we have ψ 6 ϕj + ε, and hence ψ 6 Pω(ϕj) + ε.
Thus Pω(ϕ) 6 supj Pω(ϕj), and we are done. �

5.4. The envelope property on smooth varieties

The results earlier in this section would not be particularly useful unless
we have examples of classes where the envelope property holds. Arguing
along the lines of [27, Theorem 8.5], we will prove:

Theorem 5.20. — Assume that X is smooth and connected, and that
either char k = 0 or dimX 6 2. Then any θ ∈ Nef(X) has the envelope
property.

We do not know whether a class θ ∈ N1(X) that is not nef has the
envelope property.

Corollary 5.21. — Under the assumptions of Theorem 5.20, the set
PSHsup(θ) = {ϕ ∈ PSH(θ) | supϕ = 0}

is compact.

In [27], the above compactness property was established in the discretely
valued case, by relying on much more involved arguments based on dual
complexes and toroidal modifications.

Lemma 5.22. — Let L be an ample line bundle on X, and (X ,L) a test
configuration for (X,L), with L an honest line bundle. Denote by am ⊂ OX
the base ideal of mL, which is a vertical ideal of X for all m� 1. Then

PL(ϕL)− ϕL = sup
m>1

m−1ϕam = lim
m→∞

m−1ϕam

pointwise on Xan. Furthermore, PL(ϕL) is continuous iff m−1ϕam converges
uniformly on Xan.

As with flag ideals, see Section 2.1, the function ϕam ∈ PL(X) is de-
fined by ϕam(v) = −σ(v)(am), where σ = σX denotes Gauss extension (see
Remark 1.9).
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Proof. — Set ϕm := ϕL + m−1ϕam . Note first that (am)m is a graded
sequence of ideals, i.e. am ·am′ ⊂ am+m′ for allm,m′ ∈ N. The sequencem 7→
ϕam is thus superadditive, and Fekete’s lemma yields supm>1m

−1ϕam =
limm→∞m−1ϕam .

Next write L = LX + D with a vertical Cartier divisor D on X , so
that ϕL = ϕD. For each m, denote by µm : Xm → X the integral closure
of the blowup along am, and by Dm the (antieffective) divisor on Xm such
that OXm · am = OXm(Dm); thus ϕm = ϕD + m−1ϕDm . By construction,
OX (mL)⊗ am is globally generated. This implies that

µ?(mL) +Dm = mLXm + µ?(mD) +Dm

is nef, and hence ϕm ∈ PL∩PSH(L). Furthermore, ϕDm 6 0, so ϕm 6 ϕL,
and hence ϕm 6 PL(ϕL), which proves

sup
m>1

ϕm = lim
m→∞

ϕm 6 PL(ϕL).

Conversely, Lemma 5.19 implies
PL(ϕL) = QL(ϕL) = sup {ψ ∈ H(L) | ψ 6 ϕL} .

Pick ψ ∈ H(L) with ψ 6 ϕL. After replacing X with a higher test config-
uration, we may and do assume, for the sake of notational simplicity, that
ψ is determined by a vertical Q-Cartier divisor E on X . For m large and
divisible enough, Theorem 2.31 shows that mLX +mE = mL+m(E −D)
is globally generated, and hence OX (m(E −D)) ⊂ am. This yields

m(ψ − ϕL) = ϕm(E−D) 6 ϕam ,

and hence ψ 6 ϕm, which yields, as desired, the converse inequality
PL(ϕL) = sup {ψ ∈ H(L) | ψ 6 ϕL} 6 sup

m
ϕm.

The final assertion is a simple consequence of Dini’s lemma, using the su-
peradditivity of m 7→ mϕm. �

Proof of Theorem 5.20. — By Lemma 5.9, we may assume that θ = c1(L)
with L ∈ Pic(X)Q ample. Pick ϕ ∈ C0(X). By Lemma 5.17, we need to show
that PL(ϕ) is continuous. Since PL(X) is dense in C0(X) with respect to
uniform convergence (see Theorem 2.2), we may assume ϕ ∈ PL(X), by (5.1).
By Theorem 2.31, we have ϕ = ϕL for a test configuration (X ,L) for (X,L).
After replacing L with a multiple, we may further assume that L and L are
honest line bundles.

Using the notation of Lemma 5.22, we need to show that ϕm := ϕL +
m−1ϕam converges uniformly to PL(ϕL). Since we assume that char k = 0 or
dimX 6 2 (and hence dimX 6 3), we can rely on resolution of singularities
and assume that X is smooth and X0 has simple normal crossings support.
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We may also assume that there exists an effective vertical Q-divisor E on X
such that A := L − E is ample.

Assume first that char k = 0, and let bm be the multiplier ideal of the
graded sequence am• . The inclusion am ⊂ bm is elementary, and we have
bml ⊂ blm for all m, l by the subadditivity of multiplier ideals. This implies
that

m−1ϕbm > (ml)−1ϕbml > (ml)−1ϕaml > m
−1ϕam

for all sufficiently divisible m and l. Letting l→∞ shows that

ϕL +m−1ϕbm > PL(ϕL) > ϕm (5.2)

for all sufficiently divisible m. By the uniform global generation of multiplier
ideals there exists m0 ∈ N such that

OX (mL+m0A)⊗ bm = OX ((m+m0)L)⊗OX (−m0E)⊗ bm

is globally generated for all sufficiently divisible m. This implies that

ϕbm 6 ϕam+m0
+ C

for a constant C independent of m. Combining this with (5.2) yields

ϕm 6 PL(ϕL) 6
(

1 + m0

m

)
ϕm+m0 −

m0

m
ϕL + C

m
,

for all sufficiently divisible m. This shows that PL(ϕL) is a uniform limit of
continuous functions, and hence continuous.

When char k > 0, the very same argument applies with test ideals in
place of multiplier ideals, see [72] for details. �

Remark 5.23. — In view of Remark 5.15, Theorem 5.20 is valid also when
X is smooth but possibly disconnected. A suitable version of Corollary 5.21
is also true.

6. Homogeneous functions and b-divisors

In this section, we assume for simplicity that X is irreducible. We study
homogeneous θ-psh functions and their relation to nef b-divisors. Inspired by
the work of Ross and Witt Nyström, we express an arbitrary θ-psh function
in terms of homogeneous ones, and use this to establish a version of Siu’s
decomposition theorem in our setting.
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6.1. Homogeneous PL and homogeneous Fubini–Study functions

Recall that any ideal b ⊂ OX determines a homogeneous, decreasing
function log |b| : Xan → [−∞, 0].

Definition 6.1. — The space of homogeneous PL functions on X is
defined as the Q-vector space

PLhom(X) ⊂ C0(Xval)

generated by the restriction to Xval of all functions log |b| attached to nonzero
ideals b ⊂ OX .

Remark 6.2. — The terminology is slightly abusive, as a function ϕ ∈
PLhom(X) is not a PL function in the sense of Definition 2.1, except if
ϕ = 0. Indeed, while functions in PL(X) ⊂ C0(X) are always bounded, ϕ
can only be bounded if ϕ = 0, by homogeneity.

By (2.1), the set

PL+
hom(X) :=

{
m−1 log |b|

∣∣m ∈ Z>0, 0 6= b ⊂ OX
}

is a Q+-semivector subspace of PLhom(X) that is stable under finite maxima,
and any function in PLhom(X) can be written as a difference of functions on
PL+

hom(X).

Remark 6.3. — For any ψ ∈ PL+
hom(X) and c ∈ Q, we have max{ψ, c} ∈

PL+(X).

Example 6.4. — If a is a nonzero fractional ideal on X, then setting
log |a|(v) := −v(a) for v ∈ Xval defines a function log |a| ∈ PLhom(X).
Indeed, log |a| = log |b′| − log |b| with b := {f ∈ OX | fa ⊂ OX} and
b′ := b · a ⊂ OX .

Remark 6.5. — As mentioned in Section 1.1, the space Xval (resp. Xan)
can be reconstructed from PL+

hom(X) (resp. PLhom(X)) as its “tropical spec-
trum”, i.e. the set of all Q+-linear (resp. Q-linear) maps χ : PL+

hom(X) →
R∪{−∞} (resp. χ : PLhom(X)→ R) that commute with taking max (com-
pare [80, Section 1.2]). In particular, PLhom(X) is a birational invariant of
X, while PL+

hom(X) is not.

Definition 6.6. — For any L ∈ Pic(X)Q, we define the space of ho-
mogeneous Fubini–Study functions for L as

Hhom(L) := Hgf
0 (L).
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By Definition 2.18, a homogeneous Fubini–Study function is thus a func-
tion ϕ : Xan → [−∞, 0] of the form

ϕ = m−1 max
i

log |si| (6.1)

for a finite set of nonzero sections (si) of mL with m sufficiently divisible.
Clearly, ϕ = m−1 log |b| for the ideal b ⊂ OX locally generated by the (si),
and hence

Hhom(L) ⊂ PL+
hom(X).

Arguing as in Proposition 2.25, we conversely have:

Lemma 6.7. — For any L ∈ Pic(X)Q and ϕ : Xan → [−∞, 0] the fol-
lowing are equivalent:

(i) ϕ ∈ Hhom(L);
(ii) ϕ = m−1 log |b| for a nonzero ideal b ⊂ OX and m ∈ Z>0 such

that mL is an honest line bundle and mL⊗ b is globally generated
on X.

Corollary 6.8. — For any L∈Pic(X)Q ample, we have Q+Hhom(L) =
PL+

hom(X), and Hhom(L) spans the Q-vector space PLhom(X).

Corollary 6.9. — We have PL+
hom(X) =

⋃
LHhom(L), where L ranges

over ample line bundles on X.

Example 6.10. — For any effective Q-Cartier divisor E, set (as in Lem-
ma 2.23) log |sE | := m−1 log |smE | for m sufficiently divisible, where smE ∈
H0(X,OX(mE)) denotes the canonical section. Then log |sE | ∈ Hhom(E).

6.2. Homogenization

Recall that R>0 acts on functions ϕ : Xan → R ∪ {±∞} by

(t · ϕ)(v) = tϕ(t−1v),
so that ϕ is homogeneous iff t · ϕ = ϕ for all t.

Definition 6.11. — We define the homogenization of a function
ϕ : Xan → R ∪ {−∞} as the function ϕ̂ : Xan → R ∪ {−∞} such that

ϕ̂(v) := inf
t>0

(t · ϕ)(v)

for v ∈ Xan.

Obviously, ϕ̂ is homogeneous, ϕ̂ 6 ϕ, and ϕ̂ is the largest function with
these properties.

– 733 –



Sébastien Boucksom and Mattias Jonsson

Example 6.12. — For any irreducible subvariety Y ⊂ X, vY,triv ∈ Xtriv

is a fixed point under the action of R>0, and hence

ϕ̂(vY,triv) =
{

0 if ϕ(vY,triv) > 0,
−∞ if ϕ(vY,triv) < 0.

Lemma 6.13. — For any decreasing net (ϕi) of functions ϕi : Xan →
R ∪ {±∞} with pointwise limit ϕ = limi ϕi, we have ϕ̂ = limi ϕ̂i.

Proof. — Since ϕ 6 ϕi, we have ϕ̂ 6 ϕ̂i 6 ϕi. Thus ψ := limi ϕ̂i is
homogeneous and satisfies ϕ̂ 6 ψ 6 ϕ, and hence ψ = ϕ̂, by the maximality
property of ϕ̂. �

Using Lemma 1.4 and Example 6.12, the next result is straightforward
to check.

Lemma 6.14. — If ϕ : Xan → R ∪ {−∞} is decreasing, then ϕ̂ is de-
creasing as well. Further, ϕ̂ 6≡ −∞ iff supϕ > 0.

For any θ ∈ N1(X), we denote by

PSHhom(θ) ⊂ PSHsup(θ)

the set of homogeneous θ-psh functions.

Theorem 6.15. — For any ϕ ∈ Hgf
Q (L) with L ∈ Pic(X)Q, we have

ϕ̂ ∈ Hhom(L) if supϕ > 0, and ϕ̂ ≡ −∞ otherwise.

Corollary 6.16. — For any ϕ ∈ PL+(X), we have ϕ̂ ∈ PL+
hom(X) if

supϕ > 0, and ϕ̂ ≡ −∞ otherwise.

Corollary 6.17. — Pick θ ∈ N1(X) and ϕ ∈ PSH(θ) such that supϕ >
0. Then:

(i) ϕ̂ ∈ PSHhom(θ);
(ii) we can find a decreasing net (ψi) such that ψi ∈ Hhom(Li) with

Li ∈ Pic(X)Q and limi c1(Li) = θ and ψi ↘ ϕ̂;
(iii) when θ = c1(L) with L ∈ Pic(X)Q ample, (ii) holds with Li = L

for all i.

Remark 6.18. — By Theorem 12.16 below, Corollary 6.17 is actually valid
with (countable) sequences instead of nets.

Corollary 6.19. — For any ω ∈ Amp(X) and E ⊂ Xan pluripolar,
there exists ψ ∈ PSHhom(ω) such that E ⊂ {ψ = −∞}.

The proof of Theorem 6.15 relies on the following elementary result.
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Lemma 6.20. — Pick λ1, . . . , λr ∈ R such that maxi λi > 0, and set for
x ∈ Rr

g(x) := inf
t>0

max
i
{xi + λit}.

(i) If maxi λi = 0 (resp. mini λi > 0) then g(x) = maxλi=0 xi (resp.
g(x) = maxi xi).

(ii) In general, g(x) = maxw∈W 〈w, x〉 for a finite subset W of the
(r − 1)-simplex

σ =
{
w ∈ Rr>0

∣∣∣∣∣∑
i

wi = 1
}
.

(iii) If the λi are rational, then we can chose W ⊂ σ ∩Qr+.

Proof. — Note first that maxi λi > 0 implies that g(x) > mini xi is finite
for all x ∈ Rr. The proof of (i) is straightforward. To see (ii), note that
the epigraph of g is the projection to Rr of the epigraph of the convex,
homogeneous PL function f(x, t) := maxi{xi + λit} on Rr × R>0. This
implies that g is a convex, homogeneous PL function as well, and hence

g(x) = sup
w∈W
〈y, x〉

with W the (finite) set of vertices of the Newton polyhedron

P := {w ∈ Rr | 〈w, x〉 6 g(x)} .

Finally, g is increasing in each variable, and

g(x1 + c, . . . , xr + c) = g(x) + c

for all c ∈ R. This implies that P ⊂ σ, which proves (ii). If the λi are
rational, then f is Q-PL. Thus g is Q-PL as well, and P is then a rational
polyhedron, whose set W of vertices is thus rational. This proves (iii). �

Proof of Theorem 6.15. — By Lemma 6.14 we may assume supϕ > 0.
Write

ϕ = m−1 max
i
{log |si|+ λi}

with m ∈ Z>0, s1, . . . , sr ∈ H0(X,mL) and λi ∈ Q, and note that maxi λi >
supϕ > 0. Then

ϕ̂ = m−1 inf
t>0

max
i
{log |si|+ tλi} ,

and Lemma 6.20 thus yields a finite subset W ⊂ σ ∩Qr+ such that

ϕ̂ = m−1 max
w∈W

{∑
i

wi log |si|
}
.
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Pick b ∈ Z>0 such that bw ∈ Nr for all w ∈W . Then∑
i

wi log |si| = b−1 log |sw|

with sw :=
∏
i s
bwi
i ∈ H0(X,mbL), and hence ϕ̂ = (mb)−1 maxw∈W log |sw|.

Thus ϕ̂ ∈ Hhom(L), and we are done. �

Proof of Corollary 6.16. — By Corollaries 2.26 and 6.8, for any ample
line bundle L we have PL+(X) = Q+H(L) and PL+

hom(X) = Q+Hhom(L).
We conclude using Theorem 6.15. �

Proof of Corollary 6.17. — By Lemma 6.14, (i) follows from (ii). By
Theorem 4.15(i), we can write ϕ as the limit of a decreasing net ϕi ∈ Hgf

Q (Li)
with Li ∈ Pic(X)Q and c1(Li) → θ. For each i, we have supϕi > supϕ >
0, and hence ϕ̂i ∈ Hhom(Li), by Theorem 6.15. By Lemma 6.13, we have
ϕ̂i ↘ ϕ̂, which proves (ii). Finally, if θ = c1(L) with L ∈ Pic(X)Q ample,
Theorem 4.15(iii) shows we can take Li = L in the above argument, and
(iii) follows. �

Proof of Corollary 6.19. — By Lemma 4.35, we can find ϕ ∈ PSH(ω)
such that E ⊂ {ϕ = −∞}. After adding a constant to ϕ, we may assume
supϕ = 0. By Corollary 6.17, we then have ϕ̂ ∈ PSHhom(ω), and E ⊂ {ϕ̂ =
−∞} since ϕ̂ 6 ϕ. �

Relying on Corollary 6.17, we now establish the following version of Siu’s
decomposition theorem (cf. [46, III.8.16]) for homogeneous psh functions (see
Theorem 6.31 below for a statement in the general case).

Theorem 6.21. — Assume that X is normal. Pick θ ∈ N1(X) and E
an effective Q-Cartier divisor. For any ψ ∈ PSHhom(θ), we then have

ψ 6 log |sE | ⇐⇒ ψ − log |sE | ∈ PSHhom(θ − E).

See Example 6.10 for the notation.

Proof. — By Corollary 6.17, we can write ψ as the limit of a decreas-
ing net ψi ∈ Hhom(Li) with Li ∈ Pic(X)Q and c1(Li) → θ. Since K :=
{log |sE | = −1} is compact in Xan and supK ψ 6 −1, we can find ti ∈ Q>0
such that limi ti = 1 and supK ψi 6 −ti, by Dini’s lemma. By homogeneity,
this implies ψi 6 ti log |sE | on R>0K = {log |sE | > −∞}, and hence on Xan,
since {log |sE | > −∞} ⊃ Xdiv is dense and ψi and log |sE | are continuous
(or by Theorem 4.22).

By Lemma 2.23, ψ′i := ψi − ti log |sE | = ψi − log |stiE | lies in Hhom(Li −
tiE). Since (ψi) is a decreasing net, (ψ′i) is decreasing on Xdiv ⊂ {log |sE | >
−∞}, and hence on Xan, by Theorem 4.22. Further, ψi(vtriv,α) = 0 for all α
and all i. Since c1(Li)− tiE → θ−E, Theorem 4.5 shows that ψ′ := limi ψ

′
i
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is (θ − E)-psh, with ψ = ψ′ + log |sE | on Xdiv, and hence on Xan, by
Corollary 4.23. �

Corollary 6.22. — If all classes in Amp(X) have the envelope prop-
erty, then PSHhom(θ) is compact for any θ ∈ N1(X).

Recall that the assumption holds if X is smooth and char k = 0, see
Corollary 5.21.

Proof. — Pick an effective Cartier divisor E such that θ′ := θ + E ∈
N1(X) is ample. Since θ′ has the envelope property, PSHsup(θ′) is compact
(see Theorem 5.11). Now pick a net (ψi) in PSHhom(θ). For each i, we have
ψ′i := ψi + log |sE | ∈ PSHhom(θ′). After passing to a subnet, we may thus
assume ψ′i → ψ′ ∈ PSHhom(θ′). Since ψ′i 6 log |sE |, we get in the limit
ψ′ 6 log |sE | onXdiv, and hence onXan, by Theorem 4.22. By Theorem 6.21,
we get ψ := ψ′ − log |sE | ∈ PSHhom(θ). Further, ψi → ψ on Xdiv, hence in
PSHhom(θ), which proves that the latter space is compact. �

6.3. The homogeneous decomposition of a psh function

For any function ϕ : Xan → R ∪ {−∞} and λ ∈ R, we set

ϕ̂λ := ϕ̂− λ = inf
t>0
{t · ϕ− tλ} . (6.2)

Thus ϕ̂λ is largest homogeneous function such that ϕ̂λ + λ 6 ϕ. By Corol-
lary 6.17, we have, for any ϕ ∈ PSH(θ) and λ ∈ R,

λ 6 inf ϕ =⇒ ϕ̂λ = 0,
λ 6 supϕ =⇒ ϕ̂λ ∈ PSHhom(θ),
λ > supϕ =⇒ ϕ̂λ ≡ −∞.

Lemma 6.23. — For any θ ∈ N1(X) and ϕ ∈ PSH(θ), (ϕ̂λ)λ<supϕ is a
concave and decreasing family of functions in PSHhom(θ), in the sense that
λ 7→ ϕ̂λ(v) is concave and decreasing for all v ∈ Xan. Moreover, the map

(−∞, supϕ] 3 λ 7−→ ϕ̂λ ∈ PSHhom(θ)
is continuous.

Proof. — The extremal characterization of ϕ̂λ shows that it is a decreas-
ing function of λ, and concavity follows directly from (6.2). For any v ∈ Xdiv,
we need to show that λ 7→ ϕ̂λ(v) is continuous on (−∞, supϕ]. By concavity,
it is continuous on (−∞, supϕ). Since λ 7→ ϕ̂λ is decreasing and vanishes at
vtriv, ψ := infλ<supϕ ϕ̂

λ is θ-psh (see Theorem 4.5), and also clearly homo-
geneous. Further, ϕ̂max := ϕ̂supϕ 6 ψ, and it remains to show that equality
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holds. For each λ < supϕ, we have ψ 6 ϕ̂λ 6 ϕ−λ, and hence ψ 6 ϕ−supϕ.
By the extremal property, we infer ψ 6 ϕ̂max, which concludes the proof. �

Theorem 6.24. — For any θ ∈ N1(X) and ϕ ∈ PSH(θ), we have

ϕ = sup
λ<supϕ

{ϕ̂λ + λ} (6.3)

pointwise on Xan. Conversely, if (ψλ)λ<supϕ is a concave family of functions
in PSHhom(θ) such that ϕ = supλ<supϕ{ψλ+λ} holds on Xdiv, then ψλ = ϕ̂λ

for all λ < supϕ.

Lemma 6.25. — For each v ∈ Xan and ϕ ∈ PSH(θ), t 7→ (t · ϕ)(v) is
convex on R>0, and is decreasing if ϕ 6 0.

Proof. — First assume ϕ ∈ Hgf
R (L) with L ∈ Pic(X)Q, and write ϕ =

m−1 maxi{log |si| + λi} for a finite set (si) of nonzero sections of mL and
λi ∈ R. Then t · ϕ = m−1 maxi{log |si|+ tλi}, which is a convex function of
t, decreasing when supϕ = max λi 6 0. The general case follows easily, see
Definition 4.1. �

Proof of Theorem 6.24. — For any v ∈ Xan, t 7→ (t · ϕ)(v) in convex on
R>0, with (convex) Legendre transform

λ 7−→ sup
t>0
{tλ− (t · ϕ)(v)} = −ϕ̂λ(v).

By Legendre duality, we thus have

(t · ϕ)(v) = sup
λ∈R
{ϕ̂λ(v) + tλ}

for all t > 0. For t = 1, this is precisely (6.3). Conversely, assume we
are given a concave family (ψλ)λ<supϕ in PSHhom(θ) such that ϕ(v) =
supλ<supϕ{ψλ(v)+λ} for all v ∈ Xdiv. Then (t ·ϕ)(v) = supλ<supϕ{ψλ(v)+
tλ} for all t > 0, and hence

ψλ(v) = inf
t>0
{(t · ϕ)(v)− tλ} = ϕ̂λ(v)

for all λ < supϕ, again by Legendre duality. This shows ψλ = ϕ̂λ on Xdiv,
and hence on Xan, by Corollary 4.23. �

Remark 6.26. — If ω is ample and ϕ ∈ E1(ω), see Section 7.2, then one
can view (t · ϕ)t>0 as a geodesic ray in the space E1(ω) (see [35, 98]), and
the above result is then in line with the Legendre transform approach to
geodesic rays pioneered in [100].

In analogy with Lemma 5.19, we also prove:
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Lemma 6.27. — Assume ϕ ∈ CPSH(L) with L ∈ Pic(X)Q ample, and
pick λ < supϕ. Then

ϕ̂λ = sup {ψ ∈ Hhom(L) | ψ 6 ϕ− λ}
pointwise on Xdiv.

Proof. — By Theorem 6.24, the right-hand side τ satisfies τ 6 ϕ̂λ. Pick
ε ∈ (0, supϕ− λ). By Theorem 4.7(iv), we can find ψ ∈ H(L) such that

ϕ− (λ+ ε) 6 ψ 6 ϕ− λ.

Since 0 6 supϕ− (λ+ ε) 6 supψ, Theorem 6.15 yields ψ̂ ∈ Hhom(L). Now
ψ̂ 6 ψ 6 ϕ− λ, and hence ψ̂ 6 τ . On the other hand, ϕ̂λ+ε = ̂ϕ− (λ+ ε) 6
ψ̂, and hence

ϕ̂λ+ε 6 τ 6 ϕ̂λ.

By Lemma 6.23, we have limε→0 ϕ̂
λ+ε = ϕ̂λ pointwise on Xdiv, and we are

done. �

Example 6.28. — Assume ϕ = ϕa for a flag ideal a, i.e. ϕ =
maxλ{log |aλ| + λ} for a decreasing sequence (aλ)λ∈Z of ideals on X. For
any λ ∈ Z with λ 6 supϕ, Theorem 6.15 yields ϕ̂λ ∈ PL+

hom(X), i.e.
ϕ̂λ = m−1 log |b| for an ideal b ⊂ OX and m ∈ Z>0, and it is natural
to wonder whether in fact ϕ̂λ = log |aλ|. We do have ϕ̂λ > log |aλ|, with
equality if λ 6 inf ϕ or λ = supϕ, by Lemma 6.20(i), but equality may
fail in general. Indeed, the concavity of λ 7→ ϕ̂λ would otherwise imply that
aλ−1 · aλ+1 is contained in the integral closure of a2

λ, which need not be the
case.

Pick θ ∈ N1(X) and ϕ ∈ PSH(θ). Besides ϕ̂0 = ϕ̂, the case of ϕ̂λ with
λ = supϕ also plays a special role, and we set

ϕ̂max := ϕ̂supϕ ∈ PSHhom(θ).
Thus ϕ̂max 6 ϕ− supϕ, and ϕ̂max is the largest homogeneous function with
this property. In particular,

ϕ̂max = 0⇐⇒ ϕ constant.
Note also that ϕ̂max is invariant under addition of a constant to ϕ. As the
next result shows, ϕ̂max can be understood as the “Gâteaux differential” of
ϕ at vtriv.

Lemma 6.29. — For any θ ∈ N1(X), ϕ ∈ PSH(θ) and v ∈ Xan, we have

ϕ̂max(v) = lim
t→0+

ϕ(tv)− ϕ(vtriv)
t

.

Recall from Proposition 4.12 that t 7→ ϕ(tv) is convex in R>0 for any
v ∈ Xan, and that supϕ = ϕ(vtriv).
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Proof. — Replacing ϕ with ϕ− supϕ, we may assume supϕ = ϕ(vtriv) =
0. Then t 7→ t · ϕ is decreasing, by Lemma 6.25, and hence

ϕ̂max(v) = ϕ̂(v) = lim
t→+∞

tϕ(t−1v) = lim
s→0+

s−1ϕ(sv),

which proves the result. �

Example 6.30. — Pick L ∈ Pic(X)Q, ϕ ∈ Hgf
R (L), and write ϕ =

m−1 maxi{log |si| + λi} as in (2.8). Then Lemma 6.20(i) yields ϕ̂max =
m−1 maxi log |si|.

Thanks to Theorem 6.24, we can now extend Theorem 6.21 to arbitrary
psh functions, yielding the following analogue of Siu’s decomposition theo-
rem.

Theorem 6.31. — Assume that X is normal. Pick θ ∈ N1(X), an effec-
tive Q-Cartier divisor E, and assume θ ∈ N1(X) has the envelope property.
For any ϕ ∈ PSH(θ + E), we then have:

ϕ 6 log |sE |+O(1)⇐⇒ ϕ− log |sE | ∈ PSH(θ).

Recall that we expect that any θ ∈ N1(X) has the envelope property,
see Conjecture 5.14. Also note the shift by E compared to the notation of
Theorem 6.21

Proof. — For each λ 6 supϕ, ϕ̂λ ∈ PSHhom(θ+E) satisfies ϕ̂λ 6 ϕ−λ 6
log |sE |+O(1), and hence ϕ̂λ 6 log |sE |, by homogeneity. By Theorem 6.21,
we thus have ϕ̂λ = ψλ + log |sE | for a unique ψλ ∈ PSHhom(θ), and hence
ϕ = τ+log |sE | pointwise on Xan with τ := supλ6supϕ(ψλ+λ). The envelope
property guarantees that ϕ′ := τ? lies in PSH(θ), and it satisfies ϕ′ =
ϕ− log |sE | by Theorem 5.6. �

6.4. Homogeneous PL functions and Cartier b-divisors

In this section, X is assumed to be normal. A model Y of X is a normal
projective variety together with a birational map π : Y → X. Recall that
(see for instance [21, Section 1]):

• a (rational) b-divisor over X is a collection B = (BY ) of Q-Weil
divisors BY ∈ Z1(Y )Q on all models of X, compatible under push-
forward as cycles, i.e. an element of the projective limit

Z1
b(X) := lim←−

Y

Z1(Y )Q
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• a b-divisor B ∈ Z1
b(X) is (Q-)Cartier if there exists a model Y ,

called a determination of B, such that BY ∈ Car(Y ) ⊂ Z1(Y ) and
BY ′ is the pullback of BY for all higher birational models Y ′.

The Q-linear subspace of Cartier b-divisors

Carb(X) ⊂ Z1
b(X)

can thus be identified with the direct limit lim−→Y
Car(Y )Q.

A Cartier b-divisor is relatively semiample if some (equivalently any)
determination BY ∈ Z1(Y ) is relatively semiample for the morphism Y → X.
We will write

Car+
b (X) ⊂ Carb(X)

for the set of B ∈ Carb(X) that are relatively semiample and antieffec-
tive, that is, B 6 0. Note that Carb(X) is a birational invariant of X, but
Car+

b (X) is not.

Any b-divisor B ∈ Z1
b(X) determines a homogeneous function ψB :Xdiv→

Q, such that ψB(ordE) = ordE(BY ) for any model Y and prime divisor E ⊂
Y . The map B 7→ ψB sets up a 1–1 correspondence between Z1

b(X) and the
space of homogeneous functions ψ : Xdiv → Q such that ψ(ordE) is nonzero
for only finitely many prime divisors E ⊂ X. Under this correspondence, a
net Bi converges to B in the inverse limit topology on Z1

b(X) iff ψBi → ψB
pointwise on Xdiv: we then simply say that Bi → B pointwise.

If B ∈ Carb(X), then ψB admits a (unique) continuous extension ψB :
Xval → R, defined by ψB(v) = v(BY ) for any determination Y of B and
v ∈ Xval ' Y val. This yields an injection Carb(X) ↪→ C0(Xval), and the
next result specifies its image.

Theorem 6.32. — The map B 7→ ψB induces isomorphisms

Carb(X) ∼−→ PLhom(X) and Car+
b (X) ∼−→ PL+

hom(X).

Proof. — We start by proving the second isomorphism. First consider
B ∈ Car+

b (X), and pick a determination π : Y → X of B. Thus BY is
π-semiample and antieffective, so for m sufficiently divisible, the generically
trivial ideal OY (mBY ) ⊂ OY is π-globally generated, i.e. OY (mBY ) = b·OY
where b := π?OY (mBY ) is a generically trivial ideal. This yields ψB =
m−1 log |b| ∈ PL+

hom(X).

Conversely, if ψ ∈ PL+
hom(X), then ψ = m−1 log |b|, where m > 1 and

b ⊂ OX is a generically trivial ideal. Let π : Y → X denotes the normalized
blowup of b, with exceptional divisor E. Then ψ = ψB with B ∈ Carb(X)
determined on Y by BY = −m−1E 6 0.
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Next we prove the first isomorphism above. If ψ ∈ PLhom(X), then we
can write ψ = ψ1 − ψ2, with ψi ∈ PL+

hom(X). By what precedes, ψi = ψBi
for Bi ∈ Car+

b (X), so ψ = ψB , where B = B1 −B2 ∈ Carb(X).

Conversely, any B ∈ Carb(X) can be written B = B1 − B2, where Bi ∈
Carb(X) are relatively semiample. It would take some work to also arrange
Bi 6 0, so instead we argue as follows. Pick a common determination π : Y →
X of the Bi. Thus Bi,Y is π-semiample, so for m sufficiently divisible, the
generically trivial fractional ideal OY (mBi,Y ) ⊂ OY is π-globally generated,
i.e. OY (mBi,Y ) = bi · OY where bi := π?OY (mBi,Y ) is a generically trivial
fractional ideal. It follows that ψB = m−1(log |b1| − log |b2|) ∈ PLhom(X),
see Example 6.4, which completes the proof. �

Remark 6.33. — By Lemma 6.29, ϕ 7→ ϕ̂max can be extended to a linear
map PL(X) → PLhom(X). Pick ϕ ∈ PL(X), and write ϕ = ϕD with D ∈
VCar(X )Q for an integrally closed test configuration X that dominates Xtriv
(see Theorem 2.7). The strict transform Y of (Xtriv)0 = X × {0} is an
irreducible component of X0 that induces the trivial valuation vtriv on X.
Thus ordY (D) = supϕ, and one checks that ϕ̂max = ψB with B ∈ Carb(X)
determined on Y by the Q-Cartier divisor BY := (D − ordY (D)X0) |Y .

Now consider L ∈ Pic(X)Q. We will describe the image of Hhom(L) ⊂
PLhom(X) in Carb(X) under the isomorphism in Theorem 6.32. To this end,
we say that a Cartier b-divisor B ∈ Carb(X) is semiample if BY is.

Lemma 6.34. — For any L ∈ Pic(X)Q and B ∈ Carb(X), we have
ψB ∈ Hhom(L)⇐⇒ B 6 0 and L+B semiample,

where the last condition means that π?L + BY is semiample for some (or,
equivalently, any) determination π : Y → X of B.

Proof. — The direct implication follows from Lemma 6.7. Conversely,
assume B 6 0 and that there exists a determination π : Y → X such that
π?L + BY is semiample. Pick m such that m(π?L + BY ) is a globally gen-
erated line bundle. Since X is normal and BY 6 0, we have π?OY (mBY ) ⊂
π?OY = OX , by Zariski’s main theorem. Further, the ideal bm ⊂ OX locally
generated by the image of

H0 (Y,m(π?L+BY )) ' H0 (X,mL⊗ π?OY (−mE)) ↪→ H0(X,mL)
satisfies bm · OY = OY (mBY ), and hence ψB = m−1 log |bm|, which lies in
Hhom(L), by Lemma 6.7. �

Similarly, if θ ∈ N1(X) we say that θ+B is nef if π?θ+BY ∈ Nef(Y ) for
some (or, equivalently, any) determination π : Y → X of B. The proof of the
next result, which describes the image of PLhom(X) ∩ PSH(θ) in Carb(X),
is more involved.
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Theorem 6.35. — Assume that all classes in Amp(X) have the envelope
property, see Section 5.2. For any θ ∈ N1(X) and B ∈ Carb(X), we then
have

ψB ∈ PSHhom(θ)⇐⇒ B 6 0 and θ +B nef.

Remark 6.36. — The condition ψB ∈ PSHhom(θ) means here that
ψB |Xdiv = ψ|Xdiv for some ψ ∈ PSHhom(θ), which is necessarily unique
by Corollary 4.23. If char k = 0, Remark 4.27 applies, and shows that ψB
and ψ in fact coincide on Xval.

The proof relies on the following “homogeneous version” of Corollary 3.22.

Lemma 6.37. — Pick θ∈N1(X). Let (Bi) be a decreasing net in Carb(X)
that converges pointwise to B ∈ Carb(X). Assume also that we are given
θi ∈ N1(X) with Bi 6 0, θi +Bi is nef, and θi → θ ∈ N1(X). Then θ+B is
nef.

Proof. — Let π : Y → X be a determination of B, and C ⊂ Y an ir-
reducible curve. Following [67, Proposition 8], denote by µ : Z → Y the
normalized blowup of C, with exceptional divisor F , and pick an ample line
bundle A on Z. Then µ?(F ·An−2) = aC with a ∈ Q>0 as numerical classes
on Y , and it will thus be enough to show (µ?π?θ+BZ) ·(F ·An−2) > 0. Since
θi +Bi is nef, the projection formula yields (µ?π?θi +Bi,Z) · (F ·An−2) > 0,
and we will be done if we show (Bi,Z · F ·An−2)→ (BZ · F ·An−2). Denote
by (Eβ) the finite set of prime components of BZ . Since B 6 Bi 6 0, Bi,Z
is also supported in the Eβ ’s. Thus

(Bi,Z · F ·An−2) =
∑
β

ordEβ (Bi)(Eβ · F ·An−2)

−→ (BZ · F ·An−2) =
∑
β

ordEβ (B)(Eβ · F ·An−2),

and we are done. �

Proof of Theorem 6.35. — Assume ψB ∈ PSHhom(θ). Then ψB 6 0, and
hence B 6 0. By Corollary 6.17, we can write ψB as the pointwise limit of
a decreasing net ψi ∈ Hhom(Li) with Li ∈ Pic(X)Q and c1(Li)→ θ. Denote
by Bi the Q-Cartier b-divisor associated to ψi. By Lemma 6.34, Li + Bi is
semiample. Thus c1(Li) + Bi is nef, and Lemma 6.37 shows that θ + B is
nef.

Assume, conversely, B 6 0 and θ +B nef. We claim that it is enough to
prove ψB ∈ PSH(θ) when θ is further ample. To see this, pick an effective
Cartier divisor E on X such that ω := θ + E is ample. Denote by E ∈
Carb(X) the Cartier b-divisor determined on X by E, and set B′ := B −
E. Any determination π : Y → X of B is also a determination of B′, and
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π?ω + B′ = π?θ + B in N1(Y ), which shows that ω + B′ is nef. On the
other hand, for any v ∈ Xval we have ψE(v) = v(E) = − log |sE |(v), and
hence ψB′ = ψB + log |sE |. Assuming the result in the ample case, we get
ψB + log |sE | = ψB′ ∈ PSHhom(ω) = PSHhom(θ+E). By Theorem 6.21, this
implies ψB ∈ PSHhom(θ), which proves the claim.

From now on we assume θ = ω ∈ Amp(X). Since π is isomorphic to the
blowup of an ideal of X, we can choose a π-ample divisor H 6 0 on Y .
Pick L ∈ Pic(X)Q such that ω′ := c1(L) − ω is ample. Since H is π-ample,
π?ω′+ εH is ample for all ε ∈ Q>0 small enough. Now π?ω+BY is nef, and
hence

(π?ω +BY ) + (π?ω′ + εH) = π?L+ (BY + εH)
is ample. By Lemma 6.34, it follows that ψε := ψB + εψH ∈ Hhom(L) ⊂
PSHhom(L). Since c1(L) = ω + ω′ is ample, it has the envelope property.
As ψB : Xan → R ∪ {−∞} is continuous and ψε ↗ ψB on Xdiv as ε ↘ 0,
Lemma 5.9 thus yields ψB ∈ PSHhom(L). As this holds for all L ∈ Pic(X)Q
as above, Theorem 4.5 yields, as desired, ψB ∈ PSHhom(ω). �

6.5. Nef b-divisors and homogeneous psh functions

We finally consider general nef b-divisors, and describe these in terms of
homogeneous psh functions. In this section, we assume that X is smooth and
k has characteristic zero.

If Y , Y ′ are smooth models of X and Y ′ dominates Y , then the corre-
sponding birational morphism µ : Y ′→Y induces a linear map µ? : N1(Y ′)→
N1(Y ). The space of b-divisor classes is defined as

N1
b(X) := lim←−

Y

N1(Y )

with Y running over all smooth models of X, endowed with the projective
limit topology (see [21, 25, 43]). Each B ∈ Z1

b(X)R determines a class [B] ∈
N1

b(X).
Definition 6.38. — We say that a (real) b-divisor B ∈ Z1

b(X)R is ex-
ceptional if BX = 0.

The map B 7→ ψB sets up a linear isomorphism between the space of ex-
ceptional b-divisors and the space E of all homogeneous functions ψ : Xdiv →
R such that ψ(ordE) = 0 for all prime divisors E ⊂ X. We equip the R-vector
space E with the topology of pointwise convergence.

By the negativity lemma, the map B 7→ [B] is injective on exceptional
b-divisors. For any α ∈ N1

b(X), we can thus find a unique exceptional b-
divisor Bα ∈ Z1

b(X)R such that [(Bα)Y ] = αY −π?αX for all smooth models
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π : Y → X (see [21, Lemma 1.11]). We denote by ψα := ψBα ∈ E the
corresponding homogeneous function. As a consequence of [21, Lemma 1.12],
we can now state:

Lemma 6.39. — The map α 7→ (αX , ψα) defines a topological vector
space isomorphism

N1
b(X) ∼−→ N1(X)× E . (6.4)

As recalled above, one says that a Cartier b-divisor B ∈ Carb(X) is nef
if BY is nef for some (or, equivalently, any) determination Y . The set

Nefb(X) ⊂ N1
b(X)

of nef b-divisor classes is defined as the closure of the set of nef Cartier b-
divisor classes. Thus a class α ∈ N1

b(X) is nef iff there exists a net (Bi) of
nef Cartier b-divisors such that [Bi,Y ]→ αY for all smooth models Y → X.
Since Nef(Y ) is a closed convex cone for each model Y , it is not hard to see
that Nefb(X) is a closed convex cone.

By [21, Lemma 2.12], a class α ∈ N1
b(X) is nef iff, for each smooth model

Y , αY ∈ N1(Y ) is nef in codimension one. A typical example is provided
by the “positive part” in the divisorial Zariski decomposition of a Cartier
b-divisor [20, 25, 94].

As we next show, nef b-divisor classes admit a precise description as
homogeneous psh functions.

Theorem 6.40. — The isomorphism (6.4) maps Nefb(X) onto the set
of pairs (θ, ψ) with θ ∈ N1(X) and ψ ∈ PSHhom(θ) such that ψ(ordE) = 0
for all prime divisors E ⊂ X.

As a consequence of Theorem 6.40, we recover the monotone approxima-
tion result of [43].

Corollary 6.41. — For any α ∈ Nefb(X), there exists a decreasing
net (Bi) of nef Cartier b-divisors such that [Bi]→ α in N1

b(X).

By Remark 6.18, the result is actually valid with a sequence instead of a
net, as in [43, Theorem A].

Remark 6.42. — Both [43, Theorem A] and Corollary 6.41 ultimately rely
on the multiplier ideals technique that goes back to [55], and was already
used in a similar manner in [27, Theorem 8.5]. However, the proof of [43] is
much more direct, and the main interest of the present discussion lies rather
in Theorem 6.40.
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Proof of Theorem 6.40. — Assume first that α = [B] for a nef Cartier b-
divisor B, and pick a determination π : Y → X of B. Then ψα ∈ PLhom(X)
is the function associated to the Q-Cartier b-divisor determined on Y by the
π-exceptional divisor EY := BY − π?BX , and

π?θ + [EY ] = [BY ]

is nef. By Theorem 6.35, we thus have ψα ∈ PSHhom(αX).

Consider next any α ∈ Nefb(X). By assumption, there exists a net (Bi)
of nef b-divisors such that αi := [Bi]→ α in N1

b(X), i.e. θi := (αi)X → θ and
ψαi → ψα pointwise on Xdiv (see Lemma 6.39). For any ample class ω, we
have θ+ω−θi ∈ Amp(X) for i large enough, and hence ψαi ∈ PSHhom(θi) ⊂
PSHhom(θ+ω). By Corollary 6.22, the latter space is compact, and we may
thus assume, after passing to a subnet, that ψαi → ψ ∈ PSHhom(θ + ω).
Since ψαi → ψα on Xdiv, it follows that ψα ∈ PSHhom(θ + ω), and hence
ψα ∈ PSHhom(θ), since this holds for all ω ∈ Amp(X) (see Theorem 4.5).

Conversely, pick ψ ∈ PSHhom(θ) such that ψ(ordE) = 0 for all prime
divisors E ⊂ X. Its restriction to Xdiv determines an element B ∈ Z1

b(X)R
such that ψB = ψ. We define α ∈ N1

b(X) by setting αY := π?θ + [BY ] for
all smooth models π : Y → X, and we claim that α is nef.

By Corollary 6.17, we can write ψ as the pointwise limit of a decreasing
net (ψi) such that ψi ∈ Hhom(Li) with Li ∈ Pic(X)Q and limi c1(Li) = θ.
For each i, we have ψ 6 ψi 6 0, and hence ψi(ordE) = 0 for all prime
divisors E ⊂ X, which means that the Cartier b-divisor Bi ∈ Carb(X)
such that ψBi = ψi satisfies (Bi)X = 0. Choose a Q-Cartier divisor Di on
X representing the linear equivalence class Li ∈ Pic(X)Q, and set B′i :=
Di +Bi. By Lemma 6.34, B′i is semiample, and hence nef. Since ψi → ψ and
[Bi]X = c1(Li) → θ = αX in N1(X), Lemma 6.39 yields αi → α in N1

b(X),
which proves, as desired, that α is nef. �

Proof of Corollary 6.41. — Pick α ∈ Nefb(X). Write αX = [D] for an
R-divisor D on X, and pick an effective, ample R-divisor H on X such that
L := D + H is an ample Q-divisor. By Theorem 6.40, we have ψα − ψH ∈
PSH(L). By Corollary 6.17, ψα − ψH is thus the pointwise limit on Xdiv of
a decreasing net (ψi) in Hhom(L). Write ψi = ψCi with Ci ∈ Carb(X). By
Lemma 6.34, Bi := Ci + L is a decreasing net of nef Cartier b-divisors, and
we have by construction [Bi]→ α. �
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7. Functions of finite energy and mixed Monge–Ampère
measures

In this section, X denotes a projective variety of dimension n, with ir-
reducible components Xα. We extend the energy pairing to arbitrary psh
functions, and use this to define functions of finite energy, and the mixed
Monge–Ampère operator thereon.

7.1. Extending the energy pairing

In Section 3.2, the energy pairing
(θ0, ϕ0) · . . . · (θn, ϕn) ∈ R

was defined for pairs (θi, ϕi) ∈ N1(X) × PLR. When the ϕi are θi-psh, this
is an increasing function of the ϕi, by Lemma 3.15. On the other hand, any
ω-psh function with ω ∈ Amp(X) can be written as a decreasing limit of
functions in Hdom(ω) ⊂ PL∩PSH(ω) (see Theorem 4.15). This allows us to
extend the energy pairing by monotonicity, as follows.

Theorem 7.1. — For each (n+ 1)-tuple ω0, . . . , ωn ∈ Amp(X), the en-
ergy pairing

(ϕ0, . . . , ϕn) 7−→ (ω0, ϕ0) · . . . · (ωn, ϕn)
admits a unique extension to a map

∏n
i=0 PSH(ωi)→ R ∪ {−∞} that is

• upper semicontinuous;
• increasing in each variable.

Furthermore, this map is continuous along decreasing nets, and satisfies
(ω0, ϕ0) · . . . · (ωn, ϕn) = inf

ψi∈Hdom(ωi), ψi>ϕi
(ω0, ψ0) · . . . · (ωn, ψn) (7.1)

for all (ϕi) ∈
∏
i PSH(ωi).

Proof. — Any map that is both usc and increasing is automatically con-
tinuous along decreasing nets. Since all functions in PSH(ωi) are limits of
decreasing nets in Hdom(ωi) ⊂ PL(X) ∩ PSH(ωi), uniqueness is clear. To
prove existence, it suffices to show that (7.1) has the required properties.

Monotonicity is obvious. To prove upper semicontinuity, suppose that
ϕi ∈ PSH(ωi), 0 6 i 6 n, and t ∈ R satisfy

(ω0, ϕ0) · . . . · (ωn, ϕn) < t.

By definition, we can choose ψi ∈ Hdom(ωi) and 0 < ε� 1 such that ϕi 6 ψi
and

(ω0, ψ0) · . . . · (ωn, ψn) < t− ε.
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Set
C :=

∑
i

(ω0 · . . . · ω̂i · . . . · ωn) > 0.

By Proposition 4.28, ϕ 7→ sup(ϕ−ψi) is continuous on PSH(ωi), and we can
thus find an open neighborhood Ui of ϕi in PSH(ωi) such that ϕ′i 6 ψi+εC−1

for all ϕ′i ∈ Ui. By monotonicity of the energy pairing and Proposition 3.14,
this gives

(ω0, ϕ
′
0) · . . . · (ωn, ϕ′n) 6 (ω0, ψ0 + εC−1) · . . . · (ωn, ψn + εC−1)

= (ω0, ψ0) · . . . · (ωn, ψn) + ε < t

for all ϕ′i ∈ Ui, which proves upper semicontinuity. �

Proposition 7.2. — The energy pairing (ω0, ϕ0) · . . . · (ωn, ϕn) is sym-
metric and R>0-linear with respect to each variable (ωi, ϕi) with ωi∈Amp(X)
and ϕi ∈ PSH(ωi). Furthermore,

(ω0, ϕ0 + c0) · . . . · (ωn, ϕn + cn)

= (ω0, ϕ0) · . . . · (ωn, ϕn) +
n∑
i=0

ci(ω0 · . . . · ω̂i · . . . · ωn)X (7.2)

for all ci ∈ R,

(ω0, t · ϕ0) · . . . · (ωn, t · ϕn) = t(ω0, ϕ0) · . . . · (ωn, ϕn) (7.3)

for all t ∈ R>0,

(ω0, ϕ0) · . . . · (ωn, ϕn) =
∑

dimXα=n
(ω0, ϕ0)|Xα · . . . · (ωn, ϕn)|Xα , (7.4)

and
(ν?ω0, ν

?ϕ0) · . . . · (ν?ωn, ν?ϕn) = (ω0, ϕ0) · . . . · (ωn, ϕn) (7.5)
with ν : Xν → X the normalization morphism.

Proof. — Using approximation by decreasing nets in Hdom(ωi), every-
thing is clear from Proposition 3.14, except that this only provides a proof
of (7.3) for t ∈ Q>0. To get the general case, we may replace ϕi with
ϕi − supϕi and assume ϕi 6 0 for all i. Write a given t ∈ R>0 as the limit
of an increasing sequence tm ∈ Q>0. For each i, (tm · ϕi)m is a decreasing
sequence in PSH(ωi) that converges to t · ϕi, and hence

lim
m→∞

(ω0, tm · ϕ0) · . . . · (ωn, tm · ϕn) = (ω0, t · ϕ0) · . . . · (ωn, t · ϕn).

The result follows. �

We also record the following useful monotonicity property with respect
to ωi.
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Proposition 7.3. — For i = 0, . . . , n, pick ωi, ω′i ∈ Amp(X) such that
ω′i > ωi, and ϕi ∈ PSH(ωi) ⊂ PSH(ω′i). Then

(i) if ϕi 6 0 for all i, then (ω′0, ϕ0) · . . . · (ω′n, ϕn) 6 (ω0, ϕ0) · . . . ·
(ωn, ϕn) 6 0;

(ii) if ϕi > 0 for all i, then (ω′0, ϕ0) · . . . · (ω′n, ϕn) > (ω0, ϕ0) · . . . ·
(ωn, ϕn) > 0.

Proof. — By monotone approximation, we may assume ϕi ∈ PL∩
PSH(ωi). By assumption, θi := ω′i − ωi is nef. The result thus follows by
expanding out

(ω′0, ϕ0) · . . . · (ω′n, ϕn) = ((ω0, ϕ0) + (θ0, 0)) · . . . · ((ωn, ϕn) + (θn, 0))

and applying Corollary 3.16. �

For any θ ∈ N1(X), recall that CPSH(θ) = C0(X) ∩ PSH(θ) ⊂ E∞(θ)
respectively denote the sets of continuous and bounded θ-psh functions. We
conclude this section with a general continuity result for the energy pairing
involving such functions. It is an analogue of the Chern–Levine–Nirenberg
inequality in the complex case.

Theorem 7.4. — For all ω0, . . . , ωn ∈ Amp(X), the energy pairing

(ϕ0, . . . , ϕn) 7−→ (ω0, ϕ0) · . . . · (ωn, ϕn)

is finite-valued and continuous on PSH(ω0)×
∏n
i=1 CPSH(ωi) with its natural

topology (pointwise convergence on Xdiv for the first factor, and uniform
convergence for the other ones).

Lemma 7.5. — Pick (ϕ0, . . . , ϕn) ∈ PSH(ω0)×
∏n
i=1 E∞(ωi). Then:

(i) (ω0, ϕ0) · . . . · (ωn, ϕn) ∈ R is finite;
(ii) for any (ϕ′1, . . . , ϕ′n) ∈

∏n
i=1 E∞(ωi) we have

|(ω0, ϕ0) · (ω1, ϕ1) · . . . · (ωn, ϕn)− (ω0, ϕ0) · (ω1, ϕ
′
1) · . . . · (ωn, ϕ′n)|

6 C
n∑
i=1

sup |ϕi − ϕ′i| (7.6)

with C := max16i6n(ω0 · . . . · ω̂i · . . . · ωn).

We emphasize that the estimate is uniform with respect to ϕ0.

Proof. — For any t ∈ R such that ϕi > t for i > 1, (7.2) yields

(ω0, ϕ0) · . . . · (ωn, ϕn) > (ω0, ϕ0) · (ω1, 0) · . . . · (ωn, 0) + ntC. (7.7)
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To prove (i) we may therefore assume ϕi = 0 for 1 6 i 6 n. For ϕ0 ∈ PLR,
(7.4) and (3.5) yield

(ω0, ϕ0) · (ω1, 0) · . . . · (ωn, 0) =
∑

dimXα=n
ϕ0(vtriv,α)(ω1 · . . . · ωn)|Xα .

By monotone approximation, this remains true for all ϕ0 ∈ PSH(ω0), prov-
ing (i).

For (ii), we may assume that ϕi = ϕ′i for i > 1, by multilinearity and
symmetry. Then ϕ1 6 ϕ′1 + sup |ϕ1 − ϕ′1| implies

(ω0, ϕ0) · . . . · (ωn, ϕn)
6 (ω0, ϕ0) · (ω1, ϕ

′
1) · (ω2, ϕ2) · . . . · (ωn, ϕn) + C sup |ϕ1 − ϕ′1|,

using again (7.2). The result follows. �

Proof of Theorem 7.4. — Assume first that all ϕi are PL, and pick an
integrally closed test configuration X dominating Xtriv, and Bi ∈ VCar(X )Q
such that ϕi = ϕBi for i = 1, . . . , n. By (3.5), we have

(ω0, ϕ0) · . . . · (ωn, ϕn) = (ω0, 0) · (ω1, ϕ1) · . . . · (ωn, ϕn)

+
∑
E

bE ϕ0(vE)(ω1,X +B1)|E · . . . · (ωn,X +Bn)|E , (7.8)

with E ranging over all irreducible components of X0. By continuity along
decreasing nets, this remains true for any ϕ0 ∈ PSH(ω0), and shows that
ϕ0 7→ (ω0, ϕ0) · (ω1, ϕ1) · . . . · (ωn, ϕn) is continuous on PSH(ω0) when ϕi is
PL for i > 1.

Assume next ϕi ∈ CPSH(ωi) for i = 1, . . . , n. For each i > 1, we can
choose a sequence (ϕij)j in Hdom(ωi) ⊂ PL∩PSH(ωi) converging uniformly
to ϕi. By (7.6), the sequence of continuous functions on PSH(ω0)

ϕ0 7−→ (ω0, ϕ0) · (ω1, ϕ1j) · . . . · (ωn, ϕnj)
converges uniformly to

ϕ0 7−→ (ω0, ϕ0) · (ω1, ϕ1) · . . . · (ωn, ϕn),
which is therefore continuous as well. Finally consider an arbitrary conver-
gent net

(ϕ0j , ϕ1j , . . . , ϕnj) −→ (ϕ0, ϕ1, . . . , ϕn)
in PSH(ω0)×

∏n
i=1 CPSH(ωi), so that ϕ0j → ϕ0 in PSH(ω0) (i.e. pointwise

on Xdiv) and ϕij → ϕi uniformly for i > 1. Write
(ω0, ϕ0j) · . . . · (ωn, ϕnj)− (ω0, ϕ0) · . . . · (ωn, ϕn)

= [(ω0, ϕ0j) · (ω1, ϕ1j) · . . . · (ωn, ϕnj)− (ω0, ϕ0j) · (ω1, ϕ1) · . . . · (ωn, ϕn)]
+ [(ω0, ϕ0j) · (ω1, ϕ1) · . . . · (ωn, ϕn)− (ω0, ϕ0) · (ω1, ϕ1) · . . . · (ωn, ϕn)].
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By (7.6), the first term tends to 0 as j →∞, while the previous step of the
proof shows that the second term tends to 0 as well, so we are done. �

7.2. Functions of finite energy

Definition 7.6. — For each ω∈Amp(X), we define the Monge–Ampère
energy functional

Eω : PSH(ω) −→ R ∪ {−∞}
by setting, for ϕ ∈ PSH(ω),

Eω(ϕ) := (ω, ϕ)n+1

(n+ 1)(ωn) . (7.9)

We say that ϕ has finite energy if Eω(ϕ) > −∞.

We denote by
E1(ω) ⊂ PSH(ω)

the set of ω-psh functions of finite energy.

Proposition 7.7. — For each ω ∈ Amp(X), the functional Eω :
PSH(ω)→ R ∪ {−∞} satisfies:

(i) Eω is increasing, concave, usc, and continuous along decreasing
nets;

(ii) Eω(ϕ+ c) = Eω(ϕ) + c for ϕ ∈ PSH(ω) and c ∈ R;
(iii) for each ϕ ∈ PSH(ω) and t ∈ R>0 we have Eω(t ·ϕ) = tEω(ϕ) and

Etω(tϕ) = tEω(ϕ);
(iv) for each ϕ ∈ PSH(ω) we have

Eω(ϕ) =
∑
α

cα Eω|Xα (ϕ|Xan
α

) = Eν?ω(ν?ϕ) (7.10)

with cα := (ωn)Xα/(ωn)X and ν : Xν → X the normalization mor-
phism.

Note that cα > 0 iff Xα is top-dimensional, and
∑
α cα = 1.

Proof. — Concavity follows from Theorem 3.25, by monotone approxi-
mation. The rest of (i)–(ii) and the first half of (iii) are consequences of
Proposition 7.2. Pick ϕ ∈ PSH(ω). For any t ∈ R>0, tϕ ∈ PSH(tω) satisfies

Etω(tϕ) = (tω, tϕ)n+1

(n+ 1)((tω)n) = t
(ω, ϕ)n+1

(n+ 1)(ωn) = tEω(ϕ),

which concludes the proof of (iii). Finally, (iv) is a consequence of (7.4). �
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Theorem 7.8. — Given ample classes ω, ω′, ω0, . . . , ωn ∈ Amp(X), we
have:

(i) E1(ω) is a convex subset of PSH(ω), and contains all bounded ω-
psh functions;

(ii) E1(ω) is stable under addition of a constant and the scaling action
of R>0;

(iii) if ϕ ∈ E1(ω), then any ψ ∈ PSH(ω) such that ψ > ϕ is also in
E1(ω);

(iv) if ω 6 ω′ then E1(ω) ⊂ E1(ω′);
(v) E1(tω) = t E1(ω) for all t ∈ R>0, and

E1(ω) + E1(ω′) ⊂ E1(ω + ω′);
(vi) if ϕi ∈ E1(ωi), i = 0, . . . , n, then (ω0, ϕ0) · . . . · (ωn, ϕn) is finite;
(vii) if ϕ ∈ PSH(ω) then

ϕ ∈ E1(ω)⇐⇒ ν?ϕ ∈ E1(ν?ω)
⇐⇒ ϕ|Xan

α
∈ E1(ω|Xα) for all top-dimensional components Xα.

Lemma 7.9. — Pick ω, ω′ ∈ Amp(X) and t > 1 such that ω 6 ω′ 6 tω.
For all nonpositive ϕ ∈ PSH(ω) ⊂ PSH(ω′) we have

0 > (ω, ϕ)n+1 > (ω′, ϕ)n+1 > tn(ω, ϕ)n+1.

Proof. — By Proposition 7.3 we have
0 > (ω, ϕ)n+1 > (ω′, ϕ)n+1 > (tω, ϕ)n+1 = tn+1(ω, t−1ϕ)n+1.

Since ϕ ∈ PSH(ω) and t−1 ∈ [0, 1], concavity of the energy yields
(ω, t−1ϕ)n+1 > t−1(ω, ϕ)n+1, and the result follows. �

Lemma 7.10. — Pick r > 1, ω0, . . . , ωr ∈ Amp(X), 0 > ϕi ∈ PSH(ωi)
for i = 0, . . . , r. Assume also given t > 1 such that ωi 6 tωj for all i, j. Then(∑

i

ωi,
∑
i

ϕi

)n+1

> Cr,nt
rn
∑
i

(ωi, ϕi)n+1 (7.11)

with Cr,n := (2rr!)n.

Proof. — Assume first r = 1. Set ω̃ := t
1+t (ω0 + ω1), and observe that

ω0 6 ω̃ 6 tω0 and ω1 6 ω̃ 6 tω1. Thus

(ω0 + ω1, ϕ0 + ϕ1)n+1 = 2n+1 ( 1
2 (ω0 + ω1), 1

2 (ϕ0 + ϕ1)
)n+1

> 2n+1 (ω̃, 1
2 (ϕ0 + ϕ1)

)n+1
> 2n

(
(ω̃, ϕ0)n+1 + (ω̃, ϕ1)n+1

)
> (2t)n

(
(ω0, ϕ0)n+1 + (ω1, ϕ1)n+1) ,

where the first inequality holds by Proposition 7.3, the second one by con-
cavity of ψ 7→ (ω̃, ψ)n+1, and the third one by Lemma 7.9.
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Assume now r > 2, and set ω′0 :=
∑
i>0 ωi, ϕ′0 :=

∑
i>0 ϕi. Since t−1ω0 6

ω′0 6 rtω0, the first part of the proof yields(∑
i

ωi,
∑
i

ϕi

)n+1

= (ω0 + ω′0, ϕ0 + ϕ′0)n+1

> (2rt)n
(
(ω0, ϕ0)n+1 + (ω′0, ϕ′0)n+1).

By induction, we have, on the other hand,

(ω′0, ϕ′0)n+1 > Cr−1,nt
(r−1)n

∑
i>0

(ωi, ϕi)n+1.

The result follows, since (ω0, ϕ0)n+1 6 0 and
Cr,nt

rn = (2rt)nCr−1,n > (2rt)n. �

Corollary 7.11. — With the notation of Lemma 7.10 we have

(ω0, ϕ0) · . . . · (ωn, ϕn) & tn
2

min
06i6n

(ωi, ϕi)n+1 (7.12)

for all nonpositive ϕi ∈ PSH(ωi).

Proof. — Expanding out (ω0 + · · ·+ ωn, ϕ0 + · · ·+ ϕn)n+1 yields
(ω0 + · · ·+ ωn, ϕ0 + · · ·+ ϕn)n+1 6 (n+ 1)!(ω0, ϕ0) · . . . · (ωn, ϕn),

and we conclude by Lemma 7.10 with r = n. �

Proof of Theorem 7.8. — Properties (i)–(iii) follow from Proposition 7.7,
while (iv), (v) and (vi), respectively, follow from Lemmas 7.9, 7.10 and Corol-
lary 7.11. Finally, (vii) follows from (7.10). �

It will be convenient to extend the energy pairing to a multilinear map.
Recall that any ω-psh function is finite-valued on X lin, see Corollary 4.17.
We now introduce

Definition 7.12. — We define a function of finite energy as a function
ϕ : X lin → R of the form ϕ = ϕ+ − ϕ− with ϕ± ∈ E1(ω) for some ω ∈
Amp(X).

By Theorem 7.8,
⋃
ω∈Amp(X) E1(ω) forms a convex cone in the R-linear

space of all functions ϕ : X lin → R, and the set
~E1 = ~E1(X)

of functions of finite energy thus forms an R-vector space, which contains
PL(X)R, by (3.2). Note, further, that ~E1 is generated by E1(ω) for any given
ω ∈ Amp(X), by Theorem 7.8(iv), (v).

Lemma 7.13. — For each ω ∈ Amp(X), we have E1(ω) = ~E1 ∩PSH(ω).
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In other words, E1(ω) consists precisely of functions that are ω-psh and
of finite energy, so that the chosen terminology is consistent.

Proof. — The inclusion E1(ω) ⊂ ~E1 ∩ PSH(ω) is clear. Conversely, pick
ϕ ∈ ~E1 ∩ PSH(ω), and write ϕ = ϕ+ − ϕ− with ϕ± ∈ E1(ω′) for some
ω′ ∈ Amp(X). After adding constants, we may assume ϕ,ϕ± 6 0. Then
((ω, ϕ) + (ω′, ϕ−))n+1 6 (ω, ϕ)n+1, by expanding out the left-hand side. By
Theorem 7.8(iv), we infer

−∞ < (ω + ω′, ϕ+)n+1 =
(
(ω, ϕ) + (ω′, ϕ−)

)n+1
6 (ω, ϕ)n+1.

Thus ϕ ∈ E1(ω), which proves the result. �

Theorem 7.14. — There exists a unique multilinear symmetric pairing(
N1(X)× ~E1

)n+1
3 ((θ0, ϕ0), . . . , (θn, ϕn)) 7−→ (θ0, ϕ0) · . . . · (θn, ϕn) ∈ R

that is compatible with the one defined in Theorem 7.1 for tuples (θi, ϕi) ∈
N1(X) × ~E1 such that θi ∈ Amp(X) and ϕi ∈ E1(θi) = ~E1 ∩ PSH(θi).
Furthermore:

(i) this pairing is compatible with the one defined in Section 3.2 for
tuples in N1(X)× PL(X)R;

(ii) (7.3), (7.4) and (7.5) remain valid on N1(X)× ~E1;
(iii) for any ω ∈ Amp(X) and θ0, . . . , θn ∈ N1(X), the map

(ϕ0, . . . , ϕn) 7−→ (θ0, ϕ0) · . . . · (θn, ϕn)
is continuous along decreasing nets in E1(ω).

Proof. — Consider the vector space V := N1(X)×~E1. By Theorem 7.8(v),

C :=
⋃

ω∈Amp(X)

{ω} × E1(ω).

is a convex cone in V , and the energy pairing is an R>0-multilinear pairing
on C, by Proposition 7.2. Since Amp(X) spans N1(X), it is straightforward
to see, using Theorem 7.8(iv), that C spans V . It is now a simple general fact
that the pairing on C uniquely extends to an R-multilinear pairing on V .

The first compatibility assertion follows from Lemma 7.13. The pairing
on C restricts to the one from Section 3.2 on the subcone

C ′ :=
⋃

ω∈Amp(X)

{ω} × (PL(X)R ∩ PSH(ω)),

which spans V ′ := N1(X) × PL(X)R; the extended pairing on V thus coin-
cides with the given one on V ′, which proves (i). Next, (ii) is immediate by
multilinearity. Finally (iii) holds when θi > ω, by Theorem 7.1; the general
case follows, again by multilinearity. �
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By multilinearity, (7.3), (7.4) and (7.5) remain valid on N1(X)× ~E1. We
also note:

Lemma 7.15. — If θ0, . . . , θn ∈ Nef(X), then (θ0, ϕ0) · . . . · (θn, ϕn) is an
increasing function of ϕi ∈ PSH(θi) ∩ ~E1.

Proof. — It suffices to write
(θ0, ϕ0) · . . . · (θn, ϕn) = lim

ε→0
(θ0 + εθ, ϕ0) · . . . · (θn + εθ, ϕn)

with θ ∈ Amp(X). �

Remark 7.16. — Mimicking the complex analytic case, one can define
E1(θ) for any θ ∈ Nef(X) as the set of ϕ ∈ PSH(θ) such that infj(θ, ϕj)n+1 >
−∞ with ϕj := max{ϕ,−j} ∈ E∞(θ). The proof of Lemma 7.13 still yields
~E1 ∩ PSH(θ) ⊂ E1(θ), but the inclusion is strict in general when θ is not
ample (compare [52]).

7.3. Mixed Monge–Ampère measures

Recall that a Radon measure µ on the compact space Xan is a regu-
lar (positive) Borel measure on Xan. By the Riesz representation theorem,
Radon measures are in 1–1 correspondence with positive linear forms on
C0(X), see for instance [61, Section 7.1–2]. All meesures below will be Radon
measures, and for brevity we will sometimes drop “Radon”. Any usc function
f : Xan → R ∪ {−∞} satisfies

f = inf
{
g ∈ C0(X), g > f

}
pointwise, andˆ

f µ = inf
{ˆ

g µ

∣∣∣∣ g ∈ C0(X), g > f
}
∈ R ∪ {−∞}. (7.13)

We will sometimes need to rely on the following monotone convergence
theorem for (possibly uncountable) nets of usc functions, a simple conse-
quence of (7.13) and Dini’s lemma (see for instance [61, Proposition 7.12]).

Lemma 7.17. — If µ is a Radon measure on Xan and (fj)j a decreasing
net of usc functions on Xan, converging pointwise to a (usc) function f , then
limj

´
fjµ =

´
fµ.

More generally, continuous linear forms in C0(X)∨ correspond to signed
Radon measures on Xan. Any such measure can be written as a difference
of Radon measures, and Lemma 7.17 thus applies as well when µ is a signed
measure.
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With these preliminaries in hand, we now generalize the construction of
mixed Monge–Ampère measures, introduced in Section 3.2 in the PL case.

Theorem 7.18. — For each n-tuple (θi, ϕi) ∈ N1(X)× ~E1, i = 1, . . . , n,
there exists a unique signed Radon measure

(θ1 + ddc ϕ1) ∧ · · · ∧ (θn + ddc ϕn) =
∧
i

(θi + ddc ϕi) ∈ C0(X)∨ (7.14)

such that̂

Xan
ϕ
∧
i

(θi + ddc ϕi) = (0, ϕ) · (θ1, ϕ1) · . . . · (θn, ϕn) (7.15)

for all ϕ ∈ PL(X)R. If further θi ∈ Nef(X) and ϕi ∈ PSH(θi) for i =
1, . . . , n, then (7.14) is a positive measure.

While the notation mimics the one for mixed Monge–Ampère measures in
the complex analytic case, we will not define the individual factors θi+ddc ϕi.
At least if the ϕi are continuous, this could, however, be done using the
approach in [40] (cf. Remark 7.23 below).

Proof. — By density of PL(X) in C0(X) (see Theorem 2.2), the prescrip-
tion (7.15) uniquely determines the measure (7.14). To show existence, we
may assume, by multilinearity, that θi ∈ Nef(X) and ϕi ∈ ~E1 ∩ PSH(θi) for
i = 1, . . . , n. Since any ϕ ∈ PL(X)R can be written as a difference of func-
tions in PLR ∩PSH(ω) for some ω ∈ Amp(X) (see (3.2)), Lemma 7.15 shows
that ϕ 7→ (0, ϕ) · (θ1, ϕ1) · . . . · (θn, ϕn) is a positive linear form on PL(X)R.
By density of PL(X)R in C0(X), it thus uniquely extends to a positive linear
form on C0(X), and we are done. �

Proposition 7.19. — Mixed Monge–Ampère measures satisfy the fol-
lowing properties:

(i) the signed measure
∧
i(θi + ddc ϕi) is a symmetric and multilinear

function of the n-tuple (θi, ϕi) ∈ N1(X)× ~E1, of total massˆ
Xan

∧
i

(θi + ddc ϕi) = (θ1 · . . . · θn)X ;

(ii) assume (θi, ϕi) ∈ N1(X)× PLR, and pick an integrally closed test
configuration X dominating Xtriv and Di ∈ VCar(X )R such that
ϕi = ϕDi ; then∧

i

(θi + ddc ϕi) =
∑
E

cE δvE ,

where E ranges over the irreducible components of X0 and
cE := ordE(X0)(θ1,X +D1)|E · . . . · (θn,X +Dn)|E ;
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(iii) for all (θi, ϕi) ∈ N1(X)× ~E1 and t ∈ R>0 we have∧
i

(θi + ddc(t · ϕi)) = t?
∧
i

(θi + ddc ϕi), (7.16)∧
i

(θi + ddc ϕi) =
∑

dimXα=n

∧
i

(
θi|Xα + ddc ϕi|Xan

α

)
, (7.17)

∧
i

(θi + ddc ϕi) = ν?
∧
i

(ν?θi + ddc ν?ϕi) , (7.18)

with ν : Xν → X the normalization;
(iv) for any ω ∈ Amp(X), the map E1(ω)n 3 (ϕ1, . . . , ϕn) 7→

∧
i(θi +

ddc ϕi) is continuous along decreasing nets;
(v) for all (θi, ϕi) ∈ N1(X) × ~E1 and ϕ ∈ ~E1, ϕ is integrable against∧

i(θi + ddc ϕi), and (7.15) holds.

When ϕi = 0 for some i, we drop the term ddc ϕi from the notation. As
a special case of Proposition 7.19(ii), we then have

θ1 ∧ · · · ∧ θn =
∑

dimXα=n
(θ1 · . . . · θn)Xα δvtriv,α . (7.19)

Proof of Proposition 7.19. — Points (i) and (iii) follow from Proposi-
tion 7.2, while (ii) is a reformulation of (3.5). By density of PL(X) in C0(X),
(iv) is equivalent to the fact that, for each ϕ ∈ PL(X),

(ϕ1, . . . , ϕn) 7−→
ˆ
ϕ
∧
i

(θi + ddc ϕi) = (0, ϕ) · (θ1, ϕ1) · . . . · (θn, ϕn)

is continuous along decreasing nets in E1(ω)n+1. Now ϕ can be written as
a difference of functions in PL∩PSH(ω′) for some ω′ ∈ Amp(X), and the
desired continuity is thus a consequence of Theorem 7.14. To prove (v), we
may assume θi ∈ Amp(X) and ϕi ∈ E1(θi), by multilinearity. Any ϕ ∈ E1(ω)
with ω ∈ Amp(X) can be written as the pointwise limit of a decreasing net
in PL∩PSH(ω), and (7.15) thus holds for ϕ, by monotone convergence and
the continuity of the energy pairing along decreasing limits. �

Example 7.20. — Assume X is a smooth curve and pick ω ∈ Amp(X).
By Example 4.13, any ϕ ∈ PSH(ω) determines a positive Radon measure
(degω)δvtriv + ∆ϕ, with

∆ϕ =
∑

p∈X(k)

[
d
dt

∣∣∣∣
0+
ϕ(t ordp)δvtriv −

d
dt

∣∣∣∣
+∞

ϕ(t ordp)δvp,triv + d2

dt2ϕ(t ordp)
]

the tree Laplacian (see [56, Section 7]). As we saw in Example 3.19, we have
ω+ ddc ϕ = (degω)δvtriv + ∆ϕ for any ϕ ∈ PLR ∩PSH(ω), and this remains
true for any ϕ ∈ E1(ω), by monotone approximation. For such functions,
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ω + ddc ϕ further puts no mass on the endpoints vp,triv, which means that
the convex function t 7→ ϕ(t ordp) has sublinear growth (see respectively
Corollary 7.49 and Theorem 11.11).

Proposition 7.21. — Pick ωi ∈ Amp(X) and ϕi ∈ E1(ωi), i = 1, . . . , n,
and choose also ω0 ∈ Amp(X) and ϕ0 ∈ PSH(ω0). Then:

(i) ϕ0 is integrable with respect to µ :=
∧
i(ωi + ddc ϕi) iff (ω0, ϕ0) ·

. . . · (ωn, ϕn) > −∞, and this holds as soon as ϕi is bounded for
i = 1, . . . , n;

(ii) assume ϕ0 ∈ L1(µ); pick for i = 0, . . . , n, a decreasing net (ϕij)j
in PSH(ωi) that converges pointwise to ϕi, and set µj :=

∧
i(ωi +

ddc ϕij); then ϕ0j ∈ L1(µj) for all j, and ϕ0jµj → ϕ0µ weakly in
C0(X)∨.

Lemma 7.22. — Let K be a compact topological space with a weakly
convergent net of positive Radon measures µj → µ. Assume also given an
increasing net of lsc functions fj : K → R∪{+∞} such that fj ∈ L1(µj) for
all j, f := limj fj ∈ L1(µ) and

´
fj µj →

´
f µ. Then fjµj → fµ weakly in

C0(K)∨.

Proof. — Being lsc, each fj is bounded below, and the increasing net (fj)
is thus ultimately bounded below. Since µj → µ, we may therefore assume,
after adding a constant, that fj > 0 for all j. Since

´
fj µj converges, the

positive Radon measures σj := fjµj stay in a fixed weakly compact subset of
C0(X)∨, and it suffices to show that any limit point σ∞ of σj must coincide
with σ := fµ. By assumption,

´
σj →

´
σ, hence

´
σ∞ =

´
σ, and it will

thus be enough to show that σ∞ > σ. To this end, pick 0 6 g ∈ C0(K). For
all j > k we have fj > fk, and henceˆ

g σj =
ˆ
gfj µj >

ˆ
gfk µj .

By lower semicontinuity of gfk and the weak convergence µj → µ, we infer´
g σ∞ >

´
gfk µ. Using monotone convergence, this now yields in turn,

ˆ
g σ∞ >

ˆ
gf µ =

ˆ
g σ,

which concludes the proof. �

Proof of Proposition 7.21. — Set c := (ω0, 0) · (ω1, ϕ1) · . . . · (ωn, ϕn) ∈
R, and pick a decreasing net (ϕ0j) in PL∩PSH(ω0) such that ϕ0j → ϕ0
pointwise. By construction of µ, we have, for each j,ˆ

ϕ0j µ = (ω0, ϕ0j) · (ω1, ϕ1) · . . . · (ωn, ϕn)− c.

– 758 –



Global pluripotential theory over a trivially valued field

By Lemma 7.17,
´
ϕ0j µ →

´
ϕ0 µ. By Theorem 7.1, we have on the other

hand (ω0, ϕ0j) · (ω1, ϕ1) · . . . · (ωn, ϕn) → (ω0, ϕ0) · (ω1, ϕ1) · . . . · (ωn, ϕn).
Thus ˆ

ϕ0 µ = (ω0, ϕ0) · (ω1, ϕ1) · . . . · (ωn, ϕn)− c,

and (i) follows.

We turn to (ii). By Proposition 7.19(iv), we have µj → µ. Further,ˆ
ϕ0j µj = (ω0, 0) · (ω1, ϕ1j) · . . . · (ωn, ϕnj)− (ω0, ϕ0j) · . . . · (ωn, ϕnj)

is finite for each j, and converges toˆ
ϕ0 µ = (θ0, 0) · (ω1, ϕ1) · . . . · (ωn, ϕn)− (ω0, ϕ0) · . . . · (ωn, ϕn).

The result is now a consequence of Lemma 7.22. �

Remark 7.23. — For continuous ω-psh functions, mixed Monge–Ampère
measures can also be defined using the general theory developed by
Chambert-Loir and Ducros [40]. By base change invariance of their theory,
it follows from Proposition 7.19(ii) and [22, Theorem 8.18] that the present
approach is compatible with [40] for continuous ω-psh functions.

7.4. The Monge–Ampère operator and energy functionals

In this section we fix ω ∈ Amp(X). We denote by V := (ωn) its volume,
and write E1 := E1(ω) and E := Eω.

Definition 7.24. — The Monge–Ampère operator takes ϕ ∈ E1 to the
Radon probability measure

MA(ϕ) = MAω(ϕ) := V −1(ω + ddc ϕ)n

on Xan.

Definition 7.25. — For any two ϕ,ψ ∈ E1 we set

Jψ(ϕ) = Jω,ψ(ϕ) = E(ψ)− E(ϕ) +
ˆ

(ϕ− ψ) MA(ψ)

and

I(ϕ,ψ) = Iω(ϕ,ψ) =
ˆ

(ϕ− ψ) (MA(ψ)−MA(ϕ))

= Jψ(ϕ) + Jϕ(ψ).
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Note that Jψ(ϕ) and I(ϕ,ψ) are both invariant under translation of ϕ,ψ
by constants. When ψ = 0 we simply write

I(ϕ) := I(ϕ, 0) =
ˆ
ϕMA(0)−

ˆ
ϕMA(ϕ)

and
J(ϕ) := J0(ϕ) =

ˆ
ϕMA(0)− E(ϕ).

Example 7.26. — By (7.19) with θ1 = · · · = θn = ω we have

MA(0) =
∑

dimXα=n
cαδvtriv,α , (7.20)

with cα = (ωn)Xα/(ωn). As a consequence,
´
ϕMA(0) =

∑
α cαϕ(vtriv,α) =∑

α cα sup(ϕ|Xα), see (1.4). In particular, when X is irreducible, MA(0) =
δvtriv and

´
ϕMA(0) = supϕ.

Thanks to Theorem 7.8, we can make sense of the definitions from Sec-
tion 3.3 for functions in E1. In particular, we set, for any two ϕ,ψ ∈ E1,

dω(ϕ,ψ) := max
06j6n−1

‖ϕ− ψ‖2(ω,ϕ)j ·(ω,ψ)n−1−j

with

‖ϕ− ψ‖2(ω,ϕ)j ·(ω,ψ)n−1−j = −(0, ϕ− ψ)2 · (ω, ϕ)j · (ω, ψ)n−j

= −
ˆ

(ϕ− ψ) ddc(ϕ− ψ) ∧ (ω + ddc ϕ)j ∧ (ω + ddc ψ)n−j . (7.21)

Proposition 7.27. — For all ϕ,ψ ∈ E1 we have:

E(ϕ)−E(ψ) = 1
n+ 1

n∑
j=0

V −1
ˆ

(ϕ−ψ) (ω+ddc ϕ)j∧(ω+ddc ψ)n−j ; (7.22)

ˆ
(ϕ− ψ) MA(ϕ) 6 E(ϕ)− E(ψ) 6

ˆ
(ϕ− ψ) MA(ψ); (7.23)

d
dt

∣∣∣∣
t=0

E((1− t)ϕ+ tψ) =
ˆ

(ψ − ϕ) MA(ϕ); (7.24)

I(ϕ,ψ) = V −1
n−1∑
j=0
‖ϕ− ψ‖2(ω,ϕ)j ,(ω,ψ)n−1−j ; (7.25)

I(ϕ,ψ) =
∑
α

cα I(ϕ|Xan
α
, ψ|Xan

α
); (7.26)

Jψ(ϕ) = V −1
n−1∑
j=0

j + 1
n+ 1‖ϕ− ψ‖

2
(ω,ϕ)j ,(ω,ψ)n−1−j ; (7.27)

1
n+1 I(ϕ,ψ) 6 Jψ(ϕ) 6 n

n+1 I(ϕ,ψ); (7.28)
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V −1dω(ϕ,ψ) ≈ I(ϕ,ψ) ≈ Jψ(ϕ) ≈ Jϕ(ψ); (7.29)
I(ϕ1, ϕ2) . I(ϕ1, ϕ3) + I(ϕ3, ϕ2). (7.30)

Proof. — As in Lemma 3.26, (7.22), (7.24), (7.25) and (7.27) follow from
straightforward computations based on the multilinearity and symmetry of
the energy pairing on E1, while (7.26) follows from (7.4). Equation (7.23)
follows from (3.16) by monotone approximation. Equations (7.25) and (7.27)
imply (7.28) and (7.29), and (7.30) is now a consequence of Theorem 3.31
and monotone approximation. �

Taking into account (7.24), we can write (7.28) as
E(ψ) + E′(ψ)(ϕ− ψ)− E(ϕ) > 1

n+1 I(ϕ,ψ), (7.31)
which can be seen as a strict concavity property of E with respect to I.
Indeed, it yields the following uniform concavity estimate:

Theorem 7.28. — For any two ϕ,ψ ∈ E1 and t ∈ [0, 1] we have
E((1− t)ϕ+ tψ)− ((1− t) E(ϕ) + tE(ψ)) & t(1− t) I(ϕ,ψ).

The proof relies on the following elementary estimate, which is certainly
well-known.

Lemma 7.29. — For all a, b ∈ R>0 and t ∈ [0, 1] we have (1− t)a+ tb >
t(1− t)(a+ b).

Proof. — By homogeneity we may assume a+ b = 1. Write t = 1
2 +x and

a = 1
2 + y with x, y ∈ [− 1

2 ,
1
2 ], where we may assume x > 0, by symmetry.

Then

(1− t)a+ tb =
(

1
2 − x

)(
1
2 + y

)
+
(

1
2 + x

)(
1
2 − y

)
= 1

2 − 2xy,

t(1− t)(a+ b) =
(

1
2 + x

)(
1
2 − x

)
= 1

4 − x
2,

and hence

(1− t)a+ tb− t(1− t)(a+ b) = 1
4 − 2xy + x2

>
1
4 −

1
2x+ x2 =

(
1
2 − x

)2
> 0. �

Proof of Theorem 7.28. — Set ϕt := (1− t)ϕ+ tψ. By (7.31), we have

E(ϕt) +
ˆ

(ϕ− ϕt) MA(ϕt)− E(ϕ) & I(ϕ,ϕt)

and
E(ϕt) +

ˆ
(ψ − ϕt) MA(ϕt)− E(ψ) & I(ϕt, ψ).
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Since (1− t)(ϕ− ϕt) + t(ψ − ϕt) = 0, this yields

E(ϕt)− ((1− t) E(ϕ) + tE(ψ)) & (1− t) I(ϕ,ϕt) + t I(ψ,ϕt)
> t(1− t) (I(ϕ,ϕt) + I(ϕt, ψ)) & t(1− t) I(ϕ,ψ),

by Lemma 7.29 and (7.30). �

For later use, we record the following crucial consequence of Corollary 3.34
(compare [11, Lemma 3.13]).

Lemma 7.30. — For all ϕ,ϕ′, ψ, ψ′ ∈ E1 we have∣∣∣∣ˆ (ϕ− ϕ′) (MA(ψ)−MA(ψ′))
∣∣∣∣

. I(ϕ,ϕ′)αn I(ψ,ψ′) 1
2 max{J(ϕ), J(ϕ′), J(ψ), J(ψ′)} 1

2−αn

with αn := 2−n.

Proof. — After regularization, we may assume ϕ,ϕ′, ψ, ψ′ ∈ PLR ∩
PSH(ω). Note that

V

ˆ
(ϕ−ϕ′) (MA(ψ)−MA(ψ′)) = (0, ϕ−ϕ′)·(ω, ψ)n−(0, ϕ−ϕ′)·(ω, ψ′)n

=
n−1∑
j=1

(0, ϕ− ϕ′) · (0, ψ − ψ′) · (ω, ψ)j · (ω, ψ′)n−1−j .

By the Cauchy–Schwarz inequality (3.17) we infer

|(0, ϕ− ϕ′) · (ω, ψ)n − (ϕ− ϕ′) · (ω, ψ′)n|
. max

j

(
‖ϕ− ϕ′‖(ω,ψ)j ·(ω,ψ′)n−1−j‖ψ − ψ′‖(ω,ψ)j ·(ω,ψ′)n−1−j

)
6

(
max
j
‖ϕ− ϕ′‖(ω,ψ)j ·(ω,ψ′)n−1−j

)
dω(ψ,ψ′) 1

2 ,

and Corollary 3.34 together with (7.29) yield the desired estimate. �

Corollary 7.31. — For all ϕ,ϕ′, ψ ∈ E1 we have

|Jψ(ϕ)− Jψ(ϕ′)| . I(ϕ,ϕ′)αn max{J(ϕ), J(ϕ′), J(ψ)}1−αn

with αn = 2−n.

Proof. — Set M := max{J(ϕ), J(ϕ′), J(ψ)}. We have

Jψ(ϕ)− Jψ(ϕ′) = E(ϕ′)− E(ϕ) +
ˆ

(ϕ− ϕ′) MA(ψ)

= Jϕ′(ϕ) +
ˆ

(ϕ− ϕ′)(MA(ψ)−MA(ϕ′)),
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and (7.28) and Lemma 7.30 thus yield

|Jψ(ϕ)− Jψ(ϕ′)| . I(ϕ,ϕ′) + I(ϕ,ϕ′)αn I(ψ,ϕ′) 1
2M

1
2−αn .

By the quasi-triangle inequality, we have
I(ϕ,ϕ′) = I(ϕ,ϕ′)αn I(ϕ,ϕ′)1−αn . I(ϕ,ϕ′)αnM1−αn

and I(ψ,ϕ′) .M , and we obtain, as desired,
|Jψ(ϕ)− Jψ(ϕ′)| . I(ϕ,ϕ′)αnM1−αn . �

By Proposition 7.21(i), Monge–Ampère measures of bounded ω-psh func-
tions integrate all ω-psh functions. In that setting, (7.6) yields the following
simpler variant of Lemma 7.30, which can be viewed as a version of the
classical Chern–Levine–Nirenberg inequality.

Lemma 7.32. — If ψ,ψ′ ∈ PSH(ω) are bounded, then∣∣∣∣ˆ ϕ (MA(ψ)−MA(ψ′))
∣∣∣∣ 6 n sup |ψ − ψ′|

for all ϕ ∈ PSH(ω).

We conclude this section with two useful additional estimates.

Lemma 7.33. — For each ϕ,ψ ∈ E1 and t ∈ [0, 1] we have
I(tϕ+ (1− t)ψ,ψ) 6 (1− (1− t)n) I(ϕ,ψ) 6 nt2 I(ϕ,ψ)

and
Jψ(tϕ+ (1− t)ψ) 6 t1+ 1

n Jψ(ϕ).

Proof. — Adding a constant to ϕ, we may assume
´

(ϕ− ψ) MA(ψ) = 0.
Set ϕt := tϕ+ (1− t)ψ. Then ϕt − ψ = t(ϕ− ψ), so

´
(ϕt − ψ) MA(ψ) = 0,

and

I(ϕt, ψ) = −t
ˆ

(ϕ− ψ) MA(ϕt)

= −tV −1
n∑
j=0

(
n

j

)
tj(1− t)n−j

ˆ
(ϕ− ψ)(ω + ddc ϕ)j ∧ (ω + ddc ψ)n−j .

Here the integral vanishes for j = 0 and is bounded below by
´

(ϕ−ψ) MA(ϕ)
for j > 0, so

I(ϕt, ψ) 6 −t(1− (1− t)n)
ˆ

(ϕ− ψ) MA(ϕ) 6 nt2 I(ϕ,ψ),

by the concavity of t 7→ (1− (1− t)n).

To prove the last inequality, note that

Jψ(ϕt) = E(ψ)− E(ϕt) + t

ˆ
(ϕ− ψ) MA(ψ).
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Differentiating this with respect to t, and using (7.28), gives
d
dt Jψ(ϕt) = −

ˆ
(ϕ− ψ) MA(ϕt) +

ˆ
(ϕ− ψ) MA(ψ)

= t−1 I(ϕt, ψ) > n+1
n t−1 Jψ(ϕt)

for 0 < t 6 1, from which the desired estimate follows easily. �

7.5. Hölder continuity of the energy pairing

In this section, X is irreducible. Using the estimates of Section 3.3, we
are going to establish the following general Hölder continuity property of the
energy pairing. For ω ∈ Amp(X) we write

E1
sup(ω) := {ϕ ∈ E1(ω) | supϕ = 0}.

Theorem 7.34. — Pick ω0, . . . , ωn ∈ Amp(X), and assume we are
given t > 1 such that ωi 6 tωj for all i, j. For all tuples of pairs ϕi, ϕ′i ∈
E1

sup(ωi), we then have

|(ω0, ϕ0) · . . . · (ωn, ϕn)− (ω0, ϕ
′
0) · . . . · (ωn, ϕ′n)|

. tn
2

max
i
dωi(ϕi, ϕ′i)αn max{max

i
dωi(ϕi),max

i
dωi(ϕ′i)}1−αn .

with αn ∈ (0, 1] only depending on n.

Recall that we have set dω(ϕ) = dω(ϕ, 0). To each ω ∈ Amp(X) we
associate a norm on N1(X) by setting

‖θ‖ω := inf {C > 0 | −Cθ 6 ω 6 Cθ} .
Corollary 7.35. — Pick ω ∈Amp(X), ϕ0, . . . , ϕn ∈E1(ω), θ0, . . . , θn ∈

N1(X). Then

|(θ0, ϕ0) · . . . · (θn, ϕn)|

. max
i
{1, ‖θi‖ω, dω(ϕi)}n+1 +

(
max
i
|supϕi|

)(
max
i
‖θi‖nω

)
(ωn).

Lemma 7.36. — Pick r > 1, ω0, . . . , ωr ∈ Amp(X), and t > 1 such that
ωi 6 tωj for all i, j. Pick ϕi, ϕ′i ∈ E1

sup(ω), i = 0, . . . , r, and set

ω :=
∑
i

ωi, ϕ :=
∑
i

ϕi, ϕ′ :=
∑
i

ϕ′i.

Then
dω(ϕ,ϕ′) 6 Cr,ntrn max

i
dωi(ϕi, ϕ′i)βn max{max

i
dωi(ϕi),max

i
dωi(ϕ′i)}1−βn

with βn ∈ (0, 1] and Cr,n ∈ (0,+∞) only depending on n and r, n, respec-
tively.
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Proof. — Set M := max{maxi dωi(ϕi),maxi dωi(ϕ′i)}. By definition, we
have

dω(ϕ,ϕ′) = max
a+b=n−1

∥∥∥∥∥
r∑
i=1

(ϕi − ϕ′i)

∥∥∥∥∥
2

(ω,ϕ)a,(ω,ϕ′)b
.

The triangle inequality thus yields

dω(ϕ,ϕ′) 6 r2 max
a+b=n−1

max
i
‖ϕi − ϕ′i‖2(ω,ϕ)a,(ω,ϕ′)b ,

and hence

dω(ϕ,ϕ′) . r2 max
i
dω(ϕi, ϕ′i)21−n

max{dω(ϕ), dω(ϕ′),M)}1−21−n
,

by Corollary 3.34. On the one hand, we have for each i

dω(ϕi, ϕ′i) = max
a+b=n−1

‖ϕi − ϕ′i‖2(ω,ϕi)a·(ω,ϕ′i)b

. max
a+b+c=n−1

‖ϕi − ϕ′i‖2(ωi,ϕi)a·(ωi,ϕ′i)b(ω′i,0)c

with ω′i := ω − ωi =
∑
j 6=i ωj . Since ω′i 6 rtωi, we infer

dω(ϕi, ϕ′i) . (rt)n max
a+b+c=n−1

‖ϕi − ϕ′i‖2(ωi,ϕi)a·(ωi,ϕ′i)b(ωi,0)c

. (rt)ndωi(ϕi, ϕ′i)21−n
M1−21−n

,

using once more Corollary 3.34. On the other hand, (7.29) implies dω(ϕ) ≈
−(ω, ϕ)n+1, dω(ϕ′) ≈ −(ω, ϕ′)n+1, and Lemma 7.10 thus yields

max{dω(ϕ), dω(ϕ′),M} 6 Cr,ntrnM.

All in all we infer

dω(ϕ,ϕ′) 6 C ′r,nt(n−1)21−n+rn(1−21−n)

×max
i
dωi(ϕi, ϕ′i)22−2n

M(1−21−n)(1+21−n)

which yields the desired estimate with βn := 22−2n. �

Proof of Theorem 7.34. — Set M := max{maxi dωi(ϕi),maxi dωi(ϕ′i)}.
Since the energy pairing is symmetric and multilinear, the general polariza-
tion formula yields

(ω0, ϕ0) · . . . · (ωn, ϕn) =
∑

I⊂{0,...,n}

(−1)n+1−|I|(ωI , ϕI)n+1,

with ωI =
∑
i∈I ωi, ϕI =

∑
i∈I ϕi. Thus

|(ω0, ϕ0) · . . . · (ωn, ϕn)− (ω0, ϕ
′
0) · . . . · (ωn, ϕ′n)|
. max

I

∣∣(ωI , ϕI)n+1 − (ωI , ϕ′I)n+1∣∣ .
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By Corollary 7.31, we have for each I∣∣(ωI , ϕI)n+1 − (ωI , ϕ′I)n+1∣∣ . dωI (ϕI , ϕ′)2−n max{dωI (ϕI), dωI (ϕ′I)}1−2−n ,

since supϕI = supϕ′I = 0. Now Lemma 7.36 implies

dωI (ϕI , ϕ′I) . sn
2

max
i
dωi(ϕi, ϕ′i)βnM1−βn

and
max{dωI (ϕI), dωI (ϕ′I)} . tnM.

Combining all this we get, as desired,

|(ω0, ϕ0) · . . . · (ωn, ϕn)− (ω0, ϕ
′
0) · . . . · (ωn, ϕ′n)|

. sn
2

max
i
dωi(ϕi, ϕ′i)αnM1−αn ,

with αn := βn2−n. �

Proof of Corollary 7.35. — Set first ci := supϕi, ϕ′i := ϕi − ci. Then
(θ0, ϕ0) · . . . · (θn, ϕn) = (θ0, ϕ

′
0 + c0) · . . . · (θn, ϕ′n + cn)

= (θ0, ϕ
′
0) · . . . · (θn, ϕ′n) +

n∑
i=0

ci(θ0 · . . . · θ̂i · . . . · θn).

Now ∣∣∣∣∣
n∑
i=0

ci(θ0 · . . . · θ̂i · . . . · θn)

∣∣∣∣∣ . (max
i
| supϕi|

)(
max
i
‖θi‖nω

)
(ωn),

and we may thus assume wlog that supϕi = 0.

Set C := maxi{1, ‖θi‖ω, dω(ϕi)}. Since C > 1, C−1ϕi ∈ E1(ω) satisfies
dω(C−1ϕi) . 1, by the quasi-convexity estimate (3.21). After replacing θi
and ϕi with C−1θi and C−1ϕi, we may thus assume as well that C . 1, and
we then need to prove |(θ0, ϕ0) · . . . · (θn, ϕn)| . 1.

Set ωi := θi + (C + 1)ω, so that ω 6 ωi 6 (2C + 1)ω and θi = ω + ωi −
(C + 2)ω. Expanding out
(θ0, ϕ0) · . . . · (θn, ϕn)

= [(ω, ϕ0) + (ω0, 0)− (C + 2)(ω, 0)] · . . . · [(ω, ϕn) + (ωn, 0)− (C + 2)(ω, 0)]
now yields the desired estimate, thanks to Theorem 7.34. �

As a further consequence of Theorem 7.34, we show:

Lemma 7.37. — Pick (θi, ϕi) ∈ N1(X) × ~E1, i = 1, . . . , n, and set
µ :=

∧
i(θi + ddc ϕi). Suppose also that we are given ω ∈ Amp(X), and

a convergent net ψj → ψ in PSH(ω) with Jω(ψj) uniformly bounded. Then
limj

´
ψj µ =

´
ψ µ.
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Proof. — By multilinearity, we may assume wlog θi ∈ Amp(X) and ϕi ∈
E1(θi). By Theorem 4.15, each ϕi can be written as the limit of a decreasing
net (ϕil)l inHdom(θi). For each l, the measure µl :=

∧
i(θi+ddc ϕil) has finite

support in Xdiv (see Proposition 7.19(ii)), and hence limj

´
ψj µl =

´
ψ µ,

since ψj → ψ pointwise on Xdiv by assumption. To conclude the proof, it
will thus be enough to show that liml

´
τ µl =

´
τ µ uniformly for τ ∈ E1(ω)

with Jω(τ) 6 C. Now
ˆ
τ µl = (ω, τ) · (θ1, ϕ1l) · . . . · (θn, ϕnl)− (ω, 0) · (θ1, ϕ1l) · . . . · (θn, ϕnl),ˆ
τ µ = (ω, τ) · (θ1, ϕ1) · . . . · (θn, ϕn)− (ω, 0) · (θ1, ϕ1) · . . . · (θn, ϕn).

Since (ϕil)l is decreasing, we have liml dθi(ϕil, ϕi) = 0, by (7.21) and The-
orem 7.14. The desired uniform convergence is now a consequence of Theo-
rem 7.34. �

This yields in turn the following monotone convergence theorem.

Theorem 7.38. — Pick ω ∈ Amp(X). For i = 0, . . . , n, assume we
are given θi ∈ N1(X) and an increasing net (ϕij)j in E1(ω) that converges
pointwise on Xdiv to ϕi ∈ E1(ω). Then

lim
j

(θ1, ϕ1j) · . . . · (θn, ϕnj) = (θ1, ϕ1) · . . . · (θn, ϕn).

Proof. — By multilinearity, we can assume wlog θi > ω for all i, and
hence E1(ω) ⊂ E1(θi). We proceed by induction on p = 0, . . . , n such that
ϕij = ϕi is a constant net for i > p. The case p = 0 is trivial, so assume p > 1.
By monotonicity of the energy pairing on

∏
i PSH(θi) (see Theorem 7.1),

j 7→ (θ0, ϕ0j) · . . . · (θn, ϕnj) is increasing, and

lim
j

(θ0, ϕ0j) · . . . · (θn, ϕnj) 6 (θ0, ϕ0) · . . . · (θn, ϕn).

Conversely, pick j > l. Then ϕ0j > ϕ0l, and hence

(θ0, ϕ0j) · . . . · (θn, ϕnj) > (θ0, ϕ0l) · (θ1, ϕ1j) · . . . · (θn, ϕnj).

Using the inductive assumption, we infer

lim
j

(θ0, ϕ0j) · . . . · (θn, ϕnj) > (θ0, ϕ0l) · (θ1, ϕ1) · . . . · (θn, ϕn)

= (θ0, 0) · (θ1, ϕ1) · . . . · (θ, ϕn) +
ˆ
ϕ0l (θ1 + ddc ϕ1) ∧ · · · ∧ (θn + ddc ϕn).
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Since Jθ0(ϕ0l) = supϕ0l−Eθ0(ϕ0l) is ultimately bounded, Lemma 7.37 next
shows that

lim
l

ˆ
ϕ0l (θ1 + ddc ϕ1) ∧ · · · ∧ (θn + ddc ϕn)

=
ˆ
ϕ0 (θ1 + ddc ϕ1) ∧ · · · ∧ (θn + ddc ϕn).

Thus
lim
j

(θ0, ϕ0j) · . . . · (θn, ϕnj)

> (θ0, 0) · (θ1, ϕ1) · . . . · (θn, ϕn) +
ˆ
ϕ0(θ1+ddc ϕ1) ∧ · · · ∧ (θn+ddc ϕn)

= (θ0, ϕ0) · (θ1, ϕ1) · . . . · (θn, ϕn),
and we are done. �

Remark 7.39. — Lemma 7.37 and Theorem 7.38 remain valid when X is
reducible, by (7.17) and (7.4), respectively.

7.6. Locality and the comparison principle

The next result and its consequences play a crucial role in analyzing deep
properties of ω-psh functions and the Monge–Ampère operator.

Theorem 7.40. — If ω ∈ Amp(X), then
1{ϕ>ϕ′}MA(max{ϕ,ϕ′}) = 1{ϕ>ϕ′}MA(ϕ) (7.32)

for all ϕ,ϕ′ ∈ E1(ω).

A first consequence is the fact that the mixed Monge–Ampère operator
is local in nature, something that is not an immediate consequence of our
definition in Section 7.3.

Corollary 7.41. — Let G ⊂ Xan be open set. If ωi ∈ Amp(X) and
ϕi, ψi ∈ E1(ωi), 1 6 i 6 n, are such that ϕi = ψi on G, then
(ω1 +ddc ϕ1)∧· · ·∧ (ωn+ddc ϕn) = (ω1 +ddc ψ1)∧· · ·∧ (ωn+ddc ψn) on G.
In particular, if ω ∈ Amp(X) and ϕ,ϕ′ ∈ E1(ω) are such that ϕ = ϕ′ on G,
then MA(ϕ) = MA(ϕ′) on G.

Proof. — By multilinearity, it suffices to prove the final statement. As
in [26, Corollary 5.2], given ε > 0 we apply Theorem 7.40 to ϕ + ε and ϕ′.
This gives MA(max{ϕ + ε, ϕ′}) = MA(ϕ) on G ⊆ {ϕ + ε > ϕ′}. Letting
ε → 0 gives MA(max{ϕ,ϕ′}) = MA(ϕ) on G, since the Monge–Ampère
operator is continuous under decreasing limits. Exchanging the roles of ϕ
and ϕ′ completes the proof. �
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Remark 7.42. — As mentioned in Remark 7.23, when all the functions
involved are continuous, the mixed Monge–Ampère measure coincides with
the one in [40]. Since the latter is local in nature, Theorem 7.40 and Corol-
lary 7.41 follow in this case. However, for applications it is important to
consider functions ϕ,ϕ′ that are not continuous, and in this case the Borel
set {ϕ > ϕ′} can be quite complicated. By definition, it is an open subset in
the plurifine topology, see [6].

Lemma 7.43. — Let ϕ,ϕ′ ∈ PL(X), and pick an integrally closed test
configuration X such that ϕ, ϕ′ and ϕ′′ := max{ϕ,ϕ′} are associated to
elements D, D′, D′′ of VCar(X )Q. Pick an irreducible component E of X0,
and assume that ϕ(vE) > ϕ′(vE). Then ϕ(vF ) > ϕ′(vF ) for any irreducible
component F of X0 that intersects E.

Proof. — First, ϕD′′−D = ϕD′′ − ϕD > 0 implies D′′ − D > 0, by
Lemma 2.8, and similarly D′′−D′ > 0. Furthermore, 0 < ϕ′′(vE)−ϕ′(vE) =
σ(vE)(D′′ − D′), and E is thus in the support of D′′ − D′. Now pick any
k×-invariant divisorial valuation w on X with center ξ ∈ E ∩ F , normalized
by w(X0) = 1; denote by v ∈ Xdiv its restriction to k(X) ↪→ k(X ), so that
w = σ(v) (see Section 1.3). Then w(D′′−D′) = ϕ′′(v)−ϕ′(v) > 0, and hence
ϕ′′(v) = ϕ(v). This means that D′′ = D at ξ; hence 0 = σ(vF )(D′′ −D) =
ϕ′′(vF )− ϕ(vF ), which proves the result. �

Proof of Theorem 7.40. — First assume that ϕ,ψ ∈ PL∩PSH(ω). As
in Lemma 7.43, pick an integrally closed test configuration X dominating
the trivial one, such that ϕ = ϕD, ϕ′ = ϕD′ and max{ϕ,ϕ′} = ϕD′′ with
D,D′, D′′ ∈ VCar(X )Q. As in Proposition 7.19(ii) we have

MA(ϕD) = V −1
∑
E

bE ((ωX +D)|E)n δvE ,

and a similar formula holds for MA(ϕD′′). We thus need to show that
((ωX +D)|E)n = ((ωX +D′′])|E)n for any E with ϕD(vE) > ϕD′(vE). Now
Lemma 7.43 yields ϕD(vF ) = max{ϕ(vF ), ϕ′(vF )} = ϕD′′(vF ) for all com-
ponents F of X0 that intersect E. This implies that D and D′′ coincide in a
neighborhood of E. Hence D|E = D′′|E , which implies the result.

Now consider the general case. Set

f := max{ϕ− ϕ′, 0} = max{ϕ,ϕ′} − ϕ′.

Then {ϕ > ϕ′} = {f > 0}, and it thus suffices to prove that

f MA(max{ϕ,ϕ′}) = f MA(ϕ). (7.33)
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Indeed, multiplying by f−1 on {f > 0} will then yield the result. Let (ϕj)j
and (ϕ′j)j be decreasing nets in PL∩PSH(ω) converging to ϕ and ϕ′, re-
spectively, and set

fj := max{ϕj − ϕ′j , 0} = max{ϕj , ϕ′j} − ϕ′j .

By the first part of the proof we have fj MA(max{ϕj , ϕ′j}) = fj MA(ϕj),
and (7.33) is now a consequence of Proposition 7.19(iii), since max{ϕj , ϕ′j} ∈
E1(ω) decreases to max{ϕ,ϕ′}. �

Using Theorem 7.40 we obtain the very useful comparison principle.

Theorem 7.44. — If ω ∈ Amp(X) and ϕ,ψ ∈ E1(ω), then

ˆ
{ϕ<ψ}

MA(ϕ) >
ˆ
{ϕ<ψ}

MA(ψ).

Proof. — We follow [76, Theorem 1.5]. For any ε > 0 we have

1 =
ˆ

MA(max{ϕ,ψ − ε})

>
ˆ
{ϕ<ψ−ε}

MA(max{ϕ,ψ − ε}) +
ˆ
{ϕ>ψ−ε}

MA(max{ϕ,ψ − ε})

=
ˆ
{ϕ<ψ−ε}

MA(ψ) +
ˆ
{ϕ>ψ−ε}

MA(ϕ)

= 1 +
ˆ
{ϕ<ψ−ε}

MA(ψ)−
ˆ
{ϕ6ψ−ε}

MA(ϕ),

where the second equality follows from Theorem 7.40 and from MA(ϕ−ε) =
MA(ϕ). We complete the proof by letting ε→ 0. �

Another simple consequence of Theorem 7.40 is the following formula for
the I-functional.

Proposition 7.45. — If ω ∈ Amp(X), and ϕ,ψ ∈ E1(ω), then
max{ϕ,ψ} ∈ E1(ω), and

I(ϕ,ψ) = I (ϕ,max{ϕ,ψ}) + I (max{ϕ,ψ}, ψ) . (7.34)
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Proof. — The first assertion follows from Theorem 7.8(iii). For the sec-
ond, note that

I(ϕ,ψ) =
ˆ

(ϕ− ψ)(MA(ϕ)−MA(ψ))

=
ˆ
{ϕ>ψ}

(ϕ− ψ)(MA(ϕ)−MA(ψ))

+
ˆ
{ψ>ϕ}

(ϕ− ψ)(MA(ϕ)−MA(ψ))

=
ˆ

(max{ϕ,ψ} − ψ)(MA(max{ϕ,ψ})−MA(ψ))

+
ˆ

(max{ϕ,ψ} − ϕ)(MA(max{ϕ,ψ})−MA(ϕ))

= I (ϕ,max{ϕ,ψ}) + I (max{ϕ,ψ}, ψ) ,

where the third inequality follows from Theorem 7.40. �

7.7. Bedford–Taylor capacity of sublevel sets

The following notion goes back to Bedford and Taylor [5] in the complex-
analytic case. A thorough study in our context will be conducted in Sec-
tion 13. Unless otherwise specified, ω ∈ Amp(X) is a fixed class.

Definition 7.46. — The Bedford–Taylor capacity of a Borel set E ⊂
Xan is defined by

Cap(E) = Capω(E) := sup
{ˆ

E

MA(ψ)
∣∣∣∣ψ ∈ PSH,−1 6 ψ 6 0

}
. (7.35)

Note that 0 6 Cap(E) 6 1 for all Borel sets E, and that Cap(Xan) = 1.

Lemma 7.47. — Every ϕ ∈ PSHsup(ω) satisfies

(i) Cap(ϕ 6 −t) 6 nt−1;
(ii) J(ϕ) 6 1 +

´∞
1 tn Cap(ϕ 6 −t) dt.

Thus ˆ ∞
1

tn Cap(ϕ 6 −t)dt <∞ =⇒ ϕ ∈ E1(ω).

Proof. — Pick any ψ ∈ PSH(ω) with −1 6 ψ 6 0. Thenˆ
{ϕ6−t}

MA(ψ) 6 t−1
ˆ

(−ϕ) MA(ψ) 6 t−1n,
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where the last inequality follows from Lemma 7.32. Taking the supremum
over ψ gives (i).

To prove (ii), set ϕs := max{ϕ,−s} and µs := MA(ϕs) for s > 1.
By (7.23) we have

J(ϕs) 6
ˆ

(−ϕs)µs =
ˆ s

0
µs{ϕs 6 −t} dt =

ˆ s

0
µs{ϕ 6 −t} dt

=
ˆ s

0
µt{ϕ 6 −t} 6 1 +

ˆ s

1
µt{ϕ 6 −t} dt,

where the third equality holds since µs and µt are probability measures that
agree on the set {ϕ > −t}, by the locality principle, see Theorem 7.40. For
t > 1, we have t−1ϕt ∈ PSH(ω) and−1 6 t−1ϕt 6 0, so Cap > MA(t−1ϕt) >
t−n MA(ϕt) = t−nµt. Thus

J(ϕs) 6 1 +
ˆ ∞

1
Cap(ϕ 6 −t)dt,

and (ii) follows since J(ϕs)→ J(ϕ) as s→∞. �

Corollary 7.48. — For any ϕ ∈ PSH(ω) with ϕ 6 −1 and α ∈ (0, 1
n )

we have −(−ϕ)α ∈ E1(ω). In particular, every pluripolar set E ⊂ Xan is
contained in {ψ = −∞} for some ψ ∈ E1(ω).

Proof. — The function χ(t) = −(−t)α is convex with 0 6 χ′(t) 6 1
on (−∞,−1], and ψ := χ(ϕ) is thus ω-psh, by Corollary 4.10. Further,
Lemma 7.47(i) yields Cap{ψ 6 −t} = O(t−α−1), and hence ψ ∈ E1(ω), by
Lemma 7.47(ii). �

Corollary 7.49. — Pick ωi ∈ Amp(X) and ϕi ∈ E1(ωi), i = 1, . . . , n,
with mixed Monge–Ampère measure µ := (ω1 + ddc ϕ1)∧ · · ·∧ (ωn+ ddc ϕn).
Then:

(i) µ puts no mass on pluripolar sets;
(ii) for each irreducible component Xα of X we have

1Xα µ =


(
ω1|Xα + ddc ϕ1|Xan

α

)
∧ · · · ∧

(
ωn|Xα + ddc ϕn|Xan

α

)
if dimXα = n

0 otherwise.

Proof. — By Proposition 7.19(v), µ integrates all functions ψ ∈ E1(ω),
and (i) thus follows from Corollary 7.48.

By Lemma 4.36, Xan
α ∩Xan

α′ is pluripolar for all α 6= α′, being a nowhere
dense Zariski closed subset. By (i), we thus have µ(Xan

α ∩Xan
α′ ) = 0, and (ii)

is now a consequence of Proposition 7.19(ii). �
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8. Differentiability of the extended energy functional

As before, X is a projective variety of dimension n, with irreducible com-
ponents Xα. Fix an ample class ω ∈ Amp(X). Above we considered the
Monge–Ampère energy functional E: PSH(ω)→ R∪{−∞}, defined the set
E1 = {E > −∞}, and associated a Monge–Ampère measure MA(ϕ) to each
ϕ ∈ E1. Formally, MA is the differential of E, but E1 is not a real vector
space. In this section, we extend the Monge–Ampère energy to various spaces
of functions on Xan, and prove quite precise differentiability results for these
extensions.

8.1. Extending the Monge–Ampère energy

Unless stated otherwise, ω ∈ Amp(X) is an ample class, and we set
PSH := PSH(ω), E1 := E1(ω) etc. The increasing functional

E: PSH −→ R ∪ {−∞}

admits a natural extension to arbitrary functions ϕ : Xan → R ∪ {±∞} by
setting

E(ϕ) = Eω(ϕ) := sup {E(ψ) | ψ ∈ PSH, ψ 6 ϕ} , (8.1)
with the convention sup ∅ = −∞. For ψ ∈ PSH(ω), ψ 6 ϕ⇔ ψ 6 P(ϕ), and
hence

E(ϕ) = E (P(ϕ)) . (8.2)

We will mainly be concerned with the case when ϕ is bounded, or even
continuous.

Proposition 8.1. — The extended functional E: C0(X) → R satisfies
the following properties:

(i) it is increasing, concave, and 1-Lipschitz continuous;
(ii) for each ϕ ∈ C0(X), c ∈ R and t ∈ R>0 we have

E(ϕ+ c) = E(ϕ) + c, E(t · ϕ) = tE(ϕ), and Etω(tϕ) = tEω(ϕ);

(iii) for any ϕ ∈ C0(X), ω 7→ Eω(ϕ) is continuous on Amp(X);
(iv) for each ϕ ∈ C0(X) we have

E(ϕ) =
∑
α

cα E(ϕ|Xα) (8.3)

with cα := (ωn)Xα/(ωn)X .
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Proof. — Properties (i) and (ii) are straightforward consequences of
Proposition 7.7.

To prove (iii), we may replace ϕ with ϕ− inf ϕ and assume ϕ > 0, by (ii).
Then

E(ϕ) = sup {E(ψ) | ψ ∈ PSH, 0 6 ψ 6 ϕ} . (8.4)
Now pick a convergent sequence ωi → ω in Amp(X). We can then find a se-
quence (ti) in R>0 such that t−1

i ω 6 ωi 6 tiω and ti → 1. By Proposition 7.3,
any

ψ ∈ PSH(ωi) ⊂ PSH(tiω)
such that 0 6 ψ 6 ϕ satisfies (ωi, ψ)n+1 6 (tiω, ψ)n+1, and (8.4) thus yields

Eωi(ϕ) 6 ci Etiω(ϕ) = citi Eω(t−1
i ϕ)

with ci := tni (ωn)/(ωni )→ 1, where the right-hand equality follows from (ii).
Similarly,

t−1
i Eω(tiϕ) = Et−1

i
ω(ϕ) 6 c′i Eωi(ϕ)

with c′i := tni (ωni )/(ωn) → 1. Since t−1
i ϕ → ϕ and tiϕ → ϕ uniformly, we

conclude, as desired, Eωi(ϕ)→ Eω(ϕ) by continuity of Eω, proving (iii).

The proof of (iv) is slightly more involved. Introduce Y :=
∐
αXα,

with its canonical birational morphism π : Y → X. The data of a family
of functions ψα ∈ PSH(ω|Xα) with ψα 6 ϕ|Xan

α
is equivalent to that of

ψ ∈ PSH(π?ω) with ψ 6 π?ϕ, and (7.10) implies that the right-hand side
of (8.3) coincides with Eπ?ω(π?ϕ). Since π? PSH(ω) ⊂ PSH(π?ω), (7.10)
further yields Eω(ϕ) 6 Eπ?ω(π?ϕ).

Conversely, pick ψ ∈ PSH(π?ω) such that ψ 6 π?ϕ. After replacing ψ
with max{ψ, c} for a constant c 6 ϕ, we may assume that ψ is bounded.
Choose ωX ∈ Amp(X) and ϕX ∈ PSH(ωX) as in Theorem 4.32. Replacing
ωX and ϕX with small enough multiples, we may assume ωX 6 ω, and hence
ϕX ∈ PSH(ω). Since ϕ and ψ are both bounded, we may further arrange,
after adding a constant to ϕX , that ϕX 6 ϕ and π?ϕX 6 ψ. For each
m ∈ Z>0, we get ϕm ∈ PSH(ω) such that

π?ϕm = (1− 1
m )ψ + 1

mπ
?ϕX .

Since ϕX 6 ϕ, we have π?ϕm 6 π?ϕ, and hence ϕm 6 ϕ, see Theorem 4.22.
On the other hand, since π?ϕX 6 ψ, Theorem 4.22 shows that (ϕm) is an
increasing sequence in PSH(ω), such that π?ϕm → ψ pointwise on Y div.
Now set c := min{inf ϕ, inf ψ} and ϕ′m := max{ϕm, c}. Then (ϕ′m) is also an
increasing sequence, this time in E∞(ω) ⊂ E1(ω), with π?ϕ′m → ψ pointwise
on Y div. Further, ϕ′m 6 ϕ, and hence∑

α

cα Eω|Xα (ϕ′m|Xan
α

) = Eω(ϕ′m) 6 Eω(ϕ),
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by (7.10). Since ϕ′m|Xan
α
→ ψ|Xan

α
pointwise on Xdiv

α , Theorem 7.38 yields
Eω|Xα (ϕ′m|Xan

α
)→ Eω|Xα (ψ|Xan

α
), and hence

Eπ?ω(ψ) =
∑
α

cα Eω|Xα (ψ|Xan
α

) 6 Eω(ϕ).

Taking the supremum over all ψ, we conclude, as desired, Eπ?ω(π?ϕ) 6
Eω(ϕ). �

8.2. Further extensions

Using the extension of the Monge–Ampère energy E to continuous func-
tions, we now go further and extend it to (upper or lower) semicontinuous
functions.

Definition 8.2. — For any ϕ : Xan → R ∪ {±∞} we set

E↑(ϕ) := sup
{

E(ψ) | ψ ∈ C0(X), ψ 6 ϕ
}

(8.5)

and
E↓(ϕ) := inf

{
E(ψ) | ψ ∈ C0(X), ψ > ϕ

}
. (8.6)

While E↑ and E↓ are defined for arbitrary functions, they are mainly of
interest when restricted to lsc and usc functions, respectively.

Proposition 8.3. — The functionals E↑ and E↓ satisfy the following
properties:

(i) they are increasing, concave, and satisfy the algebraic properties of
Proposition 8.1(ii);

(ii) for any ϕ : Xan → R ∪ {±∞},

E↑(ϕ) 6 E(ϕ) 6 E↓(ϕ),

and E↑(ϕ) > −∞ (resp. E↓(ϕ) < +∞) iff ϕ is bounded below
(resp. bounded above);

(iii) we have

E↑(ϕ) = E(Q(ϕ)) = sup {E(ψ) | ρ ∈ CPSH, ψ 6 ϕ} ;

we further have

E↑(ϕ) = E(ϕ?) = E(P(ϕ?))

if ϕ is bounded below;
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(iv) if ϕ is bounded above, then

E↓(ϕ) = E↓(ϕ?);
we further have

E↓(ϕ) = E (ϕ?) = E (P(ϕ?)) (8.7)
if ϕ ∈ C0(X), or ϕ ∈ PSH(ω), and for any ϕ bounded above if the
envelope property holds for ω;

(v) E↑ (resp. E↓) is continuous along increasing (resp. decreasing) nets
of bounded-below, lsc (resp. bounded above, usc) functions.

Proof. — (i) and (ii) are obvious. We prove (iii). For any ψ ∈ C0(X), we
have P(ψ) = Q(ψ) by Lemma 5.19, and (8.2) yields

E(ψ) = E(P(ψ)) = E(Q(ψ)) = sup {E(ρ) | ρ ∈ CPSH, ρ 6 ψ} .
This implies, in turn,

E↑(ϕ) = sup
{

E(ψ) | ψ ∈ C0(X), ψ 6 ϕ
}

= sup {E(ρ) | ρ ∈ CPSH, ρ 6 ϕ} = E(Q(ϕ)),

by monotonicity of E. If ϕ is bounded below, then Q(ϕ) = P(ϕ?) by Lem-
ma 5.19, and hence E(Q(ϕ)) = E(P(ϕ?)) = E(ϕ?), which proves (iii).

Next we show that E↑ is continuous along increasing nets of bounded-
below, lsc functions. Let thus (ϕi) be an increasing net of such functions,
converging to the lsc function ϕ = supi ϕi. On the one hand, ϕ > ϕi implies

E↑(ϕ) > S := sup
i

E↑(ϕi) = lim
i

E↑(ϕi).

On the other hand, for each ε > 0 we can find ψ ∈ C0(X) such that ψ 6 ϕ
and E(ψ) > E↑(ϕ) − ε. Setting, for each i, Vi := {ψ < ϕi + ε} defines
an increasing family of open sets with

⋃
i Vi = Xan. By compactness, we

get Vi = Xan for all i large enough, i.e. ψ 6 ϕi + ε on Xan, and hence
E(ψ) 6 E↑(ϕi) + ε 6 S + ε. We thus have E↑(ϕ) 6 S + 2ε for all ε > 0, and
we get, as desired, E↑(ϕ) = S.

The proof that E↓ is continuous along decreasing nets of bounded-above
usc functions is entirely similar; hence (v).

If ϕ ∈ C0(X) then (8.7) follows from (8.2). If ϕ ∈ PSH(ω), write it as
the limit of a decreasing net in CPSH(ω). Then E(ϕi)→ E↓(ϕ), by (v), and
E(ϕi) → E(ϕ), by continuity of E along decreasing nets in PSH(ω). This
proves (8.7) in that case.

Now consider the general case, assuming the envelope property. Write ϕ?
as the decreasing limit of a net (ϕi) in C0(X). For each i we have E↓(ϕi) =
E(P(ϕi)). On the one hand, E↓(ϕi) → E↓(ϕ), by (v). On the other hand,
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Corollary 5.18 implies that P(ϕi) decreases to P(ϕ?) in PSH(ω), and hence
E(P(ϕi)) → E(P(ϕ?)) = E(ϕ?), by continuity of E along decreasing nets in
PSH(ω) and (8.2). This concludes the proof of (iv). �

Corollary 8.4. — If ϕ : Xan → R ∪ {−∞} is usc, then

E↓(ϕ) =
∑
α

cα E↓(ϕ|Xan
α

).

If ϕ : Xan → R ∪ {+∞} is lsc, then

E↑(ϕ) =
∑
α

cα E↑(ϕ|Xan
α

).

Proof. — Assume ϕ : Xan → R ∪ {−∞} is usc, and pick a decreasing
net (ϕi) in C0(X) such that ϕi ↘ ϕ pointwise. For each i, (8.3) yields
E(ϕi) =

∑
α cα E(ϕi|Xan

α
). By Proposition 8.3(v), we have

E(ϕi) = E↓(ϕi)↘ E↓(ϕ) and E(ϕi|Xan
α

) = E↓(ϕi|Xan
α

)↘ E↓(ϕ|Xan
α

),
and the first point follows. In the lsc case, the proof is similar, using an
increasing net instead. �

8.3. Uniform differentiability of the energy

Building on [28] we prove the following uniform differentiability result,
which is crucial for what follows.

Theorem 8.5. — Pick f ∈ PL(X)R. For any ϕ ∈ E1, we then have

E↓(ϕ+ εf) = E(ϕ) + ε

ˆ
f MA(ϕ) +O(ε2)

as ε→ 0, where the implicit constant in the O is uniform with respect to ϕ.

If ϕ ∈ CPSH(ω) (and for any ϕ ∈ E1, if the envelope property holds), the
left-hand side satisfies

E↓(ϕ+ εf) = E(ϕ+ εf) = E(P(ϕ+ εf)),
by (8.7).

Corollary 8.6. — For any ϕ ∈ E1 and f ∈ C0(X) we have
d
dt

∣∣∣∣
t=0

E↓(ϕ+ tf) =
ˆ
f MA(ϕ).

Again, one can replace E↓ with E = E ◦P if ϕ ∈ CPSH(ω), or if the
envelope property holds.

For any ω ∈ Amp(X) we set Vω := (ωn).
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Lemma 8.7. — Pick ω, ω′ ∈ Amp(X), ψ1, ψ2 ∈ PLR ∩PSH(ω′), and set
f := ψ1 − ψ2. For any ϕ ∈ CPSH(ω) we then have∣∣∣∣Eω(ϕ+ f)− Eω(ϕ)− V −1

ω

ˆ
f (ω + ω′ + ddc(ϕ+ ψ1))n

∣∣∣∣
6
(
V −1
ω Vω+ω′ − 1

)
sup |f |.

Proof. — We may assume ω = c1(L), ω′ = c1(L′) for ample line bundles
L,L′ on X, Indeed, by homogeneity, we then obtain the case when L,L′

are ample Q-line bundles, and the general case by a simple perturbation
argument based on Proposition 8.1(iii).

Consider first any continuous function ρ ∈ C0(X). For each m ∈ N, ρ
defines a sup-norm ‖ · ‖mρ on H0(X,mL), defined by

‖s‖mρ = sup
Xan
|s|e−mρ.

This norm induces a norm det ‖ · ‖mρ on the determinant line det H0(X,mL).
Comparing with the trivial norm, we can and will think of det ‖ · ‖mρ as a
number. It now follows from [42] (see [22, Theorem 9.5]) that the volume

volL(ρ) := − lim
m→∞

1
mh0(mL) log det ‖ · ‖mρ

exists in R. We claim that volL(ρ) = EL(ρ). Using [22, (9.7)] and (8.3), it
is enough to prove this when X is irreducible. When ρ ∈ CPSH(L), the
equality holds by [22, Theorem A] (or [32, Lemma 4.5]). In the general case,
this yields

EL(ρ) = sup {EL(ψ) | ψ ∈ CPSH(L), ψ 6 ρ} 6 volL(ρ),

by monotonicity of volL. On the other hand, Theorem 5.1.1 of [99] (which
is valid for arbitrary non-Archimedean fields; see also [32, Theorem 4.13] for
the trivially valued case) shows that

ρm := m−1 log sup
s∈H0(X,mL)\{0}

|s|
‖s‖mρ

satisfies ρm ∈ PLR ∩PSH(ω), ρm 6 ρ and EL(ρm) → volL(ρ); the claim
follows.

In particular, EL(ϕ+f) = volL(ϕ+f) and EL(ϕ) = volL(ϕ). The desired
estimate is now a consequence of Lemma 8.8 below, itself a reformulation
of [28, Lemma 3.2]. �
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Lemma 8.8. — Let L and L′ be ample line bundles on X, and set
ω = c1(L), ω′ = c1(L′). Consider functions ϕ ∈ CPSH(ω), and ψ1, ψ2 ∈
CPSH(ω′). Set f := ψ1 − ψ2 ∈ C0 and C := Vω+ω′ − Vω > 0. Then

C inf
Xan

f 6
ˆ
Xan

f(ω + ω′ + ddc(ϕ+ ψ1))n − Vω(volL(ϕ+ f)− volL(ϕ))

6 C sup
Xan

f.

Proof. — This is a reformulation in our context of [28, Lemma 3.2] in
the special case of a trivially valued field k. The fact that k is trivially
valued means that we can view ϕ, ψ1, ψ2 as continuous psh metrics on the
Berkovich analytifications of the line bundles L and L′, respectively. The
difference volL(ϕ+ f)− volL(ϕ) can be viewed as the relative volume of the
metrics ϕ+f and ϕ on L. Note that our current normalization of the volume
differs from the one in [28] by a factor Vω = (Ln). �

Proof of Theorem 8.5. — We argue along the lines of the proof of [28,
Theorem 3.1]. Write ϕ ∈ E1 as the limit of a decreasing net (ϕi) in CPSH(ω).
Then E(ϕi + εf)→ E↓(ϕ+ εf) (by Proposition 8.3(v)), E(ϕi)→ E(ϕ) (by
continuity of E along decreasing nets in PSH(ω)), and MA(ϕi) → MA(ϕ)
weakly (by Proposition 7.19).

It is therefore enough to prove the result for ϕ ∈ CPSH(ω). Since f ∈
PL(X)R, we can choose ω′ ∈ Amp(X) and ψ1, ψ2 ∈ PLR ∩PSH(ω′) such
that f = ψ1 − ψ2. By Lemma 8.7 we have, for any ε > 0,∣∣∣∣Eω(ϕ+ εf)− Eω(ϕ)− εV −1

ω

ˆ
f (ω + ddc ϕ+ ε(ω′ + ddc ψ1))n

∣∣∣∣
6 ε

(
V −1
ω Vω+εω′ − 1

)
sup |f |.

Now V −1
ω Vω+εω′ − 1 = O(ε), while

V −1
ω (ω + ddc ϕ+ ε(ω′ + ddc ψ1))n

= MAω(ϕ) + V −1
ω

n∑
j=1

(
n

j

)
εj(ω + ddc ϕ)n−j ∧ (ω′ + ddc ψ1)j ,

where (ω + ddc ϕ)n−j ∧ (ω′ + ddc ψ1)j is a positive Radon measure of mass
(ωn−j · ω′j). The result follows. �

Proof of Corollary 8.6. — For f ∈ PL(X)R the result follows directly
from Theorem 8.5. For an arbitrary f ∈ C0(X) we argue as in the proof of [28,
Theorem 3.1]. By Theorem 2.2, we can pick a sequence (fm) in PL(X)R such
that εm := sup |f − fm| → 0. For each t > 0, we have fm − tεm 6 f 6
fm + tεm; Proposition 8.3(i) thus yields

E↓(ϕ+ tfm)− tεm 6 E↓(ϕ+ tf) 6 E↓(ϕ+ tfm) + tεm,
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and henceˆ
fm MA(ϕ)− εm 6 lim inf

t→0+
t−1 (E↓(ϕ+ tf)− E↓(ϕ)

)
6 lim sup

t→0+
t−1 (E↓(ϕ+ tf)− E↓(ϕ)

)
6
ˆ
fm MA(ϕ)− εm,

by Theorem 8.5 applied to fm. Letting m→∞, we get

lim
t→0+

t−1 (E↓(ϕ+ tf)− E↓(ϕ)
)

=
ˆ
f MA(ϕ),

and replacing f with −f concludes the proof. �

9. Measures of finite energy

Denote as above by X a projective variety of dimension n, and fix an
ample class ω ∈ Amp(X). We define the Monge–Ampère energy of a proba-
bility measure on Xan, and begin a study of the space of measures of finite
energy.

9.1. The energy of a measure

Denote byM =M(X) the space of Radon probability measures on Xan.
It is a compact convex subset of the dual C0(X)∨ for the weak topology. Fix
a class ω ∈ Amp(X).

Definition 9.1. — The energy of a Radon probability measure µ ∈ M
is defined by

E∨(µ) := E∨ω(µ) := sup
ϕ∈E1

(
E(ϕ)−

ˆ
ϕµ

)
∈ [0,+∞]. (9.1)

We say that µ has finite energy if E∨(µ) < +∞, and denote by M1 ⊂ M
the set of such measures.

Here we write E1 = E1(ω) for simplicity. As we shall see, measures in
M1 = M1(ω) have a prescribed mass on each Xan

α , determined by ω (see
Corollary 9.13). However, when X is irreducible, M1 turns out to be inde-
pendent of ω ∈ Amp(X) cf. Theorem 9.24 below.

By definition, measures of finite energy integrate all functions in E1. Com-
bined with Corollary 7.48, this implies:

Lemma 9.2. — Measures in M1 put no mass on pluripolar sets.
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We will later study the dependence Amp(X) 3 ω → E∨ω(µ) for a fixed
measure µ ∈M. Already now, we note that Proposition 7.7(iii) implies

Lemma 9.3. — For ω ∈ Amp(X), t ∈ R>0 and µ ∈ M, we have
E∨tω(µ) = tE∨ω(µ).

Proposition 9.4. — The energy functional E∨ : M→ [0,+∞] satisfies:

(i) for each µ ∈M we have

E∨(µ) = sup
ϕ∈Hdom(ω)

(
E(ϕ)−

ˆ
ϕµ

)
; (9.2)

(ii) E∨ is convex, lsc, and homogeneous with respect to the scaling
action of R>0, i.e.

E∨(t?µ) = tE∨(µ)

for all µ ∈M and t ∈ R>0;

Proof. — Denote by S ∈ [0,+∞] the right-hand side of (9.2). Trivially,
E∨(µ) > S. Conversely pick ϕ ∈ E1, and choose a decreasing net (ϕj) in
Hdom(ω) such that ϕj → ϕ. Then E(ϕ) 6 E(ϕj), and hence

E(ϕ)−
ˆ
ϕµ 6

(
E(ϕj)−

ˆ
ϕj µ

)
+
ˆ

(ϕj − ϕ)µ 6 S +
ˆ

(ϕj − ϕ)µ.

By Lemma 7.17,
´
ϕj µ→

´
ϕµ; hence

E∨(µ) = sup
ϕ∈E1

(
E∨(ϕ)−

ˆ
ϕµ

)
6 S,

which proves (i).

Convexity and lower semicontinuity of E∨ follow directly from (i), since
µ 7→ E(ϕ)−

´
ϕµ is affine and continuous for every ϕ ∈ PL∩PSH(ω). Now

pick µ ∈ M and t ∈ R>0. Note that ϕ 7→ t · ϕ = tϕ(t−1·) is a bijection of
E1. By Proposition 7.7 we infer

E∨(t?µ) = sup
ϕ∈E1

(
E(t · ϕ)−

ˆ
(t · ϕ)(t?µ)

)
= sup
ϕ∈E1

(
tE(ϕ)−

ˆ
tϕµ

)
= t sup

ϕ∈E1

(
E(ϕ)−

ˆ
ϕµ

)
= tE∨(µ),

which concludes the proof of (ii). �

Definition 9.5. — For each C > 0 we set

M1
C :=

{
µ ∈M | E∨(µ) 6 C

}
.
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By Proposition 9.4(ii),M1
C is a (weakly) compact, convex subset ofM.

The next result provides an important source of examples of measures
of finite energy. In fact, we will see in Section 12.2 that when the envelope
property holds for ω, every measure µ ∈M1 is of the form MA(ϕ) for ϕ ∈ E1.

Proposition 9.6. — For any ϕ ∈ E1, the measure MA(ϕ) has finite
energy, and ϕ achieves the supremum in (9.1), i.e.

E∨(MA(ϕ)) = E(ϕ)−
ˆ
ϕMA(ϕ) = I(ϕ)− J(ϕ). (9.3)

Furthermore,
n−1 J(ϕ) 6 E∨ (MA(ϕ)) 6 n J(ϕ), (9.4)

and
E(ϕ) = inf

µ∈M1

(
E∨(µ) +

ˆ
ϕµ

)
, (9.5)

where the infimum is achieved for µ = MA(ϕ).
Proof. — By (7.23), we have, for each ψ ∈ E1,

E(ϕ) +
ˆ

(ψ − ϕ) MA(ϕ) > E(ψ),

and hence

E∨ (MA(ϕ)) = sup
ψ∈E1

(
E(ψ)−

ˆ
ψMA(ϕ)

)
= E(ϕ)−

ˆ
ϕMA(ϕ).

For any µ ∈M, we have E(ϕ) 6 E∨(µ)+
´
ϕµ, with equality for µ = MA(ϕ),

proving (9.5). Finally (9.4) follows from (7.28). �

Example 9.7. — If µ = MA(0), then E∨(µ) = I(0)−J(0) = 0. Conversely,
we will show in Corollary 9.12 that if E∨(µ) = 0, then µ = MA(0).

9.2. Legendre duality

The functional E∨ : M→ R∪{+∞} is defined as the Legendre transform
of the Monge–Ampère energy functional E: E1 → R. Here were prove a
couple of additional duality formulations, involving the extensions of the
Monge–Ampère energy considered in Section 8

Proposition 9.8. — For any µ ∈M we have

E∨(µ) = sup
ϕ∈C0(X)

(
E(ϕ)−

ˆ
ϕµ

)
, (9.6)

and for any ϕ ∈ C0(X) we have

E(ϕ) = inf
µ∈M

(
E∨(µ) +

ˆ
ϕµ

)
. (9.7)
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Proof. — Note that (9.2) implies

E∨(µ) = sup
ϕ∈PL∩PSH

(
E(ϕ)−

ˆ
ϕµ

)
6 sup
ϕ∈C0(X)

(
E(ϕ)−

ˆ
ϕµ

)
.

Now pick ϕ ∈ C0(X) and ψ ∈ E1 such that ψ 6 ϕ. Then

E(ψ)−
ˆ
ϕµ 6 E(ψ)−

ˆ
ψ µ 6 E∨(µ),

and taking the supremum over ψ yields

sup
ϕ∈C0(X)

(
E(ϕ)−

ˆ
ϕµ

)
6 E∨(µ).

Thus (9.6) holds. Now use this equation to define E∨(µ) for any signed
measure µ ∈ C0(X)∨. If µ(1) 6= 1, then E(c) = c for c ∈ R implies that

E∨(µ) > sup
c∈R

(c(1− µ(1))) = +∞.

Similarly, if µ ∈ C0(X)∨ and ϕ ∈ C0(X) satisfy ϕ > 0 and
´
ϕµ < 0, then

E(tϕ) > 0 for t > 0 yields

E∨(µ) > sup
t>0

(
−t

ˆ
ϕµ

)
= +∞.

Thus E∨ ≡ +∞ on C0(X)∨ \ M1. As E is concave, Legendre duality now
yields (9.7). �

The next duality statement will be used in the proof of Theorem 9.11.

Proposition 9.9. — For any usc function ϕ : Xan → R ∪ {−∞}, we
have

E↓(ϕ) = inf
µ∈M

(
E∨(µ) +

ˆ
ϕµ

)
. (9.8)

Proof. — Write ϕ as the limit of a decreasing net (ϕi) in C0(X). On the
one hand, for each µ ∈M we have

E↓(ϕ) 6 E(ϕi) 6 E∨(µ) +
ˆ
ϕi µ,

by (9.7), and hence E↓(ϕ) 6 E∨(µ) +
´
ϕµ, by Lemma 7.17. On the other

hand,

inf
µ

(
E∨(µ) +

ˆ
ϕµ

)
6 inf

µ

(
E∨(µ) +

ˆ
ϕi µ

)
= E(ϕi),

where the right-hand side converges to E↓(ϕ), by Proposition 8.3(v). This
proves (9.8). �
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9.3. Maximizing nets

With a view towards solving the Monge–Ampère equation MA(ϕ) = µ,
we introduce the following notion.

Definition 9.10. — Given a measure µ of finite energy, we shall
say that a net (ϕi) in E1 is maximizing for µ if it computes E∨(µ) =
supϕ∈E1

(
E(ϕ)−

´
ϕµ
)
in the sense that

E(ϕi)−
ˆ
ϕi µ −→ E∨(µ).

As a key consequence of the uniform differentiability property of Theo-
rem 8.5, we prove:

Theorem 9.11. — Let µ be a measure of finite energy. For any maxi-
mizing net (ϕi) for µ we have MA(ϕi)→ µ weakly inM.

Proof. — It is enough to show
´
f MA(ϕi) →

´
f µ for any f ∈ PL(X),

by Theorem 2.2. Set δi := E∨(µ) − E(ϕi) +
´
ϕi µ, so that δi → 0. For any

ε > 0, (9.8) shows that

E↓(ϕi + εf)−
ˆ

(ϕi + εf)µ 6 E∨(µ) = E(ϕi)−
ˆ
ϕi µ+ δi.

By Theorem 8.5, we infer

ε

ˆ
f MA(ϕi) 6 ε

ˆ
f µ+ δi + Cε2

for a constant C > 0 independent of i and ε. Dividing by ε, letting i → ∞,
and then ε → 0, we get lim supi

´
f MA(ϕi) 6

´
f µ, and replacing f with

−f yields the result. �

This yields a variational characterization of solutions to Monge–Ampère
equations:

Corollary 9.12. — Pick ϕ ∈ E1 and µ ∈ M1. Then MA(ϕ) = µ iff
ϕ computes E∨(µ) = supψ∈E1

(
E(ψ)−

´
ψ µ
)
. In particular, E∨(µ) = 0 iff

µ = MA(0).

Proof. — If MA(ϕ) = µ then E(ϕ) −
´
ϕµ = E∨(µ) by (9.3). If the

converse holds then the constant net ϕi = ϕ is maximizing, and hence
MA(ϕ) = µ, by Theorem 9.11. �

As another consequence, we prove that measures of finite energy have a
prescribed mass on the irreducible components of Xan.

Corollary 9.13. — Pick µ ∈ M1. Then µ(Xα) = (ωn)Xα/(ωn)X for
all α, and µ(Z) = 0 for all Zariski closed subsets Z ⊂ X with dimZ < n.
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Proof. — Set cα := (ωn)Xα/(ωn)X (which vanishes if dimXα < n). Pick
a maximizing net (ϕi) for µ. By Theorem 9.11, µi := MA(ϕi) converges
weakly to µ. By Corollary 7.49(ii), we have µi(Xα) = cα for all i and α, and
hence

µ(Xα) > lim sup
i

µi(Xα) = cα.

As in the proof of Corollary 7.49, when α 6= α′ µ further puts no mass on
the pluripolar set Xan

α ∩Xan
α′ , by Lemma 9.2. Thus

1 = µ(X) =
∑
α

µ(Xα) >
∑
α

cα = 1,

which forces µ(Xα) = cα for all α. Finally let Z ⊂ X be a Zariski closed
subset with dimZ < n, and pick an irreducible component Y of Z. If Y
is not a component of X then Y an is pluripolar, and hence µ(Y ) = 0, by
Lemma 9.2. If Y = Xα for some α then µ(Y ) = cα, which vanishes as
well since dimXα < n. Since this holds for all components of Z, we get, as
desired, µ(Z) = 0. �

Definition 9.14. — For any µ ∈ M1 we define a functional Jµ : E1 →
[0,+∞) by

Jµ(ϕ) := E∨(µ)− E(ϕ) +
ˆ
ϕµ.

The notation is justified by the fact that for ϕ,ψ ∈ E1 we have

JMA(ψ)(ϕ) = E(ψ)−
ˆ
ψMA(ψ)− E(ϕ) +

ˆ
ϕMA(ψ) = Jψ(ϕ). (9.9)

Note also that
Jµ(0) = E∨(µ), (9.10)

and that a net (ϕi) in E1 is maximizing for µ iff Jµ(ϕi)→ 0.

Lemma 9.15. — For all ϕ,ϕ′ ∈ E1 we have
I(ϕ,ϕ′) ≈ inf

µ∈M1
(Jµ(ϕ) + Jµ(ϕ′)).

In particular, we have for all ϕ ∈ E1 and µ ∈M1

J(ϕ) . Jµ(ϕ) + E∨(µ). (9.11)

Proof. — On the one hand, infµ(Jµ(ϕ) + Jµ(ϕ′)) 6 Jϕ(ϕ′) ≈ I(ϕ,ϕ′),
thanks to (7.28). Conversely, set τ := 1

2 (ϕ + ϕ′). By strict concavity of E
(Theorem 7.28),

E∨(µ) > E(τ)−
ˆ
τ µ >

1
2(E(ϕ) + E(ϕ′))− 1

2

ˆ
(ϕ+ ϕ′)µ+ C−1

n I(ϕ,ϕ′),

and hence
inf
µ

(Jµ(ϕ) + Jµ(ϕ′)) & I(ϕ,ϕ′).
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In particular, J(ϕ) ≈ I(ϕ, 0) . Jµ(ϕ) + Jµ(0) = Jµ(ϕ) + E∨(µ), which proves
the final point. �

Corollary 9.16. — Pick µ ∈ M1, and choose a maximizing net (ϕi)
for µ. Then J(ϕi) . E∨(µ) + o(1) for all i large enough.

Lemma 9.17. — For each C > 0 we have∣∣∣∣ˆ ϕ (µ−MA(ψ))
∣∣∣∣ . C Jµ(ψ) 1

2

for all ϕ,ψ ∈ {J 6 C} ⊂ E1 and µ ∈M1
C .

Proof. — By monotone approximation, we may assume ϕ ∈ PLR. Pick a
maximizing sequence (ψi) for µ. By Corollary 9.16, J(ψi) . C + o(1) for all
i large enough. By Lemma 7.30, we infer∣∣∣∣ˆ ϕ(MA(ψi)−MA(ψ))

∣∣∣∣ . (C + o(1)) I(ψi, ψ) 1
2 . C max{Jµ(ψi), Jµ(ψ)} 1

2 ,

where the right-hand inequality follows from Lemma 9.15. By Theorem 9.11,
we have MA(ϕi)→ µ weakly; hence

´
ϕMA(ψi)→

´
ϕµ, while Jµ(ψi)→ 0,

so we are done. �

Corollary 9.18. — Pick µ ∈ M1. If (ϕi) is maximizing for µ then
limi

´
ϕi(MA(ϕi)− µ) = 0 and limi E∨(MA(ϕi)) = E∨(µ).

Proof. — By Corollary 9.16, J(ϕi) is bounded for i large enough. By
Lemma 9.17, it follows that

ci :=
ˆ
ϕiµ−

ˆ
ϕi MA(ϕi) = O(Jµ(ϕi)

1
2 )

tends to 0, and hence

E∨(MA(ϕi)) = E(ϕi)−
ˆ
ϕi MA(ϕi) = E(ϕi)−

ˆ
ϕi µ+ ci −→ E∨(µ),

completing the proof. �

As another useful consequence, we get:

Proposition 9.19. — Let ϕi → ϕ be a convergent net in PSH(ω), and
assume that J(ϕi) is eventually bounded. For any µ ∈ M1 we then have
ϕi → ϕ in L1(µ).

Proof. — We first claim that ψ 7→
´
ψ µ is continuous on {J 6 C} ⊂

PSH(ω) for any C > 0. To see this, pick a maximizing net (ρj)j for µ in
PL∩PSH(ω). For each j, ϕ 7→

´
ϕMA(ρj) is continuous on PSH(ω), by

Proposition 7.19(ii). By Lemma 9.17,
´
ψMA(ρj) →

´
ψ µ uniformly for

ψ ∈ {J 6 C} ⊂ PSH(ω), and the claim follows since continuity is preserved
under uniform convergence.

– 786 –



Global pluripotential theory over a trivially valued field

The functional J is lsc, so J(ϕ) 6 lim inf J(ϕi) <∞. Set ϕ′i := max{ϕi, ϕ},
so that |ϕi − ϕ| = 2(ϕ′i − ϕ) + (ϕi − ϕ). Then ϕ′i → ϕ pointwise on Xdiv,
i.e. ϕ′i → ϕ in PSH(ω). By (7.34) we further have I(ϕ′i, ϕ) 6 I(ϕi, ϕ), and
J(ϕ′i) ≈ I(ϕ′i, 0) is thus eventually bounded, by the quasi-triangle inequality
for I. The first part of the proof thus yields

´
ϕi µ→

´
ϕµ,

´
ϕ′i µ→

´
ϕµ,

and hence
´
|ϕi − ϕ|µ→ 0, which concludes the proof. �

9.4. Dependence on the ample class

In this section, X is assumed to be irreducible. As in [11, Proposition 3.4]
we then have the following useful characterization of measures of finite en-
ergy.

Theorem 9.20. — A Radon probability measure µ ∈ M has finite en-
ergy iff E1 ⊂ L1(µ).

Proof. — Assume that µ is finite on E1. We first claim that for each
C > 0 there exists C ′ > 0 such that

´
ϕµ > −C ′ for all ϕ ∈ E1

sup such that
−E(ϕ) = J(ϕ) 6 C. Arguing by contradiction, we may assume there exist
C > 0 and a sequence (ϕj)∞1 in E1

sup such that J(ϕ) 6 C and
´
ϕjµ 6 −2j for

all j. Set ψm :=
∑m
j=1 2−jϕj for m > 1. Then ψm is a decreasing sequence

in PSH(ω) converging to ψ :=
∑∞
j=1 2−jϕj , which is thus either ω-psh or

identically −∞ (since X is irreducible). By concavity of E we have E(ψm) >
−C for all m; hence ψ is ω-psh, with E(ψ) = limm→∞ E(ψm) > −C. On the
other hand, monotone convergence givesˆ

ψ µ = lim
m→∞

ˆ
ψm µ = lim

m→∞

m∑
j=1

2−j
ˆ
ϕj µ = −∞,

a contradiction. We next claim that there exist A,B > 0 such that∣∣∣∣ˆ ϕµ

∣∣∣∣ 6 A J(ϕ)1/2 +B

for all ϕ ∈ E1
sup, which will imply, as desired, that

E∨(µ) = sup
ϕ∈E1

sup

(
−
ˆ
ϕµ− J(ϕ)

)
is finite. If J(ϕ) 6 1 then the estimate follows from the first part of the proof.
We may thus assume t := J(ϕ)−1/2 6 1. By Lemma 7.33, J(tϕ) . t2 J(ϕ) =
1, and the first part of the proof yields a uniform constant A > 0 such that
t
∣∣´ ϕµ∣∣ 6 A, which gives the desired estimate. �

As in [52, Proposition 4.1], we infer:

– 787 –



Sébastien Boucksom and Mattias Jonsson

Corollary 9.21. — The setM1(ω) of measures of finite energy is in-
dependent of the choice of ω ∈ Amp(X), and it is dense in the space M of
all Radon probability measures on Xan.

Proof. — For any ω, ω′ ∈ Amp(X), we can find s� 1 such that s−1ω 6
ω′ 6 sω. By Theorem 7.8 we then have s−1E1(ω) ⊂ E1(ω′) ⊂ s E1(ω), and µ
is thus finite on E1(ω) iff it is finite on E1(ω′). We conclude by Theorem 9.20
thatM1(ω) is independent of ω.

For the second part, we note that finite atomic measures are dense inM.
As Xdiv is dense in Xan, finite atomic measures with support in Xdiv are
also dense inM, and Theorem 9.20 shows that any such measure has finite
energy. Indeed, any function in PSH(ω) is finite on Xdiv. �

Remark 9.22. — In view of Corollary 9.13, the above results fail when X
has more than one top-dimensional component.

By Proposition 7.19(v) and Theorem 9.20, we also have:

Corollary 9.23. — For i = 1, . . . , n, pick ωi ∈ Amp(X) and ϕi ∈
E1(ωi). Then the Radon probability measure

(ω1 · . . . · ωn)−1(ω1 + ddc ϕ1) ∧ · · · ∧ (ωn + ddc ϕn)
has finite energy.

For further reference, we establish a more precise version of Corollary 9.21.

Theorem 9.24. — Pick ω, ω′ ∈ Amp(X) and s > 1 such that s−1ω 6
ω′ 6 sω. Then

s−Cn E∨ω 6 E∨ω′ 6 sCn E∨ω
onM, with Cn := 1 + 2n2.

The main ingredient in the proof is the following estimate.

Lemma 9.25. — Suppose ω, ω′ ∈ Amp(X) and ω 6 ω′ 6 sω, where
s > 1. For any nonpositive ϕ ∈ PSH(ω) ⊂ PSH(ω′), we then have

0 > s−n Eω(ϕ) > Eω′(ϕ) > sn Eω(ϕ), (9.12)
whereas

E∨ω′(µ) > ((n+ 1)− nsn) E∨ω(µ) (9.13)
for all µ ∈M.

Of course, (9.13) is useful only when s 6 (1 + 1
n )1/n. In order to upgrade

this to the global estimate in Theorem 9.24, we use the Thompson metric δT
of the open convex cone Amp(X) ⊂ N1(X). As in [105], this is defined by

δT (ω, ω′) = sup{δ ∈ R | e−δω 6 ω′ 6 eδω}.
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It is not hard to see that (Amp(X), δT ) is a complete metric space in which
line segments are (constant speed) geodesics, see [86, Lemma 2.6.2]. Theo-
rem 9.24 is equivalent to the Cn-Lipschitz continuity of ω 7→ log E∨ω(µ) for
any µ 6= δvtriv .

Lemma 9.26. — Let (Z, d) be a geodesic metric space. Pick a function
f : Z → R, and suppose we are given ε > 0 and ρ : [0, ε]→ [0,+∞) of class
C1 with ρ(0) = 0, such that for all x, y ∈ Z we have

d(x, y) 6 ε =⇒ |f(x)− f(y)| 6 ρ (d(x, y)) (9.14)
Then f is Lipschitz continuous, with Lipschitz constant |ρ′(0)|.

Proof of Theorem 9.24. — Set δ := δT (ω, ω′). Then e−δω 6 ω′ 6
eδω = e2δ(e−δω), so Lemma 9.3 and (9.13) yield E∨ω′(µ) > e−δ((n + 1) −
ne2nδ) E∨ω(µ). As a result, the function f : Amp(X)→ R defined by f(ω) :=
log E∨ω(µ) satisfies the assumptions of Lemma 9.26 with ε := 1

2n log(1 + 1
n )

and ρ : [0, ε]→ [0,+∞) defined by
ρ(t) = t− log

(
(n+ 1)− ne2nt) .

Now ρ′(0) = Cn := 1 + 2n2. Lemma 9.26 shows that f is Cn-Lipschitz
continuous, which is equivalent to the desired estimate. �

Proof of Lemma 9.25. — By Lemma 7.9, we have
0 > (ω, ϕ)n+1 > (ω′, ϕ)n+1 > sn(ω, ϕ)n+1,

and (9.12) follows since (ωn) 6 (ω′n) 6 sn(ωn).

Now pick µ ∈ M. If µ /∈ M1, then E∨ω′(µ) = +∞, and (9.13) is trivial.
Now assume µ ∈ M1, and pick a maximizing sequence (ϕi) in E1(ω) for µ,
normalized by supϕi = 0. If we set µi := MAω(ϕi), then Eω(ϕi)−

´
ϕi µ by

definition, and
´
ϕi µ =

´
ϕi µi + o(1), by Corollary 9.18. Thus

E∨ω′(µ) > Eω′(ϕi)−
ˆ
ϕi µ

> sn Eω(ϕi)−
ˆ
ϕi µ

= sn(Eω(ϕi)−
ˆ
ϕi µ) + (sn − 1)

ˆ
ϕi µ

= sn E∨ω(µ) + (sn − 1)
ˆ
ϕi µi + o(1),

where the first inequality is definitional, and the second follows from (9.12).
Finally, (9.3), (9.4) and 7.28 yield

−
ˆ
ϕi µi = Iω(ϕi) 6 (n+ 1) E∨ω(µi) = (n+ 1) E∨ω(µ) + o(1),

and (9.13) follows. �
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Proof of Lemma 9.26. — Pick C > |ρ′(0)|, and choose η ∈ (0, ε] such
that |ρ′(δ)| 6 C for δ ∈ [0, η], and hence 0 6 ρ(δ) 6 Cδ for δ ∈ [0, η]. For all
x, y ∈ Z we thus have

d(x, y) 6 η =⇒ |f(x)− f(y)| 6 Cd(x, y).
Now pick x, y ∈ Z at arbitrary distance, and choose a geodesic γ : [0, 1]→ Z
connecting x to y. By compactness of [0, 1], we can find a chain 0 = t0 <
t1 < · · · < tN = 1 in [0, 1] such that the xi := γ(ti) satisfy d(xi, xi+1) 6 η for
i < N . Since γ is a geodesic, we have d(x, y) =

∑
i<N d(xi, xi+1). Now (9.14)

yields |f(xi)− f(xi+1)| 6 Cd(xi, xi+1) for all i < N , and hence

|f(x)− f(y)| 6
∑
i<N

|f(xi)− f(xi+1)| 6 Cd(x, y).

This holds for any C > |ρ′(0)|, and the result follows. �

10. The strong topology on M1

As in Section 9, we denote by X a projective variety of dimension n,
and fix ω ∈ Amp(X). The setM1 ⊂ M of measures of finite energy comes
equipped with the weak topology of Radon probability measures. Here we
introduce and study a stronger topology onM1.

10.1. A quasimetric on M1

Recall from Definition 9.14 that

Jµ(ϕ) = E∨(µ)− E(ϕ) +
ˆ
ϕµ > 0

for all µ ∈M1 and ϕ ∈ E1. Dualizing Lemma 9.15 we introduce:

Definition 10.1. — For any two µ, µ′ ∈M1 we set
I∨(µ, µ′) := inf

ϕ∈E1
(Jµ(ϕ) + Jµ′(ϕ)).

Theorem 10.2. — The functional I∨ is a quasi-metric onM1. Further-
more,

I∨(µ,MA(0)) ≈ E∨(µ) (10.1)
and

I∨ (µ,MA(ϕ)) ≈ Jµ(ϕ) (10.2)
for all µ ∈M1 and ϕ ∈ E1.
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Theorem 10.2 will be proved below, together with the following crucial
estimates.

Theorem 10.3. — For all ϕ,ϕ′ ∈ E1(ω) and µ, µ′ ∈M1 we have∣∣∣∣ˆ (ϕ− ϕ′) (µ− µ′)
∣∣∣∣

. I(ϕ,ϕ′)αn I∨(µ, µ′) 1
2 max{J(ϕ), J(ϕ′),E∨(µ),E∨(µ′)} 1

2−αn

with αn := 2−n. In particular,

0 6
ˆ
ϕMA(0)−

ˆ
ϕµ . max{1, J(ϕ)} 1

2 max{1,E∨(µ)}1−αn .

This last estimate should be compared with the trivial bound

0 6
ˆ
ϕMA(0)−

ˆ
ϕµ 6 J(ϕ) + E∨(µ),

which holds by definition of E∨.

As an important consequence of Theorem 10.3, we have:
Corollary 10.4. — Assume that X is equidimensional. If ϕ,ψ ∈ E1,

then the following properties are equivalent:

(i) MA(ϕ) = MA(ψ);
(ii) I(ϕ,ψ) = 0;
(iii) ϕ− ψ is locally constant.

Proof. — The implications (iii)⇒ (i)⇒ (ii) are clear. If I(ϕ,ψ) = 0, then
I
(
ϕ|Xan

α
, ψ|Xan

α

)
= 0 for each irreducible component Xα of X, by (7.26). In

order to prove that ϕ−ψ is locally constant, we may thus assume that X is
irreducible. After adding constant, assume supϕ = supψ. Then ϕ(v) = ψ(v)
for every v ∈ Xdiv, as a consequence of Theorem 10.3 with µ = δv and
µ′ = δvtriv , since δv ∈ M1 by Proposition 11.1. By Theorem 4.22, we infer
ϕ = ψ on Xan, which proves (ii)⇒ (iii). �

Corollary 10.4 in turn implies the following useful results.
Corollary 10.5. — Assume that X is equidimensional. If ϕ,ψ ∈ E1

satisfy ϕ > ψ and E(ϕ) = E(ψ), then ϕ = ψ.
Proof. — By (7.4), we may assume that X is connected. From (7.22) and

the assumptions, it follows thatˆ
(ϕ− ψ) MA(ϕ) =

ˆ
(ϕ− ψ) MA(ψ) = 0.

Thus I(ϕ,ψ) =
´

(ϕ− ψ)(MA(ψ)−MA(ϕ)) = 0, and hence ψ = ϕ+ c for a
constant c, by Corollary 10.4. But then E(ϕ) = E(ψ) = 0 gives c = 0 and
we are done. �
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Corollary 10.6 (Domination principle). — Assume that X is equidi-
mensional. Let ϕ ∈ PSH(ω), ψ ∈ E1, and assume ϕ 6 ψ a.e. with respect to
MA(ψ). Then ϕ 6 ψ on Xan.

Proof. — Arguing on each connected component, we may assume that X
is connected. After replacing ϕ with max{ϕ,ψ}, we may assume ϕ > ψ, and
hence ϕ ∈ E1. The assumption then becomes ϕ = ψ a.e. for MA(ψ), and we
need to show ϕ = ψ. Note that

I(ϕ,ψ) =
ˆ

(ϕ− ψ)(MA(ψ)−MA(ϕ)) =
ˆ

(ψ − ϕ) MA(ϕ) 6 0.

By Corollary 10.4, we infer ϕ = ψ+ c with c ∈ R, and ϕ = ψ a.e. for MA(ψ)
implies c = 0. �

10.2. Proof of Theorems 10.2 and 10.3

Lemma 10.7. — If ψ,ψ′ ∈ E1 and µ = MA(ψ), µ′ = MA(ψ′), then

I(ψ,ψ′) ≈ I∨(µ, µ′).

Proof. — By (9.9) we have

I∨(µ, µ′) = inf
ϕ∈E1

(Jψ(ϕ) + Jψ′(ϕ)).

By (7.28), this implies

I∨(µ, µ′) ≈ inf
ϕ∈E1

(I(ψ,ϕ) + I(ψ′, ϕ)),

and the result follows thanks to the quasi-triangle inequality for I, see
(7.30). �

Lemma 10.8. — For each C > 0 there exists C ′ . C such that

I∨(µ, µ′) = inf
{

Jµ(ϕ) + Jµ′(ϕ)
∣∣ϕ ∈ E1, J(ϕ) 6 C ′

}
for all µ, µ′ ∈M1

C .

Proof. — By definition of I∨ we have

I∨(µ, µ′) 6 Jµ(0) + Jµ′(0) = E∨(µ) + E∨(µ′) 6 2C,

thanks to (9.10). Thus

I∨(µ, µ′) = inf
{

Jµ(ϕ) + Jµ′(ϕ)
∣∣ϕ ∈ E1

sup, Jµ(ϕ) 6 3C
}
.

Now Jµ(ϕ) 6 3C implies J(ϕ) . Jµ(ϕ) + E∨(µ) 6 4C, by (9.11), and we are
done. �
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Lemma 10.9. — Given µ, µ′ ∈ M1 with maximizing nets (ψi), (ψ′i),
respectively, we have

I∨ (MA(ψi),MA(ψ′i)) −→ I∨(µ, µ′) (10.3)
and

Jψi(ϕ) −→ Jµ(ϕ) (10.4)
for all ϕ ∈ E1.

Proof. — By Corollary 9.18, the measures MA(ψi),MA(ψ′i) have uni-
formly bounded energy for i large enough. By Lemma 10.8, we can thus
find C > 0 such that

I∨(µ, µ′) = inf
{

Jµ(ϕ) + Jµ′(ϕ)
∣∣ϕ ∈ E1, J(ϕ) 6 C

}
and

I∨ (MA(ψi),MA(ψ′i)) = inf
{

Jψi(ϕ) + Jψ′
i
(ϕ)

∣∣∣ϕ ∈ E1, J(ϕ) 6 C
}

for all i large enough. By Corollary 9.18 and Lemma 9.17,

Jψi(ϕ) = E∨(MA(ψi))− E(ϕ) +
ˆ
ϕMA(ψi)

converges to
Jµ(ϕ) = E∨(µ)− E(ϕ) +

ˆ
ϕµ,

uniformly with respect to ϕ ∈ {J 6 C} ⊂ E1; hence (10.4). The same holds
for Jψ′

i
(ϕ)→ Jµ′(ϕ), and (10.3) follows. �

Proof of Theorem 10.3. — Pick maximizing sequences (ψi), (ψ′i) for µ, µ′.
By (10.4) we have

J(ψi) ≈ E∨(µ) + o(1), J(ψ′i) ≈ E∨(µ′) + o(1),
while Lemma 10.7 and (10.3) give

I(ψi, ψ′i) ≈ I∨(µ, µ′) + o(1).
Thanks to Lemma 7.30, we infer∣∣∣∣ˆ (ϕ− ϕ′) (MA(ψi)−MA(ψ′i))

∣∣∣∣
. I(ϕ,ϕ′)αn

(
I∨(µ, µ′) + o(1)

) 1
2

×max{J(ϕ), J(ϕ′),E∨(µ) + o(1),E∨(µ′) + o(1)} 1
2−αn .

By Lemma 9.17 we haveˆ
(ϕ− ϕ′) MA(ψi) −→

ˆ
(ϕ− ϕ′)µ,

ˆ
(ϕ− ϕ′) MA(ψ′i) −→

ˆ
(ϕ− ϕ′)µ′,

and the result follows. �
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Proof of Theorem 10.2. — Let µ1, µ2, µ3 ∈ M1, and for i = 1, 2, 3 pick
a maximizing sequence (ϕij)j for µi. By Theorem 3.31, we have for each i

I(ϕ1j , ϕ2j) . max{I(ϕ1j , ϕ3j), I(ϕ3j , ϕ2j)}.

As in the proof of Theorem 10.3, this yields

I∨(µ1, µ2) . max{I∨(µ1, µ3), I∨(µ3, µ2)},

thanks to Lemma 10.7 and (10.3).

Suppose now that I∨(µ, µ′) = 0. By Theorem 10.3 and (3.2), it follows
that

´
ϕµ =

´
ϕµ′ for all ϕ ∈ PL(X), and hence µ = µ′, by density of

PL(X) in C0(X) (Theorem 2.2).

To establish (10.1) and (10.2), choose again a maximizing sequence (ψi)
for µ, and set µi := MA(ψi). For each i, Lemma 10.7 and (9.4) yield

I∨ (µi,MA(0)) ≈ I(ψi) ≈ E∨(µi)

and
I∨ (µi,MA(ϕ)) ≈ I(ψi, ϕ) ≈ Jψi(ϕ).

By (10.3), Corollary 9.18 and Lemma 9.17, we have

I∨ (µi,MA(0)) −→ I∨(µ,MA(0)), E∨(µi) −→ E∨(µ),
I∨ (µi,MA(ϕ)) −→ I∨ (µ,MA(ϕ)) ,

and

Jψi(ϕ) = E∨(µi)− E(ϕ) +
ˆ
ϕµi −→ E∨(µ)− E(ϕ) +

ˆ
ϕµ = Jµ(ϕ),

which proves the result. �

10.3. Strict convexity of the dual energy

The dual energy functional E∨ : M → [0,+∞] is convex (see Proposi-
tion 9.4). As we next show, its restriction to M1 is even uniformly convex
with respect to the quasi-metric I∨ (compare Theorem 7.28 for the energy E).

Proposition 10.10. — For all µ, µ′ ∈M1 and t ∈ [0, 1] we have

E∨((1− t)µ+ tµ′) 6 (1− t) E∨(µ) + tE∨(µ′)− t(1− t) I∨(µ, µ′).

Proof. — Pick a maximizing sequence (ϕi) in E1 for µt := (1− t)µ+ tµ′.
Then

Jµ(ϕi) = E∨(µ)− E(ϕi) +
ˆ
ϕi µ, Jµ′(ϕi) = E∨(µ′)− E(ϕi) +

ˆ
ϕi µ

′,
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and hence

(1− t) Jµ(ϕi) + t Jµ′(ϕi) = (1− t) E∨(µ) + tE∨(µ′)− E(ϕi) +
ˆ
ϕi µt.

By Lemma 7.29, we have

(1− t) Jµ(ϕi) + t Jµ′(ϕi) > t(1− t) (Jµ(ϕi) + Jµ′(ϕi))
> t(1− t) I∨(µ, µ′),

while E(ϕi)−
´
ϕi µt → E∨(µt); the result follows. �

10.4. The strong topology of M1

Following [10, Definition 2.5] we introduce:

Definition 10.11. — The strong topology on M1 is defined as the
coarsest refinement of the weak topology for which E∨ : M1 → R becomes
continuous.

Thus a net (µi) inM1 converges strongly to µ ∈ M1 iff µi → µ weakly
and E∨(µi)→ E∨(µ).

When X is irreducible, Corollary 9.21 shows that the set M1 ⊂ M is
independent of the choice of ω ∈ Amp(X). As we shall see below, this is
then also true of the strong topology ofM1, cf. Proposition 10.16.

Theorem 10.12. — For a net (µi) and µ inM1, the following are equiv-
alent:

(i) µi → µ strongly in M1;
(ii) I∨(µi, µ)→ 0;
(iii) for each C > 0 we have

´
ϕµi →

´
ϕµ uniformly for ϕ ∈ E1 with

J(ϕ) 6 C.

By (ii), the strong topology is associated to a canonical (metrizable)
uniform structure defined by the quasi-metric I∨.

Corollary 10.13. — Pick µ ∈ M1, and a net (ϕi) in E1. Then (ϕi)
is maximizing for µ iff MA(ϕi)→ µ strongly in M1.

Proof. — By definition, (ϕi) is maximizing for µ iff Jµ(ϕi) = E∨(µ) −
E(ϕi) +

´
ϕi µ tends to 0. Now (10.2) yields Jµ(ϕi) ≈ I∨(µ,MA(ϕi)), and

the result is thus a consequence of Theorem 10.12. �
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Proof of Theorem 10.12. — Assume (i), i.e. µj→µ weakly and E∨(µj)→
E∨(µ), and pick ε > 0. By (9.2), we can choose ϕ ∈ PLR ∩PSH(ω) such that

Jµ(ϕ) = E∨(µ)− E(ϕ) +
ˆ
ϕµ 6 ε.

For all i large enough we have
´
ϕµi 6

´
ϕµ + ε and E∨(µi) 6 E∨(µ) + ε,

and hence

Jµi(ϕ) = E∨(µi)− E(ϕ) +
ˆ
ϕµi 6 3ε.

Thus I∨(µi, µ) 6 max{Jµ(ϕ), Jµi(ϕ)} 6 3ε for all i large enough, and we
have proved (i)⇒ (ii).

Next assume (ii). Theorem 10.3 shows that for each C > 0 we have´
ϕµi →

´
ϕµ uniformly for ϕ ∈ {J 6 C} ⊂ E1, hence (ii)⇒ (iii).

Finally assume (iii). First,
´
ϕµi →

´
ϕµ for all ϕ ∈ E1 implies

´
ϕµi →´

ϕµ for all ϕ ∈ PL(X), by (3.2), and hence µi → µ weakly, by density
of PL(X) in C0(X). Next, we claim that E∨(µi) is eventually bounded. By
Corollary 9.18, for each i we can choose ϕi ∈ E1, normalized by

´
ϕi MA(0) =

0, such that∣∣E∨(MA(ϕi))− E∨(µi)
∣∣ 6 1,

∣∣∣∣ˆ ϕi(µi −MA(ϕi))
∣∣∣∣ 6 1,

and hence

E∨(µi) 6 E∨(MA(ϕi)) + 1

. I(ϕi) + 1 =
ˆ

(−ϕi) MA(ϕi) + 1 6
ˆ

(−ϕi)µi + 2. (10.5)

Pick A > 0, to be determined in a moment, and set

ti := min{1, A/E∨(µi)} ∈ [0, 1], si := ti E∨(µi) = min{E∨(µi), A}.

By concavity of E, tiϕi ∈ E1 satisfies

J(tiϕi) = ti supϕi − E(tiϕi) 6 ti J(ϕi) ≈ ti E∨(MA(ϕi)) 6 si + 1 6 A+ 1.

The condition in (iii) thus yields
´

(−tiϕi)µi 6
´

(−tiϕi)µ + 1 for i large
enough (depending on A). By Theorem 10.3, we have on the other handˆ

(−tiϕi)µ 6 C max{1, J(tiϕi)}1/2 . C(si + 1)1/2

for a constant C = C(µ) > 0 only depending on µ. Combining these es-
timates with (10.5), we get si = ti E∨(µi) 6 C ′(s1/2

i + 1) for a constant
C ′ = C ′(µ) > 0, and hence si 6 C ′′ = C ′′(µ). Choosing A > C ′′, this yields,
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as desired, E∨(µi) 6 C ′′ for i large enough. By Corollary 9.16, we can now
find a uniform constant B > 0 such that

E∨(µi) = sup
J(ϕ)6B

(
E(ϕ)−

ˆ
ϕµi

)
for all i large enough, and the condition in (iii) now implies E∨(µi)→ E∨(µ),
which proves (iii)⇒ (i). �

We finally show that the uniform structure ofM1 is complete.
Theorem 10.14. — Let (µi) be a Cauchy net in M1, i.e.

limi,j I∨(µi, µj) = 0. Then (µi) converges in the strong topology.
Remark 10.15. — In [34] we exhibit a natural complete metric d1 onM1

that defines the strong topology.
Proof. — By the quasi-triangle inequality, it is enough to show that some

subnet of (µi) converges strongly inM1. After passing to a subnet, we can
thus assume wlog that (µi) converges weakly to a Radon probability measure
µ ∈M, by weak compactness ofM. By Theorem 10.2, E∨(µi) is eventually
bounded, and hence E∨(µ) < +∞, i.e. µ ∈ M1, by lower semicontinuity
of E∨ in the weak topology of measures. We thus have µ ∈ M1, and it
remains to prove that for each C > 0 we have

´
ϕµi →

´
ϕµ uniformly for

ϕ ∈ {J 6 C} ⊂ E1, by Theorem 10.12. To see this, pick ε > 0. For all i, j
large enough, Theorem 10.3 yields

∣∣´ ϕµi − ´
ϕµj

∣∣ 6 ε for all ϕ ∈ {J 6
C} ∩ PLR. Since µj → µ weakly, it follows that for all i large enough we
have

∣∣´ ϕµi − ´
ϕµ
∣∣ 6 ε for all ϕ ∈ {J 6 C} ∩ PLR, and hence also for

ϕ ∈ {J 6 C} ⊂ E1, by monotone convergence. �

10.5. Dependence on the ample class

In this section, X is assumed to be irreducible. Recall from Corollary 9.21
that the set M1 = M1(ω) of measures of finite energy is independent of
ω ∈ Amp(X).

Proposition 10.16. — The strong topology on M1 =M1(ω) does not
depend on the choice of ω ∈ Amp(X).

Proof. — Pick µ ∈ M1, and a net (µi) in M1. By Theorem 9.24, the
condition that E∨ω(µi) is eventually bounded is independent of ω ∈ Amp(X).
On the other hand, pick ω, ω′ ∈ Amp(X) and choose s > 1 such that s−1ω 6
ω′ 6 sω. By Lemma 9.25, for each C > 0 there exists C ′ > 0 such that
{Jω 6 C} ⊂ s{Jω′ 6 C ′}. As a result, the condition that

´
ϕµi →

´
ϕµ

uniformly for ϕ ∈ {Jω 6 C} for all C > 0 is also independent of ω, and
Theorem 10.12 yields, as desired, that the strong convergence of (µi) to µ is
independent of the choice of ω. �
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Remark 10.17. — In view of Theorem 9.24, one may ask whether for
any two ω, ω′ ∈ Amp(X) we have C−1 I∨ω 6 I∨ω′ 6 C I∨ω for some C =
C(ω, ω′) > 1, in which case the uniform structure on M1 = M1(ω) would
also be independent of ω. Theorem 9.24 at least shows that the class of
bounded subsets ofM1, i.e. subsets ofM1

C(ω) = {µ ∈M1 | E∨ω(µ) 6 C} for
some C > 0, is independent of the choice of ω.

Lemma 10.18. — For all µ, µ′ ∈ M1, the map ω 7→ I∨ω(µ, µ′) is contin-
uous on Amp(X), uniformly for µ, µ′ in any bounded subset of M1.

Proof. — By Lemma 9.25, there exists a function s : [1, 1 + ε] → [1, 2]
with limt→1 s(t) = 1, only depending on n, such that for all ω, ω′ ∈ Amp(X)
with

t−1ω 6 ω′ 6 tω, t ∈ [1, 1 + ε] (10.6)
we have

s(t)−1 E∨ω 6 E∨ω′ 6 s(t) E∨ω , Eω′(t−1ϕ) > s(t) Eω(ϕ)

for all ϕ ∈ E1
sup(ω) ⊂ tE1

sup(ω′).

Pick ω, ω′ ∈ Amp(X) satisfying (10.6). Let C > 0 and µ, µ′ ∈ M1
C(ω).

By Lemma 10.8, we can find C ′ . C such that

I∨ω(µ, µ′)

= inf
{

E∨ω(µ) + E∨ω(µ′)− 2 Eω(ϕ) +
ˆ
ϕ(µ+ µ′)

∣∣∣∣ϕ ∈ E1
C′(ω)

}
. (10.7)

For each ϕ ∈ E1
C′(ω), we haveˆ

ϕ(µ+ µ′) > 2 Eω(ϕ)− E∨ω(µ)− E∨ω(µ′) > −2(C + C ′).

Thus

I∨ω′(µ, µ′) 6 E∨ω′(µ) + E∨ω′(µ′)− 2 Eω′(t−1ϕ) +
ˆ
t−1ϕ(µ+ µ′)

6 s(t)
(

E∨ω(µ) + E∨ω(µ′)− 2 Eω(ϕ) +
ˆ
ϕ(µ+ µ′)

)
+ 2(s(t)− t−1)(C + C ′),

and (10.7) yields

I∨ω′(µ, µ′) 6 s(t) I∨ω(µ, µ′) + 2(s(t)− t−1)(C + C ′) 6 I∨ω(µ, µ′) + ε(t)C

with limt→1 ε(t) = 0, since I∨(µ, µ′) . C by Theorem 10.2. Since µ, µ′ ∈
M1

C(ω) ⊂M1
2C(ω′), the desired result follows by symmetry. �
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11. Valuations of linear growth

Assume that X is of dimension n and irreducible, and fix ω ∈ Amp(X)
ample. The purpose of this section is to show that the set X lin of valuations of
linear growth is endowed with a natural metric induced by ω-psh functions,
with respect to which it sits as a bi-Lipschitz subspace of (M1, I∨).

11.1. The energy of a Dirac mass

Recall from Section 4.5 that a point v ∈ Xan is nonpluripolar iff
T(v) = sup

ϕ∈PSH
(supϕ− ϕ(v)) = sup

ϕ∈PSH
(ϕ(vtriv)− ϕ(v)) (11.1)

is finite, and that the set of such points coincides with the set X lin of valu-
ations of linear growth.

Proposition 11.1. — For any v ∈ Xan, the Dirac mass δv ∈ M has
finite energy iff v ∈ X lin. Moreover,

1
n+ 1 T(v) 6 E∨(δv) 6

n

n+ 1 T(v). (11.2)

Proof. — Let us first show that
1

n+ 1 T(v) 6 E∨(δv) 6 T(v), (11.3)

which will already imply δv ∈ M1 ⇐⇒ v ∈ X lin. The right-hand inequality
is trivial, since

E∨(δv) = sup
ϕ∈E1

(E(ϕ)− ϕ(v))

6 sup
ϕ∈E1

(supϕ− ϕ(v)) = sup
ϕ∈PSH(ω)

(supϕ− ϕ(v)) = T(v).

Here the second equality follows since every function in PSH(ω) is a decreas-
ing limit of functions in Hdom(ω) ⊂ E1.

The left-hand inequality in (11.3) is equivalent to ϕ(v) > −(n+1) E∨(δv)
for all ϕ ∈ PSHsup. For each m ∈ N set ψm := max{ϕ,ϕ(v),−m}. Then
ψm ∈ PSHsup and

ψm > ψm(v) = max{ϕ(v),−m}.
Since X is irreducible,

´
ψm MA(0) = ψm(vtriv) = supψm = 0, and (7.22)

thus yields

− 1
n+ 1 max{ϕ(v),−m} = 1

n+ 1

ˆ
(ψm − ψm(v)) MA(0)

6 E(ψm − ψm(v)) = E(ψm)− ψm(v) 6 E∨(δv).
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As m→∞, this yields, as desired, −ϕ(v) 6 (n+ 1) E∨(δv).

It remains to establish the stronger right-hand inequality in (11.2) for
v ∈ X lin. Pick a maximizing sequence (ϕi) for δv in E1. By (9.3) and (7.28)
we have

E∨(MA(ϕi)) = I(ϕi)− J(ϕi) 6
n

n+ 1 I(ϕi),

with

I(ϕi) = supϕi −
ˆ
ϕi MA(ϕi) 6 T(v) +

ˆ
ϕi (δv −MA(ϕi)) .

By Corollary 9.18, E∨(MA(ϕi))→ E∨(δv), and
´
ϕi(δv−MA(ϕi))→ 0. The

result follows. �

Remark 11.2. — When X has at least two top-dimensional components,
point masses never have finite energy, by Corollary 9.13.

As we next show, the image of the embedding X lin ↪→ M1 can further
be characterized as the set of extremal points.

Proposition 11.3. — A measure µ ∈ M1 is an extremal point of the
convex setM1 iff µ = δv with v ∈ X lin.

Proof. — As is well-known, the extremal points of the space M of all
Radon probability measures are the Dirac masses δv, v ∈ Xan; if v ∈ X lin,
then δv is a fortiori an extremal point ofM1. Conversely, assume µ ∈M1 is
not a Dirac mass. Then µ is not an extremal point ofM, and hence can be
written as µ = (1− t)µ0 + tµ1 with µ0 6= µ1 ∈M and t ∈ (0, 1). For any ϕ ∈
E1

sup we then have (1− t)
´
ϕµ0 >

´
ϕµ > −∞, t

´
ϕµ1 >

´
ϕµ > −∞. By

Theorem 9.20, this implies µ0, µ1 ∈ M1, which contradicts the extremality
of µ inM1. �

11.2. Weak convergence of psh functions

Every ϕ ∈ PSH(ω) is finite-valued on X lin, see Corollary 4.17, but the
topology of PSH(ω) is defined as the topology of pointwise convergence on
the strict subset Xdiv ⊂ X lin. However, we show:

Theorem 11.4. — The topology of PSH(ω) coincides with the topology
of pointwise convergence on X lin.

See also Corollary 12.15 for other characterizations of the topology of
PSH(ω), assuming the envelope property.
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Proof. — Given a convergent net ϕi → ϕ in PSH(ω) and v ∈ X lin, we
need to show ϕi(v) → ϕ(v). Since supϕi = ϕi(vtriv) converges to supϕ =
ϕ(vtriv) and supϕi 6 ϕi(v) + T(v), the net (ϕi(v)) is eventually bounded.
Replacing ϕi and ϕ with max{ϕi,−t} and max{ϕ,−t} for t � 1, we may
thus assume wlog that (ϕi) is uniformly bounded, and hence that J(ϕi) is
bounded. The result is now a consequence of Proposition 9.19, since δv has
finite energy by Proposition 11.1. �

Remark 11.5. — Theorem 11.4 remains true for a general projective va-
riety X, simply by restricting to each of its irreducible components.

11.3. The d∞-metric

For any two v, w ∈ X lin, we set
d∞(v, w) := sup

ϕ∈PSH
|ϕ(v)− ϕ(w)| . (11.4)

Proposition 11.6. — The following properties hold.

(i) d∞ is a metric on X lin, and is the smallest one with respect to
which ϕ : X lin → R is 1-Lipschitz for each ϕ ∈ PSH(ω);

(ii) T(v) = d∞(v, vtriv) for all v ∈ X lin;
(iii) d∞(tv, tw) = td∞(v, w) for all v, w ∈ X lin and t ∈ R>0;
(iv) d∞(v, w) = supϕ∈PL∩PSH |ϕ(v)− ϕ(w)|;
(v) d∞ is lsc on X lin ×X lin.

Proof. — The function d∞ is finite-valued, since d∞(v, w) 6 T(v)+T(w)
by (11.1). It is further obviously symmetric, and satisfies the triangle inequal-
ity. If d∞(v, w) = 0, then ϕ(v) = ϕ(v) for all ϕ ∈ PLR ∩PSH(ω). By (3.2),
this implies ϕ(v) = ϕ(w) for all ϕ ∈ PLR, and hence v = w, since PL(X)
separates points by Lemma 2.3. The second half of (i) is tautological. (ii)
and (iii) follow directly from the definition. An easy approximation argument
yields (iv), which in turn implies (v). �

We refer to the metric space topology defined by d∞ as the strong topology
of X lin, while the weak topology of X lin means the topology inherited from
Xan. By (iv), the weak topology is coarser than the strong one.

If ω 6 ω′, then d∞,ω 6 d∞,ω′ . The metrics d∞,ω with ω ∈ Amp(X) are
thus all Lipschitz equivalent, and the strong topology of X lin is independent
of the choice of ω.

In the case of classes of Q-line bundles, the d∞ metric admits the following
alternative description.
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Lemma 11.7. — If L is an ample Q-line bundle, then d∞ = d∞,c1(L)
satisfies

d∞(v, w) = sup
{
m−1|v(s)− v(w)|

∣∣m ∈ Z>0, s ∈ H0(X,mL) \ {0}
}

= lim
m→∞

sup
{
m−1 |v(s)− w(s)|

∣∣ s ∈ H0(X,mL) \ {0}
}

for any v, w ∈ X lin.

Proof. — For each s ∈ H0(X,mL), ϕ := m−1 log |s| is ω-psh, and
|v(s)− w(s)| = |ϕ(v)− ϕ(w)|, which proves

d∞(v, w) > S := sup
{
m−1|v(s)− v(w)| | m ∈ Z>0, s ∈ H0(X,mL) \ {0}

}
.

Next pick ϕ ∈ H(L), i.e. ϕ = m−1 maxi{log |si| + λi} for a basepoint free,
finite set of sections (si) of H0(X,mL) and λi ∈ Q. For each i we have
m−1 log |si|(v) 6 m−1 log |si|(w) + S, thus ϕ(v) 6 ϕ(w) + S. Assume ϕ ∈
PSH(L). By Theorem 4.15, ϕ is the pointwise limit of a decreasing net (ϕi) in
H(L), and hence ϕ(v) 6 ϕ(w)+S, which proves d∞(v, w) 6 S, by symmetry.

Finally, the second equality follows from

|v(s)− w(s)| = max{v(s)− w(s), w(s)− v(s)}

and the superadditivity of

m 7−→ sup
s∈H0(X,mL)\{0}

(v(s)− w(s)),

thanks to Fekete’s lemma. �

Example 11.8. — If X is a smooth curve, then the parametrizations de-
scribed in Section 1.1.6 endowX lin = Xval = Xan\X(k) =

⋃
p∈X ιp([0,+∞))

with a metric which equals d∞,ω up to a factor degω. In this case, the metric
space (X lin, d∞,ω) is an R-tree.

Theorem 11.9. — The metric space (X lin, d∞) is complete.

Proof. — Let (vi) be a Cauchy net for (X lin, d∞). Upon passing to a
subnet, we may assume that vi admits a limit v ∈ Xan in the topology of
Xan. Pick ε > 0, and choose i0 such that d∞(vi, vj) 6 ε for all i, j > i0. We
claim that v ∈ X lin and d∞(vi, v) 6 ε for all i > i0, which will prove, as
desired, that the Cauchy net (vi) admits a limit in (X lin, d∞). Indeed, for
all ϕ ∈ PSH(ω) and i, j > i0, we have |ϕ(vi) − ϕ(vj)| 6 ε. Letting j → ∞,
this first shows that ϕ(v) < +∞ for all ϕ ∈ PSH(ω), and hence v ∈ X lin.
Furthermore, |ϕ(vi)−ϕ(v)| 6 ε, and taking the supremum over ϕ yields the
claim. �

As noted above, the Lipschitz equivalence class of (X lin, d∞) is indepen-
dent of ω ∈ Amp(X). It is also a birational invariant of X:
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Proposition 11.10. — Every birational morphism π : Y → X induces
a bi-Lipschitz isomorphism (Y lin, d∞) ' (X lin, d∞).

This refines [36, Lemma 2.8].

Proof. — To see that Y lin → X lin is Lipschitz, pick ωX ∈ Amp(X) and
ωY ∈ Amp(Y ) such that π?ωX 6 ωY . Then π? PSH(ωX) ⊂ PSH(ωY ), which
implies d∞,ωX (v, w) 6 d∞,ωY (v, w) for all v, w ∈ Y lin.

In order to prove that the inverse X lin → Y lin is Lipschitz, we use Corol-
lary 4.33 to find ωX ∈ Amp(Y ), ωY ∈ Amp(Y ) and ϕX ∈ PSH(ωX) such
that

PSH(ωY ) + π?ϕX ⊂ π? PSH(ωX).
For all v, w ∈ Y lin, this implies d∞,ωY (v, w) 6 2d∞,ωX (v, w), and the result
follows. �

11.4. Growth and weak continuity of psh functions

By definition of T, any ω-psh function ϕ satisfies a linear growth estimate

|ϕ(v)| 6 T(v) +O(1) = d∞(v, vtriv) +O(1)

on X lin, and this cannot be improved in general. For functions in E1, the
growth is sublinear:

Theorem 11.11. — Each ϕ ∈ E1 satisfies

|ϕ| 6 AT1−αn +B

on X lin, with αn := 2−n and A,B > 0 only depending on J(ϕ) and supϕ,
respectively.

Proof. — For each v ∈ X lin, Proposition 11.1 shows that E∨(δv) ≈ T(v),
and Theorem 10.3 thus gives

supϕ− ϕ(v) . max{1, J(ϕ)} 1
2 max {1,T(v)}1−αn .

The result follows. �

As already noticed, the restriction of any ϕ ∈ PSH(ω) to X lin is strongly
continuous, and even 1-Lipschitz with respect to d∞. With respect to the
weak topology we have:

Theorem 11.12. — The restriction of any ϕ ∈ PSH(ω) to a bounded
subset of (X lin, d∞) is weakly continuous.
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Proof. — We may assume ϕ 6 0. Then exp(ϕ) ∈ E∞ ⊂ E1, see Corol-
lary 4.11, and it is thus enough to prove the result for ϕ ∈ E1. Pick a
decreasing net (ϕi) in PLR ∩PSH(ω) converging pointwise to ϕ. Then

0 6 I(ϕi, ϕ) =
ˆ

(ϕi − ϕ)(MA(ϕ)−MA(ϕi)) 6
ˆ

(ϕi − ϕ) MA(ϕ) −→ 0,

by monotone convergence. On the other hand, d∞(v, vtriv) = T(v) 6 C
implies E∨(δv) . C, by Proposition 11.1, and Theorem 10.3 applied to µ =
δv, µ′ = δvtriv implies that ϕi(v)→ ϕ(v) uniformly for v in the ball {T 6 C}.
Since each ϕi is weakly continuous on PSH(ω), we conclude, as desired, that
ϕ is weakly continuous on {T 6 C}. �

11.5. Bi-Lipschitz embedding into M1

By Proposition 11.1, v 7→ δv defines an injection X lin ↪→ M1 such that
T(v) ≈ E∨(δv), i.e. d∞(v, vtriv) ≈ I∨(δv, δvtriv), by Theorem 10.2. More gen-
erally, we prove:

Theorem 11.13. — For all v, w ∈ X lin we have d∞(v, w) ≈ I∨(δv, δw).
In particular, X lin ↪→ M1 is a topological embedding with respect to the
strong topologies.

Remark 11.14. — In [34] we explore additional natural metrics on X lin;
these are all equivalent to d∞.

By Theorem 10.12, we infer:

Corollary 11.15. — The strong topology of X lin is the coarsest refine-
ment of the weak topology in which v 7→ E∨(δv) becomes continuous.

In other words, a net (vi) of X lin converges strongly to v ∈ X lin iff vi → v
weakly and E∨(δvi)→ E∨(δv).

Question 11.16. — Do we have a similar characterization with T(v)
in place of E∨(δv)?

Lemma 11.17. — Assume ω = c1(L) with L an ample line bundle, and
pick a� 1 such that mL is globally generated for all m > a. Pick v ∈ X lin,
and set for each m > a

ϕv,m := m−1 max
s∈H0(X,mL)\{0}

(log |s|+ v(s)) ∈ HR(L).

Then (ϕv,m)m>a is a maximizing sequence for δv, and hence MA(ϕv,m)→ δv
strongly in M1.
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Proof. — We first claim that limm→∞ E(ϕv,m) = supm>a E(ϕv,m). To
see this, observe that

(m+m′)ϕv,m+m′ > mϕv,m +m′ϕv,m′

for all m,m′ > a. Set S := supm E(ϕv,m), pick ε > 0, and choose m0 � 1
such that E(ϕv,m0) > S − ε. For each m > m0 + a write m − a = qm0 + r
with q ∈ N and r ∈ {0, . . . ,m0 − 1}. The above superadditivity property
yields

mϕv,m > qm0ϕv,m0 + (r + a)ϕv,r+a.
Thus ϕv,m > ϕv,m0 −O(m−1), and hence

E(ϕv,m) > S − ε−O(m−1) > S − 2ε
for all m� 1, proving the claim.

Since log |s|(v) = −v(s) for s ∈ H0(X,mL) \ {0}, we have ϕv,m(v) = 0.
Thus

lim
m→∞

E(ϕv,m) = sup
m>a

E(ϕv,m) 6 E∨(δv),

and we need to show that this is an equality. Pick ϕ ∈ H(L), so that

ϕ = m−1 max
i
{log |si|+ λi}

for some m ∈ Z>0, a basepoint free, finite set (si) of H0(X,mL) and λi ∈ Q.
We may assume wlog m > a, since we have for r ∈ Z>0

ϕ = (rm)−1 max
i
{log |sri |+ rλi}.

For each i we have
−v(si) + λi = log |si|(v) + λi 6 mϕ(v).

This yields ϕ 6 ϕv,m + ϕ(v), and hence E(ϕ)− ϕ(v) 6 E(ϕv,m). We infer

E∨(δv) = sup
ϕ∈H(L)

(E(ϕ)− ϕ(v)) 6 sup
m>a

E(ϕm),

which proves, as desired, that (ϕv,m) is a maximizing sequence for δv. The
final assertion now follows from Corollary 10.13. �

Proof of Theorem 11.13. — By Lemma 10.18, we may assume that ω =
c1(L) with L ∈ Pic(X)Q ample. By homogeneity, we can even assume that L
is a globally generated line bundle. For each v ∈ X lin consider the sequence
(ϕv,m) from Lemma 11.17. For w ∈ X lin we have

ϕv,m(w) = m−1 max
s∈H0(X,mL)\{0}

(v(s)− w(s)) ,

and Lemma 11.7 thus shows that
d∞(v, w) = lim

m→∞
max{ϕv,m(w), ϕw,m(v)}. (11.5)
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On the other hand, Lemma 10.7 and (10.3) yield

I(ϕv,m, ϕw,m) ≈ I∨ (MA(ϕv,m),MA(ϕw,m)) −→ I∨(δv, δw). (11.6)

Write

I(ϕv,m, ϕw,m) =
ˆ

(ϕv,m − ϕw,m) (MA(ϕw,m)−MA(ϕv,m)) .

By Lemma 11.17, (ϕv,m) and (ϕw,m) are maximizing sequences for δv and
δw. By Corollary 9.18,ˆ

ϕv,m MA(ϕv,m) =
ˆ
ϕv,m(MA(ϕv,m)− δv) −→ 0

and ˆ
ϕw,m MA(ϕv,m)− ϕw,m(v) −→ 0.

Exchanging the roles of v and w, we infer

I(ϕv,m, ϕw,m) = ϕv,m(w)+ϕw,m(v)+o(1) ≈ max{ϕv,m(w), ϕw,m(v)}+o(1).

Combining this with (11.5) and (11.6), we conclude, as desired, d∞(v, w) ≈
I∨(δv, δw). �

As an application of the above results, we prove:

Theorem 11.18. — Assume char k = 0. Then Xdiv is dense in X lin

with respect to the strong topology.

Lemma 11.19. — Let vi → v be a weakly convergent net in X lin. If
vi 6 v, then vi → v strongly.

Proof. — Every ω-psh function is usc and decreasing on Xan, and

w 7−→ E∨(δw) = sup
ϕ∈E1

(E(ϕ)− ϕ(w))

is thus increasing and lsc on Xan. This yields E∨(δvi) 6 E∨(δv) and

E∨(δv) 6 lim inf
i

E∨(δvi),

and hence E∨(δvi) → E∨(δv). By Corollary 11.15, this proves vi → v
strongly. �

Proof of Theorem 11.18. — By Corollary A.3, any v ∈ Xan is the limit
of a net (vi)i in Xdiv such that vi 6 v. When v ∈ X lin this implies vi →
v strongly, by Lemma 11.19, and thus proves that Xdiv is strongly dense
in X lin. �
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12. The strong topology on E1 and the Calabi–Yau theorem

In this section, we assume until further notice that X is irreducible, and
fix an ample class ω ∈ Amp(X).

Having analyzed the strong topology on the spaceM1 =M1(ω) of Radon
probability measures of finite energy, we now perform the corresponding
analysis on the space E1 = E1(ω) of ω-psh functions of finite energy.

12.1. The strong topology of E1

Following [10, 11] we introduce:

Definition 12.1. — The weak topology of E1 is the topology inherited
from PSH(ω). The strong topology is the coarsest refinement of the weak
topology for which E: E1 → R becomes continuous.

Thus a net (ϕj) in E1 converges weakly to ϕ ∈ E1 iff ϕj → ϕ pointwise
on Xdiv (or, equivalently, on X lin, cf. Remark 11.5); it converges strongly iff
we further have E(ϕj) → E(ϕ). By Proposition 7.7, E is continuous along
decreasing nets, and hence:

Example 12.2. — For a decreasing net (ϕi) in E1, weak and strong con-
vergence coincide.

Definition 12.3. — We define the quasi-metric I on E1 by setting
I(ϕ,ϕ′) = Iω(ϕ,ϕ′) := I(ϕ,ϕ′) + | supϕ− supϕ′| (12.1)

for ϕ,ϕ′ ∈ E1.

By (7.30) and Corollary 10.4, I is indeed a quasi-metric. It is further
immediate to check that it satisfies the analogue of (7.34), i.e.

I(ϕ,ψ) = I (ϕ,max{ϕ,ψ}) + I (max{ϕ,ψ}, ψ) (12.2)
for all ϕ,ψ ∈ E1. As we now show, the quasi-metric I defines the strong
topology of E1.

Theorem 12.4. — A net (ϕj) in E1 converges strongly to ϕ ∈ E1 iff
I(ϕj , ϕ)→ 0.

Proof. — First assume that ϕj → ϕ strongly in E1. Then supϕj → supϕ,
E(ϕj)→ E(ϕ), and J(ϕj) = supϕj−E(ϕj) is thus eventually bounded. Since
ϕj → ϕ weakly, Proposition 9.19 yields

´
(ϕj − ϕ) MA(ϕ)→ 0. Thus

I(ϕj , ϕ) ≈ Jϕ(ϕj) = E(ϕ)− E(ϕj) +
ˆ

(ϕj − ϕ) MA(ϕ) −→ 0, (12.3)
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in view of (7.29), and hence I(ϕj , ϕ)→ 0.

Assume, conversely, I(ϕj , ϕ) → 0, i.e. supϕj → supϕ and I(ϕj , ϕ) → 0.
Since δv has finite energy for v ∈ Xdiv (Proposition 11.1), Theorem 10.3
yields ϕj(v) → ϕ(v), i.e. ϕj → ϕ weakly. By the quasi-triangle inequality,
J(ϕj) ≈ I(ϕj , 0) is further eventually bounded, and Proposition 9.19 there-
fore implies

´
ϕj MA(ϕ) →

´
ϕMA(ϕ), which in turn shows that E(ϕj) →

E(ϕ), by (12.3). Thus ϕj → ϕ strongly, which concludes the proof. �

By Example 12.2, any weakly convergent decreasing net in E1 is strongly
convergent. The next result, which is a direct consequence of Theorem 7.38,
shows that this also holds for increasing nets:

Theorem 12.5. — Let (ϕj) be an increasing net in E1, and assume that
ϕj → ϕ weakly in E1. Then ϕj → ϕ strongly as well.

We end this section with a useful quantitative version of Corollary 10.5.

Proposition 12.6. — Let (ϕi) be a net in E1 and ϕ ∈ E1 such that
ϕi 6 ϕ for all i. Then ϕi → ϕ strongly iff E(ϕi)→ E(ϕ).

Proof. — The “only if” part follows directly from the definition of strong
convergence. Conversely, assume E(ϕi)→ E(ϕ). Since ϕi 6 ϕ,

I(ϕi, ϕ) ≈ Jϕ(ϕi) = E(ϕ)− E(ϕi) +
ˆ

(ϕi − ϕ) MA(ϕ) 6 E(ϕ)− E(ϕi)

tends to 0, and hence ϕ′i := ϕi−supϕi converges strongly to ϕ′ := ϕ−supϕ,
by Theorem 12.4. In particular, E(ϕ′i) = E(ϕi)−supϕi converges to E(ϕ′) =
E(ϕ) − supϕ, hence supϕi → supϕ, and we conclude, as desired, ϕi → ϕ
strongly. �

12.2. Strong continuity and surjectivity of the Monge–Ampère op-
erator

We define the strong topology on E1/R ' E1
sup as the one induced by the

strong topology on E1. It is defined by the quasi-metric (ϕ,ϕ′) 7→ I(ϕ,ϕ′),
by Theorem 12.4.

As a direct consequence of Lemma 10.7, we have:

Proposition 12.7. — The Monge–Ampère operator MA: E1 →M1 in-
duces a bi-Lipschitz embedding

(E1/R, I) ↪→ (M1, I∨).
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Recall from Theorem 5.11 that the envelope property for ω ∈ Amp(X)
(which holds if X is smooth and k has characteristic zero, cf. Theorem 5.20)
is equivalent to the compactness of PSH(ω)/R. In a similar vein we have:

Theorem 12.8. — For any ω ∈ Amp(X), the following are equivalent:

(i) the envelope property holds for ω;
(ii) the Monge–Ampère operator MAω : E1(ω)→M1 is onto;
(iii) the Monge–Ampère operator induces a bi-Lipschitz isomorphism

(E1(ω)/R, Iω) ' (M1, I∨ω);

(iv) (E1(ω)/R, Iω) is complete;
(v) (E1(ω), Iω) is complete.

In particular, E1(ω) can only be complete if X is unibranch, cf. Theo-
rem 5.12.

Proof. — Assume (i). By Corollary 9.12, (ii) holds iff the supremum defin-
ing

E∨(µ) = sup
ϕ∈E1

(
E(ϕ)−

ˆ
ϕµ

)
is achieved for any µ ∈M1. Thus choose a maximizing sequence (ϕi) for µ in
E1

sup. By Corollary 5.21, PSHsup is weakly compact, and we may thus assume,
after passing to a subnet, that (ϕi) converges weakly to ϕ ∈ PSHsup. Since
Jµ(ϕi) → 0, (9.11) shows that J(ϕi) is eventually bounded, and hence that
ϕ ∈ E1(ω), since J is weakly lsc. By Proposition 9.19, the weak convergence
ϕi → ϕ implies

´
ϕi µ→

´
ϕµ, and hence

E(ϕ)−
ˆ
ϕµ > lim sup

i

(
E(ϕi)−

ˆ
ϕi µ

)
= E∨(µ),

since E is weakly usc. This proves (i) ⇒ (ii). Proposition 12.7 gives (ii) ⇔
(iii), and (iii) ⇒ (iv) follows from the completeness of (M1, I∨ω) (Theo-
rem 10.14).

Assume (iv), and pick a Cauchy sequence (ϕi) in (E1(ω), Iω). Then (ϕi−
supϕi) is Cauchy in E1

sup(ω) ' E1(ω)/R, and hence strongly convergent in
E1(ω). Now (supϕi) is Cauchy as well, and hence convergent in R, so we
conclude that (ϕi) is strongly convergent, proving (iv)⇒ (v).

Finally we prove (v) ⇒ (i). Assume that E1(ω) is complete. By Theo-
rem 5.11, (i) is equivalent to the fact that any bounded, increasing net (ϕi)
in PSH(ω) converges weakly in PSH(ω). Since the increasing net (supϕi)
converges in R, it will be enough to show that (ϕi) is Cauchy in E1(ω)/R,

– 809 –



Sébastien Boucksom and Mattias Jonsson

i.e. that

Iω(ϕi, ϕj) ≈ Jω,ϕi(ϕj) = Eω(ϕi)− Eω(ϕj) +
ˆ

(ϕj − ϕi) MAω(ϕi)

tends to 0 as i, j →∞, where by symmetry of Iω we may assume i 6 j. The
increasing net (Eω(ϕi)) converges in R. Given ε > 0, choose i0 such that
0 6 Eω(ϕj)− Eω(ϕi) 6 ε for j > i > i0. As ϕi 6 ϕj , (7.22) yields

0 6
ˆ

(ϕj − ϕi) MAω(ϕi) 6 (n+ 1) (Eω(ϕj)− Eω(ϕi)) 6 (n+ 1)ε.

Thus
Eω(ϕi)− Eω(ϕj) +

ˆ
(ϕj − ϕi) MAω(ϕi) 6 nε,

which proves, as desired, that (ϕi) is Cauchy in E1(ω)/R. �

As a direct consequence of Theorem 12.8 and Theorem 5.20, we have the
following result, cf. Theorem A.

Theorem 12.9. — Suppose that X is smooth, that char k = 0 or
dimX 6 2, and fix ω ∈ Amp(X). Then the Monge–Ampère equation
MA(ϕ) = µ admits a solution ϕ ∈ E1(ω), unique up to translation, for
every µ ∈M1.

Example 12.10. — Assume the envelope property for ω ∈ Amp(X). For
each v ∈ X lin, there exists a unique ϕv ∈ E1(ω) such that MA(ϕv) = δv and
ϕv(v) = 0, which we call the Green’s function of v. See Proposition 12.14 for
more on these functions.

Example 12.11. — Let X be an irreducible curve with a nodal singu-
larity at p ∈ X(k), and denote by p1, p2 ∈ Xν(k) the preimages of p (see
Figure 1.1). Then v := ordp1 ∈ Xν, div ' Xdiv, and δv ∈M1(X) is not in the
image of MA: E1 → M1. Using Example 7.20 and ν? MA(ν?ϕ) = MA(ϕ)
(see (7.18)), one sees indeed that a function ϕ ∈ PSH(ω) such that MA(ϕ) =
δv must satisfy ν?ϕ(vtriv) = ν?ϕ(vp2,triv) = ϕ(vp,triv) = ν?ϕ(vp1,triv), and
hence must be constant on the ray through v, a contradiction.

12.3. Continuity of solutions to Monge–Ampère equations

Theorem 12.12. — Let ϕ ∈ E1, and suppose that µ := MA(ϕ) is sup-
ported in a bounded subset of (X lin, d∞), i.e. suppµ ⊂ {T 6 C} for some
C > 0. Then ϕ ∈ CPSH(ω).

Example 12.13. — The condition on µ is satisfied if char k = 0, X is
smooth, and µ is supported on the dual complex of an snc test configuration
for X (see Theorem A.4 below).
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Proof of Theorem 12.12. — Write ϕ as the limit of a decreasing net (ϕi)
in CPSH(ω). By Theorem 11.12, ϕ is continuous on the (weakly) compact
setK := suppµ ⊂ Xan, and hence ϕi → ϕ uniformly on K, by Dini’s lemma.
For any ε > 0 we therefore have ϕi 6 ϕ + ε on K for i large enough. Thus
ϕi 6 ϕ + ε a.e. for MA(ϕ + ε) = µ, and hence ϕi 6 ϕ + ε on Xan, by the
domination principle (Corollary 10.6). This shows ϕi → ϕ uniformly on Xan,
and hence ϕ ∈ C0(X). �

Proposition 12.14. — Assume the envelope property for ω. Pick v ∈
X lin, and recall from Example 12.10 that the Green’s function ϕv ∈ E1 is the
unique function such that MA(ϕv) = δv and ϕv(v) = 0. Then:

(i) ϕv ∈ CPSH(X);
(ii) ϕv = sup{ϕ ∈ PSH(ω) | ϕ(v) 6 0};
(iii) for all v, w ∈ X lin we have d∞(v, w) = max{ϕv(w), ϕw(v)} =

supXan |ϕv − ϕw|;
(iv) supϕv = T(v).

If ω = c1(L) for an ample bundle L, then ϕv is the uniform limit as m→∞
of the functions

ϕv,m := m−1 max
s∈H0(X,mL)\{0}

(log |s|+ v(s)) ∈ HR(L)

from Lemma 11.17.

Thus (iii) yields an isometric embedding (X lin, d∞) ↪→ CPSH(ω) with
respect to the supnorm.

Proof. — Assertions (i) and (ii) are direct consequences of Theorem 12.12
and the domination principle (Corollary 10.6), respectively. To establish (iii),
note first that ϕv(w) = ϕv(w) − ϕv(v) 6 d∞(v, w), and hence d∞(v, w) >
max{ϕv(w), ϕw(v)}, by symmetry. Conversely pick ϕ ∈ PSH(ω). By (ii),
ϕ− ϕ(v) 6 ϕv. Thus ϕ(w)− ϕ(v) 6 ϕv(w), and hence

d∞(v, w) = sup
ϕ∈PSH

|ϕ(v)− ϕ(w)| 6 max{ϕv(w), ϕw(v)},

which proves (iii), of which (iv) is the special case w = vtriv, see Proposi-
tion 11.6(ii).

To establish the last statement in the proposition, we first note, as in the
proof of Lemma 11.17, that the sequence m 7→ mϕv,m is superadditive, and
hence

lim
m→∞

ϕv,m = sup
m→∞

ϕv,m

pointwise on Xan, by Fekete’s lemma. On the one hand, ϕv,m(v) = 0 yields
supm→∞ ϕv,m 6 ϕv, by (ii). On the other hand, the proof of Lemma 11.17

– 811 –



Sébastien Boucksom and Mattias Jonsson

shows that any ϕ ∈ H(L) with ϕ(v) = 0 satisfies ϕ 6 ϕv,m for some m� 1,
and hence

ϕv = sup{ϕ ∈ H(L) | ϕ(v) = 0} 6 sup
m
ϕv,m,

where the left-hand equality is an easy consequence of (ii). We conclude
ϕv,m → ϕv pointwise on Xan, and a simple variant of Dini’s lemma, based
on the superadditivity of m 7→ mϕv,m, shows that the convergence is
uniform. �

We conclude this section with the following consequence of Proposi-
tion 12.14:

Corollary 12.15. — Assume that ω ∈ Amp(X) has the envelope prop-
erty. Let ϕ ∈ PSH(ω), and let (ϕj) be a net in PSH(ω). Then the following
are equivalent:

(i) ϕj → ϕ in PSH(ω);
(ii) limj

´
ϕj MA(ψ) =

´
ϕMA(ψ) for every ψ ∈ PL∩PSH(ω);

(iii) limj

´
ϕj MA(ψ) =

´
ϕMA(ψ) for every ψ ∈ CPSH(ω).

Proof. — By Proposition 7.19(ii), for each ψ ∈ PL∩PSH(ω) the mea-
sure MA(ψ) is supported in a finite subset of Xdiv, and the pointwise con-
vergence ϕi → ϕ on Xdiv thus implies limi

´
ϕi MA(ψ) →

´
ϕMA(ψ), i.e.

(i) ⇒ (ii). Assume (ii), pick ψ ∈ CPSH(ω), and choose a sequence (ψm) in
PL∩PSH(ω). By Lemma 7.32, we have∣∣∣∣ˆ ϕMA(ψm)−

ˆ
ϕMA(ψ)

∣∣∣∣ 6 n sup |ψ − ψm|

and ∣∣∣∣ˆ ϕi MA(ψm)−
ˆ
ϕi MA(ψ)

∣∣∣∣ 6 n sup |ψ − ψm|

for all i, and (ii)⇒ (iii) follows easily. Finally, (iii) implies in particular

ϕi(v) =
ˆ
ϕi MA(ϕv) −→ ϕ(v) =

ˆ
ϕMA(ϕv)

for each v ∈ Xdiv, by Proposition 12.14. Hence (iii)⇒ (i). �

12.4. Countable regularization and Choquet’s lemma

In this final section, X is again allowed to be reducible. Using the energy
functionals, we establish the following countable convergence result.

Theorem 12.16. — Pick θ ∈ N1(X). Let (ϕi)i∈I be a monotone (i.e.
increasing or decreasing) net in PSH(θ), and assume that it converges to
ϕ ∈ PSH(θ). Then there exists an increasing map N → I m 7→ i(m) such
that limm→∞ ϕi(m) = ϕ in PSH(θ).
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Remark 12.17. — Note that (ϕi(m))m∈N is not claimed to be a subnet
of (ϕi)i∈I , as the directed set I might not admit any countable cofinal sub-
set. On the other hand, by monotonicity of (ϕi), the sequence (ϕi′(m)) also
converges to ϕ for any increasing map m 7→ i′(m) such that i′(m) > i(m).

Proof. — Assume first that X is irreducible. Pick θ′ ∈ Amp(X) such that
θ′ − θ is nef. Then PSH(θ) ⊂ PSH(θ′), and it is enough to show the result
when ω := θ is ample, which we now assume.

Suppose first that ϕ and all the ϕi lie in E1(ω). By Example 12.2 (resp.
Theorem 12.5), we have ϕi → ϕ strongly, i.e. limi∈I I(ϕi, ϕ) = 0. We can thus
inductively construct an increasing map m 7→ i(m) such that I(ϕi(m), ϕ) 6
1/m. Then limm ϕi(m) = ϕ strongly in E1(ω), and hence in PSH(ω) (i.e.
pointwise on Xdiv).

Consider now the general case. Observe first that we may assume wlog
ϕ 6 0 and ϕi 6 0 for all i. If (ϕi) is increasing, it suffices to replace ϕi with
ϕi − supϕ. If (ϕi) is decreasing, replace I with {i ∈ I | i > i0} for some
i0 ∈ I, and ϕi with ϕi − supϕi0 .

By Corollary 4.11, we then have
ϕ̃ := exp(ϕ), ϕ̃i := exp(ϕi) ∈ E∞(ω) ⊂ E1(ω).

By what precedes, we can find an increasing map m 7→ i(m) such that
ϕ̃i(m) → ϕ̃ pointwise on Xdiv. Since the ϕi and ϕ are finite-valued on Xdiv,
this implies ϕi(m) → ϕ on Xdiv, and we are done.

Assume finally that X is reducible. For each α, the previous step yields
an increasingm 7→ iα(m) such that ϕiα(m) → ϕ on Xan

α . By Remark 12.17, it
remains to pick any increasing map m 7→ i(m) such that i(m) > maxα iα(m)
for all m; such a map is easily constructed by induction on m. �

Combining Theorem 12.16 with Theorem 4.15, we infer:
Corollary 12.18. — Pick θ ∈ N1(X) and ϕ ∈ PSH(θ). Then:

(i) ϕ can be written as the limit of a decreasing sequence ϕm ∈
Hgf

Q (Lm) with Lm ∈ Pic(X)Q such that c1(Lm) − θ is ample and
limm c1(Lm) = θ;

(ii) if θ ∈ Nef(X) then (i) holds with ϕm ∈ H(Lm) and Lm ample;
(iii) if θ ∈ Amp(X), then ϕ can be written as the limit of a decreasing

sequence in Hdom(θ) (see Definition 3.8).
Remark 12.19. — A version of (iii) was proved in [26, Proposition 4.7],

using the Bedford–Taylor capacity instead of the energy functionals.

This implies in turn that psh functions are non-constant only on relatively
small subsets of Xan, when the ground field k is uncountable.
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Theorem 12.20. — For any θ ∈ N1(X) and ϕ ∈ PSH(θ), there exists
a countable intersection of non-empty Zariski open subsets U ⊂ X such that
ϕ ≡ supϕ on c−1(U).

Recall that c : Xan → X denotes the center map, which is anticontinuous.

Proof. — By Corollary 12.18, we can write ϕ as the limit of a decreasing
sequence of generically finite Fubini–Study functions ϕm. By Lemma 2.24,
for each m there exists a non-empty Zariski open subset Um ⊂ X such that
ϕm ≡ supϕm on c−1(Um). Now supϕm → supϕ (see Example 4.21), and
the result follows with U :=

⋂
m Um. �

Corollary 12.21. — Any pluripolar set E ⊂ Xan is contained in a
countable union of open sets of the form c−1(Z), with Z ⊂ X a strict Zariski
closed subset. If k is uncountable, then E cannot be dense.

Proof. — There exists θ ∈ N1(X) and ϕ ∈ PSH(θ) such that E ⊂ {ϕ =
−∞} ⊂ {ϕ < supϕ}, and the first point thus follows from Theorem 12.20.
When k is uncountable, X cannot be written as a countable union of strict
Zariski closed subsets, and we can thus find p ∈ X(k) such that E is disjoint
from c−1({p}) ⊂ Xan. Now the latter is open and non-empty (as it contains,
for instance, the trivial semivaluation vp,triv). This prevents E from being
dense. �

As a further consequence of Theorem 12.16, we also get a version of
Choquet’s lemma, which will be put to use in Section 13.

Corollary 12.22. — Assume that θ ∈ N1(X) have the envelope prop-
erty. Let (ϕα)α∈A be a family in PSH(θ) that is uniformly bounded from
above. Then there exists an at most countable subset B ⊂ A such that

sup?
α∈A

ϕα = sup?
α∈B

ϕα.

Proof. — By assumption, ϕ := sup?α∈A ϕα is θ-psh. Denote by (Ai)i∈I
the net of all finite subsets of A, and for each i ∈ I set ψi := maxα∈Ai ϕα.
Then (ψi)i∈I is an increasing net in PSH(ω), which converges to ϕ. By The-
orem 12.16, we can find an increasing map m 7→ i(m) such that ψi(m) → ϕ.
Then B :=

⋃
mAi(m) is at most countable, and we have supα∈B ϕα =

supα∈A ϕα on Xdiv, and hence sup?α∈B ϕα = sup?α∈A ϕα on Xan by Corol-
lary 4.23, since both functions are θ-psh. �
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13. Capacities, pluripolar sets, and negligible sets

Assuming the envelope property, we make a more detailed study of pluri-
potential theory, adapting to our setting classical arguments from the com-
plex analytic case. In particular, we prove the fundamental result that neg-
ligible sets are the same as pluripolar sets.

In what follows, X is of dimension n and irreducible. We fix an ample
class ω ∈ Amp(X), and we assume that the envelope property holds for
ω, see Section 5.2. As before, we write V = Vω = (ωn) and MA(ϕ) :=
V −1(ω + ddc ϕ)n for ϕ ∈ E1 = E1(ω).

13.1. Envelopes of lsc functions

Consider an arbitrary function ϕ : Xan → R ∪ {+∞}, and assume that
ϕ is bounded below. By Lemma 5.17, the usc regularization

P(ϕ)? = sup? {ψ ∈ PSH | ψ 6 ϕ}
of the ω-psh envelope P(ϕ) is either ω-psh and bounded, or satisfies P(ϕ)? ≡
+∞.

Theorem 13.1. — Pick any lsc function ϕ : Xan → R ∪ {+∞}, and
assume P(ϕ)? 6≡ +∞. Then

P(ϕ)? = P(ϕ) = ϕ a.e. for MA(P(ϕ)?).

In particular, the orthogonality propertyˆ
Xan

(ϕ− P(ϕ)?) MA(P(ϕ)?) = 0 (13.1)

holds (compare [26, 28]).
Lemma 13.2. — If N ⊂ Xan is a negligible Borel set (see Definition 5.1),

then µ(N) = 0 for all measures of finite energy µ ∈M1.

This strengthens in particular Lemma 9.2, since pluripolar sets are neg-
ligible (Proposition 5.3),

Proof. — By Choquet’s lemma (see Corollary 12.22), there exists an in-
creasing, uniformly bounded sequence (ϕm)∞1 in PSH(ω) such that N ⊂
{ϕ < ϕ?}, where ϕ := limm ϕm pointwise. Recall that ϕ? ∈ PSH(ω), thanks
to the standing assumption that the envelope property holds. On Xdiv we
have ϕ? = ϕ, by Theorem 5.6. Thus ϕm → ϕ? weakly in E1 (and in fact
strongly as well, by Theorem 12.5), and hence

´
ϕm µ →

´
ϕ? µ, by Propo-

sition 9.19. On the other hand, the monotone convergence theorem shows
that

´
ϕm µ→

´
ϕµ. Thus

´
(ϕ? − ϕ)µ = 0, which implies µ(N) = 0. �
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Proof of Theorem 13.1. — Set ψ := P(ϕ)? and µ := MA(ψ). Assume
first ϕ ∈ C0(X), so that ψ = P(ϕ) is continuous and ω-psh. Arguing as
in the proof of [28, Lemma 3.5], set f := ϕ − ψ > 0, and observe that for
t ∈ [0, 1],

ϕt := ψ + tf = (1− t) P(ϕ) + tϕ

satisfies P(ϕ) 6 ϕt 6 ϕ, and hence P(ϕt) = P(ϕ). Thus E(ψ+tf) = E(P(ϕ))
for t ∈ [0, 1], and Corollary 8.6 yieldsˆ

(ϕ− ψ) MA(ψ) = d
dt

∣∣∣∣
t=0

E(ψ + tf) = 0,

and hence ϕ = ψ µ-a.e.

Now consider the general case. Since the Borel set {ψ > P(ϕ)} is negligi-
ble, Lemma 13.2 shows that ψ = P(ϕ) µ-a.e. In particular, ψ 6 ϕ µ-a.e., and
it thus remains to show that µ puts no mass on the open set U := {ψ < ϕ}.

Since ϕ is lsc and Xan is compact, there exists an increasing net (ϕj) in
C0(X) that converges pointwise to ϕ. By Lemma 5.19, the increasing net
ψj := P(ϕj) converges pointwise to P(ϕ). By Theorem 5.6, we thus have
ψj → ψ on Xdiv, and Theorem 12.5 implies that µj := MA(ψj) converges
weakly to µ. By the first part of the proof, µj puts no mass on the open set
Uj := {ψj < ϕj}, and we want to take the limit and deduce that µ(U) = 0;
this will conclude the proof. To do so, suppose µ(U) > 0, and pick a point
v ∈ U ∩ suppµ. Thus ψ(v) < ϕ(v), so there exists j0 such that ψ(v) < ϕj(v)
for j > j0. Set V := {ψ < ϕj0}. Then V is open, v ∈ V and V ⊂ Uj for
j > j0. Since v ∈ suppµ, we have µ(V ) > 0. As µj → µ weakly, we must
have µj(V ) > 0 for j � 0, which contradicts µj(Uj) = 0. �

13.2. The Bedford–Taylor capacity, reprise

Recall from Section 7.7 that we have set, for each Borel set E ⊂ Xan,

Cap(E) = Capω(E) := sup
{ˆ

E

MA(ψ)
∣∣∣∣ψ ∈ PSH,−1 6 ψ 6 0

}
.

Note that 0 6 Cap(E) 6 1 for all Borel sets E ⊂ Xan, and that Cap(X) = 1.

Proposition 13.3. — The function Cap is a precapacity, i.e. it satis-
fies:

E ⊂ E′ =⇒ Cap(E) 6 Cap(E′) (13.2)
for all Borel subsets E,E′, and

Cap
(⋃
m

Em

)
= sup

m
Cap(Em) (13.3)
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for any increasing sequence (Em) of Borel subsets.

It is further subadditive, i.e.

Cap
(⋃

Em

)
6
∑
j

Cap(Em) (13.4)

for any sequence (Em) of Borel subsets, and inner regular, i.e.
Cap(E) = sup {Cap(K) | K ⊂ E compact} (13.5)

for any Borel subset E.

Proof. — The first three properties follow immediately from the defini-
tion of the capacity as the supremum of the Borel measures MA(ψ), and the
last one likewise follows from the fact that these Borel measures are Radon
measures, and hence inner regular on all Borel sets. �

We define the outer capacity of any subset E ⊂ Xan as
Cap?(E) := inf {Cap(U) | U ⊃ E open} .

Trivially, Cap?(U) = Cap(U) for any open U ⊂ Xan, and Cap? is outer
regular, i.e.

Cap?(E) = inf
U open ⊃ E

Cap?(U) (13.6)

for all E. Proposition 13.3 immediately yields:

Proposition 13.4. — The function Cap? is monotone and subadditive,
i.e. the analogues of (13.2) and (13.4) hold for arbitrary subsets of Xan.

As we shall see, Cap? also satisfies the continuity condition (13.3), but
this is much more involved, see Theorem 13.29 below.

Example 13.5. — Every nonempty open subset U ⊂ Xan has Cap(U) >
0. Indeed, U must contain a divisorial valuation v, by density of Xdiv. For
0 < ε� 1, ψ := εϕv − 1 is a candidate in (7.35), and hence

Cap(U) >
ˆ
U

MA(ψ) > εn
ˆ
U

MA(ϕv) > εn. (13.7)

By Proposition 9.6 and Lemma 13.2, we have, on the other hand:

Example 13.6. — Every negligible Borel setN⊂Xan satisfies Cap(N)=0.

As we shall see below, this holds in fact for Cap? as well, see Lemma 13.19.

To conclude this section, we consider the dependence of Cap = Capω on
ω ∈ Amp(X).

Theorem 13.7. — For any ample classes ω, ω′ ∈ Amp(X) there exists
a constant C = C(ω, ω′) > 1 such that C−1 Capω 6 Capω′ 6 C Capω.
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This is a direct consequence of the following more precise result.

Lemma 13.8. — Let ω, ω′ ∈ Amp(X). Then:

(i) if ω 6 ω′, then Vω Capω 6 Vω′ Capω′ ;
(ii) if t > 1, then t−n Capω 6 Captω 6 Capω;

Proof. — If ω 6 ω′, then PSH(ω) ⊂ PSH(ω′) and

Vω MAω(ψ) = (ω + ddc ψ)n 6 (ω′ + ddc ψ)n = Vω′ MAω′(ψ)

for any ψ ∈ PSH(ω) with −1 6 ψ 6 0. This proves (i).

The first inequality in (ii) follows from (i). For the second, suppose
ψ ∈ PSH(ω) and −1 6 ψ 6 0. Then t−1ψ ∈ PSH(ω), −1 6 t−1ψ 6 0,
and the Radon probability measures MAω(t−1ψ) and MAtω(ψ) coincide.
Thus Captω 6 Capω. �

13.3. Quasicontinuity

While ω-psh functions are not continuous in general, they satisfy the fol-
lowing quasicontinuity property, reminiscent of Lusin’s theorem in measure
theory.

Theorem 13.9. — For each ϕ ∈ PSH(ω) and ε > 0, there exists a
compact K ⊂ Xan such that Cap(Kc) 6 ε and ϕ|K ∈ C0(K).

Here Kc := Xan \K.

Corollary 13.10. — Given a sequence (ϕm) in PSH(ω) and ε > 0
there exists a compact K ⊂ Xan such that Cap(Kc) 6 ε and ϕm|K ∈ C0(K)
for all m.

Proof of Theorem 13.9. — After adding a constant, we may assume
supϕ = 0, i.e. ϕ ∈ PSHsup. First suppose that ϕ is bounded. Let (ϕj)j be a
decreasing net in PL(X) ∩ PSH(ω) converging to ϕ, and pick ψ ∈ PSH(ω)
with −1 6 ψ 6 0. By Theorem 10.3

´
(ϕj − ϕ) MA(ψ) → 0 uniformly with

respect to ψ. Using Chebyshev’s inequality and the definition of the Bedford–
Taylor capacity we can thus find, for every integer m > 1, an index jm ∈ I
such that jm+1 > jm and the compact set

Km := {ϕjm − ϕ 6 m−1}

satisfies Cap(Kc
m) 6 2−mε. If we set K :=

⋂
mKm, then Cap(Kc) 6∑

m Cap(Kc
m) 6 ε by countable subadditivity of Cap, and ϕjm → ϕ uni-

formly on K, so that ϕ|K is continuous.
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Consider now a possibly unbounded ϕ ∈ PSHsup and ε > 0. By Lem-
ma 7.47, we can find t > 0 such that K ′ := {ϕ > −t} satisfies Cap(K ′c) 6 ε.
Applying what precedes to the bounded function max{ϕ,−t} gives a com-
pact K ⊂ K ′ such that Cap(Kc) 6 2ε and ϕ|K = max{ϕ,−t}|K is continu-
ous, and we are done. �

Proof of Corollary 13.10. — Pick ε > 0. For each m we find a compact
Km ⊂ Xan such that Cap(Kc

m) 6 ε2−m and ϕm|Km ∈ C0(X). Then K :=⋂
mKm is a compact such that Cap(Kc) 6

∑
m Cap(Kc

m) 6 ε, and ϕm|K is
continuous for all m. �

Remark 13.11. — Corollary 13.10 implies Theorem 11.12. Indeed, argu-
ing as in Example 13.5 (or using the Alexander–Taylor inequality (13.10)
below) shows that given C > 0 there exists ε > 0 such that any v ∈ X lin

with T(v) 6 C satisfies Cap({v}) > 2ε. For any ϕ ∈ PSH(ω), the compact
K provided by Theorem 13.9 must then contain {T 6 C}, and ϕ must thus
be weakly continuous thereon.

13.4. Extremal functions

We now look for functions achieving the supremum in (7.35). Let E ⊂
Xan be any subset. The extremal function of E is

ϕE := sup{ϕ ∈ PSH | ϕ 6 0, ϕ|E 6 −1} = P(−1E). (13.8)
Note that −1 6 ϕE 6 0, and ϕE ≡ −1 on E, since the function ϕ ≡ −1
is a competitor in (13.8). Its usc regularization ϕ?E lies in PSH(ω), by the
envelope property, and also satisfies −1 6 ϕ?E 6 0, but it may happen that
ϕ?E 6≡ −1 on E.

Theorem 13.12. — If K ⊂ X is compact, then

Cap(K) =
ˆ
K

MA(ϕ?K) =
ˆ
K

(−ϕ?K) MA(ϕ?K) =
ˆ
Xan

(−ϕ?K) MA(ϕ?K). (13.9)

We refer to Theorem 13.26 below for a version of this result for arbitrary
subsets of Xan.

Proof. — Since ϕK is the psh envelope of the lsc function −1K , Theo-
rem 13.1 implies that ϕ?K = −1K a.e. for MA(ϕ?K), and henceˆ

Xan
(−ϕ?K) MA(ϕ?K) =

ˆ
K

(−ϕ?K) MA(ϕ?K) =
ˆ
K

MA(ϕ?K).

Since −1 6 ϕ?K 6 0, we have Cap(K) >
´
K

MA(ϕ?K). To prove the
reverse inequality, pick any ψ ∈ PSH(ω) with −1 6 ψ 6 0, and t ∈ (0, 1).
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By Lemma 13.2, tψ > −1 = ϕ?K on K a.e. for MA(tψ), and hence

tn
ˆ
K

MA(ψ) 6
ˆ
K

MA(tψ) 6
ˆ
{ϕ?

K
<tψ}

MA(tψ)

6
ˆ
{ϕ?

K
<tψ}

MA(ϕ?K) 6
ˆ
K

MA(ϕ?K),

where the third inequality follows from the comparison principle, and the
last inequality from the fact that tψ < 0 = ϕ?K outside K a.e. for MA(tψ).
Letting t→ 1 yields the reverse inequality Cap(K) 6

´
K

MA(ϕ?K). �

Corollary 13.13. — The Bedford–Taylor capacity is outer regular on
compact sets, i.e. Cap?(K) = Cap(K) for all compact K ⊂ Xan.

Proof. — On the one hand, Cap?(K) is the decreasing limit of Cap(L)
for L ranging over the directed sets of all compact neighborhoods of K. On
the other hand, (−1L) forms an increasing net of lsc functions converging
pointwise to −1K . By Lemma 5.19, ϕ?L = P?(−1L) therefore converges
strongly to ϕ?K = P?(−1K) in E1, and hence

Cap(L) =
ˆ

(−ϕ?L) MA(ϕ?L) −→ Cap(K) =
ˆ

(−ϕ?K) MA(ϕ?K),

by Theorem 10.3. Thus Cap?(K) = Cap(K). �

13.5. Negligible sets are pluripolar

Recall from Section 4.5 that

T(E) = sup {supϕ− supE ϕ | ϕ ∈ PSH} ∈ [0,+∞]

for any subset E ⊂ Xan. The next result is a direct analogue of [75, Propo-
sition 7.1], itself an adaptation of the Alexander–Taylor inequality [1].

Theorem 13.14. — For any subset E ⊂ Xan we have

min{1,T(E)−n} 6 Cap?(E) 6 nT(E)−1. (13.10)

Before entering the proof, we attach to each subset E another extremal
function VE : Xan → [0,+∞], defined as

VE := sup{ϕ ∈ PSH | ϕ 6 0 on E} = P(fE)

with fE : X → R ∪ {+∞} such that fE ≡ 0 on E and fE ≡ +∞ on X \ E.
Note that

supVE = supV ?E = T(E). (13.11)
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Lemma 13.15. — Let E ⊂ Xan be any subset.

(i) If E is pluripolar then V ?E ≡ +∞;
(ii) if E is not pluripolar, then V ?E ∈ PSH(θ);
(iii) if E is open, then V ?E = VE;
(iv) if E is compact and non-pluripolar, then MA(V ?E) is supported

in E.

Proof. — Suppose that E is pluripolar, and pick ψ ∈ PSH(ω) such that
ψ|E ≡ −∞. For any t > 0, we have ψt := ψ + t ∈ PSH(ω) and ψt|E 6 0, so
VE > ψt. Thus V ?E = VE = +∞ on Xdiv, and hence V ?E ≡ +∞, by density
of Xdiv. This proves (i), while (ii) holds by the envelope property. If E is
open, then fE is usc, and hence V ?E = VE , implying (iii). If E is compact
and nonpluripolar, then fE is lsc, so Theorem 13.1 shows that MA(V ?E) is
supported on the set {V ?E > fE} ⊂ E, which proves (iv). �

Lemma 13.16. — For each subset E ⊂ Xan we have
T(E) = sup{T(U) | U ⊃ E open}, (13.12)

and
T(U) = inf{T(K) | K ⊂ U compact} (13.13)

for every open U ⊂ Xan.

Proof. — Denote the right-hand side of (13.12) by S ∈ [0,+∞]. Clearly,
T(E) > S. Pick ϕ ∈ PSH(ω) and ε > 0. Since ϕ is usc, U := {ϕ < supE ϕ+ε}
is an open set containing E, and hence

supϕ 6 sup
U
ϕ+ T(U) 6 sup

E
ϕ+ ε+ S.

It follows that T(E) 6 S + ε for all ε > 0, which proves (13.12).

To prove (13.13), it is enough to show that the decreasing net (V ?K) with
K in the directed set of compact subsets of U converges to V ?U = VU . By
Theorem 4.7, the decreasing limit ϕ := limK V

?
K is ω-psh. For each compact

K ⊂ U , we have V ?K > VU , and hence ϕ > VU > 0. On the other hand,
ϕ 6 V ?K 6 V ?

K̊
= VK̊ , and hence ϕ = 0 on K̊. As this holds for all compact

K ⊂ U , we infer ϕ = 0 on U , and hence ϕ 6 VU . �

Proof of Theorem 13.14. — Assume first that E = K is compact. In
this case Cap?(K) = Cap(K), by Corollary 13.13. Set T := T(K) = supV ?K ,
and suppose first T 6 1. We claim that Cap(K) = 1, which implies (13.10).
Indeed, we always have Cap(K) 6 1, and V ?K − 1 is a candidate in the
definition of Cap(K). By Lemma 13.15, MA(V ?K−1) = MA(V ?K) is supported
on K, and hence

Cap(K) >
ˆ
K

MA(V ?K − 1) =
ˆ

MA(V ?K) = 1.
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Now suppose T > 1. Then T−1V ?K − 1 ∈ PSH(ω) is a competitor in the
definition of Cap(K), so

Cap(K) >
ˆ
K

MA(T−1V ?K − 1) > T−n
ˆ
K

MA(V ?K) = T−n,

which proves the left-hand inequality in (13.10). On the other hand, we have
T−1V ?K − 1 6 ϕ?K , so by Theorem 13.26 we have

Cap(K) =
ˆ

(−ϕ?K) MA(ϕ?K) 6 T−1
ˆ

(T − V ?K) MA(ϕ?K) 6 nT−1,

where the last inequality follows from Lemma 7.32, since V ?K − T ∈ PSHsup,
which implies

´
(V ?K − T ) MA(0) = 0. This proves the right-hand inequality

in (13.10) when E = K is compact.

Assume next that E = U is open. By inner regularity of Cap, we have
Cap?(U) = Cap(U) = sup

K⊂U
Cap(K)

with K ranging over the compact subsets of U , while T(U) = infK⊂U T(K),
by (13.13). Thus (13.10) for compact sets implies the case of open sets.

Finally for an arbitrary subset E we have Cap?(E) = infU⊃E Cap(U)
by definition of the outer capacity, and T(E) = supU⊃E T(U) by (13.12).
Thus (13.10) for open sets implies the general case. �

We are finally in a position to establish the converse of Proposition 5.3.

Theorem 13.17. — Every negligible subset E ⊂ Xan is pluripolar.

Recall that our assumptions here are that X is irreducible and that ω ∈
Amp(X) is a class for which the envelope property holds. However, the
conclusion of Theorem 13.17 holds in other cases too.

Corollary 13.18. — Let X be any projective variety, and assume that
char k = 0 or dimX 6 2. Then any negligible subset of X is pluripolar.

Proof. — By Corollaries 4.41 and 5.5 we may assume X is irreducible.
Our assumptions imply that X admits a resolution of singularities, so by
Lemmas 4.40 and 5.4 we may assume that X is smooth. In this case, The-
orem 5.20 implies that any ample class has the envelope property, and we
conclude using Theorem 13.17. �

To prove Theorem 13.17 we need

Lemma 13.19. — If E ⊂ Xan is a negligible subset, then Cap?(E) = 0.

Proof. — By Choquet’s lemma (see Corollary 12.22) there exists
bounded, countable family (ϕm) in PSH(ω) such that E ⊂ {ϕ < ϕ?}, where
ϕ := supm ϕm pointwise. Pick any ε > 0. By Corollary 13.10, we can find a
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compact K ⊂ Xan such that Cap?(Kc) = Cap(Kc) 6 ε and such that ϕm|K
is continuous for all m. Thus ϕ|K is lsc. For each l ∈ Z>0 define

Kl := K ∩ {ϕ+ l−1 6 ϕ?}.
Since (ϕ − ϕ?)|K is lsc, Kl is compact. It is also negligible, so Cap?(Kl) =
Cap(Kl) = 0, by Corollary 13.13 and Example 13.6. Furthermore, E ∩K ⊂⋃
lKl, and hence

Cap?(E) 6 Cap?(Kc) +
∑
l

Cap?(Kl) 6 ε,

by subadditivity of Cap?; the result follows. �

Proof of Theorem 13.17. — In view of Theorem 4.45, we need to show
that every negligible subset E ⊂ Xan satisfies T(E) =∞. This follows from
Lemma 13.19 and the Alexander–Taylor inequality (13.10). �

13.6. More on envelopes

As a consequence of Theorem 13.17, we have:

Theorem 13.20. — If ϕ : Xan → R ∪ {+∞} is bounded below, then
P(ϕ)? is the largest function ψ ∈ PSH(ω) such that ψ 6 ϕ outside a pluripo-
lar set.

Proof. — On the one hand, P(ϕ)? = P(ϕ) 6 ϕ outside the set {P(ϕ) <
P(ϕ)?}, which is negligible, and hence pluripolar by Theorem 13.17. Assume
conversely that ψ ∈ PSH(ω) satisfies ψ 6 ϕ outside a pluripolar set E. Pick
ρ ∈ PSHsup with ρ ≡ −∞ on E. For each ε > 0, we have (1 − ε)ψ + ερ 6
(1− ε)ϕ 6 ϕ+ Cε on the whole of Xan, with C := − inf ϕ, and hence

(1− ε)ψ + ερ− Cε 6 P(ϕ) 6 P(ϕ)?.
Letting ε → 0 yields ψ 6 P(ϕ)? outside the pluripolar set {ρ = −∞}. In
particular, ψ 6 P(ϕ)? on Xdiv, and hence ψ 6 P(ϕ)? on Xan, by Theo-
rem 4.22. �

As a consequence, we obtain the following partial generalization of Corol-
lary 5.18.

Corollary 13.21. — Consider a decreasing sequence of functions ϕm :
Xan → R ∪ {+∞} that is uniformly bounded below, and set ϕ := limm ϕm.
Then P(ϕm)? ↘ P(ϕ)? in PSH(ω).

Proof. — By Theorem 4.7, ψm := P(ϕm)? converges in PSH(ω) to ψ :=
infm ψm > P(ϕ)?, and we need to show that equality holds. For each m,
we have ψm 6 ϕi outside a pluripolar set Em, by Theorem 13.20. By
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Lemma 4.37, E :=
⋃
mEm is pluripolar, and ψ 6 ϕ outside E. By The-

orem 13.20, we infer ψ 6 P(ϕ)?, and we are done. �

Definition 13.22. — We say that a bounded ω-psh function ϕ∈PSH(ω)
is regularizable from below if there exists an increasing net (ϕj) of functions
in CPSH(θ) converging to ϕ in PSH(ω).

Thus ϕj ↗ ϕ pointwise on Xdiv, and ϕ = sup?j ϕj . It is equivalent to
demand the same property with ϕj ∈ PL∩PSH(ω).

Example 13.23. — Pick a pluripolar subset E ⊂ Xan that contains vtriv
in its closure (see Example 4.42). Choose ρ ∈ PSHsup such that ρ ≡ −∞
on E, and set ϕ := eρ. Then ϕ ∈ PSH(ω) is bounded, but not regularizable
from below. Indeed, any ψ ∈ CPSH(ω) such that ψ 6 ϕ satisfies ψ 6 0 on
E, and hence supψ = ψ(vtriv) 6 0 < supϕ = 1.

Inspired by the main result in [4], we now prove the following charac-
terization of psh functions regularizable from below, reminiscent of that of
Riemann integrable functions among Lebesgue integrable functions.

Theorem 13.24. — For a bounded function ϕ ∈ PSH(ω), the following
are equivalent:

(i) ϕ is regularizable from below;
(ii) ϕ = Q(ϕ)?;
(iii) the discontinuity locus of ϕ is pluripolar.

Here Q(ϕ)? denotes the usc regularization of

Q(ϕ) = sup {ψ ∈ CPSH | ψ 6 ϕ} = P(ϕ?),

cf. Lemma 5.19.

Proof. — That (i) ⇔ (ii) is straightforward. Further, (ii) holds iff ϕ 6
Q(ϕ)? = P(ϕ?)?, which is equivalent to ϕ 6 ϕ? outside a pluripolar set, by
Theorem 13.20. This is also equivalent to ϕ = ϕ? outside a pluripolar set,
which is a reformulation of (iii), since ϕ is usc. Thus (ii)⇔ (iii). �

In dimension n = 1, any ϕ ∈ PSH(ω) is continuous outside vtriv, so since
{vtriv} is non-pluripolar, any ϕ ∈ E∞(ω) that is regularizable from below is
automatically continuous. In higher dimension, the situation is different.

Example 13.25. — Assume dimX > 1, let C ⊂ X be an irreducible
curve, and pick an ample Q-line bundle. We can find m > 1 and sections
s1, . . . , sr, t0, t1 ∈ H0(X,mL) such that C =

⋂
j{sj = 0}, t0|C , t1|C 6≡ 0, and

t1/t0 defines a nonconstant rational function on C. Pick a sequence (al)∞1 of
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distinct elements of k. Then the function

ϕ := 1
m

∞∑
l=1

2−j log max{|s1|, . . . , |sr|, |t1 − ajt0|}

is L-psh, and it is continuous outside Can. However, it is not continuous
at vC,triv, since ϕ(vC,triv) = 0 but ϕ = −∞ on a Zariski dense subset of
Can. As ϕ 6 0, and Can is pluripolar, the function exp(ϕ) is L-psh (see
Corollary 4.11) and regularizable from below, but not continuous.

13.7. More on the outer capacity

The next result generalizes Theorem 13.12.

Theorem 13.26. — For any subset E ⊂ Xan we have

Cap?(E) =
ˆ

(−ϕ?E) MA(ϕ?E). (13.14)

Lemma 13.27. — For any open U ⊂ Xan, ϕU = ϕ?U is the limit of the
decreasing net (ϕ?K)K , where K runs over the directed set of compact subsets
of U .

Proof. — We obviously have ϕ?K > ϕ?U = ϕU for all K ⊂ U . The limit
ψ := limK ϕ

?
K therefore satisfies ψ > ϕU , and it remains to show ψ(v) 6 −1

for all v ∈ U . AsXan is compact and Hausdorff, we can find an open V ⊂ Xan

such that v ∈ V b U . Since ϕU ≡ −1 on U , we must have ϕ?U ≡ −1 on U ,
and hence

ψ(v) 6 ϕ?
U

(v) 6 ϕU (v) = −1,
as claimed. �

Lemma 13.28. — Let E ⊂ Xan be any subset. Then there exists a de-
creasing sequence (Um)∞m=1 of open neighborhoods of E such that Cap(Um)→
Cap?(E) and ϕUm = ϕ?Um ↗ ϕ?E as m→∞.

Proof. — We first claim that there exists a decreasing sequence (U ′m)∞m=1
of open neighborhoods of E such that ϕU ′m ↗ ϕ?E as m→∞. By Choquet’s
lemma, we can find an increasing sequence (ϕm)∞m=1 in PSH(ω) such that
ϕm = −1 on E and ϕm converges weakly to ϕ?E . Set

U ′m := {ϕm < −1 + 1
m}.

Then ϕm − 1
m 6 ϕU ′m 6 ϕE , and hence ϕm − 1

m 6 ϕ
?
U ′m
6 ϕ?E , which proves

the claim.

We can also, evidently, find a decreasing sequence (U ′′m)∞m=1 of open neigh-
borhoods of E such that Cap(U ′′m) decreases to Cap?(E). If we set Um :=
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U ′m ∩ U ′′m, then Cap?(E) 6 Cap(Um) 6 Cap(U ′′m) and ϕ?U ′m 6 ϕ
?
Um
6 ϕ?E for

all m, and the result follows. �

Proof of Theorem 13.26. — When E = K is compact, Cap?(K) =
Cap(K) (Corollary 13.13), and the result thus amounts to Theorem 13.12.

Next consider the case when E = U is open. By inner regularity of
Cap, Cap?(U) = limK Cap?(K), where K runs over the directed set of com-
pact subsets of U . On the other hand, Lemma 13.27 implies that ϕ?K →
ϕU strongly in E1, and hence

´
(−ϕ?K) MA(ϕ?K) →

´
(ϕU ) MA(ϕU ), which

proves (13.14) for open sets. A similar reasoning, based on Lemma 13.28,
yields the case of a general subset E. �

Theorem 13.29. — If (Em) is an increasing sequence of subsets of Xan

and E :=
⋃
mEm, then:

(i) ϕ?Em ↘ ϕ?E, and Cap?(Em)↗ Cap?(E);
(ii) V ?Em ↘ V ?E , and T(Em)↘ T(E).

Proof. — The sequence m 7→ 1Em is increasing, and converges pointwise
to 1E . By Corollary 13.21, the decreasing sequence ϕ?Em = P(−1Em)? thus
converges to ϕ?E = P(−1E)?, and hence Cap?(Em) → Cap?(E), by (13.14)
and the continuity of Monge–Ampère integrals along decreasing nets (The-
orem 7.1). This proves (i).

The proof of (ii) is entirely similar, and left to the reader. �

Appendix A. Dual complexes and PL functions

In this section, we assume char k = 0, and show how the well-known
description of Berkovich spaces over discretely valued fields as limits of dual
complexes carries over to the trivially valued case. In what follows, X is a
projective variety of dimension n.

A.1. Snc test configurations and dual complexes

We use [80] as a reference for what follows. An snc pair (Y,B) over X is
defined as a smooth birational model π : Y → X together with a reduced snc
divisor B =

∑
i∈I Bi on Y . The dual cone complex ∆̂(Y,B) is the simplicial

cone complex whose faces are in 1–1 correspondence with the strata Z of B,
i.e. connected components of a non-empty intersection BJ :=

⋂
i∈J Bi for

some J ⊂ I, the cone σ̂Z attached to Z being identified with RJ>0. In the
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simpler case where all BJ are connected, ∆̂(Y,B) can be identified with the
rational fan ⋃

BJ 6=∅

RJ>0 ⊂ RI>0.

There is a canonical R>0-equivariant topological embedding ∆̂(Y,B) ↪→
Xval, which maps α ∈ σ̂Z ' RJ>0 to the unique valuation valα on X that
is monomial with respect to local equations of the Ei, centered on Z, and
satisfies valα(Ei) = αi. There is also a continuous retraction

p(Y,B) : Xval −→ ∆̂(Y,B),
defined as follows. If the center c(v) ∈ X lies outside B, i.e. v(B) = 0, p(Y,B)

maps v to the apex of ∆̂(Y,B). Assume now c(v) ∈ B, let (Bj)j∈J be the set
of irreducible components of B containing c(v), and let Z be the connected
component of BJ containing c(v). Then p(Y,B)(v) is the element of σ̂Z ' RJ>0
with coordinates (v(Bi))i∈J .

Snc pairs over X form a directed poset, and the retractions p(Y,B) induce
a homeomorphism

Xval ' lim←− ∆̂(Y,B),
see [80, Theorem 4.9]. This is further compatible with the PL structure of
Xval, in the sense that a function ϕ on Xval is in PLhom(X) iff ϕ is the
pullback of a usual homogeneous PL function on ∆̂(Y,B) for some (Y,B);
indeed, this follows from the description of PLhom(X) in terms of Q-Cartier
b-divisors.

Assume now that X is smooth, and consider an snc test configuration X
for X, i.e. a test configuration such that X is nonsingular and X0,red is snc.
By Hironaka’s theorem, snc test configurations are cofinal in the directed set
of all test configurations for X.

Let X0 =
∑
i∈I biEi be the irreducible decomposition. Applying the above

considerations to the reduced snc divisor X0,red provides a natural realization
of the dual cone complex

∆̂X := ∆̂(X ,X0,red)

as a set of monomial valuations valα ∈ X val, which are further k×-invariant,
by Gm-invariance of X0. The condition valα($) = 1 cuts out a finite simpli-
cial complex

∆X ⊂ ∆̂X ⊂ X val,

whose faces

σZ '

{
α ∈ RJ>0

∣∣∣∣∣∑
i∈J

biαi = 1
}
⊂ σ̂Z ' RJ>0

– 827 –



Sébastien Boucksom and Mattias Jonsson

are equipped with the integral affine structure inherited from ZJ ⊂ RJ (see
e.g. [31, Section 1.3] for details). In particular, the vertices (ei) of ∆X are
in 1–1 correspondence with the irreducible components (Ei) of X0. For any
α ∈ ∆X , the restriction of valα to

k(X) ↪→ k(X ) ' k(X)($)
is a valuation vα ∈ Xval with Gauss extension σ(vα) = valα, and the map
α 7→ vα thus provides a factorization

∆X ↪→ Xval ↪→ X val.

As above, there is also a natural continuous retraction
pX : Xan −→ ∆X ,

and we can now state the following trivially valued version of the well-
known description of the Berkovich analytification as the limit of dual com-
plexes of snc models, something that goes back to the fundamental work of
Berkovich [8].

Theorem A.1. — For any smooth projective variety X over k of char-
acteristic 0, the retraction maps pX : Xan → ∆X induce a homeomorphism

p : Xan ' lim←−
X

∆X ,

where the limit is over the directed set of all snc test configurations X for
X. For each v ∈ Xan, we further have pX (v) 6 v, and limX pX (v) = v.

For each snc test configuration X , denote by AffQ(∆X ) ⊂ C0(∆X ) the
Q-vector space of functions on ∆X that are rational affine on each face (with
respect to the canonical integral affine structure).

Lemma A.2. — The space PL(X) ⊂ C0(X) satisfies PL(X) =⋃
X p

?
X AffQ(∆X ).

Proof. — Mapping a function f ∈ AffQ(∆X ) to Df :=
∑
i f(ei)biEi ∈

VCar(X )Q defines an isomorphism AffQ(∆X ) ' VCar(X )Q, and it is easy
to see from the definition of pX that f ◦ pX = ϕDf . The rest follows from
Theorem 2.7. �

Proof of Theorem A.1. — The map p is continuous, and Xdiv maps onto
the dense subset lim←−X ∆X (Q) of lim←−X ∆X . SinceXan is compact (Hausdorff),
it is thus remains to show that p is injective. This is a simple consequence
of Lemma A.2, since PL(X) separates the points of Xan (Lemma 2.3).

Now pick v ∈ Xan. That pX (v) 6 v is immediate from the definition of pX .
Since PL(X) is dense in C0(X), it remains to see that limX ϕ(pX (v)) = ϕ(v)
for all ϕ ∈ PL(X), which again follows from Lemma A.2. �
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Corollary A.3. — Let X be a projective variety over k with char k = 0.
Then any v ∈ Xan is the limit of a net (vi) in Xdiv such that vi 6 v for
all i.

Proof. — It suffices to prove that for any t0 > 1 and any neighborhood
U of v in Xan, there exists v0 ∈ Xdiv with v0 6 t0v.

First assume X is smooth. By Theorem A.1, we can find an snc test
configuration X such that w := pX (v) ∈ ∆X ∩ U . Moreover, w 6 v. If
w ∈ Xdiv, then we can take v0 = w, so suppose w 6∈ Xdiv, and let σ ⊂ ∆X
be the unique simplex containing w in its interior. Then dim σ > 0, or else
w ∈ Xdiv.

We claim there exists a continuous function t : σ̊ → [1,∞) such that
t(w) = 1 and w′ 6 t(w′)w for all w′ ∈ σ̊. In view of the embedding ∆X ↪→
Xval ↪→ X val above, this follows from the elementary fact that if α ∈ RJ>0,
then there exists a continuous function t : RJ>0 → R>0 such that t(α) = 1
and α′j 6 t(α′)αj for all α′ ∈ RJ>0 and all j ∈ J . This function can be chosen
as t(α′) = maxj α′j/αj , for example.

Now Xdiv is dense in σ, so we can pick w′ ∈ Xdiv ∩ σ close enough to w
so that t(w′) 6 t0, and then we can pick v0 = w′.

In the general case, let µ : X ′ → X be a resolution of singularities, and
pick v′ ∈ X ′ an with µan(v′) = v. By what precedes, there exists v′0 ∈ X ′ div∩
(µan)−1(U) such that v′0 6 t0v′. We can then choose v0 = µan(v′0). �

A.2. Psh functions and dual complexes

Building on the uniform Izumi-type estimates of [27], we show:

Theorem A.4. — Let X be an snc test configuration, with dual complex
∆X ↪→ Xan. Then:

(i) for each ϕ ∈ PSH(ω), ϕ|∆X is finite-valued, continuous, and con-
vex on each face of ∆X ;

(ii) the set {ϕ|∆X | ϕ ∈ PSH(ω)} is equi-Lipschitz continuous;
(iii) ∆X is a strongly compact subset of X lin.

Proof. — Set K := k(($)). This is a non-Archimedean field with valu-
ation ring K◦ = k[[$]]. Consider the Berkovich analytification Xan

K . Gauss
extension can be viewed as a continuous section σ : Xan → Xan

K of the nat-
ural projection π : Xan

K → Xan.

The pullback of ω is an ample class ωK ∈ N1(XK◦/K
◦), which is inter-

preted as a closed (1, 1)-form with ample de Rham class in [27], and it follows
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immediately from the definitions that ϕ ◦ π is a ωK-psh model function on
Xan
K for each ϕ ∈ PL∩PSH(ω). By [27, Theorem 6.1], ϕ|∆X is thus contin-

uous, convex on each face of ∆X , and Lipschitz continuous with Lipschitz
constant C > 0 only depending on ω.

Since each ϕ ∈ PSH(ω) is a decreasing limit of functions in PL∩PSH(ω),
(i) and (ii) follow. By (i), ∆X is contained in X lin, and (ii) precisely says
that the embedding ∆X ↪→ X lin is Lipschitz continuous with respect to d∞,
see Definition 11.4. By compactness of ∆X , it follows that the inclusion is a
homeomorphism onto its image with respect to the strong topology, which
proves (iii). �

Appendix B. The toric case

The goal of this section is to provide a brief description of various objects
considered in this paper in the context of toric varieties [38, 65].

• Consider an algebraic torus T ' Gnm, with associated dual lattices
M := Hom(T,Gm) and N := Hom(Gm, T ). We have a canonical
embedding M ↪→ k(T )× onto the set of T -invariant functions, and a
dual canonical embedding NR ↪→ T val onto the set of T (k)-invariant
valuations, such that v(u) = 〈v, u〉 for all v ∈ NR and u ∈ M ↪→
k(T )×. There is also a canonical retraction ρ : T val → NR, which maps
v to the linear form on M given by u 7→ v(u).
• A proper (normal) toric variety X corresponds to a rational fan de-
composition Σ of NR, and an ample class ω ∈ Amp(X) to a polyhe-
dron P ⊂ MR (up to translation) with normal fan Σ. The support
function of P is the convex PL function fP : NR → R defined by

fP (v) := sup
u∈P
〈v, u〉,

which is linear precisely on the cones of Σ.
• For any ω-psh function ϕ, the function fϕ : NR → R defined by

fϕ := (ϕ+ fP )|NR

is convex. This sets up a 1–1correspondence between the set PSHtor(ω)
of T(k)-invariant ω-psh functions ϕ on Xan and the set of all convex
functions f : NR → R such that f 6 fP + O(1), the inverse being
given by

f 7−→ ϕ := ρ?(f − fP ),
with ρ : Xval = T val → NR the retraction.
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• The latter set of convex functions is in turn in 1–1 correspondence
with the set P of all lsc convex functions g : P → R ∪ {+∞}, via the
Legendre transform

g(u) = f∨(u) = sup
v∈NR

(〈v, u〉 − f(v)) ,

f(v) = g∨(v) = sup
u∈P

(〈v, u〉 − g(u)) .

• For any bounded ϕ ∈ PSHtor(ω), the real Monge–Ampère measure
MAR(fϕ) of the convex function fϕ = fP + O(1) is a positive mea-
sure on NR of total mass VP := vol(P ) = (ωn)/n!, and the non-
Archimedean Monge–Ampère measure of ϕ satisfies

MAω(ϕ) = V −1
P ι? MAR(fϕ)

with
ι : NR ↪→ T val = Xval ⊂ Xan

the inclusion. Furthermore, f∨ϕ is bounded on P , and

Eω(ϕ) = −
 
P

f∨ϕ . (B.1)

• Equation (B.1) remains valid for all ϕ ∈ PSHtor(ω), and shows that

ϕ ∈ E1
tor(ω)⇐⇒ f∨ϕ ∈ L1(P ).

Furthermore, ϕi → ϕ strongly in E1
tor(ω) iff f∨ϕi → f∨ϕ in L1(P ).

• For any v ∈ NR ⊂ X lin, the function ϕv ∈ CPSH(ω) satisfies

fϕv (w) = fP (w − v) + fP (v).

In particular, Tω(v) = fP (v) + fP (−v) = fP+(−P )(v).
• As in [9, Proposition 5.7], the energy of a probability measure µ on
NR ⊂ Xan coincides with the optimal cost CP (µ) of transporting the
measure µ to λP with respect to the cost function cP : NR×P → R>0
given by

cP (v, u) := fP (v)− 〈v, u〉.
Indeed,

E∨ω(µ) = sup
ϕ∈E1

tor(ω)

(
−
 
P

f∨ϕ −
ˆ
NR

ϕµ

)
= sup
ϕ∈C0

b
(NR)

(
−
 
P

(fP + ϕ)∨ −
ˆ
NR

ϕµ

)
,

and Monge–Kantorovich duality yields

E∨ω(µ) = inf
Λ

ˆ
NR×P

cP (v, u) Λ = CP (µ),
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where Λ ranges over all probability mesures on NR × P with
marginals µ and λP . In particular, we have for any v ∈ NR

E∨ω(δv) = fP (v)− 〈v, uP 〉 = sup
P
v −

 
P

v,

with uP ∈ P the center of mass.
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