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ABSTRACT: Efficient life-cycle bridge asset management delineates a planning optimization problem of para-
mount importance for the operational reliability of transportation infrastructure. It necessitates adept inspection and
maintenance policies able to reduce risks and costs while incorporating long-term stochastic deterioration models,
inference under uncertain structural health data, and various probabilistic and deterministic constraints. Structural
integrity management policies for individual bridges, which are mere constituents of broader complex networks,
cannot be devised in isolation of the policies of other system components, such as other bridges and pavement
sections, and without considering system functions and traffic considerations. Such network effects render the opti-
mization problem even harder to solve. Currently, age- or condition-based maintenance techniques, as well as risk-
based or periodic inspection plans, have been used to address this class of challenging optimization problems.
However, the efficacy of these techniques is often limited by optimality-, scalability-, and uncertainty-induced com-
plexities. In practice, infrastructure management agencies often treat interconnected systems using disjoint plans
for different component types, which in general do not ensure system-level optimality. To tackle the above, the
optimization problem is herein cast within constrained Partially Observable Markov Decision Processes
(POMDPs), which provide a comprehensive mathematical framework for stochastic sequential decision settings
under observation/monitoring data uncertainty and limited resources. For the problem solution, the DDMAC algo-
rithm (Deep Decentralized Multi-agent Actor-Critic) is successfully used, a deep reinforcement learning algorithm
well-suited for management of large multi-state multi-component systems, as illustrated in an example application
of an existing transportation network in Virginia, USA. The studied network comprises several bridge and pave-
ment components exhibiting nonstationary deterioration, and various agency-imposed constraints, and traffic delay
and risk factors are considered. Comparisons against conventional management policies showcase that the
DDMAC solution significantly outperforms its counterparts.

1 INTRODUCTION computational approaches must, therefore, facilitate
integrated consideration of the above characteristics,

Determination of Inspection and Maintenance  a quest that needs to reach beyond the limits of exist-

(I&M) policies for management of multi-asset infra-
structure environments requires modeling and
assessment of different stochastic deterioration
effects, together with adept scheduling of action
sequences, able to mitigate risks and serve multi-
purpose life-cycle goals. Decision-making in such
complex and uncertain system settings comes with
major computational challenges, due to heterogen-
eity of different asset classes, large number of com-
ponents resulting in intractable state and action
spaces, noisy observations, limited availability of
resources, and performance-based constraints.
Advanced I&M frameworks and their respective
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ing methodologies.

There is a large variety of optimization methods
that propose solutions to the I&M planning problem,
ranging from threshold-based formulations with reli-
ability analysis principles e.g., in (Saydam & Fran-
gopol, 2014; Bocchini & Frangopol, 2011), to
decision tree analysis, e.g., in (Straub & Faber,
2005), to renewal theory, e.g., in (Grall, et al., 2002;
Rackwitz, et al., 2005), to stochastic optimal control,
e.g., in (Madanat, 1993; Ellis, et al., 1995; Papakon-
stantinou & Shinozuka, 2014; Papakonstantinou,
et al., 2018). Many of these solutions, however,
suffer from optimality-, scalability-, and uncertainty-



induced complexities, and are often not easily
extendable to environments with constraints (deter-
ministic or stochastic). Moreover, despite the fact
that the underlying decision problem is dynamic in
its nature, many optimization techniques use static
formulations, with the exception of stochastic opti-
mal control approaches which incorporate dynamic
programming principles (Bellman, 1957). Due to
these computational challenges, many practical tech-
niques are prone to generating widely sub-optimal
solutions, especially in settings with large dimen-
sions and long horizons.

To address the above, in this work, the decision-
making problem is cast within the joint framework
of Partially Observable Markov Decision Processes
(POMDP) and multi-agent Deep Reinforcement
Learning (DRL). The dynamic programming prin-
ciples of POMDPs mitigate the curse of history and
allow adaptive reasoning in the presence of noisy
real-time data. Various studies have examined and
demonstrated their efficacy in 1&M planning, e.g.,
(Papakonstantinou & Shinozuka, 2014a,b; Papakon-
stantinou, et al., 2016; Memarzadeh & Pozzi, 2015;
Schobi & Chatzi, 2016), among others.

Based on POMDPs, a Deep Centralized Multia-
gent Actor-Critic (DCMAC) technique has been
developed in (Andriotis & Papakonstantinou, 2019),
which is part of the wider family of actor-critic
methods (Wang, et al., 2016; Degris, et al., 2012).
DCMAC makes use of the notion of belief-state
MDPs, a key concept of point-based POMDP algo-
rithms and, therefore, operates directly on the poster-
ior probabilities of system states given previous
actions and observations. Deep Decentralized Multi-
agent Actor-Critic (DDMAC) (Andriotis & Papa-
konstantinou, 2021) proposes an architectural variant
of DCMAC. In this architecture, each component is
represented by a decentralized independent actor and
their output is used to generate a centralized value
function, which is then employed in relevant gradi-
ent calculations for updating both the actor and critic
networks. As a further development, a new DDMAC
version is proposed in (Saifullah, et al., in review),
where a fully Centralized Training and Decentralized
Execution (CTDE) concept is adopted (Lyu, et al.,
2021), with decentralization at both the action and
information levels, an efficient paradigm in coopera-
tive multi-agent DRL. The architecture, termed as
DDMAC-CTDE, reduces the parameter space of the
policy even further by masking for every actor the
other actors’ input information.

In this study, a stochastically deteriorating transpor-
tation network with multiple asset classes is con-
sidered, i.e., pavement and bridge components, along
with various deterministic and stochastic resource and
condition constraints. The optimization is cast in
a POMDP framework, utilizing a holistic modeling
environment for the two classes of assets (Saifullah,
et al., in review, based on their corresponding damage
state indices, which characterize their condition states,

and pertinent maintenance and inspection actions.
The results are compared with Condition Based Main-
tenance (CBM) and a variant of Virginia’s Department
of Transportation (VDOT) I&M policy, outperforming
both significantly.

2 BACKGROUND

2.1  Partially observable Markov decision processes

The POMDP framework is defined by 7 essential elem-
ents consisting of S, 4, P, Q, O, C, and y, where S,
A and Q are sets of states, actions, and possible obser-
vations, respectively, and P is the model of transitions,
O is an observation model, C are the cost functions
and y is a discount factor. In POMDPs, the deci-
sion-maker (agent) starts at a state, s, at a time step,
t, takes an action a,, receives a cost, ¢;, transitions to
the next state, s,+1, and receives an observation, o,
€ Q based on the observation probability model,
p(o1)Si+1, a;). Due to partial observability, the
agent can only form a belief b, about its state,
where b, is a probability distribution over S of all
possible discrete states. A Bayesian update can be
used to calculate the belief b,,; (Papakonstantinou
& Shinozuka, 2014a):
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where probabilities b(s;), for all s, € S, form the belief
vector b, of length ||, and the denominator of Equa-
tion. (1), p(o41/b,, @) is the standard normalizing con-
stant. The goal for an agent is to choose actions at each
time step that minimize its expected future discounted
cumulative cost, defined by the value or action-value
function (Papakonstantinou & Shinozuka, 2014a). The
optimal value function for POMDPs is:
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Despite existing mathematical convergence guarantees
for POMDPs, traditional point-based POMDP solvers
encounter scalability issues in very large state, observa-
tion, and actions spaces. Deep reinforcement learning
allows us to alleviate this curse of dimensionality.

2.2 Deep reinforcement learning and
DDMAC-CTDE

Reinforcement learning (RL) is a computational frame-
work for evaluating and automating goal-directed
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learning and decision-making that is well-suited for
solving MDP/POMDP problems as it is usually struc-
tured around them. RL algorithms combined with deep
neural network parametrizations, give rise to DRL,
which has shown capabilities of discovering powerful
strategies in immense state spaces (Silver, et al., 2016;
Mnih, et al., 2015).

The methods for solving RL problems can be
majorly classified as value-based or policy-based
learning. Value-based methods learn the state or
state-action value function and act upon it by
selecting the optimal action in each given state,
e.g., Q-learning and DQN (Mnih, et al., 2015). In
policy-based learning, policy z: § —P(4) is dir-
ectly learned using a separate function approxima-
tor (usually a neural network). The policy gradient
method is customarily used for learning policies in
policy-based methods and the policy gradient, gg-,
can be estimated in a multi-agent actor-critic set-
ting as:

2o = Eqparap[wi(Ver logm(ais,07)) 4" (si,a,)]
(3)

where, s, = {sl(’:)}’” state vector for m-component
system, a, = {a,?}" is an action vector for n-agents
(no. of agents and no. of components can be differ-
ent), 07 is the policy network parameter vector, w; is
the importance sampling weight, p is a n-dimen-
sional vector of agents’ behavior policies, p is
the m-dimensional state distribution under these pol-
icies, and 4™(s,a,) is the advantage function:

A (s:,2,]0") = c(s, a,) + yV™ (5,]0”) — V7 (s,]0")
(4)

where, 0" are the weight parameters of the critic
neural network. The mean squared error is considered
as a loss function for the critic network and the rele-
vant critic gradient can be accordingly derived.

Within this context, DDMAC, as proposed in
(Andriotis & Papakonstantinou, 2021), provides an
algorithm for I&M optimal planning well-suited for
large multi-component systems. The framework also
considers the presence of constraints through state
augmentation and Lagrange multipliers. DDMAC
uses a sparse parametrization of the actor-network
without parameter sharing between agents (i.e., each
component has its own actor-network). For even
larger systems, DDMAC-CTDE formulation (Saiful-
lah, et al., in review) is used herein, allowing for
even sparser actor parametrizations. DDMAC-CTDE
employs a fully decentralized logic along the lines of
centralized training and decentralized execution,
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postulating that state accessibility for each actor net-
work is restricted to its corresponding component.
Component actions, as well as various possible sub-
system actions, are assumed conditionally independ-
ent given their own state, thus the policy and its
gradient are:

r(ads) = 11 7 (a”)s") (5)
1
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This technically means that each control unit is seen
as an autonomous agent that only utilizes compo-
nent-state information to decide about its actions.
For further details refer to (Saifullah, et al., in
review).

3 ENVIRONMENT DESCRIPTION

3.1 Component states

The considered network is comprised of 85 pave-
ment and 11 bridge components. Various indicators
can describe the pavement condition, e.g., Pavement
Condition Index (PCI), Critical Condition Index
(CCI), International Roughness Index (IRI), and
Load Related Distress Index (LDR), among many
others. CCI and IRI are used in this work as they
offer a joint quantification of condition, as per struc-
tural distresses and ride quality, respectively. A non-
stationary CCI model is used in this study, devised
as a modified version based on a VDOT report
(Katicha, et al., 2016). This model can incorporate
various aspects, including different traffic levels.
A gamma process is utilized, with its mean being in
time equal to the modified mean CCI predictions
and a relevant model variance (Katicha, et al.,
2016). In Figure 1 (top), simulation results are indi-
catively shown for a heavy traffic level with 300 dif-
ferent realizations. The solid line represents the
mean CCI and the red curve is the mean CCI
gamma model prediction.

To determine the transition probabilities, the
CCI values are discretized into 6 condition states,
with 6 being the intact state. These discretized con-
dition states are largely adapted from the pre-
scribed VDOT maintenance guidelines (VDOT,
2016), and the detailed descrigtion is reported in
(Saifullah, et al., in review). 10° sequences are gen-
erated in total to obtain the transition probabilities
for a given traffic level. Figure 1 (b) indicatively
shows a few computed transition probabilities for
heavy traffic.
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Figure 2. Transition probabilities in time, starting from
state 9.

The observation uncertainty for CCI is appropri-
ately modeled by the likelihood functions p(o/s,),
which quantify the probability of receiving an obser-
vation o, at time ¢ given a state s, A normal distribu-
tion is considered in this work as a likelihood

function, with mean the actual CCI value and 3 differ-
ent error variances, i.e.,00, 72, and 18, corresponding
to no-inspection, low- and high-fidelity inspections,
respectively. Similarly, the IRI (in m/km) can be dis-
cretized into 5 states, with 5 being the intact state, as
in (FHWA, 1999). Unlike CCI, the IRI transition
model is stationary. In this case too, three different
inspection activities are assumed, and the measure-
ment errors associated with the respective inspection
technologies are considered to be normally distributed
with zero mean and standard deviations of oo, 0.32,
and 0.08 m/km, respectively. All resulting CCI and
IRI observation probabilities are reported in (Saiful-
lah, et al., in review).

For the objectives of this study, only the decks of
bridges are considered, as they are directly influ-
enced by traffic. To determine the serviceability of
decks, 9 states are considered, with state 9 being the
undamaged state, as adopted in (FHWA, 1999) and
other DOTs. Condition 4 now denotes an irreversible
damage state, and is thus regarded as a terminal
state, as also suggested by (Manafpour, et al., 2018).
The nonstationary transition probabilities are based
on 30 years of in-service performance data for more
than 22,000 bridges in Pennsylvania, as analyzed in
(Manafpour, et al., 2018) and illustrated in Figure 2.
Apart from these 6 nonstationary transitions, station-
ary failure probabilities are also considered, where
a bridge is assumed to have a failure probability of
P;=0.001 if it is in states 8 and 9, and P,= 0.005 if
it is in states 7, 6, 5. Py finally reaches 0.01 if the
bridge state is 4.

3.2 Action description

There are various guidelines for pavement main-
tenance from different agencies. According to
(VDOT, 2016), four different maintenance actions
are recommended, i.e., Do Nothing, Minor
Repair, Major Repair, and Reconstruction. Minor
Repair (crack filling, moderate patching, etc.) can
improve the CCI and IRI states but does not
affect the rate of deterioration, Major Repair can
improve condition states and reduce the deterior-
ation rate by 5 years, and Reconstruction resets
the pavement to an intact condition. A detailed
description of these actions and their costs can be
found in (VDOT, 2016). Maintenance actions
taken at any given time will simultaneously
improve both CCI and IRI indices. The mainten-
ance action transition probabilities for CCI and
IRI, their duration, and their costs are reported in
(Saifullah, et al., in review).

Similar to pavements, four maintenance actions
are considered for maintaining the bridge decks, i.e.,
Do Nothing, Minor Repair, Major Repair, and
Reconstruction, however, the involved performed
actions are different. It is again assumed that the
Minor Repair action does not change the rate of
deterioration of the deck but it can improve the con-
dition state of the structure. Similarly, Major Repair
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can improve both, and Reconstruction can reset the
deck to a newly built one. The transition probabil-
ities, action durations, and their costs are described
in (Saifullah, et al., in review). Maintenance action-
induced delays that can be translated to costs are
considered as in (Vadakpat, et al., 2000).

There is a variety of destructive and nondestructive
inspection techniques that are used for bridge decks,
such as visual inspections, acoustic sensing, infrared/
thermal imaging, ground penetrating radar, coring and
chipping, and half-cell potential tests, among many
others. Towards generality, inspection techniques are
herein characterized as uninformative, low-fidelity,
and high-fidelity inspection techniques, respectively.
The observation probabilities for the corresponding
inspections can be seen in (Saifullah, et al., in
review).

3.3 Transportation network

As a reference example, the Hampton Roads trans-
portation network in Virginia, USA, is considered.
The original topology and average daily traffic data
of the network are used along with 11 main bridges.
Each bridge is bidirectional, with the same number
of lanes as in the original network, illustrated in
Figure 3. The different deck types I-III are categor-
ized based on their relevant sizes. Type I bridges
have length more than 5 km, type II have lengths
between 1.2-5 km, and type III are the smallest
having a length less than 1.2 km.

Similarly, the network has various pavement compo-
nents categorized as type I-III. Type I pavements are
interstate highways, with bidirectional traffic having
four lanes in each direction, thus, constituting the class
of highest vehicular miles. Type II are primary high-
ways with a bidirectional medium level of traffic,
having two lanes in each direction. Lastly, type III are
secondary highways with low-level bidirectional traffic
and one lane in each direction. The deterioration rate of
pavements is selected based on these classes, as high-
volume roads have a higher rate than low-volume ones.
These rates are taken from (Saifullah, et al., in review).

3.4  Network level risks and constraints

Risk is defined as an expected cumulative discounted
failure state cost over the life cycle, as in (Andriotis
& Papakonstantinou, 2021). The risk cost consists of
two parts: (1) accruable cost, which is taken as two
times the rebuilding cost of the bridge, and (2)
instantaneous cost, which is considered here as ten
times the rebuilding cost of the bridge. The total risk
is estimated using (i) the risk of individual bridge
failures (for all network bridges), and (ii) the
system-level risk, defined based on the connecting
bridges over James River and York River as in (Sai-
fullah, et al., in review). The system risk has 3 fail-
ure modes, i.e., (A) the bridge over York River fails,
(B) the 3 bridges over James River fail, and (C)
modes A and B occur simultaneously.
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Figure 3. Hampton Roads transportation network model.

There are various constraints that are considered,
based on the condition states of pavements and
bridges, imposed by the FHWA and VDOT agencies.
For National Highway System (NHS) bridges, no
more than 10% of the total bridge deck area should
be deficient (i.e., condition rating < 4), and for NHS
pavements, no more than 10% of lane-miles should
be in poor condition (i.e., CCI<60 and IRI>2.2 m/
km). Based on VDOT targets, no more than 18% of
interstate and primary pavements and 35% of sec-
ondary pavements should be classified as deficient
(i.e., CCI<60). Regarding serviceability, no more
than 15% of interstate and primary roadways should
be classified as deficient in terms of ride quality (i.e.,
IRI[>2.2 m/km). VDOT also aims to achieve ‘no’
CCI lower than 35 for the interstate system (VDOT,
2019). It is essential here to mention that the above
constraints are satisfied in an expectation sense (i.e.,
soft constraints). Therefore, the last constraint is
modified here from 0 to 2%.

Finally, a budget constraint is imposed due to
limited available resources. A five-year budget of
$1.3 billion is allocated to Hampton Roads districts
for FY2021-2026 (Nichols, 2021). This budget
needs to be strictly satisfied (hard constraint) and is
implemented as an augmented state of the network
(Andriotis & Papakonstantinou, 2021).

4 RESULTS

This study considers a 96-component network with
a total number of ~7x10'** possible system states at
any given time instant. 10 actions per component are
considered which makes the total number of avail-
able actions equal to 10°® for the entire network at
each time step. The network components start from
intact states, with an episode length of 20 years, and
a discount factor y = 0.97. The DDMAC-CTDE
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DDMAC-CTDE solution with CBM and VDOT policy
baselines (top). Comparison of the total cost and its con-
stituents with CBM and VDOT policy baselines (bottom).

training is performed for 1.3x10° episodes. Training
details can be found in (Saifullah, et al., in review).

To assess the DDMAC-CTDE solutions, we for-
mulate and evaluate 2 baselines, i.e., (i) a condition-
based maintenance (CBM) policy and (ii) a policy
baseline following VDOT guidelines. The CBM
policy is heuristically optimized to find the relevant
thresholds based on the condition of each component
type, i.e., bridge, interstate, primary, and secondary
pavements. The policy involves the full suite of 10
actions at every even time step. However, at every
odd year, action 6 is taken for every component, i.c.,
do-nothing and high-fidelity-inspection, as also
shown in Figure 5. The detailed CBM algorithm is
presented in (Saifullah, et al., in review). The VDOT
policy baseline is approximated from (VDOT, 2016)
for pavement components. The original VDOT
policy uses CCI and other distress metrics for action
selection, but here only CCI is used. For bridge
decks, the same criterion is used as for interstate
components due to their similar importance.

The expected total costs during training are com-
pared in Figure 4 (top). Figure 4 (bottom) also presents
a histogram comparing the total costs with their con-
stituents based on Monte-Carlo simulations. It can be

observed that our DDMAC-CTDE solution surpasses
both baselines during training and simulation by
a significant margin, being 27% cheaper than the CBM
policy and 48% cheaper than the VDOT policy, as
given in Table 1. Table 1 also compares the average
performance over 10% simulations in terms of poor
condition states, as per the 6 different constraints dis-
cussed in Section 3.4. The performance constraints are
in the rows of the table, and I, P, and S Hwy are the
abbreviations of interstate, primary, and secondary
highways, respectively.

To better understand how policies change over time,
a detailed policy realization for some representative
components is shown in Figure 5. The figure illustrates
actions generated by one of the instances of the opti-
mum policy and the evolution of component belief
states is shown with contours. Additionally, Figure 5
displays the discounted budget usage over time and the
5-year budget discounted for every cycle. The budget
is a hard constraint that the agents are not allowed to
exceed, a requirement that is satisfied by the obtained
solution. The evolution of the total risk cost associated
with individual bridges and the 3 modes of system risk
is also presented. Moreover, the cost distribution
among different types of pavements and bridges is
shown in a pie chart.

Table 1. Comparison of different solution schemes in
terms of total cost and performance with respect to average
condition states of different pavement and bridge
components.

DDMAC- CBM  VDOT
Objective & Constraints CTDE policy  policy
Total budget used
(billion USD) 1.86 2.54 3.62
CCI<60 and IRI>2.2m/
km 2.0 2.9 0.0
for I-Hwy (%)
CCI<35 of I-Hwy (%) 1.9 0.5 0.0
CCI<60 for I and
P-Hwy (%) 7.3 4.7 0.1
IR1>2.2 m/km for I and
P-Hwy (%) 15.0 14.0 12.0
CCI<60 for S-Hwy (%) 10.3 43 0.9
Bridges with condition 9.2 21 3.7

rating <4 (%)

Plots with control actions represent the actions
taken over time. The maintenance actions, taken at
every time step, update the current belief of the
system, as manifested in the next time step. The evo-
lution of contour plots in the case of pavements
shows current beliefs for both CCI and IRI states,
and the current belief states at each step for two
bridge decks are also shown. For example, the agent
is shown to take action 7 at ¢ = 6 years for a type III
bridge, and then the updated belief is shown at t =7
years, incorporating both 1&M actions.
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Figure 5. Life-cycle realization of the learned DDMAC-CTDE policy for the transportation network in case of intact
299

initial conditions.



As seen in Figure 5, control actions are compatible
with belief states. For example, the agents initially
choose Do-Nothing actions since the belief states for
both pavements and bridges initiate in the intact con-
dition. As the conditions gradually worsen, more
interventions are considered. Similarly, at the horizon
end, the Do-Nothing action is optimal for pavements,
as pavements do not contribute to disconnection
risks, while any action without inspection can be
optimal for bridges. It has also been observed that
the agents maintain and inspect type I bridges more
systematically. This is because type I bridges have
their individual failure risk as well as mode B and
mode C system failure risks associated with them.

From the pie chart, shown in Figure 5, it is
observed that cost distribution is heavily skewed (as
much as 75%) towards the bridge components, due
to their high maintenance cost, associated risk cost,
and lower traffic delay cost. Among pavements, pri-
mary highways have the largest contribution as they
represent the most components in the network (47 in
total). Figure 5 also shows the evolution of the
system risk with time. As expected, the risk is min-
imal in the beginning and it increases with time,
with downward jumps mainly due to the mainten-
ance actions taken for bridges, especially of type 1.

5 CONCLUSIONS

In this work, the I&M problem of a large deteri-
orating  bridge-pavement network with  96-
components is formulated within a POMDP-DRL
framework, including risks and other condition
and budget related constraints. Pavement states
are defined by CCI and IRI metrics and bridge
states are defined by deck condition ratings. Due
to immensely large state and action spaces, the
problem is solved with a newly and originally
developed DRL algorithmic approach named
Deep Decentralized Multi-agent Actor Critic with
Centralized Training and Decentralized Execution
(DDMAC-CTDE) which uses sparse paramet-
rizations and local component state information
for actor networks to obtain near optimal solu-
tions. The optimal life-cycle policies are com-
pared against a Condition-Based Maintenance
(CBM) policy and an adapted VDOT policy. The
DDMAC-CTDE solution is shown to surpass the
two baselines by 27% and 48%, respectively, sat-
isfying all the considered constraints.
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