2022 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN) | 978-1-6654-7334-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/NFV-SDN56302.2022.9974617

FORTIFY: Software Defined Data Plane Resilience

Umar Farooq*§, Mubashir Anwar', Haris Noor, Rashid Tahir'f, Santhosh Prabhu¥é, Ali Kheradmand!$,
Matthew Caesarf, Fareed Zaffar**
* Amazon Web Services, ”Google, **LUMS, TUTUC, T'Univ. of Prince Mugrin, fUniv. of Wisonsin Madison, "VMware

Abstract—Given the scale and mission-critical nature of
production networks today, it is essential to solidify their resilience
to link failures. Building this resilience in each application separately
is not scalable. In order to minimize downtime, at least some
degree of resilience should be built directly into the data plane. Fast
Failover groups in OpenFlow offer a mechanism to achieve this, but
programming them introduces additional complexity to the existing
arduous task of developing an SDN controller application. In this
paper, we discuss how this complexity can be decoupled from the
controller implementation. We introduce FORTIFY, a transparent
resiliency layer that incorporates data plane fault tolerance into
any existing controller application without any modification to
it. FORTIFY operates as a shim layer between the controller and
the data plane, and dynamically transforms the data plane rules
computed by the controller to use Fast Failover groups. FORTIFY
can be used off-the-shelf, or customized programmatically to choose
specific types of backup paths. Experimental results collected on
a production testbed demonstrate that FORTIFY is a practical,
high-performance solution to data plane fault tolerance in SDNs.

I. INTRODUCTION

Software Defined Networking (SDN) has been shown to be ca-
pable of bringing valuable benefits such as increased programma-
bility, fine-grained control, and convenient management of large-
scale networks. These benefits make SDNs attractive for critical
domains such as finance [1], military [2] and healthcare [3]. Given
the strategic nature of such networks, it is imperative that a high
degree of availability and resilience be built into them. For exam-
ple, even a minor disruption in a military network can result in
a national security incident by providing a malicious attacker an
opportunity to infiltrate, exploit, and disable vital services [4], [5].

To this end, there has been an extensive amount of past
work to devise protection and restoration schemes for computer
networks, both SDN and non-SDN [6]-[10]. Approaches for
protection focus on pre-determined failure recovery, often
leveraging the notion of protecting a “primary” path with a
“backup” path allocated for use in the case of failure. In contrast,
restoration involves dynamically trying to restore connectivity
in case of a failure. While promising, both techniques have
their corresponding set of challenges. Protection, for instance,
provides speedy recovery at the cost of allocating resources in
advance, which in practice often limits the scope of the approach
to a limited set of failure scenarios (as resources are limited). On
the other hand, restoration is more flexible in terms of handling
diverse failure conditions, however the approaches in this
category are generally slower compared to the aforementioned
protection mechanisms [11], resulting in higher downtimes.
Given that even milliseconds of downtime can cause huge
losses to organizations, restoration-based schemes may often
simply be impractical for larger commercial organizations [12].

§Work was fully performed while at UIUC.

978-1-6654-7334-7/22/1.00 ©2022 |IEEE

6

In their nascency, SDNs relied solely on restoration-based
schemes for fault tolerance. OpenFlow 1.0, for instance, requires
the software controller to detect failures, and perform necessary
modifications to the data plane in order to restore connectiv-
ity [13]. Over the years however, there has been an increased
focus on protection through so-called data plane fault tolerance.
Data plane fault tolerance refers to the ability of the network data
plane to handle failures without involvement of the control plane,
allowing for near-instantaneous recovery. In OpenFlow 1.3, data
plane fault tolerance is enabled through a feature called Fast
Failover, which constantly monitors switch interfaces and reroutes
traffic through backup paths as required in the event of failures.

While data plane fault tolerance techniques make it possible
for SDNs to provide high availability, they are by no means
straightforward. Given their layered design, SDNs require the
administrators to write their own control plane logic, which is
filtered down to the layers below. To have admins additionally
program for data plane fault tolerance makes the task of network
management significantly more challenging and laborious. In
contrast, protection schemes in non-SDN networks, such as
MPLS link protection [14], takes this burden away from the
administrator altogether. We believe this simplicity is one of the
major reasons why, in spite of the many advantages of SDNs,
most production networks continue to operate legacy solutions.

This problem has gained widespread traction in the networking
community. Simplification of SDN programming, including for
fault tolerance, has been attempted by numerous works in the
past [9], [15]-[20]. There exist a multitude of programming
frameworks and libraries for SDN programmers to use when
writing their controllers. Proposed solutions typically provide
a programming library or framework to automate certain
tasks, ranging from computing paths to installing backup rules.
However, these works still require the administrators to either
modify their applications to incorporate these libraries or rewrite
the application in a new domain-specific language [15].

In this paper, we propose a solution that builds on the
philosophy [21] that functional and performance goals in SDN
should be orthogonal and an SDN application developer should
be able to focus purely on the functional aspects. Specifically,
fault tolerance, being a performance goal, should be handled
automatically and be agnostic to the functional goals of the
application. To meet this objective, we introduce FORTIFY, an
automated failure tolerance layer which provides data plane fault
tolerance by transparently integrating with any SDN controller
and providing the resilience needed for production networks.
The proposed system quickly reacts to network failures (even
multi-link failures) and reroutes traffic dynamically onto
pre-computed backup paths to minimize downtime and eliminate
delays incurred from control plane processing. We demonstrate

Authorized licensed use limited to: University of lllinois. Downloaded on June 29,2023 at 22:25:29 UTC from IEEE Xplore. Restrictions apply.

Original Rule to install

if ip =x.x.x.x, out port 1

Configuring
rule to use
Fast Failover|
group v

if ip =x.x.x.x, out group 1

Actual Rule installed

Group 1

watch port 1; out port 1
Fast Failover group for
port 1. Back up path
uses port 4

watch port 4; encapsulate with
MPLS label, out port 4

Fig. 1. Original rule for making a routing decision is modified to use a
fast failover group entry in a group table instead of directly forwarding
the packet to the specified out port.

that FORTIFY can be deployed in conjunction with various
OpenFlow controller applications and platforms, even with
controllers written for OpenFlow 1.0, which has no support
for data plane fault tolerance. Our experiments show that
FORTIFY achieves near-instantaneous data plane fault tolerance,
and incurs very little overhead in regular network environments.

In summary, this work presents the design and implementation
of an SDN fault tolerance framework that:

Provides automatic multi-link failure resilience proactively
in the data plane with tolerable overheads.

Is controller-agnostic and seamlessly integrates with various
types of proactive and reactive controllers without affecting
their functionality.

Allows for customizability of backup paths to take into
consideration various administrator-defined constraints (such
as including certain nodes and links and avoiding others).
Translates between different OpenFlow versions on the fly
to ensure that the fault tolerance mechanisms provide a
consistent and compatible view across deployments.

II. OVERVIEW OF OPENFLOW FAST FAILOVER

The OpenFlow protocol [22] is used for communication
between an OpenFlow controller and OpenFlow-enabled network
switches. The controller disseminates rules through OpenFlow
messages to switches for routing traffic. These rules are installed
in switches’ flow tables, and forward traffic by matching against
the rules. Newer versions of OpenFlow allow a set of ports to be
represented as a single entity called a group for packet forwarding
[23]. Groups are stored in a group table, whose entries are made
up of a group ID, group type and a set of action buckets, which
contain a set of actions related to each individual port in the
group. Data plane fault tolerance is achieved through a feature
called Fast Failover groups. These groups are installed as group
table entries, and can be chained to flow table entries using group
ID. Each action bucket in a fast failover group entry monitors the
liveliness of associated port. Whenever a port (or associated link)

goes down, action buckets are looked up in the group table entry.

The first action bucket whose corresponding port is live is used
for packet forwarding without additional input from controller.

III. DESIGN

Our approach is designed to be deployed as a shim layer
between the controller and the data plane as can be seen in
Figure 2. A layered approach makes our design easily deployable
to existing SDNs and allows the failure tolerance layer to be
transparent to both the control and the data plane. FORTIFY is
comprised of several modules, which we briefly describe below:

7

‘ Application Layer

Network Applications ‘
‘ Control Layer (Control Plane) ‘

FORTIFY
Backup Path .
TOpOI.Ogy Determination & DhrEmie D?ta
Monitor D Plane Mapping

‘ Translation ‘ Substrate State Dynamic Failure

Module Synchronization Handling
==}
-
Infrastructure Layer *;i%/;i
Data Plane,
() g =

Fig. 2. FORTIFY sits between control and the data plane as a shim
layer and intercepts all communication between them.

,-Backup (Match MPLS) -,

é
7,
gy,
- 2o, Pu
50 ith
S Moy MRy

LN

Primary (direct) link ——)e

Fig. 3. Tunneling for backup paths through packet tagging.

3
. /—2\ .
ps Zaf__\a?’
> 4 S Backup #1 Ry
Lﬂ /i » X
&= = Y

- Primary link -

<t
Cl';abne? 5 - Backup#2 <O 6/
\)@/
-
T4

Fig. 4. Design for multi-link failure tolerance. We backtrack along
tunnels to source node for link failures in backup paths.

A. Topology Monitor

The first task for FORTIFY is to acquire network state,
which it does through the Topology Monitor module. Topology
monitor intercepts all control messages between controller and
the data plane to construct and store a graph representation
of the underlying topology. This is possible from the vantage
point of FORTIFY since it sits in the critical path between the
control and the data plane. It does not need to actively poll the
network by itself, since it can utilize the existing communication
between the controller and the network to track changes in the
topology. If any change in the network topology is detected,
the topology monitor updates the graph abstraction accordingly.

B. Backup Path Determination

Once FORTIFY has the current state of the network topology
from the topology monitor, it uses it to compute backup paths for
all links in the network. The user provides the resiliency level 7,
the required number of backup paths for each link, and FORTIFY
uses path computation algorithms to determine r alternative
paths pg,...,p.—1 for each of those links. This path computation
algorithm is configurable according to the required business logic.

Authorized licensed use limited to: University of lllinois. Downloaded on June 29,2023 at 22:25:29 UTC from IEEE Xplore. Restrictions apply.

C. Backup Path Deployment

Once backup paths have been computed for each link, their
forwarding rules get installed into the data plane as fast failover
groups. These rules define tunnels along the backup paths, starting
at the source of a link, and ending at the destination. The tag for
the tunnel is defined uniquely by a triplet: the source of the link,
the port number of the link, and the backup path number. The
source and the port number uniquely identify the failed link [,
while the backup path number identifies the backup path pj for
the failed link. A fast failover group, as illustrated in Figure 1, is
then created at the source device, which forwards traffic along the
primary link while it is up, and when not, redirects the traffic into
the backup tunnels. The overall layout for single link failure is
illustrated in Figure 3. In the event of primary link failure between
two nodes, fast failover groups configured by FORTIFY are uti-
lized to ensure reachability. These groups are used in conjunction
with MPLS routing to route packets along a backup path. If there
are failures along the backup path (multi-link failures), the packet
is routed back to the source node where appropriate forwarding
rules on the fast failover group are triggered to use the next
available backup path using MPLS tunnels as shown in Figure 4.

D. Dynamic Data Plane Mapping

Once the backup path tunnels and the corresponding fast
failover groups have been configured into the data plane,
FORTIFY goes into data plane mapping mode. In this mode,
it intercepts messages between the controller and the data plane,
and modifies them in order to keep the existence of backup
paths from the controller. This is important, since it precludes
controllers from deleting backup paths and allows FORTIFY to be
transparent from the vantage point of the control plane. For this
purpose, FORTIFY modifies two types of openflow messages:
OFPT_FLOW_MOD and OFPT_MULTIPART_REPLY.
OFPT_FLOW_MOD is the message sent to install a new rule into
the data plane and is modified to install the rule in the correspond-
ing fast failover group instead. OFPT_MULTIPART_REPLY is
a message from the data plane to the controller to acknowledge
or report installed rules and is modified to extract individual
forwarding rule(s) intended by controller from the fast failover
group configured by FORTIFY. This allows FORTIFY data
plane logic to be transparent to the controller.

E. Translation Module for different versions of OpenFlow

FORTIFY also has a translation module which provides
compatibility between different versions of OpenFlow running
in the control and the data plane. This translation module
automatically infers the version of OpenFlow running on the
controller and translates all messages exchanged to and fro
accordingly. It should be noted that fast failover was introduced
in OpenFlow 1.3 and earlier versions had no notion of it. The
translation module allows the configuration of fast failover
in the data plane even if the controller is running on earlier
versions of OpenFlow that did not support it. This not only
reinforces our claim that the controller can be left unmodified
for achieving failure resilience, but also demonstrates that our
design is robust against the challenges of practical deployment.

8

F. Dynamic Failure Handling

Like all networks, SDNs are prone to both transient and
permanent link failures. Transient failures can cause unnecessary
convergence, leading to high control traffic in the data plane.
To prevent this, FORTIFY provides the option to delay sending
updates about link failures to the controller, handling transient
link failures seamlessly in the data plane without any additional
traffic overhead in the control plane or data plane.

However, if there is a permanent failure on a backup path,
the primary link would be left without any failover options and
the network would be prone to frequent outages whenever such
a primary link goes down, rendering any resiliency mechanisms
ineffective. To mitigate such occurrences in our design, we
employ the use of our topology monitor, which consistently
monitors the state of the data plane after the initial configuration
of the fast failover groups. Whenever a link is down for more
than a specified threshold, we recompute the backup paths
(provided they exist) and incrementally update the fast failover
groups for the affected links accordingly. This design choice
ensures that our system is robust to dynamic failures and adapts
to changing network topologies owing to link failures beyond
a timeout threshold. By localizing such failure handling with
incremental updates, we also ensure that any valid previous
computations for backup paths are fully leveraged and the
controller does not have to redo any work immediately.

Our technique for providing transparent and automatic failure
resilience through FORTIFY is summarized in Algorithm 1.

Algorithm 1

1: Run topology monitor to get the state of network G =(V,E)
: for I, in £ do
Compute backup path set S, using computeFFRules
end for
while controller is active do
Accept socket connection for router
Create thread toCtrl for ry via callback handleComm
Create thread toRouter for ry via callback handleComm
: end while
: procedure handleComm
msg < parse message received from listening socket

if msg.type == OFPT_FEATURES_REPLY then
13: Configure FF group in 7y
14: Configure MPLS tunnels in 7
15: else if msg.type == OFPT_FLOW_MOD then
16: Modify msg.rule to use FF group
17: else if msg.type == OFPT_MULTIPART_REPLY then
18: Modify msg.data to hide FF group from controller
19: end if
20: Send msg to destination
21: end procedure

IV. IMPLEMENTATION

We have implemented our prototype in C++. Our
implementation supports controllers running both OpenFlow
version 1.0 and 1.3. FORTIFY appears as controller for network
devices and connects as data plane devices to the actual controller.
Whenever a TCP connection is initiated by a router to connect to
the controller on startup, it connects to FORTIFY, which in turn
creates a new socket stream to provide a connection with the
actual controller and maintains state for both these socket streams.
Therefore, in effect we get complete visibility into all messages
being exchanged between the data plane and the control plane.

Authorized licensed use limited to: University of lllinois. Downloaded on June 29,2023 at 22:25:29 UTC from IEEE Xplore. Restrictions apply.

We now describe the different APIs in our current prototype
and the implementation choices that make this shim layer
transparent and how it integrates with the control and data
planes seamlessly.

A. API for Backup Path Computation

To support customizability of backup paths, we support
an extensible interface, computeFFRules, where a path-
finding algorithm is used to find backup paths. By default,
computeFFRules uses Boykov-Kolmogorov (BK) algorithm
[24] to compute edge-disjoint backup paths with resiliency level
= 2 (i.e. two backup paths for every link). BK algorithm uses
a modified version of maxflow to compute edge-disjoint/node-
disjoint paths between any given pair of nodes in the network.
However, as described in section III-B, the user can use
this interface to specify backup paths for each link failure.
Consequently, any policy for specifying backup paths can be
implemented in the network through this interface.

B. API for Installing Fast Failover

This API is invoked after communication is established
between the controller and any data plane switch across
our shim layer. It installs the backup paths computed using
computeFFRules into the data plane. We use MPLS as
an example technology for path tunneling. For every new
forwarding rule installed on a switch by the controller, a fast
failover group is also installed so that backup paths can be used
in case of a link failure. We use MPLS tags to identify backup
routes and new rules are installed along the backup paths to
support reachability under failures.

C. API for OpenFlow Version Translation

In the current implementation, FORTIFY provides compat-
ibility between controllers operating on OpenFlow 1.0 and data
plane devices running on OpenFlow 1.3. We chose to implement
the translation module for OpenFlow 1.0 and 1.3 as a proof of
concept, but our design does not depend on these versions and
can be extended to cater to different versions. The translation
module for different versions of OpenFlow as discussed in
section III-E is also exposed as an API. It handles all the logic
for translating messages from OpenFlow 1.0 to OpenFlow 1.3
and vice versa. The main method that we export as part of this
API is processMessage which we describe as follows.

All OpenFlow packet translations need appropriate version type
to be set in the packet header in order to be interpreted correctly
at the destination. However, in addition to this, some OpenFlow
message types need complete reorganization in the packet body
as well. In our current implementation, we support translation
for the OpenFlow message types as summarized in Table I'.

V. EVALUATION

We evaluate our implementation on emulated networks using
Mininet over a Ubuntu 16.04 VM with 8 Gigabytes of RAM and
a single 2.70 GHz Intel(R) Core(TM) i7-7500U CPU. We run our
experiments with two different OpenFlow based SDN controllers:
ONOS and Ryu. In the following sections we describe the
performance and overhead of FORTIFY. We use edge-disjoint
paths, described in section IV-A, as backup paths for each link.

I'This list is specific to the cases we encountered during our experiments
and is certainly not exhaustive

9

_Conlroller

I¢=:>I

Failure Tolerance

= hs
- -L
5] rzl rs =
'I T T - h,
X - -
[N x —

| —

Fig. 5. Experimental setup to test the correctness and performance
of FORTIFY with different controllers.

A. Ryu

We use Ryu REST router application [25] to demonstrate the
performance of FORTIFY on a non-resilient controller. Ryu on
its own is not resilient to link failures and is a suitable choice
to show and assess the effectiveness of our design.

For our experiments with Ryu, we use the topology in
Figure 5. Here, normal communication between hs and hy
occurs through the path hs —r5—r4—hy. The first and second
backup paths for link 75 —74, as calculated by the edge disjoint
algorithm, are r5 —ry—ry—ry4 and r5 —r3—1rg —ry respectively.
We measure the throughput between hs and hy in three different
scenarios i) Without FORTIFY ii) With FORTIFY configured
for single-link failure and iii) With FORTIFY configured for
two link failures. The results can be seen in Figure 6(a).

We observe that without our failover mechanism in place,
throughput goes to zero immediately when the link failure
occurs. This is because the switch cannot reroute traffic on its
own unless rules for failover are installed explicitly. Without
a failover mechanism, the switch simply drops all packets if
the primary link fails. However, with FORTIFY, we find that
the hosts can still communicate with minimal loss in throughput
despite the failure of the primary link between them. Moreover,
for a link configured to have two backup paths, hosts can
communicate even after a link failure in the first backup path.
Even when no failure happens, throughput is comparable to
that of the original, non-resilient network.

Without FORTIFY
~—— With FORTIFY (resiliency level = 1)
~—— With FORTIFY (resiliency level = 2)

B e

ON B OOON B

Transfer Rate (Mbits/s)

0 10 20 30 40 50 60 70

Time (seconds)

(a) Ryu

14
12
10

Without FORTIFY
~—— With FORTIFY (resiliency level = 2)

P R P S Gy SO

Transfer Rate (Mbits/s)

N & O

0 10 20 30 40 50 60 70

Time (seconds)

) . ﬁ;} ONOS .
Fig. 6. Throughput with FORTIFY is comparable to that of the original
network and it prevents drops after link failures. First failure at 1 =
25, second at t = 50s

Authorized licensed use limited to: University of lllinois. Downloaded on June 29,2023 at 22:25:29 UTC from IEEE Xplore. Restrictions apply.

Header modification for version Header and body modification Translation not present but Not supported in OpenFlow v1.0
type required

OFPT_HELLO OFPT_FEATURES_REPLY OFPT_PORT_MOD OFPT_GROUP_MOD
OFPT_ERROR OFPT_PACKET_IN OFPT_TABLE_MOD OFPT_SET_ASYNC

OFPT_ECHO_REQUEST
OFPT_ECHO_REPLY
OFPT_FEATURES_REQUEST
OFPT_PORT_STATUS

OFPT_PACKET_OUT
OFPT_FLOW_MOD
OFPT_MULTIPART_REQUEST
OFPT_MULTIPART_REPLY

OFPT_BARRIER_REQUEST
OFPT_BARRIER_REPLY
OFPT_METER_MOD

TABLE T
TRANSLATION SPECIFICATION FOR OPENFLOW 1.0 AND OPENFLOW 1.3 PACKETS FOR OUR EXPERIMENTS. THE LAST COLUMN REPRESENTS PACKET TYPES THAT
WERE INTRODUCED IN LATER OPENFLOW VERSIONS AND HENCE ARE NOT SUPPORTED IN OPENFLOW VERSION 1.0.

28 BN ONOS without link Failure
I ONOS with link Failure

’%T 26| ™ FORTIFY without link Failure
g BN FORTIFY with link Failure
o
g 24 %
g22 =
E

VL oz = =F % *

20,32 28,48 45,108

Network size (Nodes, Edges)

Fig. 7. Transfer completion time of a 20 MB file on Fat Tree topologies
of different sizes across 40 measurements.

B. ONOS

In order to measure the generalizability of our technique, we
test our implementation on ONOS [26], which is a production-
grade control platform with deployments in the real world. We
use ONOS’s reactive forwarding application to install rules in
switches. The ONOS reactive forwarding application is failure
resilient. but it is not data plane-based failure resilient. During
the time that it takes for the controller application to react to the
failure and install new forwarding paths in the affected switch,
packets get dropped and flow completion times are affected.

To demonstrate the time incurred by reactive controllers in
recovering from link failures, we run throughput measurements
(similar to the one in Section V-A) on the topology shown in
Figure 5 with and without FORTIFY. For experiments with
FORTIFY, we use resiliency level = 2 (i.e. two installed backup
paths for link r5—r4). We measure the throughput between the
two hosts hs and h4. The results can be seen in Figure 6(b). As
expected, there was a drop in throughput upon link failure in case
of ONOS'’s reactive forwarding strategy but no such drop was
seen with FORTIFY, which had proactively installed the backup
paths, thereby providing minimal disruption in the network.

For micro-benchmarking, we use fat tree topologies of different
sizes. Figure 7 shows the flow completion time across 40
measurements of sending a 20 MB file between two hosts with
and without link failure in between. For runs with link failure,
we fail two links that are being used by the flow with a 5 second
gap. We observe that failure recovery mechanism of FORTIFY
consistently outperforms the reactive failure resiliency of ONOS
and completes the flow in significantly lesser time. This is
because unlike ONOS, FORTIFY proactively installs backup
paths and thus does not incur the cost for re-computation of
paths and installation of new flow rules upon link failure.

Moreover, we observe that transfer completion time with link
failures in ONOS increases with the size of network as can
be seen in Figure 7. This increase is due to a higher path re-
computation time due to a larger size of the underlying topology.
FORTIFY does not incur this cost since it has already configured

10

1.0
0.81
0.61
0.4
0.21
0.01

Without Translation Module
—— With Translation Module

0 10 20 30

Update Latency (milliseconds)

Fig. 8. CDF for OpenFlow message processing times in FORTIFY
for n = 5 experimental runs on Ryu REST Router.

backup paths in the data plane proactively and allows the switches
to failover immediately in such an event. We also note that
FORTIFY does not significantly increase the flow completion
time when there are no link failures. This is because the only
overhead of FORTIFY in the data plane is the addition of flow
rules and on the fly modification of only two OpenFlow messages,
which does not have any major impact on flow completion times.
The preliminary experiments above demonstrate that
FORTIFY provides automatic failure resilience without incurring
major overheads. Furthermore, with controllers that already have
some notion of fault tolerance in the control plane, FORTIFY
performs better than their built-in mechanisms. We discuss
FORTIFY’s overheads in further detail in the next section.

C. Evaluating Backup Path Computation

1) Control Overheads: We now investigate the overhead of
our failure tolerance layer. Figure 8§ shows the CDFs for message
processing latency incurred by FORTIFY from Dynamic Data
Plane Mapping as described in section III-D. Here we observe
the latency cost incurred by FORTIFY each time a message is
transmitted between the control plane and the data plane. From
the processing time of all messages, we can see that most of
them are processed very quickly since around 95% of the traffic
requires less than 2 ms to be completely processed. This can
be attributed to the fact that most messages do not require any
modifications and are simply allowed to pass through. We also
see that operating the controller and network switches in different
versions of OpenFlow does not incur significant additional
overhead in terms of network performance. Although our failure
tolerance layer now conducts one more step in translating the
packets between OpenFlow versions, in addition to failover
configuration, we can still see that most of them are processed
quickly. Around 90% of the packets require less than 2 ms to
be completely processed with the translation module in effect.

2) Computational Overhead: We now evaluate the compu-
tational overhead of calculating backup paths. This overhead
would vary depending on user’s implementation of the interface

Authorized licensed use limited to: University of lllinois. Downloaded on June 29,2023 at 22:25:29 UTC from IEEE Xplore. Restrictions apply.

to calculate backup paths. Here we measure the edge-disjoint
backup paths computation time for single-link and two-link
failures in data center networks (fat tree topologies) of different
sizes as illustrated in Figure 9(a). We observe that the time taken
to compute backup paths is in the order of seconds depending
on the size of the network and is within an acceptable range in
terms of performance overhead. In addition to this, the cost for
computation is encountered only during the initial deployment
of the network with FORTIFY or whenever an incremental
update is needed in the event of a permanent network failure as
described in section III-F. We argue that the sparse invocation
of the interface to compute backup paths (computeFFRules)
provides a reasonably low overhead on the overall network
performance and resources being consumed in FORTIFY.

3) Data Plane Overhead: Figure 9(b) shows that even for

large Fat Tree topologies with high resiliency requirements (i.e.

resiliency level of 1 and 2), FORTIFY adds flow rules in the
order of hundreds. Modern switches support tens of thousands
of flow rules per switch, which is why this cost is justifiably
low and does not hamper FORTIFY’s deployability.

-
Q
2

resiliency level = 1
mmm resiliency level = 2

resiliency level = 1
mmm resiliency level = 2

-
=)
1,
=N
[=]
o o

-
o
=

1072

Time (Seconds)

Flow Entries Installed
w
(=]

0
20,32 28,48 45108 80,256 320,2048
Network size (Nodes, Edges)

20,32
Network size (Nodes, Edges)

28,48 45,108 80,256 320,2048

(a) Time taken to compute edge-(b) Average number of extra flow en-
disjoint backup paths. tries installed on each switch.

Fig. 9. Overhead measurement experiments performed on data center
networks of different sizes using FORTIFY.

VI. RELATED WORK

There has been extensive work done on providing failure
resiliency in networks. Older works focused on rerouting
mechanisms that involve local decisions by routers for failure
resilience. For standard link state routing protocols such as ISIS
or OSPF, whenever a failure or repair is detected, the network is
flooded with link state packets, reflecting the update in network
topology. Following this, each router updates its routes using
shortest path algorithm such as the Dijkstra’s algorithm. However,
there are inherent issues regarding network stability if the routers
do all the above for transient changes in the network topology

such as a link going up and down several times in a second [6].

Newer work focuses on failure resiliency in the context of
SDNs by using failover to automatically switch to redundant
or standby paths when there is a link or node failure [27]. For
our purposes, we consider the rerouting of packets through an
alternative path in case of link or node failure as failover. Since
these alternative paths are pre-established before an actual failure,
the switches can immediately failover to the backups in the
event of failure and therefore this mechanism is referred to Fast
Failover [9]. Solutions in this domain include linking external
libraries to controllers to provide fault tolerance [9], [19], using
designated network programming languages to specify both
the functional and failure tolerance requirements [15], [28],
and OpenFlow extensions [17], [20], [29] to compute and

11

install feasible sets of paths. These solutions restrict the user to
specified programming language or require separate integration
into the controller. Our goal is specifically to curb extra work on
controller integration and build a layer which is transparent to
a controller, in that it requires little to no modification from the
vantage point of the controller or a network administrator. More
recently, designs for failure resiliency through programmable
data planes and P4 [30] have emerged [31]. However, these
designs require changes to the hardware of the switches or
implementation of the P4 language and cannot easily be used
with current networks. We demonstrate that FORTIFY can be
used without any modifications to existing controllers.

VII. DISCUSSION AND LIMITATIONS

We now discuss various design considerations of FORTIFY.
First, FORTIFY’s current position in the SDN stack means that
it needs to be situated in the critical path between the data plane
and the control plane. This can be achieved by instantiating
FORTIFY on the same machine as the controller or deploying
it as a distributed fabric or cloud service to achieve better
scalability and resilience of its own (i.e. the FORTIFY layer
itself has redundant instances running concurrently). However,
it is important to note that irrespective of the deployment
mode, FORTIFY does not interfere with existing controller
implementations, nor does it require any prior knowledge about
the controller’s semantics for complete and seamless integration.
The proposed design is indeed controller-agnostic and can thus
be used to provide failure resilience in existing controllers.

Second, our system is programmable for different failure
reaction strategies. For example, a plethora of work has been
done in the area of correlated failures and how to mitigate their
effect in large IP networks [18], [32], [33]. Since the backup
path computation component is customizable, it can be used to
compute different possible backup paths for a link according to
the user’s needs in various capacities, such as to address QoS
requirements. The failover paths installed in fast failover groups
can be those which are in accordance with such failure reaction
strategies. Users can also incorporate their own path selection
strategy for choosing backup paths. All this body of work can
be easily incorporated into the design of FORTIFY by extending
the programmable interface to implement such techniques.
However, there is an inherent tension between transparently
achieving fault tolerance and having customizable resiliency.
Our belief is that having a good set of pre-defined configurations
is a good balance between the two. We consider it somewhat
similar to how compilers specify optimization levels - it is not
really a full blown API, but still allows some degree of control.

Third, our approach is agnostic to being a layer beneath the
controller or a module in the controller. The key idea of FORTIFY
is to handle fault-tolerance automatically - without the need for
explicit setup by the application developer. The current choice
of situating failure resiliency in a shim layer is made to allow
existing controllers to work with FORTIFY without modifications.
The fact that this was possible to do further shows that failure
resiliency is orthogonal to the rest of the controller logic and can
be addressed separately. Such a layered approach to abstract com-
plexity into another layer has been used previously in SDNs [34]
and our work takes a first step by evaluating the pros and cons of
incorporating resilience as a first class primitive in the controller.

Authorized licensed use limited to: University of lllinois. Downloaded on June 29,2023 at 22:25:29 UTC from IEEE Xplore. Restrictions apply.

In this paper,

VIII. CONCLUSION

we the discuss the architecture and

implementation of FORTIFY, a fault tolerance shim layer in
the SDN stack that provides fast, controller agnostic data plane
fault tolerance in SDN environments. FORTIFY leverages
Fast Failover group feature introduced in OpenFlow 1.3 to
automatically and transparently handle multi-link failures without
complicating the control plane. We provide a simple interface
to the user for customizing backup paths and provide different
path computation algorithms to help in the implementation of
the interface. Our work also provides a translation unit to make
controller applications running different versions of OpenFlow
seamlessly compatible with the data plane, provided data plane
components run OpenFlow versions that have Fast Failover
group functionality available. We demonstrate that our technique
is sufficient for fulfilling functional objectives of making a
data plane based failure resilient network from non-resilient
controller applications and can be easily extended to provide
QoS guarantees as needed. Our experiments demonstrate that our
design has low performance overhead and can be easily deployed
in existing production environments with minimal disruption.

[1

—

[2

—

[3]

[4

=

[5

=

[10]

[11]

[12]

[13]

[14]

REFERENCES

“The new network: SDN for financial services,” [Online; accessed
25-Feb-2020]. [Online]. Available: https://sdn.cioreview.com/cxoinsight/
the-new-network-sdn-for-financial-services-nid-23289-cid- 147.html

V. Gkioulos, H. Gunleifsen, and G. K. Weldehawaryat, “A systematic
literature review on military software defined networks,” Future Internet,
vol. 10, no. 9, p. 88, 2018.

“SDN: Powering the next generation of healthcare networks,”
2019, [Online; accessed 25-Feb-2020]. [Online]. Available:
https://cbcommunity.comcast.com/community/browse-all/details/
sdn-powering-the-next- generation-of-healthcare-networks

The Washington Post, “Russian military was behind ‘notpetya’ cyberattack
in ukraine, cia concludes,” [Online; accessed 26-Feb-2020]. [Online].
Available: https://tinyurl.com/y9gph48o

“Homeland security creates anti-hacking center
to protect industries,” [Online; accessed 26-Feb-
2020]. [Online]. Available: https://www.cnet.com/news/

homeland- security-creates- center- to- protect-industries-from-hacks/

G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Feasibility
of ip restoration in a tier 1 backbone,” IEEE Network, vol. 18, no. 2,
pp. 13-19, 2004.

L. Sahasrabuddhe, S. Ramamurthy, and B. Mukherjee, “Fault management
in ip-over-wdm networks: Wdm protection versus ip restoration,” IEEE jour-
nal on selected areas in communications, vol. 20, no. 1, pp. 21-33, 2002.
A. Fumagalli and L. Valcarenghi, “Ip restoration vs. wdm protection: Is
there an optimal choice?” IEEE network, vol. 14, no. 6, pp. 34-41, 2000.
Y.-D. Lin, H.-Y. Teng, C.-R. Hsu, C.-C. Liao, and Y.-C. Lai, “Fast failover
and switchover for link failures and congestion in software defined
networks,” in 2016 IEEE International Conference on Communications
(ICC). IEEE, 2016, pp. 1-6.

S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Enabling fast failure recovery in openflow networks,” in 2011 S8th
International Workshop on the Design of Reliable Communication
Networks (DRCN). 1EEE, 2011, pp. 164-171.

D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester, “Software
defined networking: Meeting carrier grade requirements,” in 2011 18th IEEE
Workshop on Local Metropolitan Area Networks (LANMAN), 2011, pp. 1-6.
“Amazon found every 100ms of latency cost them 1% in sales,” [Online;
accessed 11-Dec-2020]. [Online]. Available: https://www.gigaspaces.com/
blog/amazon-found-every- 100ms- of-latency-cost-them- 1-in-sales/

0. N. Foundation, “Openflow switch specification version 1.0.0,” 2009.
[Online]. Available: https://www.opennetworking.org/wp-content/uploads/
2013/04/openflow-spec-v1.0.0.pdf

“Mpls traffic engineering fast reroute — link protection,” [Online;
accessed 11-Dec-2020]. [Online]. Available: https://www.cisco.com/en/
US/docs/ios/12_0st/12_0st10/feature/guide/fastrout.html#wp1015327

12

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(32]

[33]
[34]

M. Reitblatt, M. Canini, A. Guha, and N. Foster, “Fattire: Declarative
fault tolerance for software-defined networks,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking, 2013, pp. 109-114.

C. Hannon, D. Jin, C. Chen, and J. Wang, “Ultimate forwarding
resilience in openflow networks,” in Proceedings of the ACM International
Workshop on Security in Software Defined Networks & Network Function
Virtualization, 2017, pp. 59-64.

A. Capone, C. Cascone, A. Q. Nguyen, and B. Sanso, “Detour planning
for fast and reliable failure recovery in sdn with openstate,” in 2015
11th international conference on the design of reliable communication
networks (DRCN). 1EEE, 2015, pp. 25-32.

A. Capone, C. Cascone, A. Q. T. Nguyen, and B. Sanso, “Detour planning
for fast and reliable failure recovery in sdn with openstate,” in 2015
11th International Conference on the Design of Reliable Communication
Networks (DRCN), 2015, pp. 25-32.

N. E. Petroulakis, G. Spanoudakis, and I. G. Askoxylakis, “Fault tolerance
using an sdn pattern framework,” in GLOBECOM 2017 - 2017 IEEE
Global Communications Conference, 2017, pp. 1-6.

C. Cascone, L. Pollini, D. Sanvito, A. Capone, and B. Sansé, “Spider:
Fault resilient sdn pipeline with recovery delay guarantees,” in 2016 IEEE
NetSoft Conference and Workshops (NetSoft), 2016, pp. 296-302.

S. Prabhu, M. Dong, T. Meng, P. B. Godfrey, and M. Caesar, “Let
me rephrase that: Transparent optimization in sdns,” in Proceedings
of the Symposium on SDN Research, ser. SOSR ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 41-47. [Online].
Available: https://doi.org/10.1145/3050220.3050226

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

O. N. Foundation, “Openflow switch specification version 1.3.0,” 2012.
[Online]. Available: https://www.opennetworking.org/wp-content/uploads/
2014/10/openflow-spec-v1.3.0.pdf

Y. Boykov and V. Kolmogorov, “An experimental comparison of
min-cut/max- flow algorithms for energy minimization in vision,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9,
pp. 1124-1137, 2004.

S. Ryu, “Framework community: Ryu sdn framework,” Online. http://osrg.
github. io/ryu, 2015.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“Onos: Towards an open, distributed sdn o0s,” in Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, ser. HotSDN
’14. New York, NY, USA: ACM, 2014, pp. 1-6. [Online]. Available:
http://doi.acm.org/10.1145/2620728.2620744

K. Foerster, A. Kamisinski, Y. Pignolet, S. Schmid, and G. Tredan,
“Bonsai: Efficient fast failover routing using small arborescences,” in 2019
49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2019, pp. 276-288.

H. Li, Q. Li, Y. Jiang, T. Zhang, and L. Wang, “A declarative failure
recovery system in software defined networks,” in 2016 IEEE International
Conference on Communications (ICC), 2016, pp. 1-6.

R. M. Ramos, M. Martinello, and C. Esteve Rothenberg, “Slickflow: Re-
silient source routing in data center networks unlocked by openflow,” in 38th
Annual IEEE Conference on Local Computer Networks, 2013, pp. 606-613.
P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87-95, Jul. 2014. [Online].
Available: https://doi.org/10.1145/2656877.2656890

R. Sedar, M. Borokhovich, M. Chiesa, G. Antichi, and S. Schmid,
“Supporting emerging applications with low-latency failover in p4,”
in Proceedings of the 2018 Workshop on Networking for Emerging
Applications and Technologies, ser. NEAT ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 52-57. [Online].
Available: https://doi.org/10.1145/3229574.3229580

H. Saito, Y. Miyao, and M. Yoshida, “Traffic engineering using
multiple multipoint-to-point Isps,” in Proceedings IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (Cat.
No. 00CH37064), vol. 2. IEEE, 2000, pp. 894-901.

V. Sharma and F. Hellstrand, “Framework for multi-protocol label
switching (mpls)-based recovery,” 2003.

R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKe-
own, and G. Parulkar, “Flowvisor: A network virtualization layer,” 01 2009.

Authorized licensed use limited to: University of lllinois. Downloaded on June 29,2023 at 22:25:29 UTC from IEEE Xplore. Restrictions apply.

