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Abstract

With the advent of automated speaker verification (ASV) systems comes an equal and 

opposite development: malicious actors may seek to use voice spoofing attacks to fool 

those same systems. Various counter measures have been proposed to detect these spoof-

ing attacks, but current offerings in this arena fall short of a unified and generalized 

approach applicable in real-world scenarios. For this reason, defensive measures for ASV 

systems produced in the last 6-7 years need to be classified, and qualitative and quanti-

tative comparisons of state-of-the-art (SOTA) counter measures should be performed to 

assess the effectiveness of these systems against real-world attacks. Hence, in this work, 

we conduct a review of the literature on spoofing detection using hand-crafted features, 

deep learning, and end-to-end spoofing countermeasure solutions to detect logical access 

attacks, such as speech synthesis and voice conversion, and physical access attacks, i.e., 

replay attacks. Additionally, we review integrated and unified solutions to voice spoofing 

evaluation and speaker verification, and adversarial and anti-forensic attacks on both voice 

counter measures and ASV systems. In an extensive experimental analysis, the limitations 

and challenges of existing spoofing counter measures are presented, the performance of 

these counter measures on several datasets is reported, and cross-corpus evaluations are 

performed, something that is nearly absent in the existing literature, in order to assess the 

generalizability of existing solutions. For the experiments, we employ the ASVspoof2019, 

ASVspoof2021, and VSDC datasets along with GMM, SVM, CNN, and CNN-GRU classi-

fiers. For reproducibility of the results, the code of the testbed can be found at our GitHub 

Repository (https:// github. com/ smile slab/ Compa rative- Analy sis- Voice- Spoofi ng).

Keywords Voice spoofing detection · Voice spoofing counter measures · ASVspoof · 

Deepfake speech detection · Speech synthesis · Deepfake audio detection

1 Introduction

Automatic speaker verification systems (ASVs) are now in wide use for authentication, 

e.g., for over-the-phone banking, and are becoming an increasingly important biomet-

ric solution in the current climate of the COVID-19 pandemic to limit the spread of 
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disease. In addition, ASV systems are gaining traction in voice biometric systems and 

IoT devices as described in Malik et al. (2020); Javed et al. (2021). Voice biometrics, 

in particular, are being more widely used across a wide range of industries, including 

automotive, finance, education, and healthcare. Figure  1 shows the global trend and 

projected adoption of speech biometrics and voice assistants. However, although ASVs 

can be used to validate an identity they are prone to spoofing attacks. The statistical 

information presented in Fig.  1, pertains to the voice biometrics market forecast and 

the global voice assistant application market. To gather this data, we conducted exten-

sive research using relevant keywords such as “voice biometrics market forecast” and 

“Global voice assistant application market.” The information was obtained from reputa-

ble sources, including grand view research grandviewresearch (2023) and expert market 

research reports Research (2023).

Spoofing attacks on ASVs can be grouped into Physical Access (PA) attacks and Log-

ical Access (LA) attacks as discussed in  Balamurali et  al. (2019). An example of a PA 

attack is a replay attack, where a hacker records the victim’s voice and replays it to an ASV 

system in order to gain access to the asset the ASV system is protecting as shown in Malik 

et al. (2020). LA attacks, conversely, are comprised of artificial, i.e., machine-generated, 

cloned samples. LA attacks may consist of text-to-speech (TTS) synthesis and VC attacks, 

among others. Again, the objective is to generate realistic voice samples of a target speaker 

in order to compromise the security of an ASV system, and thus gain access to an asset. A 

more recent threat to ASVs and spoofing counter measures is adversarial machine learning 

Szegedy et  al. (2014), where machine learning algorithms may be deceived by injecting 

minor perturbation into the audio sample. According to Szegedy et al. (2014), deep learn-

ing model predictions may be easily manipulated by extremely small perturbations in the 

data.

Several counter measures have been proposed to defeat voice spoofing attacks, and 

these are often comprised of two parts: the first one (front-end) is a feature representation 

scheme for the input speech signal, and the second one (back-end) is a classifier to distin-

guish between bonafide and spoofed samples. The feature descriptor (front-end) should be 

capable of effectively capturing the traits of the dynamic vocal tracts of a bonafide speaker. 

Similarly, the back-end classifier should be able to better learn the distinct traits of bonafide 

and spoofed speech samples in order to accurately discriminate against spoofed speech. In 

contrast to the traditional approach of front- and back-end solutions, in the past few years 

the research community has focused on deep learning and end-to-end solutions to combat 

voice spoofing attacks. Recent efforts toward in finding a unified solution to the problem of 

speaker verification, where a single countermeasure may be applied to several attacks, have 

been attempted, albeit with marginal success. Although these countermeasure solutions are 

Fig. 1  The overall trend analysis of the voice biometrics and voice assistant based systems
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only beginning to be explored, there is a marked need for a unified solution as the way for-

ward in ASV anti-spoofing techniques Javed et al. (2022).

The survey proposed in this paper investigates significant contributions to the ASV sys-

tem development chain. More specifically, the main contributions of our work are:

• In the first work from the perspective of generalizability, and based on a thorough lit-

erature analysis of relevant attacks and counter measures, we present an in-depth over-

view and experimental analysis of the SOTA, development, challenges, and future 

direction of voice anti-spoofing research.
• We present the key limitations of the SOTA counter measures, developed by in-field 

researchers, and present the details of publicly available datasets used to benchmark the 

performance of voice anti-spoofing solutions.
• We address the need for cross-corpus evaluation and generalization by evaluating the 

performance of the featured counter measures, in terms of minimum tandem detection 

cost function (min t-DCF) and equal error rate (EER), on three large-scale, publicly 

available, and diverse datasets, and four different machine learning and deep learning 

classifiers.
• We make available our GitHub repository,1 which contains the code and configuration 

requirements needed to perform the comparative analysis and ensure the reproduciblity 

of the results.

The rest of the paper is structured as follows: Sect. 2 describes the literature selection 

criteria and the existing surveys that have been published to date. Section  3 provides a 

detailed introduction to the possible attacks on ASV systems. Section 4 presents the SOTA 

counter measures developed to encounter voice spoof detection. The datasets developed to 

evaluate the performance of the counter measures presented in Sect. 5. Performance evalu-

ation metrics are presented in Sect. 6. Sections 7 and 8 detail the experimental evaluation 

of counter measures using three different datasets, as well as their internal and cross-cor-

pus evaluation. Sections 9 and 10 present experimental observations and limitations, con-

clusion and future work.

2  Existing surveys on voice anti‑spoofing techniques

2.1  Literature selection criteria

In this survey, we review existing research papers that focus on techniques for detecting 

and countering audio spoofing attacks. A detailed description of the approach and proto-

cols employed for the review is given in Table 1. We also display trends in spoofing attacks 

and counter measures year over year by examining Google Scholar papers released in the 

previous 6 years (2015–2023). Figure 2 depicts the course of the published study.

1 https:// github. com/ smile slab/ Compa rative- Analy sis- Voice- Spoofi ng

https://github.com/smileslab/Comparative-Analysis-Voice-Spoofing
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Fig. 2  Number of papers in the 

area of voice spoofing attacks 

and counter measures by year of 

publication

Table 1  Literature collection protocol

Preparation protocol Description

Purpose To identify current state-of-art voice spoofing attacks and counter measures.

To critically compare both popular approaches and the features used in voice 

spoofing counter measures.

To investigate open challenges in the domain of voice spoofing counter meas-

ures, and paths forward.

Sources Google Scholar, IEEE explore, Springer Link

Query Queries were used on the data sources above for collection of sources: Audio 

Spoof Countermeasure/ Spoofed Audio Detection/ Audio Synthesis Detec-

tion/ Audio Replay Detection/ Audio Spoofing counter measures/ Automatic 

Speaker Verification/ Secure ASV System/ ASV spoofing/ Presentation 

Attacks/ VC/ Adversarial Attacks on ASV/ Voice Replay Attacks/ Anti 

Spoofing counter measures/ Voice Spoofing Detection.

Method Literature was categorized as follows: Audio spoofing detection and counter 

measures based on traditional and deep-learned methods, as well as hand-

crafted features.

Existing voice spoofing attacks, along with adversarial attacks and their 

taxonomy.

An extensive examination, testing and comparison of existing voice spoofing 

counter measures using single and cross corpus evaluation.

Detailed discussion of the research gap, issues, limitation, and future trends in 

voice spoofing detection and counter measures.

Size A total of 150 papers were retrieved using the above query until the search was 

discontinued on 01-10-2023. We selected literature that was relevant to the 

subject of audio spoof detection and excluded those that were not relevant to 

this subject or were white papers/articles.

Inclusions and exclusions Preference was given to peer-reviewed journal papers and conference proceed-

ings articles. In addition, articles from the archive literature were also taken 

into account.
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2.2  Analysis of the six existing surveys

The surveys on ASV systems and spoof detection techniques conducted to date have pri-

marily been focused on specific spoofing attacks and the counter measures for them. To the 

best of our knowledge, six articles Wu et al. (2015); Patil and Kamble (2018); Sahidullah 

et al. (2019); Kamble et al. (2020); Tan et al. (2021); Mittal and Dua (2021) have been pre-

sented as surveys, and two studies Sahidullah et al. (2016) and Font et al. (2017) conducted 

a comparative analysis of voice spoofing counter measures.

In a survey of voice spoofing counter measures, Wu et al. (2015, 2015a, 2015b), pro-

vided a comprehensive taxonomy of voice spoofing attacks known at the time, along with 

ASV system vulnerabilities. However, the age of this review means the advanced spoof-

ing attacks that have grown prevalent in ASV systems were not addressed. In addition, 

it is focused on a dedicated countermeasure for each sort of attack, rather than explor-

ing a more unified solution. Following this, Sahidullah et al., Sahidullah et al. (2016) and 

Font et  al. (2017) published comparative analyses of the spoofing counter measures that 

focused solely on replay attacks. According to their work, published during 2017–2018, 

replay attacks attracted the most attention in the wake of the ASVspoof 2017 challenge. 

The results of Sahidullah et al. (2016), using the ASVspoof2015 dataset, demonstrated that 

an ensemble of acoustic features, together with machine learning models, produced more 

accurate results than individual classifiers. Kamble et al. Kamble et al. (2020) also pub-

lished a work that covered a subset of the specific speech corpora along with the evaluation 

measures in this field.

Font et al. (2017) performed a comparative analysis of nine different counter measures 

with cross-corpus evaluation of the counter measures. However, the authors only discussed 

the performance of the counter measures against replay attacks due to the nature of the 

dataset used for the study. Although Sahidullah et al. (2016) study and Font et al. (2017) 

paper each provided a comprehensive performance evaluation of the replay attack, other 

types of spoofing attacks that could severely disrupt an ASV system were ignored. Sahid-

ullah et  al. surveyed four different types of spoofing attacks, spoofing procedures, and 

counter measures the next year, in 2019 Sahidullah et al. (2019), summarized some spoof-

ing challenges and presented counter measures. However, a comprehensive analysis of all 

aspects of the ASV system, including end-to-end counter measures, cross-corpus evalua-

tion using modern attack-oriented datasets, and a performance evaluation of both unified 

and integrated ASV solutions, was still lacking. For instance, Sahidullah et al. (2016) and 

Font et al. (2017) focused only on front-end countermeasure design, and concentrated on 

the SS, VC, replay, and mimicking attack types, alone where speech corpora, protocols, 

classifier, and evaluation metrics all contributed equally to the construction of an ASV sys-

tem. These were absent from the Sahidullah et al. (2019) study. Lastly, the existing work 

also lacks the recent encoded and compressed logical and physical attacks presented in the 

ASVspoof2021 dataset.

2.3  Lessons from prior surveys

With the notable exception of Tan et al. (2021), the articles by and large did not present a 

detailed taxonomy of modern voice presentation attack detection (PAD) methods, where 

the work was structured based on identified elements. This survey Tan et al. (2021), along 

with Mittal and Dua (2021) broadened the classification of relevant work and built on the 

taxonomy from the most recent work on voice PAD. The significant contribution of these 



 A. Khan et al.

1 3

articles was the presentation of trends and analyses of voice PAD that were absent in the 

other survey articles. Although Mittal and Dua (2021) described the computation mecha-

nisms of traditional and modern speech feature extraction, as well as datasets and a com-

bination of various front- and back-end techniques, none of these articles performed a fair 

experimental analysis of the existing SOTA counter measures. In addition, existing reviews 

and survey articles also lack the cross-corpus evaluation which would show the generaliz-

ability of existing solutions. A comparison of the existing reviews and surveys is presented 

in Table 2.

In addition, existing spoofing counter measures have employed diverse features and 

classifiers and, typically, have had their performance evaluated on only one of the several 

extant datasets, e.g., ASVspoof 2015, ASVspoof 2017, and ASVspoof 2019, using differ-

ent metrics. With no standardization, it is difficult to declare a single countermeasure as 

the method that works best. Thus, there exists a need to provide a thorough analysis of 

existing counter measures in order to show which method is the best fit for a certain sce-

nario. To the best of our knowledge, no comparative analysis work on multiple voice spoof-

ing attacks, including single and multi-order attacks, has ever been presented. Moreover, 

existing studies have ignored the important aspect of cross-corpora evaluation, which is 

crucial to the evaluation of the generalized nature of the countermeasure. In consequence, 

the focus of this study is on addressing the existing issues and limitations of the developed 

anti-spoofing systems, as well as presenting a comparative and cross corpus examination of 

various spoofing counter measures.

Table 2  Comparison of the existing survey and review papers

a I-ASV refers to Integrated ASV solutions

b EA denotes the experimental analysis
c CC denotes the cross corpus evaluation of the counter measures

d  HC refers to Hand Crafted Solutions
e DL refers to Deep Learning

f  E2E denotes the end-to-end solutions

Presentation attacks counter measures I-ASVa EAb CCc

Paper Replay VC/TTS Adversarial HCd DLe E2E f

 Wu et al. (2015) ✓ ✓ × ✓ ✓ ✓ × × ×

 Sahidullah et al. (2016) ✓ × × ✓ × × × ✓ ×

 Font et al. (2017) ✓ × × ✓ × × × ✓ ✓

 Patil and Kamble (2018) ✓ × × ✓ × × × × ×

 Sahidullah et al. (2019) ✓ ✓ × ✓ ✓ ✓ × × ×

 Tan et al. (2021) ✓ ✓ × ✓ ✓ ✓ × × ×

 Mittal and Dua (2021) ✓ ✓ × ✓ ✓ ✓ × × ×

 Kamble et al. (2020) ✓ ✓ × ✓ ✓ ✓ × × ×

[Ours] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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3  Voice spoofing attacks on ASV systems

ASV systems, are vulnerable to a variety of direct voice spoofing attacks, i.e., physical-

access (PA), logical-access (LA) attacks, and indirect attacks, i.e., adversarial attacks, 

where the audio signal remains unchanged but the attacker modifies the signal’s properties 

during ASV processing. These attacks on ASV systems are graphically illustrated in Fig. 3 

and the taxonomy of the attacks are presented in Fig. 4.

Fig. 3  Existing threats to automatic speaker verification systems

Fig. 4  Taxonomy of the voice spoofing attacks
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3.1  Physical attacks

PA attacks occur when the spoofed samples are applied as an input to the ASV system 

through the sensor, such as a microphone, with replay attacks as the prime example, which 

occur when the audio of an authorized user is recorded and played back in order to deceive 

an authentication system. As demonstrated in our prior work Baumann et al. (2021), replay 

attacks may be single order, where a recorded sample is directly played back to an ASV 

system, or multi-order, where an attack is replayed to one or more recording devices and 

the secondary or higher recording is played to the ASV. Another PA, the impersonation 

attack, occurs at the microphone level, where an imposter changes how they talk to mimic 

the speech characteristics of a legitimate user, which has been shown to be successful if the 

imposter’s natural voice has similar features.

3.2  Logical attacks

LA attacks occur when the audio samples bypass the sensor and are injected directly into 

the speaker verification system. Spoofing attacks based on logical access include VC and 

SS. VC uses an imposter’s natural voice to generate artificial speech in order to match the 

targeted speaker’s voice. Attacks are usually created by other models to fool a specific ASV 

system. Machine learning has allowed the mapping of speech features between speakers to 

be accurate, and is now computationally efficient enough to make ASV systems vulnerable 

to these types of attacks. However, these attacks can still be detected because they are not 

a perfect match to genuine audio. SS attacks, also known as deepfake attacks, are similar 

to VC but use text as an input to the model in order to generate a voice clip similar to a 

targeted speaker in an effort to fool an ASV system. Models that generate accurate speech 

features can be trained using a small data set of recorded audio.

3.3  Adversarial attacks

Adversarial attacks make up the most recent cyber threats to ASVs. An adversarial attack 

is a malicious attempt on the machine learning model itself, to intentionally cause misclas-

sifications, usually using a slight perturbation of the original input. Adversarial attacks may 

also be attempted as described in points 2–9 in Fig. 3. This attack has had an influence on 

a variety of intelligent domains involving image, audio, and video sample identification, 

as well as essential security applications such as intrusion detection and malware detec-

tion. Machine learning models are extremely susceptible to adversarial attacks. According 

to Jati et al. (2021), ASV systems are prone to adversarial attacks, which may reduce the 

accuracy of such systems by up to 94%. Attacks can range from simple Gaussian noise to 

more advanced attacks created in a targeted white-box setting. These perturbations, imper-

ceptible to humans, may cause audio classification and ASV systems to fail completely.
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Table 3  A comparison of existing SOTA papers

Paper Datasets Presentation 

attacks

counter measures

PA LA DFa HC/Cb DLc E2Ed CCe

 Paul et al. (2015) ASVspoof15 X ✓ X ✓ X X X

 Kinnunen et al. (2017a) ASVspoof17 ✓ X X ✓ X X X

 Ji et al. (2017) ASVspoof17 ✓ X X ✓ X X X

 Balamurali et al. (2019) ASVspoof17 ✓ X X ✓ ✓ X X

 Tapkir and Patil (2018) ASVspoof17 ✓ X X ✓ X X X

 Novoselov et al. (2016) ASVspoof15 X ✓ X ✓ X X X

 Tapkir et al. (2018) ASVspoof17 ✓ X X ✓ X X X

 Cai et al. (2017) ASVspoof17 ✓ X X ✓ ✓ X X

 Yang and Das (2019) ASVspoof17v2.0 ✓ X X ✓ X X X

 Javed et al. (2022) ASVspoof19 & VSDC ✓ X X ✓ X X X

 Hassan and Javed (2021) ASVspoof19-LA X ✓ X ✓ X X X

 Arif et al. (2021) ASVspoof19-LA X ✓ X ✓ ✓ X X

 Gunendradasan et al. (2018) ASVspoof17 ✓ X X ✓ X X X

 Witkowski et al. (2017) ASVspoof17 ✓ X X ✓ X X X

 Gunendradasan et al. (2019) ASVspoof17 ✓ X X ✓ X X X

 Saranya et al. (2018) ASVspoof17 ✓ X X ✓ X X X

 Yang and Das (2019) ASVspoof15 & 19 X ✓ X ✓ X X X

 Chen et al. (2015) ASVspoof15 X ✓ X X ✓ X X

 Nagarsheth et al. (2017) ASVspoof17 ✓ X X ✓ ✓ X X

 Lai et al. (2019) ASVspoof17 ✓ X X ✓ ✓ X X

 Huang and Pun (2020) ASVspoof17 ✓ X X ✓ ✓ X X

 Wu et al. (2020) ASVspoof19 X ✓ X ✓ ✓ X X

 Ma et al. (2021) ASVspoof19 X ✓ X X ✓ X X

 Tak et al. (2021) ASVspoof19 X ✓ X X ✓ X X

 Liu and Yang (2020) ASVspoof19 ✓ ✓ X ✓ ✓ X X

 Yang et al. (2019) ASVspoof15 & 17v2.0 ✓ ✓ X ✓ ✓ X X

 Suthokumar et al. (2019) ASVspoof17v2.0 ✓ X X ✓ ✓ X X

 Wang et al. (2019) ASVspoof17v2.0 ✓ X X ✓ ✓ X X

 Wu et al. (2018) ASVspoof17 ✓ X X ✓ ✓ X X

 Balamurali et al. (2019) ASVspoof15 & 17v2.0 ✓ ✓ X ✓ ✓ X X

 Dinkel et al. (2017) BTAS16 & ASVspoof15 ✓ X X X ✓ ✓ X

 Jung et al. (2021) ASVspoof21 ✓ ✓ X X ✓ ✓ X

 Tak et al. (2021) ASVspoof19 ✓ ✓ X X ✓ ✓ X

 Javed et al. (2021) ASVspoof19 ✓ ✓ X ✓ ✓ X X

 Rostami et al. (2021) ASVspoof19 ✓ ✓ X ✓ ✓ X X

 Lai et al. (2019) ASVspoof19 ✓ ✓ X ✓ ✓ X X

 Chen et al. (2021) ASVspoof21 X ✓ ✓ X ✓ X X

 Jung et al. (2022) Voxceleb & ASVspoof19 ✓ ✓ X X ✓ X X

 Zhang et al. (2022) Voxceleb & ASVspoof19 ✓ ✓ X X ✓ X X

 Liu et al. (2022) ASVspoof19 ✓ ✓ X X ✓ X X

 Teng et al. (2022) ASVspoof19 ✓ ✓ X X ✓ X X

 Jose et al. (2018) chsc2011 & GTZAN X X X ✓ X X X
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4  Voice spoofing counter measures, taxonomy, and analysis

This section provides a detailed analysis of existing voice spoofing counter measures. 

Though not intended to be a comprehensive record of all anti-spoofing methods, this care-

fully curated list is an attempt to summarize the solutions which may be considered SOTA 

at the time of this writing. These solutions may be loosely grouped into five classifications, 

as seen in the following subsections. The existing approaches used in counter measures and 

their taxonomy are depicted in Figs. 5 and 6 offers a thorough classification of the counter 

measures discussed in this study. While a comparison of the existing hand crafted, deep 

learning and End-to-end solution is presented in Table 3.

Table 3  (continued)

Paper Datasets Presentation 

attacks

counter measures

PA LA DFa HC/Cb DLc E2Ed CCe

 Kua et al. (2010) NIST2001& & SRE X X X ✓ X X X

 Wu et al. (2017) ASVspoof15 ✓ ✓ X ✓ ✓ X X

 Rajan et al. (2013) NIST 2010 Eval X X X X ✓ X X

 Malik et al. (2020) VSDC & ASVspoof19 ✓ ✓ X ✓ ✓ X X

 Chettri et al. (2020) ASVspoof19-PA ✓ X X ✓ ✓ X X

 Chen et al. (2017) ASVspoof19-PA ✓ X X X ✓ ✓ X

 Naika (2018) VoxForge ✓ X X X ✓ ✓ X

DF denotes the deepfake voice attacks, HC/C refers to Hand Crafted features and Conventional classifiers 

i.e., GMM, UBM etc. DL refers to Deep Learning, E2E denotes the end-to-end solutions and CC denotes 

the cross corpus evaluation of the counter measures

Fig. 5  Existing approaches of voice spoofing counter measures to counter voice spoofing attacks
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4.1  Handcrafted feature‑based solutions

Hand-crafted features refer to a set of speech characteristics that are manually selected 

and extracted by experts in the field of speech processing and are used to identify voice 

spoofing. Because of their ability to capture the unique speech characteristics that are 

indicative of spoofing attempts, hand-crafted features have been frequently employed in 

voice spoofing detection. For instance, in a study Paul et al. (2015), the author derived 

novel acoustic features from the frequency-warping and block transformation of filter 

bank log energies to classify bona fide and spoofed speech samples. Although the pro-

posed features achieved a 0.99% classification accuracy on the ASVspoof 2015 corpus 

development section, they were only applicable when the spoofing attacks were known 

in advance. Aside from this, the performance of the proposed approach was not evalu-

ated across corpora.

In Sahidullah et  al. (2016), Sahidullah et  al. presented the first comparative evalua-

tion of six counter measures and their integration with ASV systems using the ASVspoof 

2015 dataset. The counter measures contain MFCCs, IMFCCs, LFCCs, CFCCs, CQCCs, 

and GFCCs as front-end cepstral features, which are then coupled with GMM-UBM and 

i-Vector classifiers for back-end speaker classification. According to their results, the coun-

termeasure using only CQCC features and the countermeasure with the fusion of all six 

counter measures have the greatest potential to detect spoofing attacks. More significantly, 

the fusion of counter measures and CQCCs achieved the lowest EER of 0.02%. The results 

of Sahidullah et al. (2016) demonstrate that an ensemble of acoustic features, together with 

machine learning models, can produce more accurate results than individual classifiers. 

Although the significance of CQCC features is demonstrated in this study, the presented 

system was not evaluated against other forms of spoofing attacks, e.g., replay, deepfake, 

adversarial, or others. In Kinnunen et  al. (2017a), mainly followed this line of thinking, 

utilizing front-end features, i.e., CQCC, MFCC, RFCC, and HPCC, etc., with a baseline 

Fig. 6  Taxonomy of the voice counter measures
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GMM-UBM classifier. The performance of these counter measures was evaluated against 

the ASVspoof2017 dataset, where the proposed systems achieved an EER of 31.5% for 

genuine vs. replay and 1.8% EER for genuine vs. zero-effort imposters. When these hand-

crafted feature results were compared to those from the prior challenge (ASVspoof2015), 

the detection of replay attacks was found to be more complex than detecting SS and VC 

spoofing attacks.

Following the success of feature fusion in spoofing detection, in Ji et  al. (2017), the 

author presents an ensemble of the acoustic features of CQCCs, along with other classi-

cal features, i.e., MFCCs and Perceptual Linear Predictive (PLP) features. In parallel, the 

author proposes an ensemble classifier set that contains numerous GMMs, i.e., Gradient 

Super Vector-Boosting Decision Tree (GSV-GBDT) and GSV-Random Forest (GSV-RF) 

classifiers. The experimental results show that the presented ensemble system significantly 

outperforms the baseline GSV-SVM system. Specifically, using a baseline GSV-SVM 

classifier, this approach achieves an EER of 10.4% on CQCC features, 27.4% on MFCC 

features, and 37.0% on PLP features. In contrast, a minimal EER of 9.5% is achieved by 

employing the ensemble model. Similarly to Paul et  al. (2015), the biggest limitation of 

Ji et al. (2017) is that it has only been tested against a single replay attack. Other types of 

spoofing attacks, i.e., SS, VC, and the most current attacks facing ASV systems, i.e., deep-

fake and adversarial attacks, are not discussed, and there is no cross-corpus examination of 

the techniques.

In Balamurali et al. (2019), the authors examine the robust audio features, comprised of 

handcrafted and auto-encoder-based learned features, to identify replay spoofing attacks. 

The handcrafted features employed in this study are CQCCs, LPCCs, IMFCCs, Rectan-

gular Filter Cepstral Coefficients (RFCCs), Sub-band Centroid Frequency Coefficients 

(SCFCs), and Sub-band Centroid Magnitude Coefficients (SCMC), as well as spectrogram 

features. Instead of using only hand crafted features with a back-end classifier the authors 

use an auto-encoder to learn a dense representation of all of the features. Later, a conven-

tional GMM, along with a Universal Background Model (UBM), is used as the baseline 

system to examine the performance of the handcrafted and encoder-based features. The 

integrated fused models, based on existing audio and machine-learned features, achieve 

comparable results, with an EER of 12.0%. In particular, the handcrafted CQCC features 

outperform all other features, with an EER of 17.5%. The best encoder-based feature 

observed is a spectrogram with the minimum EER of 20.2%. Although the coupling of 

handcrafted features with an auto-encoder-based system surpasses SOTA PA systems, the 

presented system is only tested against replay attacks. In the presence of other types of 

spoofing attacks, e.g., VC and adversarial attacks, the performance of the system tends to 

vary.

Rather than using standard standalone short-term power spectrum coefficients, e.g., 

MFCCs, LFCCs, or CQCCs, to identify spoofing attacks, the authors of Tapkir and Patil 

(2018) introduced phase-based Teager Energy Operator (TEO) features. It is discovered 

that the TEO phase features give information that is complementary to the information 

provided by the more commonly used CQCC, MFCC, and LFCC feature sets. Although 

the TEO phase features are unable to perform well alone, fusion with traditional features 

enhances the accuracy of the spoofing detection system. The results demonstrate that the 

standalone spoof detection systems, developed with the TEO phase, MFCC, and LFCC, 

achieved an EER of 31.34, 34.02, and 16.80%, respectively, whereas, when the TEO phase 

feature set was fused with the CQCC, MFCC, and LFCC feature sets, the EER was low-

ered by 0.18%, 2.74%, and 1.41%, respectively. This improvement in system performance 

shows the influence of TEO phase information on the spoof detection system. However, the 
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provided solution is only stated to be resistant to replay spoofing attacks, and there is no 

cross-corpus validation.

In accordance with Tapkir and Patil (2018), the authors of Novoselov et al. (2016) pre-

sent phase spectrum and multi-resolution wavelet features, in addition to the commonly 

used front-end MFCC features. This study combines MFCCs with Mel-Frequency Princi-

pal Coefficients (MFPCs), CosPhase Principal Coefficients (CosPhasePCs), and Mel Wave-

let Packet Coefficients (MWPCs) to provide a reliable and robust defense against spoofing 

attacks. The experimental results on ASVspoof2015 dataset indicate that applying princi-

pal component analysis (PCA) to MFCCs results in a considerable EER improvement over 

MFPC features for all spoofing methods. However, the MFCC features prove inferior in 

comparison with other front-end features. In contrast, the implementation of CosPhasePC 

modestly decreases EER in comparison to the MFPC features. Although the multi-resolu-

tion wavelet transform features outperform the SOTA features, achieving 0.05% EER for 

all known attacks, the proposed framework has not been tested and reported cross-corpus 

or against unknown attacks.

Accordingly, following the significant performance of phase-oriented features, the 

author sheds light on the importance of acoustic front-end features and introduces a novel 

detection mechanism by modeling replayed speech as a convolution of original speech Tap-

kir et al. (2018). Also in Tapkir et al. (2018), the author proposes a novel feature set, Mag-

nitude-based Spectral Root Cepstral Coefficients (MSRCC) and Phase-based Spectral Root 

Cepstral Coefficients (PSRCC), which outperforms the baseline system (CQCC) and pro-

vides a 29.18% EER on the evaluation set of the ASVspoof 2017 challenge database. With 

the GMM back-end classifier, the front-end features MSRCC and PSRCC respectively 

produce 18.61% and 24.35% EER. Conversely, with convolutional neural network (CNN) 

back-end classifiers, MSRCC and PSRCC obtain 24.50 and 26.81% EER, respectively. In 

addition, the score-level fusion of MSRCC and PSRCC results in 10.65 and 17.76% EER 

using GMM and CNN classifiers, respectively. These findings suggest that the proposed 

feature sets of MSRCC and PSRCC capture complementary information. However, once 

again a cross-corpus examination was not reported.

The research in Cai et al. (2017) shows the effectiveness of augmenting genuine train-

ing data in the simulation of replay spoofing attacks. The author presents replay spoofing 

countermeasure systems that improve the CQCC-GMM baseline with score level fusion. 

Instead of using CQCC, the author uses spectrograms as input to analyze end-to-end fea-

ture representations. Finally, the author replaces the baseline GMM classifier with a Fully-

connected Deep Neural Network (FDNN) and a Bidirectional Long-Short-Term Memory 

neural network (Bi-LSTM). The results of the experiments show that this data augmenta-

tion technique can significantly increase the system’s performance. In particular, the base-

line CQCC-GMM model realizes an EER of 22.29%, while the DA-CQCC-GMM model 

obtains an EER of 19.18% and the fused system achieves an EER of 16.39%. Although the 

end-to-end FDNN and Bi-LSTM-based systems perform well for replay detection, other 

sorts of voice spoofing attacks such as deepfake and adversarial attacks may lead the sys-

tem to perform inadequately. Furthermore, the provided system was not evaluated in the 

presence of unknown attacks, or across corpora.

Yang et al. Yang and Das (2019) developed a Low-Frequency Frame-wise Normaliza-

tion (LFFN) technique to capture replay distortions. LFFN was combined with Constant-

Q Transforms (CQT) to extract two features: Constant-Q Normalization Segmentation 

Coefficients (CQNSC) and Constant-Q Normalization Cepstral Coefficients (CQNCC). 

This approach performed well on the ASVspoof 2017 version 2.0 dataset, with an EER of 

10.63% for CQNSC and 10.31% on the CQNCC features. Although a promising approach, 
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this method bears further investigation to determine the effectiveness of these features 

against unknown attack types, and across corpora, neither of which was presented.

The Acoustic Ternary Patterns-Gammatone Cepstral Coefficient (ATP-GTCC) feature 

was proposed in Javed et  al. (2022) to help develop a lightweight model for single and 

multi-order replay attack detection. An SVM classifier was used to better capture the har-

monic distortions found in multi-order replay samples, while ATP-GTCC was employed 

as a front-end feature. This model achieved an EER of 0.6 and 1% on the Voice Spoofing 

Detection Corpus (VSDC) and the ASVspoof 2019 dataset, respectively, which exceeded 

earlier SOTA techniques in terms of replay detection performance and efficiency. However, 

the given approach is limited to single-order and multi-order replay attacks, and has not 

been tested against other types of attacks, including VC, deepfake, and adversarial attacks.

In Hassan and Javed (2021), the authors use a feature fusion of GTCC, MFCC, Spec-

tral Flux, and Spectral Centroid for input audio presentation. This countermeasure success-

fully detects multiple types of logical access attacks and classifies the cloning algorithms 

used to produce the synthetic speech. It achieves an EER of 3.05%, compared to baseline 

models that achieve an EER ranging between 5.06 and 9.57%. Although the presented sys-

tem performed better against logical access attacks it is not tested in the presence of PA 

or adversarial attacks. The authors of Arif et  al. (2021) present a voice spoofing coun-

termeasure using ELTP-LFCC features and a Deep Bidirectional LSTM to combat TTS 

synthesis and converted voice samples in LA attacks. In this paper, ELTP is further fused 

with LFCC to better capture the characteristics of the vocal tract speech dynamics of both 

bonafide voice and cloning algorithm artifacts. On the diverse ASVspoof 2019-LA dataset, 

performance evaluation yields an EER of 0.74% and a min t-DCF of 0.008%. However, the 

presented system is only tested on one LA-dataset, and its performance against PA attacks 

is unknown. Other than the short-term spectral features, the frequency or amplitude modu-

lation-based features were also explored for voice spoofing detection. Gunendradasan et al. 

Gunendradasan et al. (2018) used Spectral Centroid Deviation (SCD) features to develop 

a replay attack detection system. The Spectral Centroid Frequency (SCF) and Spectral 

Centroid Magnitude Coefficient (SCMC) features were extracted from the same front-end 

as SCD and used as complementary features to train a GMM classifier for replay attack 

detection. This method was evaluated on the ASVspoof2017 dataset and provided a 60% 

improvement with 9.20% EER as compared to the ASVspoof CQCC baseline model. How-

ever, performance of the system against other datasets or across corpora was not tested.

Some methods also exploit high-frequency components in order to capture the traits of 

bonafide and spoofed signals. The work in Witkowski et al. (2017) captured the high-fre-

quency content by using the inverted-MFCC (IMFCC), LPCC, LPCCres, CQCC, MFCC, 

and Cepstrum features. This hybrid feature representation was then used to train a GMM 

for the classification of bonafide and spoofed samples. Due to the increased feature com-

putation cost, this method was not suitable for local deployment on resource-constrained 

voice-controlled systems. This paper, Gunendradasan et  al. (2019), also highlighted the 

idea of analyzing the high-frequency band for replay spoof detection. For this purpose, 

transmission line cochlea amplitude modulation and transmission line cochlea frequency 

modulation features were employed to train a GMM for replay attack detection. This 

method was evaluated on the ASVspoof2017 dataset and achieved an EER of 7.59%. It 

should be noted that this method performed only slightly better than the baseline model 

and has a high computational cost because the features take more than twice the amplitude 

frequency to modulate the signal, making this method unsuitable for resource-constrained 

ASVs. In the literature, non-voice segments have also been explored to capture the distor-

tions of playback speech. Saranya et al., in Saranya et al. (2018), analyzed the channel and 
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reverberation information from non-voiced segments of the input audio for replay spoof-

ing detection. A voice activity detector was used to determine the non-voiced segments, 

then a hybrid feature vector comprised of CQCC, MFCC, and Mel-Filter bank-Slope was 

employed to capture the remnant vocal tract information in the non-voiced segments of the 

input audio. These features were later used to train a GMM for the classification of bon-

afide and replayed audio samples. The performance of this method was evaluated on the 

ASVspoof2017 dataset, and showed an improvement of 37% with EER of 14.45% over the 

baseline method.

In the work of Yang and Das (2019), the authors introduced an inversion module to 

derive four features: ICQC, ICQCC, ICBC, and ICLBC. Two of them used conventional 

DCT, and the other two used overlapped block transforms. These features for synthetic 

speech detection were evaluated using the ASVspoof 2015, noisy ASVspoof 2015, and 

ASVspoof 2019 logical access datasets, and achieved an EER of 7.77%. Despite the fact 

that this system was tested on multiple datasets, due to advances in spoofing attacks, e.g., 

deepfakes, encoded LA and PA attacks, adversarial, or attacks where the artifacts of spoof-

ing attempt are unknown, they may not perform well in a real-world scenario.

4.2  Discussion, challenges and the limitations of handcrafted‑based counter 

measures

Although hand-crafted, feature-based solutions for voice spoofing detection have been 

widely studied they have some limitations and challenges that need to be addressed. One 

of the main limitations is that they are typically based on a fixed set of parameters and can-

not adapt to different types of spoofing attacks. This indicates that they may not be able to 

capture the subtle differences between genuine and spoofed speech signals, especially in 

the case of unseen spoofing attacks, or mixed attacks, where the attack is not consistent 

across the entire sample. Another disadvantage is that they may not capture the complexity 

of the speech signal well because they are often based on basic signal processing tech-

niques and are thus incapable of properly capturing nuances in the vocal signal. Another 

challenge is that hand-crafted, feature-based solutions may not be able to effectively han-

dle variations in the speech signal, such as changes in speakers, accents, and recording 

environments. This may make it difficult to accurately classify incoming speech signals as 

genuine or spoofed in a practical scenario using the currently available datasets. Finally, it 

is unknown how existing systems will perform against complex spoofing attacks e.g., com-

pression, distinct encoding artifacts, and frame-level partial spoofing distortions. Despite 

these limitations, hand-crafted features are still widely used in voice spoofing detection 

and have the advantage of being computationally efficient, easy to implement, and easy 

to interpret. They also provide a good representation of the speech signal and can be used 

in combination with other counter measures, such as deep learning techniques, to create 

robust and accurate systems. It is important to note that the use of hand-crafted features in 

voice spoofing detection is still an active area of research, and new features and techniques 

are continuously being proposed and evaluated. Therefore, it is important to keep up with 

the latest developments in the field, and to evaluate the performance of newly developed 

hand-crafted features for a given application.
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4.3  Deep learning solutions

Recent years have witnessed a rise in the use of deep learning approaches to prevent audio 

spoofing attacks. In particular, deep learning classifiers, combined with handcrafted fea-

tures, have been shown to improve the accuracy of voice spoofing detection systems. While 

deep learning models excel at learning complex representations from raw audio data, 

incorporating hand-crafted features offers an additional layer of expertise and domain-

specific knowledge. This hybrid strategy has been shown to outperform pure, handcrafted 

solutions. In combination, the use of hand-crafted features acts as a form of regularization, 

guiding the deep learning models towards a solution that aligns with prior understanding 

and helps prevent overfitting to the training data. Consequently, deep learning solutions are 

becoming a widely adopted strategy in the field of voice spoofing detection. Some of the 

recent deep learning methods are discussed below in this section.

In Chen et al. (2015), a novel, simple model for detecting spoofing attacks on a speaker 

verification system was developed. The presented model was used to extract key features 

from audio samples and construct compact, abstract, and resilient deep data representa-

tions. A spoofing-discriminant network was used in the training of spoofing algorithms. 

The proposed network then computed the s-vector, which is the utterance level average of 

the final hidden layers. Finally, Mahalanobis distance, along with normalization, was used 

in conjunction with the computed s-vectors to detect spoofing attacks. This model achieved 

the 3rd position in the first spoofing detection challenge, ASVspoof 2015. In particular, the 

proposed model attained an overall minimum EER of 2.281%. Specifically, the presented 

system obtained an EER of 0.046% for known and 4.516% for unknown replay attacks. 

Although this system performed well in the ASVspoof 2015 competition, it has not been 

examined against recent attacks, replay attacks, or across corpora.

Existing methods also employed handcrafted features to train deep neural networks for 

spoofing detection. In Nagarsheth et al. (2017), high-frequency regions were analyzed by 

proposing the High Frequency Cepstral Coefficients (HFCC) feature and using a back-end 

DNN model to classify bonafide and spoofed (replayed) audio. When comparing HFCC 

features to CQCC features using a baseline GMM back-end, HFCC outperformed CQCC 

on the ASVspoof2017 development and evaluation sets. HFCC received an EER of 5.9% 

in the development set and 23.9% in the evaluation set, while CQCC received 11.0% EER 

in the development set and 24.7% in the evaluation set. Despite its superior performance in 

replay attack detection this system was not evaluated against VC and SS attacks.

An attentive filtering network system was proposed in Lai et al. (2019) to detect replay 

attacks using enhanced feature representations in both the frequency and time domains. 

This system obtained an EER of 6.09 and 8.54% on the development and evaluation sets 

of ASVspoof 2017, respectively, on a system comprised of two Attentive Filtering models 

(one using sigmoid and the other using softmax as their activation functions). This method 

achieved better results than the CQCC-GMM baseline model, which obtained an EER of 

12.08 and 29.35%. However, the combination of feature extraction and the model’s archi-

tecture required significant computational resources.

In Huang and Pun (2020), segment-based linear filter bank features, along with an 

attention-enhanced DenseNet-BiLSTM model, were proposed for replay attack detection. 

These features were extracted from the silent segments of the audio signal. Triangle filters 

were used to examine noise in the high frequency bands 3 − 8kHz . The baseline system 

of CQCC-GMM obtained an EER of 2.36% on the development set and an EER of 8.42% 

on the evaluation set of ASVspoof2017, while features of this method, when used with a 
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GMM, obtained an EER of 1.8 and 7.92% on the development and evaluation sets, respec-

tively. One limitation of this method was the sensitivity of the signal-to-noise ratio dur-

ing segmentation of the silence and voiced components, where low SNR resulted in false 

segmentation. In another study Wu et  al. (2020) the authors create a model that fits the 

distribution of genuine speech, i.e., one that takes genuine speech as the input and gener-

ates genuine speech as the output. However, if the speech is spoofed, the output will be 

very different. They propose a genuinization transformer that uses genuine speech features 

with a convolutional neural network (CNN). The genuinization transformer is then used 

with an LCNN system for the detection of synthetic speech attacks. The model achieves an 

EER of 4.07% and a min t-DCF of 0.102% on the ASVspoof2019 dataset using CQCC and 

LFCC features. However, this method has not been tested across corpora. Following this, 

the author of Ma et al. (2021) proposes a Conv1D Resblock with a residual connection, 

which allows the model to learn a better feature representation from raw waveforms. They 

find that feeding a raw waveform directly into a neural network is adequate. However, the 

system is only tested against the ASVspoof2019 dataset, and though it achieves an EER 

of 2.98% against known attacks from that source the presented system’s performance was 

neither reported against PA attacks nor evaluated against cross-corpora.

The work of Tak et  al. (2021) is an extension of a previously proposed GAT-ST and 

uses a raw waveform. This captures discriminative cues in both the spectral and temporal 

domains. The proposed RawGAT-ST model uses a one-dimensional convolution layer to 

ingest raw audio. This end-to-end architecture uses feature representation learning and a 

GAT that learns the relationships between cues at different sub-band and temporal inter-

vals. This model uses the raw waveforms from the ASVspoof 2019 dataset and achieves 

an EER of 1.06% and a min t-DCF of 0.0335%. However, this model is only tested on one 

dataset. In another study Liu and Yang (2020) the authors concatenate four sub-features 

on the ASVspoof2019 dataset. These features, Short-Term Spectral Statistics Information 

(STSSI), Octave-band Principal Information (OPI), Full-band Principal Information (FPI), 

and Magnitude-Phase Energy Information (MPEI), are fused to generate the delta accelera-

tion coefficients as features for spoofing detection such as CQSPIC, CQEPIC, and CES-

PIC. The fusion of the features achieves an EER of 7.63% and a min t-DCF of 0.178%. 

Although this model’s performance is evaluated against both LA and PA attacks it is not 

evaluated across corpora.

In Yang et al. (2019), the authors propose a heuristic feature extraction method based 

on Multi Level Transform (MLT), which extracts valuable information from the octave 

power spectrum for spoofing attack detection. It relies on MLT to extract relevant infor-

mation from previous DCT results. The authors apply it to the ASVspoof2015 and ASVs-

poof2017v2 datasets, and achieve an EER of 14.45%. However, it is only tested on two 

datasets. To fully evaluate the performance of the system it needs to be tested against 

recent advancements and complex spoofing attacks. This paper, Suthokumar et al. (2019), 

compares genuine and spoofed speech across different phonemes and shows that specific 

phonemes (fricatives, nasals, stops, and pauses) are more informative in the detection of 

replay attacks. It creates four different fusion scoring methods to incorporate phonetic 

information using phoneme-specific models. This method is tested on the ASVspoof2017 

V2 dataset, and achieves an EER of 6.18%. However, it has to be fused with a phenome-

independent model for the best results. The work of Wang et al. (2019), which also looks at 

sound characteristics, creates Voice-Pop, which identifies a live user by detecting the pop 

noise naturally incurred by a user breathing while speaking close to the microphone. The 

authors use their own dataset with GFCC features and achieve an EER of 5.4%. However, 

this method was only tested on one dataset. It needs to be evaluated on multiple datasets, 
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with different speakers and spoofing attack configurations, and across corpora in order to 

test the generalizability of the system.

A few solutions use lightweight deep learning systems to detect replay spoofing. A 

lightweight CNN based on Maximal Feature-Map (MFM) activation, is used to detect 

replay attacks in Wu et al. (2018). MFM is able to minimize the dimensionality by using 

the most relevant features for classification. The method described in Wu et al. (2018) is 

extended in Balamurali et  al. (2019) to investigate the efficacy of angular margin-based 

softmax activation in training a light CNN for cloning and replay spoof detection. It relies 

on MLT to extract relevant information from previous DCT results. The authors apply it to 

the ASVspoof2015 and ASVspoof2017v2 datasets, and achieve an EER of 14.45%. How-

ever, the generalization of the presented system was not evaluated across corpora.

4.4  Discussion, challenges and the limitations of deep learning counter measures

By analyzing the existing deep learning counter measures it may be observed that the 

developed solutions have been shown to be effective in detecting synthetic or manipulated 

speech. However, there are still many challenges and limitations that need to be addressed, 

such as the need for a large amount of data to train deep learning models. This can be dif-

ficult to obtain, especially for under-represented languages or dialects. Additionally, the 

data used to train models may not be representative of the types of spoofing attacks that 

are actually encountered in the wild, leading to poor performance in real-world situations. 

Moreover, one limitation of deep learning-based counter measures is that they can be vul-

nerable to adversarial attacks. While these may be addressed by using robustness tech-

niques such as adversarial training, this requires even more training data. Overall, while 

deep learning-based voice spoofing counter measures have shown promise, more research 

is needed to improve their effectiveness and robustness if they are ever to be deployed in a 

production system.

4.5  End‑to‑end solutions

Apart from the progress of handcrafted counter measures, end-to-end solutions to the prob-

lem of voice spoofing attacks have been gaining a lot of attention in recent years. These 

employ advanced signal processing and deep learning techniques to detect the anomalies or 

inconsistencies associated with voice spoofing attacks. In Dinkel et al. (2017), an end-to-

end system was proposed to detect replay attacks against ASVs. This system used a com-

bination of a CNN, LSTM, and DNN to take in raw audio as input and classify the audio 

into genuine, synthetic/cloned, or replay. The performance of the model was evaluated on 

the ASVspoof 2015 and BTAS 2016 datasets and achieved a half total error rate (HTER) 

of 1.56%, compared to the GMM-PLP-39 baseline model at 2.96%. This system may be 

enhanced in the feature extraction stage by employing better time and frequency filtering 

networks. Although the proposed system was tested against two datasets, its performance 

across corpora was not reported. More recently, in Jung et al. (2021), the authors propose 

a novel heterogeneous stacking graph attention layer that models artifacts spanning het-

erogeneous temporal and spectral domains with a heterogeneous attention mechanism 

and a stack node. In concert with a new max graph operation that involves a competitive 

mechanism and an extended readout scheme, their approach, named ASSIST, achieves an 

EER of 0.83% and a min t-DCF of 0.0275% on ASVspoof2021. However, the proposed 

method has only been tested on one dataset. In Tak et al. (2021), a graph attention network 
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(GAT) is proposed that works by applying a self-attention mechanism to GNNs and mod-

eling graph-structured data. Each node in the graph is weighted according to its relevance 

to other nodes. GATs can be used to model a specific sub-band or temporal segment using 

high-level representations extracted from deep residual networks. It achieves a min t-DCF 

of 0.0089% on the ASVspoof2019 dataset. However, the GAT works on filter bank outputs 

rather than waveforms, demonstrating the model’s dependency on filter bank extraction. 

Furthermore, it has only been tested on one dataset. One notable work Chen et al. (2023) 

from ICASSP2023 proposes a graph-based method to enhance spoofing detection in speech 

systems. The authors introduce the concept of spectro-temporal dependency, capturing the 

inter-regional relationship between genuine and spoofed speech. Their approach utilizes 

a graph neural network, incorporating prior knowledge through a graph structure design 

and edge weighting. An attention mechanism is employed to emphasize critical nodes. The 

method achieves an impressive equal error rate of 0.58% on the ASVspoof 2019 LA data-

set, surpassing competing systems and demonstrating its efficacy in enhancing spoofing 

detection performance. However, while Chen et al. (2023) demonstrates exceptional perfor-

mance in detecting logical voice spoofing attacks, it does not report the performance of the 

proposed solution against other types of voice spoofing attacks, such as replay and adver-

sarial attacks. In another study Xue et al. (2023), a novel self-distillation method is pro-

posed for fake speech detection (FSD), which improves FSD performance without increas-

ing model complexity. The approach involves dividing FSD networks into segments, with 

the deepest network serving as the teacher model and other networks as student models. A 

distillation path reduces feature differences between the deepest and shallowest networks. 

Experimental results on the ASVspoof 2019 LA and PA datasets demonstrate the effective-

ness of the proposed method, with significant improvements over the baseline.

In contrast, the authors of Ding et  al. (2023) introduce the Speaker Attractor Multi-

Center One-Class Learning (SAMO) framework for voice anti-spoofing systems. SAMO 

addresses unseen attacks by clustering bona fide speech around speaker attractors and sep-

arating spoofing attacks in a high-dimensional embedding space. The algorithm co-opti-

mizes bona fide speech clustering and classification during training, enabling anti-spoofing 

for unenrolled speakers during inference. Experimental results show that SAMO outper-

forms existing methods, achieving a relative improvement of 38% in EER on the ASVs-

poof2019 LA evaluation set. However, the paper does not provide information about the 

performance of the proposed solution on ASVspoof2019 PA attacks, nor does it report the 

computational complexity resulting from the extraction of high-dimensional embeddings.

The ASVspoof challenge aims to improve voice spoofing detection systems with high 

accuracy, but overlooks model complexity and latency requirements for real-world imple-

mentation. Many top-performing solutions utilize ensemble techniques with deep learn-

ing models, which are impractical for resource-restricted voice assistants. To address this 

limitation, a compact system is proposed in Kwak et  al. (2023) which merges skip con-

nections from ResNet and max feature maps from a Light CNN. The optimized single 

model achieves a replay attack detection EER of 0.30% on the ASVspoof 2019 dataset, 

outperforming ensemble systems. By incorporating depthwise separable convolutions from 

MobileNet, the proposed solution significantly reduces the parameter count while main-

taining comparable performance. Furthermore, the utilization of Grad-CAM enables the 

identification of crucial spectrogram regions. This identification contributes to fake data 

detection.
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4.6  Discussion, challenges and the limitations of end‑to‑end counter measures

Although End-to-end voice spoofing counter measures, the newest approach, aim to detect 

synthetic or manipulated speech by training a single model to perform both feature extrac-

tion and classification, there are significant challenges and limitations that need to be 

addressed in order for this approach to be practical or effective. End-to-end counter meas-

ures require large amounts of data to train, which can be difficult to obtain, itself requir-

ing extensive processing if it is even available. Another limitation is the sensitivity of the 

model to the quality of the training data; if the data is not representative of the types of 

spoofing attacks that are actually encountered in the wild, the model may not generalize 

well to new examples. In addition, end-to-end counter measures are more complex than 

traditional counter measures, which can make them harder to interpret and difficult to 

understand. The can also be vulnerable to adversarial attacks, where an attacker manipu-

lates the input speech to evade detection. In addition, explainability and fairness need to be 

considered when designing end-to-end systems. Explainability factors in transparency and 

comprehension in the decision-making process, and fairness-oriented systems ensure that 

the technology is not prejudiced against certain groups or demographics. Implementing 

explainability and fairness in voice spoofing systems would not only improve their efficacy, 

it will increase the trust of lay people in such systems. Finally, they require significant com-

putational resources, which can make them difficult to deploy on edge devices with limited 

computational resources. Overall, while end-to-end voice spoofing counter measures show 

promise, further research is needed to address these challenges and limitations in order to 

make them more practical and effective in a real-world deployment.

4.7  Unified solutions

By and large, existing counter measures for voice spoofing attacks exclusively target one 

type of spoofing attack (e.g., voice replay or SS). In contrast, if ASV systems are ever going 

to be effective in a real-world scenario, they must by necessity be agnostic to the spoofing 

type; hence, identifying a single form of spoofing attack is inadequate to ensure the secu-

rity of ASV systems. Consequently, unified solutions for dealing with all types of spoofing 

attacks must be developed. Nevertheless, in comparison to single attack detection systems, 

relatively few unified solutions have been reported to date. One unified solution for voice 

spoofing detection is presented in Javed et al. (2022). In this work, the authors introduce 

the ATCoP feature descriptor for the detection of voice presentation attacks, capable of 

recognizing both LA and PA attacks. Although a good all-around solution, this unified 

anti-spoofing technique is most effective at detecting single-and multi-order replay attacks. 

The experimental results show that the presented approach is effective when tested on four 

distinct datasets, with either replay or clone forgeries. Although this method is evaluated 

against several datasets, the success of the given ATCoP descriptors is not reported for 

DF and adversarial attacks. Following this, the authors extend their work and presents a 

novel hybrid voice spoofing attack, a cloned replay, which may also be used to spoof an 

ASV system Javed et  al. (2021). A cloned replay attack duplicates the audio of a target 

speaker and transmits it to an ASV system. The author establishes the basis for a spoofing 

countermeasure capable of detecting multi-order replay, cloning, and cloned-replay attacks 

through the use of the proposed ATP-GTCC features. This approach is capable of identify-

ing SOTA voice spoofing attacks with a unified solution. However, the presented system 
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depends entirely on the effective extraction of ATP and GTCC features and has not been 

tested against DF attacks.

In another study, the author Rostami and Homayounpour et al. Rostami et al. (2021) pro-

pose an effective attention branch network (EABN) for detecting LA and PA attacks. The 

provided technique achieves EERs of 0.86 and 1.89%, and min t-DCFs of 0.02 and 0.50%, 

against PA and LA attacks, respectively. Despite outperforming SOTA approaches on LA 

and PA attacks, Rostami et al. (2021) was not tested on deepfake attacks and cross corpora. 

In contrast, in Lai et al. (2019), SENet and ResNet were combined with statistical pooling 

to handle anti-spoofing with deeper and faster-trained DNNs. This consisted of a SENet, 

a median-standard ResNet, a dilated ResNet, and an attentive filtering network. A GNN 

back-end classifier was implemented using CQCC and LFCC features. It obtained an EER 

of 0.59% for a PA and 6.7% against LA attacks. Because the data was obtained directly 

from the ASVspoof2019 dataset with no data augmentation or cross-corpus dataset, the 

proposed method’s performance was not checked against DF attacks and may decline in 

a real-world scenario. In Chen et  al. (2021) the authors presented Emphasized Channel 

Attention, Propagation, and Aggregation Time-Delayed Neural Networks (ECAPA-TDNN) 

as their primary model. The authors’ intention was to tackle the issue of channel variability 

by employing an acoustic simulator in order to enhance the original datasets with trans-

mission codecs, compression codecs, and convolutional impulse responses. The presented 

method attained an EER of 5.46% and a min t-DCF of 0.3094 in the 2021 LA task and an 

EER of 20.33% on the DF task. Although the presented work prevents several types of 

attacks, it needs testing and reporting against PA attacks.

4.8  Discussion, challenges and the limitations of unified voice spoofing counter 

measures

Unified voice anti-spoofing counter measures may well be the wave of the future but there 

are several limitations that must be considered when using this approach. For instance, they 

may not generalize well to spoofing attacks that are not represented in the training data. In 

addition they share a vulnerability to adversarial attacks with end-to-end and handcrafted 

solutions. Another limitation is a tendency to overfit to the training data due to differentia-

tion boundaries of the spoofing attacks, and as a result they may not generalize well to new 

examples. Finally, the unified spoofing counter measures have been observed to be biased 

toward specific types of spoofing attacks. While further research may address these limita-

tions and make them more practical and effective in real-world scenarios, researchers must 

use caution to avoid unintentional bias.

4.9  Integrated solutions (antispoof & ASV)

The research community for secure voice-enabled systems is currently focused on integrat-

ing research efforts on speaker verification and anti-spoofing. Unlike existing anti-spoofing 

systems, which focus on independently streamlined spoofing detection, speaker verification 

may also be embedded in order to build a integrated system. New integrated spoofing tech-

nologies have been presented that conducted speech spoofing and ASV simultaneously, in 

addition to unified techniques for cutting-edge spoofing attacks.

The first paper in this regard is Jung et  al. (2022), in which the authors propose the 

spoofing-aware speaker verification (SASV) challenge, which integrates speaker verifi-

cation and anti-spoofing. In this challenge, the organizers encourage the development of 
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integrated SASV systems that use new metrics to evaluate joint model performance by 

releasing official protocols and baseline models. The authors extend speaker verification 

by including spoofed trials in addition to the standard set of target and imposter trials. 

Unlike the existing ASVspoof challenge, which focuses on separate spoofing detection and 

speaker verification systems, SASV aims to develop jointly optimized secure ASV solu-

tions. Open-source, pre-trained spoofing detection and speaker verification models are used 

in two baseline SASV solutions. Participants have free access to both models and base-

lines, which can be used to develop back-end fusion approaches or end-to-end solutions. 

The top performing system reduced the equal error rate of a conventional speaker verifica-

tion system from 23.83 to 0.13% when tested with target, bonafide non-target, and spoofed 

non-target trials. The SASV challenge results demonstrate the dependability of today’s cut-

ting-edge approaches to spoofing detection and speaker verification. In another work in this 

domain, Zhang et al. (2022), Zhang et al. develope a probabilistic framework for combin-

ing the ASV and countermeasure (CM) subsystem scores. In addition to the probabilistic 

framework, the authors propose direct inference and fine-tuning strategies, based on the 

framework, to predict the SASV score. Surprisingly, these strategies reduce the SASV EER 

of the baseline to 1.53% in the official SASV challenge evaluation trials. The author vali-

dates the efficacy of the proposed modules through ablation studies and provides insights 

through score distribution analysis. However, the proposed system is not tested against DF 

attacks or across corpora.

The authors of Aljasem et al. (2021) introduce unique sign-modified acoustic local ter-

nary pattern, sm-ALTP, features and an asymmetric bagging-based classifier ensemble 

with an enhanced attack vector. In addition to a convex function, sm-ALTP is employed to 

cluster the high- and low-frequency components of the audio frames. The proposed system 

categorizes several forms of attack on the ASV system, and discriminates between real and 

spoofed speech samples. Although the presented method is proven against several spoofing 

attacks and across corpora, more testing of the system’s efficacy against complex spoofing 

attacks using compression and different encoding artifacts is required.

The author of Liu et al. (2022), expresses concern about the improvement of spoofing 

robustness in automatic speaker verification (ASV) systems in the absence of a separate 

countermeasure module. To address this issue, the ASVspoof 2019 baseline model is used, 

in accordance with the back-end machine learning classifier’s probabilistic linear discrimi-

nant analysis (PLDA). Three unsupervised domain adaptation techniques are used to opti-

mize the back-end using audio data from the ASVspoof 2019 dataset training partition. 

The results show significant improvement in both the logical and physical access scenarios, 

particularly in the latter, where the system is attacked by replayed audio, with maximum 

relative improvements of 36.1% and 5.3% in bonafide and spoofed cases, respectively. 

However, absolute error rates on spoof trials remain too high. This demonstrates the chal-

lenge of making a conventional speaker embedding extractor with a PLDA back-end work 

on a mix of bonafide and spoofed data.

Over the last few years, research has improved the performance of ASVs and counter-

measure systems, resulting in low EERs for each system. However, research on the joint 

optimization of both systems is still in its early stages. This paper, Teng et al. (2022), pro-

poses a Spoof-Aggregated-SASV (SA-SASV), an ensemble-free, end-to-end solution for 

developing an SASV system with multi-task classifiers. The SA-SASV system is further 

optimized by multiple losses and more flexible training set requirements, and is trained 

using the ASVspoof2019-LA dataset. SA-SASV EER results show that training in com-

plete ASV and countermeasure datasets can improve model performance even further. The 

results show that the SA-SASV feature space outperforms previously published approaches 
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in terms of distinguishing spoof attacks and speaker identification. Furthermore, the SA-

SASV EER is reduced from 6.05%, produced by previous SOTA approaches, to 4.86% 

when no ensemble strategy is used. Although the article argues that a larger set of data and 

distinct encoders will further improve the EER, the proposed solution was not tested across 

corpora.

4.10  Discussion, challenges and the limitations of integrated voice spoofing 

counter measures

There are some significant downsides to this strategy that must be considered. They suf-

fer from issues that plague more general anti-spoofing solutions, i.e., a considerable quan-

tity of data is required, a susceptibility to adversarial attacks, and in a real-world scenario, 

when speech may be influenced by background noise, reverberation, and other distortions, 

integrated counter measures may not work effectively. In addition, they can be computa-

tionally intensive, making them difficult to deploy on edge or other devices with limited 

processing capabilities. Coupled with this is the need to achieve a balance between ASV 

performance and anti-spoofing detection. Lastly, they need a multi-task learning strategy, 

which may be difficult to design and optimize. Overall, while integrated speech anti-spoof-

ing remedies offer promise, a tremendous amount of research is needed to solve these limi-

tations and difficulties in order to make them practical and successful.

4.11  Adversarial attack counter measures

Adversarial attacks use small perturbations in audio samples, such as the addition of 

Gaussian noise, to pose a threat to ASV anti-spoofing models. Though options are only 

beginning to be explored in the literature, a few methods stand out. One, described in 

Wu et al. (2020a), uses self-supervised learning to leverage knowledge of unlabeled data, 

which significantly improves performance. This model creates high-level representations, 

extracted by the self-supervised model, and a layer-wise noise to signal ratio (LNSR) in 

order to quantify and measure the effectiveness of deep models in countering adversarial 

noise. During training, different masking methods are applied to 15% of the audio sam-

ples to create a model that reconstructs audio. This defense, called Mockingjay, is passive, 

i.e., it does not proactively seek out adversarial attacks, and is only tested on the Projected 

Gradient Descent (PGD) and Fast Gradient Sign Method (FGSM) attacks. Also, as epsi-

lon (the strength of an attack) increases, this defense starts to weaken and eventually fails. 

Both white-box and black-box scenarios were tested. Another defensive method, Wu et al. 

(2020b), uses spatial smoothing, filtering, and adversarial training. This method has only 

been tested against PGD attacks and may perform poorly under other attacks due to chang-

ing patterns on the sample. These defense methods improved the robustness of spoofing 

counter measures against PGD attacks, but they are still limited in their overall defensive 

capability because adversarial training depends on familiar attacks.

Turning to the description of new adversarial attacks, Xie et  al. Xie et  al. (2021) 

describe a quick and universal adversarial attack on three audio processing systems: 

speech command recognition, speaker recognition, and environmental sound classifica-

tion. The proposed approach, which uses Wave-U-Net and class-wise feature embedding 

maps, can launch a fast audio adversarial attack targeting any speech command using a 
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unified generative model within a single pass of feed-forward propagation. This results in 

an adversarial perturbation generation speedup of up to 214 times faster than SOTA solu-

tions. Furthermore, because it is based on a fast audio adversarial perturbation generator 

(FAPG), the proposed universal audio adversarial perturbation generator (UAPG) produces 

universal adversarial perturbations that can be applied to any benign audio input. Extensive 

trials show the efficacy of the suggested FAPG and UAPG. Finally, the proposed UAPG 

provides universal adversarial perturbations that outperform SOTA solutions in terms of 

attack performance. In another paper on adversarial attacks, Li et al. (2020), the authors 

examine the vulnerability of speaker recognition systems by introducing practical and sys-

tematic adversarial attacks. The efficiency of the system built on X-vectors and cutting-

edge deep neural networks is specifically examined in this study. In particular, Liu et al. 

add well-crafted, inconspicuous noise to the original audio when building the adversarial 

attack. They claim that by injecting inconspicuous noise, the speaker identification system 

may be induced to make incorrect predictions, and may even cause the audio to be per-

ceived as any adversary-desired speaker. Furthermore, the attack incorporates estimated 

room impulse response (RIR) into the adversarial example training process, resulting in 

realistic adversarial examples that may be broadcast over the air and remain effective. An 

extensive experiment using a public dataset of 109 speakers demonstrates the effectiveness 

of the proposed attack, which achieves high accuracy for both digital (93%) and practical 

over-the-air (50%) attacks.

4.12  Discussion, challenges and the limitations of integrated voice spoofing 

counter measures

Adversarial attacks on voice spoofing are a significant concern for the security of voice-

based systems, however, there are challenges in detecting and preventing these attacks. One 

of the main limitations is the lack of accurate ground truth data for the systems to learn 

from, which makes it difficult to train robust classifiers. Additionally, the adversarial exam-

ples generated through such attacks are often indistinguishable from real speech, making 

it challenging to detect them in real-time. These limitations emphasize the importance of 

ongoing research and development in the area of voice spoofing and adversarial attacks to 

improve the security of voice-based systems.

4.13  Other voice spoofing solutions

In addition to these solutions, transfer learning, generative adversarial networks (GANs) 

and auto-regressive networks have recently made significant contributions to audio spoof-

ing detection Cai et al. (2018); Saito et al. (2018); Kwon et al. (2023); Ba et al. (2023). 

These approaches have not been extensively explored but have shown promising results in 

small-scale experiments. For instance, in one study Cai et al. (2018), GANs were used to 

synthesize spoofing attacks on speaker recognition systems, demonstrating the effective-

ness of GAN-generated adversarial examples. Another study Saito et al. (2018) proposed 

a method incorporating GANs to improve the quality of generated speech parameters. The 

results showed significant improvements in speech quality compared to conventional train-

ing algorithms. Furthermore, a study on audio adversarial examples Kwon et al. (2023), 

applied audio style transfer learning to defend against attacks, achieving improved accu-

racy against adversarial examples. Finally, a study on cross-language deepfake detection 

Ba et al. (2023) explored transfer learning techniques to detect fake audio across different 
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language domains, demonstrating the adaptability of models to unseen algorithms. Overall, 

these research works highlight the potential of transfer learning and GANs in enhancing 

audio spoofing detection and addressing related challenges.

Table 4  A summary of databases in terms of training, development and evaluation speech samples

AVspoof

Track Genuine Spoof LA Attacks Spoof PA Attacks

Training 4973 38580 17890

Development 4995 38580 17890

Evaluation 5576 43320 20060

ReMASC

Environment Speaker Genuine # Replayed

Outdoor 12 960 6900

Indoor 1 23 2760 23104

Indoor 2 10 1600 7824

Vehicle 10 3920 7644

Total 55 9240 45472

VSDC

Track Environment Sample Rate # Utterances

Bonafide Office Desk, 4000

Replay-1PR  Living Room, 96K 4000

Replay-2PR Kitchen Table 4000

Total 25 – 12000

ASVspoof2015

Speaker Genuine Spoofed

Track Male Female # Samples # Samples

Training 10 15 3750 12625

Development 15 20 3497 49875

Evaluation 20 26 9404 193406

ASVspoof2017

Track Speaker Genuine Spoofed

Training 10 1507 1507

Development 8 760 950

Evaluation 24 1298 12008

ASVspoof2019

Speaker LA Attacks PA Attacks

Track Male Female Genuine Spoofed Genuine Spoofed

Training 8 12 2580 22800 5400 48600

Development 8 12 2548 22296 5400 24300

Evaluation - - 71747 137457



 A. Khan et al.

1 3

5  Publicly available voice spoof detection datasets

This section of the paper discusses and identifies the various datasets used in cutting-

edge ASV systems. Early stages of voice spoofing detection research involved speech 

and speaker recognition databases, i.e., YOHO Kreuk et al. (2018), NIST Alegre et al. 

(2013), and WSJ Ergünay et  al. (2015). However, to accurately account for research 

progress, it was evident that there was a dire need for a common dataset as well as 

a performance metric to evaluate spoofing counter measures, which was discussed in 

depth and addressed at the INTERSPEECH 2013 special session on spoofing and ASV 

counter measures. This motivated the research community to organize the first Auto-

matic Speaker Verification Spoofing and counter measures Challenge, ASVspoof, in 

2015, which took place at INTERSPEECH that year. The dataset released for this ini-

tial challenge included two types of spoofing attacks: SS and VC. In the years follow-

ing, three additional ASVspoof challenges were organized: ASVspoof 2017, ASVs-

poof 2019, and ASVspoof 2021, each with publicly available datasets for download.

There are several common publicly available datasets which are used by voice PAD 

researchers. This section will briefly cover the existing datasets (2015–2022) used for 

spoof detection and countermeasure development. Details of the publicly available 

datasets which address spoofing attacks are presented in Tables 4 and 5.

5.1  Datasets used in this experimental analysis

The ASVspoof 2019 challenge Wang et al. (2020) is an extension of the previously held 

ASVspoof challenges. It focuses on counter measures for all three major attack types, 

namely, SS, VC, and replay. It is divided into the logical access (LA) and physical access 

(PA) subsets. LA contains TTS and VC spoof speech samples, and PA has replay-spoof 

speech. Both of these subsets are further partitioned into training, development, and evalu-

ation subsets. The training subset is generated by 8 males and 12 females, the development 

subset by 4 males and 6 females, and the evaluation subset by 21 males and 27 females. 

The spoofing speech signals are generated using one of the two VC and four SS algorithms. 

The ASVspoof datasets are the de facto standard for the detection of spoofing attacks 

and are thus a natural inclusion in this study. ASVspoof 2021 Delgado et  al. (2021) is 

the fourth offering in the series of spoofing challenges. ASVspoof 2021, in particular, is 

divided into three sub-challenges. The first is a logical access sub-challenge that builds on 

the 2019 challenge by emphasising robustness to channel variation; the second is a physi-

cal access sub-challenge, similar to the 2019 setup, but with recordings made in real-world 

physical environments. The third is a speech deepfake detection sub-challenge (no ASV). 

ASVspoof 2021 contains technically difficult data to encourage broad generalization of 

counter measures. The logical access (LA) task includes the computation and transmission 

Table 5  A summary of the 

RedDots, VoxCeleb and 

BioCPqD-PA databases in terms 

of languages, No of speakers and 

utterances

Dataset Language Attacks Speakers Utterances

RedDots 5 Replay 3750 5000

VoxCeleb (V1) 6+ Mimicry 1251 100,000

VoxCeleb (V2) 6+ Mimicry 7000+ 1,000,000

BioCPqD-PA 1 Replay 222 418,940
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of text-to-speech (TTS) and VC attacks. In comparison to ASVspoof 2017, the physical 

access (PA) task includes genuine and replayed samples but with a more tightly controlled 

setup. The new speech deepfake task (DF), similar to the LA task, includes compressed 

audio. The protocols used in the training and development sections are the same as in 

ASVspoof 2019, and therefore ASVSpoof 2021 does not include development or train-

ing subsets. In particular, the logical access and physical access subsets of ASVspoof2021 

include 181, 566 and 943, 110 speech samples, respectively, and the speech deepfake set 

includes 611,  829 speech samples. ASVspoof2021 also introduces new metrics for the 

evaluation partition, including a slightly revised t-DCF metric for the LA and PA tasks. 

However, EER is still used for the evaluation of the DF task. Like ASVspoof2019, this 

dataset is a community standard. In addition, the DF task, included for the first time in 

ASVspoof2021, increases the breadth of the detection challenges, and was a good fit for 

this study’s focus on generalizability.

The Voice Spoofing Detection Corpus (VSDC) dataset Baumann et  al. (2021) com-

prises first-order (once replayed) and second-order (twice replayed) samples over real 

audio recordings. In terms of environments, record and playback devices, speakers, setups, 

and replay scenarios, the VSDC dataset represents a diversified replay spoofing detection 

corpus. The VSDC dataset, in particular, involves the utilization of 35 microphones, 25 dis-

tinct recording setups, and 60 various playback devices for first- and second-order replays 

in order to obtain a total of 12,000 samples from 19 speakers. This dataset was generated 

with the intention of simulating these attacks in a controlled environment. While the pri-

mary goal of VSDC is to detect multi-hop replay attacks, it may be used to simulate a vari-

ety of PA scenarios, e.g., typical replay attacks, the influence of different microphones and 

surroundings on an audio file, or how an individual’s vocal range affects the accuracy of a 

voice control system. The details of tracks, environment and number of speech samples for 

VSDC is presented in Table 4, and details of the development architecture can be found in 

Baumann et al. (2021). VSDC is included in these experiments because it fills a gap in the 

otherwise homogeneous ASVspoof testing. To adequately test the generalizability of the 

counter measures it is necessary to present a variety of scenarios, and VSDC accomplishes 

this by introducing the multi-order replay attack not found in ASVspoof.

In the experimental setup, we selected voice spoofing datasets characterized by an 

imbalanced distribution of samples and utilized them in their original form. This deliberate 

choice is made to promote a fair comparison to real-world spoofing scenarios, where attack 

detection models often encounter imbalanced datasets. By incorporating these imbalanced 

datasets, we were able to evaluate the performance of SOTA counter measures under con-

ditions that closely resembled practical voice spoofing applications. This approach enabled 

us to thoroughly assess the robustness and efficacy of the SOTA techniques in effectively 

handling an imbalanced data distribution, which is prevalent in the voice spoofing detec-

tion domain.

To ensure the generalizability of the evaluated counter measures, we conducted evalu-

ations across corpora. This comprehensive evaluation strategy enhances the reliability and 

applicability of our findings. By employing imbalanced datasets and conducting rigorous 

evaluation our experimental methodology aims to provide valuable insight into the real-

world performance of the SOTA counter measures specifically tailored for voice spoof-

ing detection. These insights contribute to the advancement of practical solutions and their 

effective deployment in voice spoofing detection applications.
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5.2  Other publicly available datasets and ASV challenges

The Spoofing and Antispoofing (SAS) corpus Wu et al. (2015a) contains a wide range of 

spoofed speech samples generated using nine different approaches, two of which are SS, 

and the other seven are VC. The database contains two protocols: one for testing the ASV 

system and another for generating spoofed speech sounds. Periods of silence not found in 

natural speech were removed from the samples, resulting in a more realistic SS and VC 

spoof corpus. The SAS corpus contains speech produced using various spoofing methods, 

represented in 300,000 samples of each type.

The RedDots project Lee et  al. (2015) was launched as a follow-up to a special ses-

sion at INTERSPEECH 2014, which was designed to bring together research efforts to 

investigate potential approaches and gain a better understanding of speaker/channel pho-

netic variability. The goal of the RedDots project was to collect speech data through mobile 

crowd sourcing, which allows for a larger population and greater diversity. At the time of 

our investigation, the project had 89 speakers from 21 countries, 72 men and 17 women, 

for a total of 875 complete sessions. Each session is limited to two minutes, with a total 

of 24 sentences (10 common, 10 unique, 2 free choices, and 2 free texts) for each session. 

Following that, the replayed RedDots database Kinnunen et al. (2017b) was created by re-

recording the original corpus utterances under different environmental conditions.

The AVspoof dataset, not to be confused with the ASVspoof series of datasets, is 

designed to assist ASV systems in the development of anti-spoofing techniques, and was 

first used in the BTAS 2016 Korshunov et al. (2016); Ergünay et al. (2015) challenge. It 

includes replay spoofing attacks in addition to synthetic speech and VC spoofing attacks. 

The replay attacks are generated by various recording devices. The SS attacks are gener-

ated using the Hidden Markov Model (HMM) and Festvox methods, which account for the 

vast majority of the VC attacks. The sessions are recorded by participants in a variety of 

environments and with a variety of recording devices. Speakers are instructed to read out 

sentences, phrases, and speak freely about any topic for 3 to 10 min. To make competition 

more difficult, "unknown" attacks are included in the test set Korshunov et al. (2016).

VoxCeleb Nagrani et al. (2017) is an audio-visual dataset comprised of short clips of 

human voices extracted from YouTube interview videos. Each segment lasts at least 3 s. 

VoxCeleb features speech from people of various ethnicities, accents, professional back-

grounds, and ages. 61% of speakers are male and 39% are female. The data was collected 

randomly, with ambient noise, laughter, overlapping speech, pose deviation, and a variety 

of lighting conditions. This dataset is available in two versions: VoxCeleb1 Nagrani et al. 

(2017) and VoxCeleb2 Chung et al. (2018). Each has audio files, face clips, metadata about 

speakers, and so on, in the training and testing sets.

The voicePA dataset was created with the assistance of the AVspoof dataset. Its bon-

afide data is a subset of the AVspoof dataset’s genuine data, uttered by 44 speakers in 

four recording sessions held in various settings Wang et al. (2020). These sessions were 

recorded using high-quality microphones from a laptop, a Samsung S3, and an Apple 

smartphone 3 GS. Spoofed data consists of 24 different types of presentation attacks that 

are captured using five devices in three different environments. These spoof utterances are 

based on real-world data.

The Portuguese language BioCPqD-PA dataset Korshunov et  al. (2018) was col-

lected by recording 222 people in a variety of environmental conditions, and is com-

prised of 27,253 authentic recordings and 391,687 samples which have been subjected to 
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a presentation attack. One laptop was used with 24 different setups consisting of 8 loud-

speakers and 3 microphones, while another single laptop was used to capture real data.

The ASVspoof 2015 Challenge database was the first significant release for research 

into spoofing and counter measures Wu et al. (2015b). For LA attacks, the database con-

tains natural and spoofed speech generated by SS and VC. The evaluation subset is made 

up of both known and unknown attacks. The known attacks contain the very same five 

algorithms that were used to generate the development dataset and are thus referred to 

as known (S1-S5) attacks. Other spoofing algorithms are included in unknown (S6-S10) 

attacks that are directly used in the test data.

The ASVspoof 2017 Challenge dataset Kinnunen et al. (2017c) was constructed on the 

RedDots dataset Lee et al. (2015). This dataset Kinnunen et al. (2017c) contains replayed 

data samples with text-dependent speech, and includes the voices of 42 different speakers, 

recorded using 61 combinations of distinct recording devices, replay devices, and environ-

mental conditions. It was collected over the course of 179 sessions. The original ASVspoof 

2017 database Kinnunen et al. (2017c) contained some inconsistencies, but the issue was 

resolved in ASVspoof 2017 Version 2.0 Delgado et al. (2018). In addition to the corrected 

data, a more detailed description of recording and playback devices, as well as acoustic 

environments, was provided Delgado et al. (2018).

The Realistic Replay Attack Microphone Array Speech Corpus (ReMASC) is a 

database of speech recordings developed to support research into and the security of voice-

controlled systems. It is comprised of authentic and replayed recordings of speech samples, 

captured in actual circumstances, and utilizes cutting-edge voice assistant development 

kits. In particular, it contains recordings from four systems, each with a different trans-

mitter and receiver, under a range of atmospheric situations, with varying levels of back-

ground noise and relative speaker-to-device locations. This is the first database that was 

specifically developed to safeguard voice-controlled systems (VCS) from various types of 

replay attacks in varied contexts.

6  Performance evaluation parameters

This subsection provides an overview of the evaluation criteria used in this survey, with a 

specific focus on Equal Error Rate (EER) and the minimum Tandem Detection Cost Func-

tion (min t-DCF). These metrics provide a robust assessment of system performance and 

facilitate ASV-centric evaluation. By incorporating EER and min t-DCF as the primary 

evaluation metrics in our experiments, we ensure consistency with previous studies and 

enable meaningful comparisons of the proposed counter measures. A detailed discussion 

of EER and min t-DCF is presented below:

6.1  Equal error rate (EER)

The Equal Error Rate (EER) is used to evaluate the performance of Automatic Speaker 

Verification (ASV) systems. An ASV system categorizes identities as either approved or 

rejected, and there are four possible outcomes: True Acceptance (TA), True Rejection 

(TR), False Acceptance (FA), and False Rejection (FR). TA and TR are desirable out-

comes, while FA and FR are not. These outcomes are determined based on a preset thresh-

old Todisco et al. (2017). EER is the threshold value at which the False Acceptance Rate 
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(FAR) and False Rejection Rate (FRR) are equal. It provides a comprehensive assessment 

of the ASV system’s performance, taking into account both types of errors (FA and FR).

6.2  Tandem detection cost function (t‑DCF)

The ASVspoof challenge series was established to drive research in anti-spoofing for auto-

mated speaker verification (ASV) systems. Previous challenge editions used the equal error 

rate (EER) metric to evaluate spoofing counter measures (CMs) separately from ASV, but 

this approach had drawbacks. To address these issues, the community has transitioned 

from a CM-centric to an ASV-centric evaluation approach using a new measure called the 

tandem detection cost function (t-DCF), which consists of six components divided into 

two parts: false alarm and miss costs, and the prior probability of the target and spoof tri-

als. The results of t-DCF, as presented in the study by Kinnunen et al. (2018), support the 

inclusion of this DCF-based metric in the future road-map of ASVspoof challenges and 

other bio metric anti-spoofing evaluations.

7  Experimental configuration and prerequisites

In this section, we report the results of the experiments performed to determine the effec-

tiveness of the SOTA counter measures. The effectiveness of each countermeasure was 

evaluated by testing it on the training and evaluation sets of the chosen datasets before 

performing cross-corpus evaluation, where the method is tested by training on one dataset 

and testing on another. For a fair comparison of the counter measures, we test their effec-

tiveness against four different ML and DL models and two diverse datasets, VSDC and 

ASVspoof2019. While other datasets were considered, ASVspoof was chosen for its use as 

the industry standard, and VSDC provides a suitable contrasting configuration suitable for 

evaluating the generalizability of the tested counter measures. Although some non-English 

language datasets are available, they were ultimately rejected due to age or lack of stand-

ardization or spoof complexity. Simulation on non-English datasets remains an interesting 

topic and will be reserved for future work if a suitable dataset can be found.

7.1  Models used in the experimental analysis

The experimental analysis in this work was conducted with four distinct classifiers: two 

machine learning approaches and two deep learning approaches. The classifiers employed 

were a Gaussian Mixture Model (GMM) Todisco et al. (2019), a Support Vector Machine 

with Radial Basis Function (SVM-RBF) Aljasem et  al. (2021), a Convolutional Neural 

Network (CNN) Jung et al. (2019), and a CNN-Gated Recurrent Unit (CNN-GRU) Jung 

et al. (2019).The selection of these classifiers was determined by several criteria. Our first 

priority was to utilize the conventional baseline classifiers from the voice spoofing commu-

nity, i.e., the GMM and SVM, and deep learning, i.e., the CNN and CNN-GRU. Secondly, 

we sought to encompass a diverse range of potential avenues for comparison. Lastly, the 

availability of source code for these models was also taken into consideration.

Additionally, it is worth noting that we expanded the baseline GMM model, as provided 

by ASVspoof2019, to evaluate the performance of all of the handcrafted front-end features 

for CQCC and LFCC. It was trained for ten iterations, and the score of the speech samples 
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was computed using a log-likelihood ratio. EER and min t-DCF were used to assess the 

effectiveness of each countermeasure in alignment with the current ASVspoof challenges. 

Next, an SVM classifier with an RBF kernel was used to evaluate the performance of the 

SOTA counter measures. The GMM and SVM classifiers were chosen because they had 

the best reported results for the respective datasets. For example, the SVM-RBF classifier 

Aljasem et al. (2021) achieved the best performance on the VSDC dataset, whereas CQCC-

GMM and LFCC-GMM were the baseline classifiers for the ASVspoof2019 competition. 

In addition, the CNN and CNN-GRU Jung et al. (2019) models were used to determine the 

performance of the SOTA counter measures on deep learning-based classifiers. The effec-

tiveness of each countermeasure is described below in the experimental analysis section 

VII. When testing handcrafted features, the two-dimensional features were converted to 

one-dimensional through the use of the mean average of the retrieved features.

7.2  Experimental setup and hardware requirements

The setup for the experiments consisted of a pipeline of feature extraction and then evalu-

ation of the extracted features on the ML and DL-based classifiers. The feature extrac-

tion and classifiers were run on Oakland University’s Matilda High Performance Cluster 

(HPC). The standard compute nodes were used for feature extraction and model training, 

each of which consists of 192 GB of RAM and 40 CPU cores at 2.50 GHz. The models 

(GMM, SVM, CNN, and CNN-GRU) were trained and tested using the HPC’s GPU nodes, 

made up of four NVIDIA Tesla V100 16 G GPUs, 192 GB of RAM, and 48 CPU cores 

running at 2.10 GHz. The VLFEAT@matlab API was used for the GMMs, which con-

sisted of 512 Gaussian clusters.

8  Experimental analysis of counter measures

This section presents the experimental results of the counter measures against four differ-

ent classifiers (GMM, SVM, CNN, and CNN-GRU). The counter measures are trained and 

evaluated using the ASVspoof2019 and VSDC datasets during the experiment, and the 

results are reported accordingly in Tables 6 to 14. The bold figures present in Tables 6, 7, 

8, 9, 10, 11, 12, 13, 14 hold notable significance, as they serve as markers for the lowest 

and optimal results obtained by the countermeasures under evaluation.

8.1  SOTA features with a GMM classifier

In this experiment, we evaluate the performance of the SOTA countermeasure with the 

baseline GMM classifier provided by the ASVspoof Wu et al. (2017) challenge commu-

nity. The baseline GMM with LFCC and CQCC features was expanded to encompass the 

SOTA handcrafted features and the results of this experiment is presented in Table 6.

8.1.1  Results on the ASVspoof2019 dataset

The counter measures were considered and analyzed for LA and PA attacks against the 

ASVspoof19 dataset development and evaluation speech samples, and the results are 

reported in Table 6. They demonstrate that each countermeasure achieved a better EER and 
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min t-DCF against the development set of each spoofing attack (LA and PA), but perfor-

mance of the each countermeasure declined when tested against the evaluation set. In par-

ticular, when evaluated on LA attacks in the ASVspoof2019 development set, the SCMC 

Kua et al. (2010) countermeasure achieved the lowest EER, 0.01%, while the lowest min 

t-DCF, also 0.01%, was obtained by the IMFCC Chakroborty and Saha (2009) and APGDF 

Rajan et al. (2013) counter measures. However, in evaluation set testing, the APGDF Rajan 

et al. (2013) countermeasure achieved a lower EER and m-t-DCF, 5.75 and 0.14%, respec-

tively, in contrast to IMFCC’s 10.9 and 0.24%.

When considered across the development and evaluation subsets, the results demon-

strate that the APGDF Rajan et al. (2013) and CQCC Todisco et al. (2017) counter meas-

ures outperform all other features with an overall lower EER and min t-DCF. In addition, 

some counter measures perform optimally against the LA attacks but failed to perform 

optimally when replay artifacts existed in the speech sample. For instance, the SCMC Kua 

Table 6  Experimental performance of the counter measures with ASVspoof2019 and VSDC corpus on 

GMM based classifier

Feature VSDC ASVspoof2019 Development Evaluation

EER Attack access EER t-DCF EER t-DCF

LFCC Zhou et al. (2011) 36.33 ASVspoof-LA 2.70 0.06 8.08 0.21

ASVspoof-PA 11.9 0.25 13.5 0.30

CQCC Todisco et al. (2017) 20.0 ASVspoof-LA 0.43 0.02 9.57 0.23

ASVspoof-PA 4.87 0.19 11.0 0.24

LPCC Wong and Sridharan (2001) 5.86 ASVspoof-LA 2.31 0.06 10.17 0.28

ASVspoof-PA 38.5 0.83 46.6 0.98

MSRCC Tapkir et al. (2018) 54.73 ASVspoof-LA 9.45 0.19 10.9 0.28

ASVspoof-PA 12.7 0.28 15.7 0.38

PSRCC Tapkir et al. (2018) 55.11 ASVspoof-LA 9.13 0.14 10.7 0.21

ASVspoof-PA 12.7 0.28 15.7 0.38

SCFC Kua et al. (2010) 45.49 ASVspoof-LA 14.7 0.39 20.6 0.54

ASVspoof-PA 17.6 0.35 21.6 0.47

SCMC Kua et al. (2010) 49.91 ASVspoof-LA 0.01 0.54 5.91 0.15

ASVspoof-PA 12.5 0.27 13.9 0.33

MFCC Muda et al. (2010) 49.90 ASVspoof-LA 7.06 0.16 10.56 0.25

ASVspoof-PA 11.5 0.23 13.7 0.32

IMFCC Chakroborty and Saha (2009) 50.00 ASVspoof-LA 0.04 0.01 10.9 0.24

ASVspoof-PA 12.8 0.29 13.7 0.32

RFCC Saratxaga et al. (2012) 48.87 ASVspoof-LA 2.71 0.07 8.06 0.22

ASVspoof-PA 11.8 0.26 13.9 0.33

RPS Saratxaga et al. (2012) 55.21 ASVspoof-LA 9.28 0.19 11.9 0.29

ASVspoof-PA 15.3 0.32 14.0 0.36

SSFC Tapkir et al. (2018) 53.11 ASVspoof-LA 8.10 0.16 10.3 0.27

ASVspoof-PA 13.8 0.29 13.9 0.31

GTCC Valero and Alias (2012) 56.00 ASVspoof-LA 9.25 0.17 10.8 0.24

ASVspoof-PA 12.7 0.28 15.7 0.38

APGDF Rajan et al. (2013) 40.29 ASVspoof-LA 0.22 0.01 5.75 0.14

ASVspoof-PA 8.66 0.17 10.6 0.25



Battling voice spoofing: a review, comparative analysis, and…

1 3

et al. (2010) counter measures obtained the best EER of 0.01% and the second best EER 

of 5.91% for the development and evaluation test sets, however, SCMC performed poorly 

when faced with PA attacks. Similarly, the EER of APGDF Rajan et al. (2013) counter-

measure was higher than SCMC in the development set but achieved the overall best results 

in the rest of the testing.

8.1.2  Results on the VSDC dataset

The performance of these SOTA counter measures was also tested with the VSDC dataset, 

and the results are shown in Table 6. The results show that the LPCC Wong and Sridharan 

(2001) countermeasure exhibits the best, and CQCC Todisco et al. (2017) obtains the sec-

ond best EER, 5.86 and 20.0%, respectively. The GTCC countermeasure Valero and Alias 

(2012) obtained the highest EER of 55.0%, which demonstrates the inadequacy of this 

countermeasure in the presence of speech samples with distinct microphonic discrepancies. 

Except for LFCC Zhou et  al. (2011), none of the handcrafted features achieved an EER 

lower than 40.0%, rendering them effectively unsuitable as anti-spoofing counter measures.

8.1.3  Discussion of the GMM experiments

The experimental results showed that each countermeasure performed significantly dif-

ferently against SS (SS), VC, and replay attacks, and demonstrated that the samples with 

replay attacks were much more difficult to detect in comparison with the SS and VC sam-

ples. During evaluation it was observed that the performance of the SOTA counter meas-

ures declined drastically in the presence of replay artifacts in the speech samples.

From these results, we may infer that countermeasure effectiveness is totally depend-

ent on dataset characteristics. In the ASVspoof2019 dataset, for instance, while APGDF 

Rajan et al. (2013) features produced the best results, on the VSDC dataset its effectiveness 

decreased by nearly an order of magnitude. Similarly, LPCC Wong and Sridharan (2001) 

did not generate effective results for the ASVspoof datasets, particularly the ASVspoof-PA 

assessment set, but produced the best results in VSDC testing. Furthermore, we can see 

that the front-end features that work well against LA attacks did not perform well against 

PA attacks. However, the APGDF Rajan et al. (2013), CQCC Todisco et al. (2017), and 

LPCC Wong and Sridharan (2001) features produced comparable results independent of 

the dataset’s specific configuration.

8.2  SOTA features with an SVM classifier

In this experiment, we evaluate the effectiveness of SOTA counter measures using an SVM 

classifier. The SVM classifier was shown in our prior work to be superior to the GMM 

classifier Aljasem et al. (2021). An SVM with an RBF distribution was utilized in these 

experiments. The RBF distribution was selected after a thorough analysis of all feasible 

distributions. The scikit-learn Pedregosa et al. (2011) machine learning library was used to 

train and test the SVM classifier. In addition, a classification report Pedregosa et al. (2011) 

was used to compute the precision, recall, F1-score, and accuracy of the counter measures.
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8.2.1  Results on the ASVspoof2019 dataset

In the case of the ASVspoof2019 dataset, each of the SOTA counter measures was tested 

against the SVM classifier using the development and evaluation subsets, and the results 

are reported in Table 8. These demonstrate that in the testing of LA attacks that exist in 

the development set and evaluation set, the CQCC Todisco et al. (2017) and IMFCC Chak-

roborty and Saha (2009) counter measures achieved comparable performance, with EERs 

of 0.30 and 0.29%, respectively. Similarly, for the evaluation set, the CQCC Todisco et al. 

(2017) and IMFCC Chakroborty and Saha (2009) counter measures achieved the best EER 

of 0.69 and 0.76%, respectively. Although these EER scores are not good enough for any 

spoofing system, none of the other counter measures achieved a lower EER.

8.2.2  Results on the VSDC dataset

The results of this experiment on the VSDC dataset are shown in Table  7, and demon-

strate that the CQCC Todisco et al. (2017) feature proved to have the most robust front-end 

attributes of the SOTA counter measures. CQCC features, in particular, achieved the low-

est EER of 0.27%, the highest precision, recall, and F1-scores of 0.92, 0.85, and 0.88%, 

respectively, as well as the highest accuracy of 0.93%. Spectral features such as SCFC Kua 

et al. (2010), on the other hand, performed poorly in the case of the VSDC dataset, which 

contains audio samples with micro-phonic inconsistencies. SCFC had the lowest precision 

(0.39%), recall (0.50%), and F1-score (0.44%), and achieved an accuracy of 0.78%. Simi-

larly, the SCMC Kua et  al. (2010) features were found to be the second worst classifier 

with a 0.53% EER. This indicates that the spectral centroid magnitude and frequency-based 

coefficients failed to perform effectively when microphonic distinction (as in the case of 

VSDC) exists in the speech sample. In contrast, the experiments demonstrate that constant 

Q-cepstral-based coefficient successfully overcame the microphone fluctuations.

Table 7  Experimental performance of the counter measures with VSDC dataset and SVM based classifier

Feature EER Precision Recall F1-score Accuracy

LFCC Zhou et al. (2011) 0.49 0.88 0.74 0.79 0.88

CQCC Todisco et al. (2017) 0.27 0.92 0.85 0.88 0.93

LPCC Wong and Sridharan (2001) 0.44 0.88 0.77 0.81 0.89

PSRCC Tapkir et al. (2018) 0.40 0.79 0.76 0.77 0.86

MSRCC Tapkir et al. (2018) 0.46 0.84 0.76 0.79 0.86

SCFC Kua et al. (2010) 0.80 0.39 0.50 0.44 0.78

SCMC Kua et al. (2010) 0.53 0.87 0.72 0.76 0.87

MFCC Muda et al. (2010) 0.46 0.82 0.75 0.77 0.86

IMFCC Chakroborty and Saha (2009) 0.71 0.88 0.64 0.67 0.84

RPS Saratxaga et al. (2012) 0.40 0.76 0.78 0.77 0.85

RFCC Saratxaga et al. (2012) 0.51 0.87 0.73 0.76 0.87

GTCC Valero and Alias (2012) 0.42 0.82 0.76 0.78 0.86

APGDF Rajan et al. (2013) 0.43 0.89 0.77 0.81 0.89

SSFC Tapkir et al. (2018) 0.44 0.87 0.77 0.80 0.88
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8.2.3  Discussion of the SVM experiments

In these experiments, the CQCC countermeasure performed far better than the other fea-

tures. In addition, CQCC features continue to work effectively in the presence of micro-

phonic distinctions, where the rest of the spectral features fail. In other results of note, the 

phase-based APGDF Rajan et al. (2013) features were the second best features compared 

to the SOTA that achieved the optimal results. Detailed results of the tested SOTA counter 

measures are presented in Table 8.

Table 8  Experimental performance of the counter measures with ASVspoof2019 and an SVM based clas-

sifier

Feature Dataset Development Evaluation

EER Acc EER Acc

LFCC Zhou et al. (2011) ASVspoof19-LA 0.58 0.90 0.91 0.12

ASVspoof19-PA 0.72 0.75 0.83 0.11

CQCC Todisco et al. (2017) ASVspoof19-LA 0.30 0.95 0.69 0.29

ASVspoof19-PA 0.42 0.29 0.80 0.19

LPCC Wong and Sridharan (2001) ASVspoof19-LA 0.50 0.88 0.80 0.15

ASVspoof19-PA 0.61 0.20 0.81 0.19

SCFC Kua et al. (2010) ASVspoof19-LA 0.50 0.89 0.90 0.16

ASVspoof19-PA 0.75 0.19 0.89 0.14

SCMC Kua et al. (2010) ASVspoof19-LA 0.49 0.93 0.88 0.12

ASVspoof19-PA 0.75 0.20 0.86 0.15

PSRCC Tapkir et al. (2018) ASVspoof19-LA 0.49 0.89 0.89 0.11

ASVspoof19-PA 0.84 0.25 0.89 0.12

MSRCC Tapkir et al. (2018) ASVspoof19-LA 0.51 0.90 0.91 0.11

ASVspoof19-PA 0.84 0.25 0.89 0.12

MFCC Muda et al. (2010) ASVspoof19-LA 0.50 0.89 0.80 0.17

ASVspoof19-PA 0.76 0.22 0.86 0.16

IMFCC Chakroborty and Saha (2009) ASVspoof19-LA 0.29 0.94 0.76 0.24

ASVspoof19-PA 0.51 0.26 0.82 0.18

RFCC Saratxaga et al. (2012) ASVspoof19-LA 0.46 0.93 0.87 0.14

ASVspoof19-PA 0.84 0.26 0.88 0.14

RPS Saratxaga et al. (2012) ASVspoof19-LA 0.52 0.90 0.91 0.10

ASVspoof19-PA 0.86 0.25 0.89 0.11

SSFC Tapkir et al. (2018) ASVspoof19-LA 0.50 0.90 0.89 0.12

ASVspoof19-PA 0.87 0.29 0.90 0.10

GTCC Valero and Alias (2012) ASVspoof19-LA 0.50 0.90 0.90 0.10

ASVspoof19-PA 0.84 0.25 0.89 0.12

APGDF Rajan et al. (2013) ASVspoof19-LA 0.34 0.94 0.82 0.17

ASVspoof19-PA 0.60 0.17 0.83 0.15
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8.3  SOTA features with a CNN classifier

Several deep learning and end-to-end solutions have been published recently to differenti-

ate between spoofed and bonafide speech samples. Therefore, we tested the counter meas-

ures against the recent CNN and CNN-GRU based classifiers in order to validate the gener-

alized performance of the highest performing counter measures.

8.3.1  Results on the ASVspoof2019 dataset

In the case of ASVspoof19, the rectangular-based RFCC Saratxaga et al. (2012) features 

outperform all evaluated counter measures on the ASVspoof19 dataset, with an EER of 

0.054% and a min t-DCF of 0.139%. The magnitude-based feature MSRCC was found to 

be significantly deficient during the ASVspoof19 evaluation, with the highest EER and min 

Table 9  Experimental performance analysis of the counter measures on ASVspoof2019 and VSDC datasets 

with a CNN based classifier

Features Training Testing EER min t-DCF

IMFCC Chakroborty and Saha (2009) VSDC VSDC 0.06 0.17

ASVspoof19 ASVspoof19 0.19 0.50

SSFC Tapkir et al. (2018) VSDC VSDC 0.03 0.07

ASVspoof19 ASVspoof19 0.18 0.46

RFCC Saratxaga et al. (2012) VSDC VSDC 0.13 0.25

ASVspoof19 ASVspoof19 0.05 0.13

SCFC Kua et al. (2010) VSDC VSDC 0.10 0.30

ASVspoof19 ASVspoof19 0.14 0.36

SCMC Kua et al. (2010) VSDC VSDC 0.14 0.37

ASVspoof19 ASVspoof19 0.44 0.94

PSRCC Tapkir et al. (2018) VSDC VSDC 0.08 0.10

ASVspoof19 ASVspoof19 0.43 0.75

MSRCC Tapkir et al. (2018) VSDC VSDC 0.13 0.17

ASVspoof19 ASVspoof19 0.43 0.75

RPS Saratxaga et al. (2012) VSDC VSDC 0.04 0.11

ASVspoof19 ASVspoof19 0.21 0.65

CQCC Todisco et al. (2017) VSDC VSDC 0.04 0.13

ASVspoof19 ASVspoof19 0.17 0.45

LFCC Zhou et al. (2011) VSDC VSDC 0.03 0.03

ASVspoof19 ASVspoof19 0.16 0.43

MFCC Muda et al. (2010) VSDC VSDC 0.06 0.16

ASVspoof19 ASVspoof19 0.26 0.62

LPCC Wong and Sridharan (2001) VSDC VSDC 0.02 0.05

ASVspoof19 ASVspoof19 0.19 0.50

GTCC Valero and Alias (2012) VSDC VSDC 0.03 0.07

ASVspoof19 ASVspoof19 0.43 0.75

APGDF Rajan et al. (2013) VSDC VSDC 0.01 0.04

ASVspoof19 ASVspoof19 0.17 0.45
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t-DCF values, at 0.443 and 0.947%, respectively. In contrast, the highest EER of 0.21%, 

and the highest min t-DCF score of 0.43%, were seen in the SCFC Kua et al. (2010) fea-

tures against VSDC. Detailed results of the SOTA counter measures with the CNN classi-

fier are presented in Table 9.

8.3.2  Results on the VSDC dataset

The results, presented in Table 9 for the VSDC dataset, demonstrate that the APGDF Rajan 

et al. (2013) front-end features outperform the rest of the studied counter measures, with 

an EER of 0.01% and a min t-DCF of 0.04%. Following all of the counter measures, For 

instance, when measured by EER, LPCC Wong and Sridharan (2001) and LFCC Zhou 

et al. (2011) rank second and third, with scores of 0.026% and 0.032%, respectively.

Table 10  Experimental performance analysis of the SOTA counter measures with a CNN-GRU based clas-

sifier

Feature Train dataset Test dataset EER min t-DCF

LFCC Zhou et al. (2011) VSDC VSDC 0.02 0.05

ASVspoof19 ASVspoof19 0.15 0.41

SSFC Tapkir et al. (2018) VSDC VSDC 0.04 0.07

ASVspoof19 ASVspoof19 0.17 0.46

MFCC Muda et al. (2010) VSDC VSDC 0.03 0.07

ASVspoof19 ASVspoof19 0.22 0.548

SCFC Kua et al. (2010) VSDC VSDC 0.18 0.35

ASVspoof19 ASVspoof19 0.09 0.25

LPCC Wong and Sridharan (2001) VSDC VSDC 0.18 0.03

ASVspoof19 ASVspoof19 0.02 0.47

SCMC Kua et al. (2010) VSDC VSDC 0.02 0.05

ASVspoof19 ASVspoof19 0.17 0.46

MSRCC Tapkir et al. (2018) VSDC VSDC 0.21 0.03

ASVspoof19 ASVspoof19 0.22 0.50

PSRCC Tapkir et al. (2018) VSDC VSDC 0.23 0.03

ASVspoof19 ASVspoof19 0.19 0.53

RFCC Saratxaga et al. (2012) VSDC VSDC 0.11 0.22

ASVspoof19 ASVspoof19 0.04 0.11

IMFCC Chakroborty and Saha (2009) VSDC VSDC 0.03 0.09

ASVspoof19 ASVspoof19 0.18 0.50

APGDF Rajan et al. (2013) VSDC VSDC 0.08 0.26

ASVspoof19 ASVspoof19 0.14 0.37

CQCC Todisco et al. (2017) VSDC VSDC 0.09 0.23

ASVspoof19 ASVspoof19 0.18 0.49

GTCC Valero and Alias (2012) VSDC VSDC 0.04 0.09

ASVspoof19 ASVspoof19 0.19 0.53

RPS Saratxaga et al. (2012) VSDC VSDC 0.04 0.09

ASVspoof19 ASVspoof19 0.19 0.53
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8.4  SOTA features with a CNN‑GRU classifier

The CNN-GRU classifier is a recent development in the classification of speech samples 

for voice spoofing detection. This classifier combines the strengths of convolutional neu-

ral networks (CNNs) and gated recurrent units (GRUs) to provide a powerful and effi-

cient method for detecting spoofing attacks. The CNN component of the classifier extracts 

important features from the speech signal, while the GRU component is used to model the 

temporal dynamics of the speech signal. By combining these two components, the CNN-

GRU classifier is able to effectively distinguish between genuine and spoofed speech. Thus, 

a CNN-GRU Jung et al. (2019) classifier was used to evaluate the SOTA counter measures 

in this experiment, and the results are presented in Table 10.

Table 11  Cross corpus evaluation of the SOTA counter measures with a GMM classifier

Features Training Testing EER min t-DCF

CQCC Todisco et al. (2017) VSDC ASVspoof19 0.40 0.81

ASVspoof19 VSDC 0.66 0.99

LFCC Zhou et al. (2011) VSDC ASV’19 PA 0.60 0.99

ASV’19 PA VSDC 0.45 0.99

SSFC Tapkir et al. (2018) VSDC ASVspoof19 0.80 0.99

ASVspoof19 VSDC 0.67 0.99

RPS Saratxaga et al. (2012) VSDC ASVspoof19 0.50 0.93

ASVspoof19 VSDC 0.40 0.94

LPCC Wong and Sridharan (2001) VSDC ASVspoof19 0.41 0.89

ASVspoof19 VSDC 0.62 1.0

PSRCC Tapkir et al. (2018) VSDC ASVspoof19 0.25 0.39

ASVspoof19 VSDC 0.67 0.99

MSRCC Tapkir et al. (2018) VSDC ASVspoof19 0.29 0.47

ASVspoof19 VSDC 0.40 0.94

SCFC Kua et al. (2010) VSDC ASVspoof19 0.58 0.99

ASVspoof19 VSDC 0.48 0.99

SCMC Kua et al. (2010) VSDC ASVspoof19 0.60 0.97

ASVspoof19 VSDC 0.46 0.87

MFCC Muda et al. (2010) VSDC ASVspoof19 0.42 0.97

ASVspoof19 VSDC 0.45 0.93

IMFCC Chakroborty and Saha (2009) VSDC ASVspoof19 0.45 0.99

ASVspoof19 VSDC 0.45 0.96

RFCC Saratxaga et al. (2012) VSDC ASVspoof19 0.34 0.84

ASVspoof19 VSDC 0.39 0.27

GTCC Valero and Alias (2012) VSDC ASVspoof19 0.36 0.38

ASVspoof19 VSDC 0.56 1.0

APGDF Rajan et al. (2013) VSDC ASVspoof19 0.30 0.59

ASVspoof19 VSDC 0.61 0.99



Battling voice spoofing: a review, comparative analysis, and…

1 3

8.4.1  Results on the ASVspoof2019 dataset

When testing of counter measures against the ASVspoof19 dataset, the results demonstrate 

that LPCC Wong and Sridharan (2001) was the best performing countermeasure, with an 

EER of 0.02% and a min t-DCF of 0.47%, while the RFCC Saratxaga et  al. (2012) and 

SCFC Kua et al. (2010) counter measures have the lowest EERs at 0.04 and 0.09%, respec-

tively. In contrast, the counter measures with MSRCC and MFCC features obtained the 

highest EERs of 0.22% respectively. In the case of the min t-DCF, only the RFCC Saratx-

aga et al. (2012) features performed well, with the lowest value of 0.011%, all other coun-

ter measures obtained a min t-DCF score higher than 0.25%, which shows the sensitivity of 

counter measures in ASV systems.

Table 12  Cross corpus evaluation of the SOTA counter measures with a CNN based classifier

Feature Train dataset Test dataset EER min t-DCF

IMFCC Chakroborty and Saha (2009) VSDC ASVspoof19 0.43 0.99

ASVspoof19 VSDC 0.57 1.0

SCMC Kua et al. (2010) VSDC ASVspoof19 0.51 0.99

ASVspoof19 VSDC 0.35 0.96

RFCC Saratxaga et al. (2012) VSDC ASVspoof19 0.40 0.96

ASVspoof19 VSDC 0.50 0.91

RPS Saratxaga et al. (2012) VSDC ASVspoof19 0.68 0.99

ASVspoof19 VSDC 0.55 0.98

SSFC Tapkir et al. (2018) VSDC ASVspoof19 0.72 0.99

ASVspoof19 VSDC 0.39 0.91

PSRCC Tapkir et al. (2018) VSDC ASVspoof19 0.37 0.94

ASVspoof19 VSDC 0.51 0.97

MSRCC Tapkir et al. (2018) VSDC ASVspoof19 0.46 0.52

ASVspoof19 VSDC 0.47 0.93

CQCC Todisco et al. (2017) VSDC ASVspoof19 0.48 0.98

ASVspoof19 VSDC 0.66 1.0

LFCC Zhou et al. (2011) VSDC ASVspoof19 0.51 0.99

ASVspoof19 VSDC 0.37 0.99

MFCC Muda et al. (2010) VSDC ASVspoof19 0.47 0.93

ASVspoof19 VSDC 0.52 0.94

SCFC Kua et al. (2010) VSDC ASVspoof19 0.53 0.99

ASVspoof19 VSDC 0.54 0.97

LPCC Wong and Sridharan (2001) VSDC ASVspoof19 0.46 0.98

ASVspoof19 VSDC 0.63 1.0

GTCC Valero and Alias (2012) VSDC ASVspoof19 0.50 0.98

ASVspoof19 VSDC 0.41 0.91

APGDF Rajan et al. (2013) VSDC ASVspoof19 0.44 0.99

ASVspoof19 VSDC 0.56 1.0
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Table 13  Cross corpus evaluation of the counter measures with a CNN-GRU based classifier

Feature Train dataset Test dataset EER min t-DCF

LFCC Zhou et al. (2011) VSDC ASVspoof19 0.47 0.99

ASVspoof19 VSDC 0.53 0.98

MFCC Muda et al. (2010) VSDC ASVspoof19 0.45 0.94

ASVspoof19 VSDC 0.34 0.97

SCFC Kua et al. (2010) VSDC ASVspoof19 0.49 0.99

ASVspoof19 VSDC 0.59 0.99

LPCC Wong and Sridharan (2001) VSDC ASVspoof19 0.65 0.99

ASVspoof19 VSDC 0.45 1.0

SCMC Kua et al. (2010) VSDC ASVspoof19 0.45 0.99

ASVspoof19 VSDC 0.65 1.0

PSRCC Tapkir et al. (2018) VSDC ASVspoof19 0.52 0.98

ASVspoof19 VSDC 0.57 0.99

MSRCC Tapkir et al. (2018) VSDC ASVspoof19 0.49 0.99

ASVspoof19 VSDC 0.54 1.0

RFCC Saratxaga et al. (2012) VSDC ASVspoof19 0.44 0.99

ASVspoof19 VSDC 0.67 1.0

IMFCC Chakroborty and Saha (2009) VSDC ASVspoof19 0.44 0.99

ASVspoof19 VSDC 0.61 1.0

APGDF Rajan et al. (2013) VSDC ASVspoof19 0.34 0.82

ASVspoof19 VSDC 0.51 0.96

CQCC Todisco et al. (2017) VSDC ASVspoof19 0.50 0.99

ASVspoof19 VSDC 0.43 1.0

GTCC Valero and Alias (2012) VSDC ASVspoof19 0.49 0.99

ASVspoof19 VSDC 0.54 1.0

SSFC Tapkir et al. (2018) VSDC ASVspoof19 0.51 0.99

ASVspoof19 VSDC 0.56 1.0

RPS Saratxaga et al. (2012) VSDC ASVspoof19 0.50 0.96

ASVspoof19 VSDC 0.55 0.98

Table 14  Computational details of the SOTA counter measures

Model ASVspoof2019 ASVspoof2021 VSDC

EER t-DCF EER t-DCF EER

ASSIST Jung et al. (2022) 0.83 0.027 15.84 0.537 51.21

ASSIST-L Jung et al. (2022) 0.99 0.030 15.69 0.520 59.32

RawBoost Tak et al. (2021) 2.17 0.055 23.1 0.759 64.90

One class Zhang et al. (2021) 5.38 0.309 48.7 0.901 37.95

Res2Net34 Li et al. (2021) 1.67 0.058 48.00 0.994 29.00

Res2Net50 Li et al. (2021) 1.63 0.049 39.00 0.999 24.00

ResNet34-LA Aravind et al. (2020) 10.53 0.19 26.55 0.34 40.23

ResNet34-PA Aravind et al. (2020) 6.61 0.15 49.51 0.41 34.12
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8.4.2  Results on the VSDC dataset

The results from Table 10 demonstrate that in the case of the VSDC dataset, the linear and 

spectral magnitude-based LFCC and SCMC features achieved the same performance, with 

an EER of 0.02% and a min t-DCF of 0.05%. Due to the versatility of the VSDC dataset, 

the SCFC features scored an EER of 0.18% and a min t-DCF of 0.35%. In particular, the 

results from this experiment proved to be optimal for the VSDC dataset, in comparison 

with the GMM, SVM, and CNN-GRU classifiers.

8.4.3  Discussion of the CNN/CNN‑GRU results

These experiments clearly show the significance of the choice of back-end classifiers in 

speech spoofing detection. For instance, the worst EER recorded with the GMM classifier 

was 0.80% on the LFCC feature, while the comparable worst EER achieved with the CNN 

classifier was just 0.265% with MFCC Muda et al. (2010), i.e., when using the same feature 

set but replacing the classifier, the worst case EER was reduced by nearly 65%. Linear-based 

features perform well with the CNN-based classifier to detect voice spoofing attacks, as seen 

in LFCC Zhou et al. (2011) and LPCC Wong and Sridharan (2001) in these experiments.

8.5  Discussion of the overall performance of counter measures against all four 

classifiers

Based on the experiments involving the SOTA counter measures with machine learning-

based GMM and SVM-based classifiers, CQCC Todisco et al. (2017) is the best general 

countermeasure against voice spoofing attacks. More specifically, in the testing of replay 

attacks, where the performance of the SOTA classifiers drops significantly, the CQCC fea-

tures scored the best EER, 0.27, 0.43, and 0.30% in GMM and SVM testing, respectively. 

The results of both ML-based classifiers show that the phase-based APGDF Rajan et al. 

(2013), linear LFCC Zhou et al. (2011), and inverted Mel-based IMFCC Chakroborty and 

Saha (2009) counter measures performed better than the comparative methods in all exper-

iments and received the optimal scores in all performance measurements. APGDF also 

had the lowest EER and min t-DCF in the ASVspoof2019-PA dataset evaluation. Similar 

results were obtained with VSDC on the SVM classifier. In comparison to the comparative 

approaches, the SCFC Kua et al. (2010) features failed to perform well in any experiment, 

and had the highest EER and min t-DCF, in fact, the performance of the majority of the 

spectral and cepstral counter measures declined when tested against other classifiers in dif-

ferent configurations.

When compared to the GMM classifier, the CNN classifier performed significantly bet-

ter across the board. In addition, the CNN-GRU classifier proved to be the optimal clas-

sifier for both datasets. Therefore, it may be concluded from these experiments that the 

performance of the existing SOTA countermeasure differs in the presence of distinct classi-

fiers and may not function adequately in the presence of advanced spoofing attempts. How-

ever, the effectiveness of the SOTA countermeasure across corpora must still be demon-

strated. To this end, in the next section we provide a cross-corpus evaluation of the SOTA 

counter measures.
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8.6  Experimental analysis of handcrafted counter measures across corpora

One of the shortfalls in the current research into audio spoof detection is that cross-corpus 

evaluations are rarely done, limiting knowledge of the generalizability of both features and 

full countermeasure frameworks. To overcome this knowledge gap, this comparative analy-

sis performs a cross-corpus evaluation, where one dataset is used for training and another 

for evaluation, to show the effectiveness of these features at generalized spoof detection 

across different conditions present in the respective datasets. The results of the cross cor-

pus evaluations against GMM, CNN and CNN-GRU are presented in Tables 11, 12 and 13.

In the instance of VSDC training and ASVspoof19 testing, the APGDF-based counter-

measure Rajan et  al. (2013) obtained the best overall EER of these experiments, 0.34%, 

and a min t-DCF score of 0.82%. With an EER of 0.44%, the RFCC Saratxaga et al. (2012) 

and IMFCC Chakroborty and Saha (2009) were ranked second and third, respectively. In 

the case of ASVspoof19 training and VSDC testing, the MFCC-based countermeasure 

Muda et al. (2010) outperformed the SOTA features, with the lowest EER of 0.34% and 

the lowest min t-DCF score of 0.97%. The outcomes of this experiment were similar to the 

results of the CNN-based cross-corpus evaluations. The min t-DCF of the SOTA counter 

measures was significantly greater than in standalone testing.

In the instance of ASVspoof19 dataset training and VSDC testing, the results demon-

strate that in the majority of the counter measures, the min t-DCF was at or around 1%. 

These findings demonstrate the ineffectiveness of existing counter measures and classifi-

ers against unknown spoofing attacks. Furthermore, these findings have raised concerns 

regarding the effectiveness of the existing protections against complicated contemporary 

spoofing attacks.

8.7  Experimental analysis of recent end‑to‑end counter measures across corpora

Following the observation of a performance drop in SOTA counter measures we con-

ducted a cross-corpus sub-experiment utilizing contemporary deep learning and end-to-

end solutions, and the performance of recent deep learning and end-to-end solutions is 

shown in Table 14.

Several deep learning and end-to-end solutions have demonstrated outstanding per-

formance in the recent ASV challenges Jung et al. (2022); Tak et al. (2021); Zhang et al. 

(2021); Aravind et al. (2020); Li et al. (2021). In the latest competition, ASVspoof2021, 

the end-to-end solution ASSIST Jung et al. (2022) achieved the best EER and min t-DCF 

on the ASVspoof19-LA data subset. Similarly, Zhang et al. (2021) and Tak et al. (2021) 

also performed well in this task. Many participants, however, presented deep learning 

and end-to-end systems that had been trained and tested to mitigate only a single attack. 

To demonstrate the general effectiveness of these counter measures we performed an 

experiment in which we evaluated the higher performing solutions to the ASV chal-

lenges across corpora. Each solution was trained and tested on the ASVspoof2019-LA 

subset and evaluated against the LA speech samples of the ASVspoof2021 corpus. Sim-

ilarly, if the model’s stated results were based on ASVspoof2021, we examined that 

model’s performance against ASVspoof2019. The key reasoning behind this experiment 

was to evaluate and report the generalizability of these counter measures.

To measure generalizability, we selected the top-performing models with publicly avail-

able code. It was observed from the results that the top performer, ASSIST Jung et  al. 
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(2022), and its companion model ASSIST-L, achieved EER values of 0.83 and 0.99%, 

respectively, against the ASVspoof2019 dataset. However, the performance of these mod-

els deteriorated when tested against speech samples from the ASVspoof2021 dataset. Spe-

cifically, the EER scores increased to 15.84 and 15.69%, and the min t-DCFs rose from 

0.027 to 0.537%, and from 0.030 to 0.520%, respectively. Furthermore, when tested against 

ASV spoof 2021, the EER for the solution proposed in Zhang et al. (2021) increased from 

2.17 to 23.1%, and the min t-DCF increases from 0.055 to 0.759%, however the worst per-

formance was observed in the case of the RawBoost solution proposed in Tak et al. (2021). 

Although RawBoost performed optimally using augmented data, with an EER score of 

2.17%, its EER and min t-DCF increased dramatically when tested on other datasets and 

without augmentation. In the case of ASVspoof2021 and without data augmentation, the 

EER of Tak et al. (2021) increased by 43% and min t-DCF increased from 0.301 to 0.903%.

Although the adaptation of the Resnet-34 architecture published in Aravind et al. (2020) 

reported an EER of 5.32% against the ASVSpoof2019-LA dataset, and 5.74% against the 

ASVSpoof2019-PA, these results could not be replicated. We observed EERs of 10.53 and 

6.61%, respectively, in our configured environment. When tested on ASVSpoof2021, per-

formance dropped even further, with EER results of 26.55% on LA and 49.51% on PA.

To further test the extensibility of this and other methods, we performed cross-attack, 

cross-corpus testing, with training on ASVspoof2019-PA and testing against ASVS-

poof2021-deepfake (DF) dataset, which achieved an EER 42.21%. Similar performance 

deterioration was observed for Aravind et  al. (2020) on the distinct dataset, where EER 

rose to 48.00% and 39.00% for res2net34 and res2net50, respectively.

8.8  Overall performance of the SOTA voice spoofing solutions, and a way forward

Based on the results of this study’s experiments, we can infer that the none of the selected 

counter measures was consistent over a wide range of datasets and classifiers. As shown in 

the preceding subsections, several counter measures, such as CQCC Todisco et al. (2017) 

and RFCC Saratxaga et al. (2012), performed better overall in standalone testing, however, 

when the dataset and classifier were changed, these counter measures failed to perform 

well. While PSRCC Tapkir et al. (2018) and MSRCC Tapkir et al. (2018) did not perform 

much better in standalone testing, they did significantly better in cross-corpus examina-

tion. After extensive testing, it is extremely difficult to select the best countermeasure from 

among those tested because some performed well with one data set but failed at another. 

We may infer from this that classifiers and datasets have a significant influence on the pre-

sent counter measures. In addition, in standalone corpus testing with four alternative clas-

sifiers, CQCC Todisco et al. (2017) performed consistently with only a minor decline in 

performance across classifiers. PSRCC Tapkir et al. (2018) and APGDF Rajan et al. (2013) 

scored marginally better when the classifier varied and in cross-corpus evaluation. As a 

consequence of the extensive testing with various datasets and classifiers, the effectiveness 

of the existing SOTA counter measures was called into question. These tests also dem-

onstrated the significance of cross-corpus and variable classifier evaluation of proposed 

solutions.

The scores achieved for the end-to-end solutions imply that while these methods per-

form well on a specific dataset the results do not transfer well. These tests demonstrate the 

impact of formulating a solution based on a particular corpus, as the performance of deep 

learning and end-to-end solutions degrades significantly when presented with unknowns. 

Each static dataset differs and has distinct discrepancies due to varied factors, such as the 
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ambient setting, unknown equipment, the influence of microphone type, and the spoofing 

technique used to produce spoof samples. Therefore, developing a spoofing countermeas-

ure without taking into consideration the aforementioned factors may lead to performance 

degradation when tested across corpora.

Thus, based on these results, we conclude that there is a dire need to concentrate on a 

broad approach that mitigates the aforementioned variances while developing robust voice 

spoofing defenses, with an accompanying shift in the research community’s focus to envi-

ronmental or scenario-based spoofing counter measures. The environment is an essential 

part of spoofing detection counter measures; for instance, several counter measures may 

fail to provide adequate performance when surrounded by a loud environment or back-

ground noise. As a result, a thorough comparison study is required to find the best counter-

measure for specific scenarios.

In addition, the need for cross dataset evaluation is important to consider when evalu-

ating the performance of any aspect of an audio spoof detection system, as shown in this 

paper. Only when counter measures are evaluated across corpora will important insights 

into the robustness of the tested features be revealed. These may provide additional infor-

mation and direction toward a more general and complete ASV system.

8.9  Limitations and future work

Aside from the effectiveness of the presented work, there are certain limitations to this 

study. Due to contradictory technical issues and lack of code availability, only fourteen 

counter measures were chosen to do the cross-corpus and multi-classifier evaluation. More-

over, in accordance with the advancement of the voice spoofing domain and deep learning 

methodologies such as CNNs, transformers, and so on, we compared four recent top-rated 

(by EER and min t-DCF scores on ASVspoof datasets) deep learning and end-to-end solu-

tions with cross corpus evaluation. Despite the fact that just eight models were examined, 

the findings motivate us to continue working in the deep learning and end-to-end arenas. 

Thus, we want to expand this work in the future to include the most recent deep learning/

end-to-end solutions in order to provide an apples-to-apples comparison. Lastly, we intend 

to create a benchmark for comparing CNN and DNN-based architectures for the automatic 

speaker verification system.

9  Existing issues and future needs

This section describes the challenges and issues observed during this review as well as the 

future requirements for developing dependable and secure anti-spoofing solutions.

9.1  Need for explainable AI in audio forensics

Explainable AI (XAI) is an emerging field which emphasises the need for human under-

standing through what has traditionally been a black box process. An important gain over 

the interaction between humans and XAI is a level of trust in the process, which stud-

ies have shown does not currently exist Gerlings et al. (2020). Existing deepfake detection 

approaches are typically designed to perform batch analysis over a large dataset, however, 

when these techniques are employed in the field by journalists or law enforcement, there 

may only be a small set of videos available for analysis. A numerical score parallel to the 
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probability of an audio or video being real or fake is not valuable to these users if it can-

not be confirmed with an appropriate proof of the score. If results for single interactions 

between humans and computers are to be accepted it is vitally important to involve XAI 

early in the process.

9.2  Fairness‑enabled voice spoofing counter measures and ASV

Fairness is defined as the lack of bias or preference toward a person or a group based on 

intrinsic or acquired attributes. Prior to their widespread commercialization, it is necessary 

to study the bias and impartiality of spoofing detection and speaker verification systems 

across populations. A quantitative evaluation has been done to study fairness with respect 

to gender, ethnicity, or other factors, in the ASV domain. To avoid the real-world conse-

quences of a biased and flawed system that favors a single sub-group or class, it is vital to 

ensure the impartiality of data sets used for training and testing spoofing systems.

9.3  The role of adversarial machine learning on existing audio spoofing counter 

measures

High-performance spoofing countermeasure systems for automated speaker verification 

(ASV) have been presented during the ASVspoof sessions. Adversarial attacks pose a 

significant threat to ASV systems and their counter measures, however, the robustness of 

these systems in the face of adversarial attacks has yet to be thoroughly examined. Cur-

rently, there are only a limited number of counter measures that address this domain. It is 

therefore necessary to develop a more adversarial-aware ASV system.

9.4  Need For liveliness detection in voice spoofing detection

Liveliness detection is a crucial component in voice spoofing detection systems as it veri-

fies the authenticity of the speech being generated. As technology advances, spoofing 

attacks using recorded or synthetic speech are becoming increasingly prevalent. Thus, it is 

important to ensure that the speech being analyzed is not just a recording but is generated 

by a live person in real-time. This can be achieved through the verification of certain physi-

ological and behavioral characteristics that are unique to live speech, such as the presence 

of breath, heartbeats, or other subtle movements. By integrating liveliness detection into 

voice spoofing detection systems, a more comprehensive approach to securing voice-based 

systems may be achieved, as it provides an additional layer of security. Furthermore, liveli-

ness detection can also help reduce false rejections in voice spoofing detection systems, 

thereby improving the overall user experience in high-security situations such as financial 

transactions and access control.

9.5  Robust PAD for ASV in smart homes

Because the Smart Home concept encourages hands-free automation, bio-metric tech-

nologies, and particularly automatic speech recognition, are the ideal way to regulate 
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and personalize access. However, while contemporary spoofing systems are extremely 

descriptive and specific when detecting presentation attacks, current speaker identifica-

tion systems may be vulnerable. Therefore, most of these PAD systems are ineffective 

in the current environment where the types of presentation attacks are unknown. When 

deployed to smart homes, the risk of attack increases significantly. Hence, there is an 

immediate need to build a strong PAD system to protect ASV systems in order to accel-

erate the safe use of ASVs in Smart Home applications.

9.6  Need for new audio forensics datasets

Voice-controlled devices (VCDs), aided by the Internet of Things (IoT), have enabled 

the development, personalization, and automation, of smart homes through voice activa-

tion. Unfortunately, in many cases these VCDs are largely or completely unprotected 

and can be exploited via spoofing attacks. Existing datasets, such as the Voice spoof-

ing detection corpus (VSDC), ASVspoof 2017, ASVspoof 2019, and ReMASC, contain 

large-scale replay (i.e., single and multi-order replays) and basic cloning audio files, 

but newer, deep learning-based attacks easily defeat current solutions, introducing a 

new level of complexity for anti-spoofing algorithms. Moreover, large-scale datasets 

like ASVspoof 2017 and ASVspoof 2019 lack cloning design parameters, which are an 

essential component of current VCDs. Therefore, an enhanced cloning dataset is needed 

in order to stay ahead of the curve of advanced voice cloning spoof attacks. For creation 

of such dataset, new generative algorithms such as diffusion models could be employed.

9.7  Evaluation of ASV performance on non‑English datasets

Although English has become the de facto standard for the evaluation of voice spoofing 

techniques and counter measures, care must be taken to avoid grouping all languages 

together for this purpose. Each discrete language comes with a unique set of challenges. 

For instance, Almutairi and Elgibreen (2022) points out that mispronunciation of Ara-

bic’s vowel sounds can completely change the meaning of an entire sentence, some-

thing not very prevalent in English. Existing methods cannot be trusted when presented 

with foreign languages. When state of the art methods, trained on English datasets, 

were evaluated on non-English data, Ba et al. (2023) found models degraded as much as 

300%. There is therefore a need for extensive study in this area.

9.8  Need for continued cross‑dataset evaluation

The need for cross dataset evaluation is important to consider when evaluating the per-

formance of any aspect of an audio spoof detection system as shown in this paper. Cross 

dataset evaluation gives important insight into the robustness of the tested features and 

can provide additional information and direction toward a more general and complete 

ASV system. It is therefore vitally important that evaluation across corpora be a focus in 

continuing research in this domain.
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9.9  Attack‑aware audio forensics counter measures

ASV systems should always discard both non-target, e.g., speakers not authorized on the 

system, and spoofed, i.e., reprocessed or transformed, signals. However, little considera-

tion has been given to how ASV systems should be changed when they encounter spoofing 

attacks, or even when they pair up with spoofing counter measures, much less to how both 

systems might be jointly optimized.

9.10  Cross‑lingual and cross‑cultural

Cross-lingual and cross-cultural voice spoofing detection has become a crucial need in 

today’s world, as the use of voice recognition technology is rapidly increasing. The abil-

ity of a voice spoofing system to detect fake voice inputs in different languages, and with 

respect to cultural differences, is essential to ensure the reliability and accuracy of the 

system. To take it a step further, the globalization of technology has made it possible for 

individuals with malicious intent to attempt to bypass security systems by using differ-

ent languages and accents. Therefore, the development of cross-lingual and cross-cultural 

voice spoofing detection systems is necessary to provide a robust security layer and prevent 

potential threats.

9.11  Need for novel features and counter measures for addressing compression 

and encoding‑based artifacts in ASV systems

The focus of ASVspoof2021, the most recent ASV challenge, emphasizes the importance 

of voice spoofing counter measures, especially in terms of compression and encoding-

based artifacts, which can have a major influence on an ASV system’s performance and 

limit its capacity to accurately identify spoofed speech. This highlights the importance of 

ongoing research and the need for improvement in the field of speech spoofing detection. 

As attacking tactics for exploiting ASV systems get more complex and creative, research-

ers must rise to meet the challenge. To reach this goal and increase the resilience of ASV 

systems against spoofing attacks, novel features and counter measures specially tailored to 

address the issues introduced by compression and encoding-based artifacts are required.

9.12  Physics, domain knowledge, and AI

Physics-informed neural networks (PINNs) are becoming increasingly popular due to their 

ability to incorporate existing knowledge of physics into deep learning models, making 

them ideal for applications where the underlying physics is known Raissi et al. (2019). This 

is especially relevant to voice spoofing detection, where signal processing properties of the 

human voice must be fully understood and modeled in order to discriminate between real 

and fake speech. PINNs can also adapt to uncertainty and variability in the data, which is 

a critical aspect in voice spoofing detection, as real-world speech signals are often noisy 

and dynamic. Because PINNs can include both physical and statistical models in a single 

framework, they may well be an effective tool for the detection of spoofed speech and are 

projected to generate more accurate and robust results than traditional machine learning.
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9.13  Challenges, issues, and research needs for integrated ASV systems

Integrated solutions that combine speech spoofing detection and automated speaker verifi-

cation have a number of associated impediments and pitfalls. The trade-off between false 

acceptance and false rejection rates is a key challenge, as the system must balance the 

need to correctly validate real speakers with the necessity to recognize and reject spoofing 

attempts. Also, such systems require computationally complex operations and may not be 

suitable to application on resource-poor systems. Another concern is the unpredictability 

of speech patterns across different environments, dialects, and recording conditions, which 

can have a detrimental influence on system performance. Furthermore, the rapid devel-

opment of improved speech spoofing techniques has made it more difficult to identify 

spoofing attempts, emphasizing the significance of ongoing research and development in 

this field. These limits and constraints emphasize the importance of continued research to 

improve the resilience and dependability of integrated ASV systems and make them more 

resilient.

10  Conclusion

This research provides a comprehensive review of voice spoofing attacks, counter meas-

ures proposed to counter certain attacks, publicly accessible datasets, and the criteria used 

to evaluate countermeasure performance in voice spoofing detection. It also includes an 

experimental comparison of the SOTA (SOTA) voice spoofing counter measures against 

multi-and cross-datasets and classifiers. Based on the results of the experiments, this study 

concludes that the characteristics that better capture microphone signatures and harmonic 

distortions give improved detection performance for the identification of PA attacks. Fur-

thermore, we show that the efficacy of SOTA countermeasure varies significantly with 

changes to the dataset and classifiers. Extensive testing reveals that although these coun-

ter measures perform well against known attacks on a specific dataset there is a dire need 

for a robust and generalize CM. Detailed experiments also demonstrate the significance of 

cross-corpus evaluation for future voice spoofing technologies.

11  Reproducibility

We have provided a GitHub repository2 that contains all the code and explanation needed 

to reproduce results of models evaluated to test their generalizability. The README.pdf 

file contains explanation of how to run the experiments.
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