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ABSTRACT: Efficient life-cycle bridge asset management delineates a planning optimization problem of para-
mount importance for the operational reliability of transportation infrastructure. It necessitates adept inspection and 
maintenance policies able to reduce risks and costs while incorporating long-term stochastic deterioration models, 
inference under uncertain structural health data, and various probabilistic and deterministic constraints. Structural 
integrity management policies for individual bridges, which are mere constituents of broader complex networks, 
cannot be devised in isolation of the policies of other system components, such as other bridges and pavement 
sections, and without considering system functions and traffic considerations. Such network effects render the opti-
mization problem even harder to solve. Currently, age- or condition-based maintenance techniques, as well as risk-
based or periodic inspection plans, have been used to address this class of challenging optimization problems. 
However, the efficacy of these techniques is often limited by optimality-, scalability-, and uncertainty-induced com-
plexities. In practice, infrastructure management agencies often treat interconnected systems using disjoint plans 
for different component types, which in general do not ensure system-level optimality. To tackle the above, the 
optimization problem is herein cast within constrained Partially Observable Markov Decision Processes 
(POMDPs), which provide a comprehensive mathematical framework for stochastic sequential decision settings 
under observation/monitoring data uncertainty and limited resources. For the problem solution, the DDMAC algo-
rithm (Deep Decentralized Multi-agent Actor-Critic) is successfully used, a deep reinforcement learning algorithm 
well-suited for management of large multi-state multi-component systems, as illustrated in an example application 
of an existing transportation network in Virginia, USA. The studied network comprises several bridge and pave-
ment components exhibiting nonstationary deterioration, and various agency-imposed constraints, and traffic delay 
and risk factors are considered. Comparisons against conventional management policies showcase that the 
DDMAC solution significantly outperforms its counterparts. 

1 INTRODUCTION 

Determination of Inspection and Maintenance 
(I&M) policies for management of multi-asset infra-
structure environments requires modeling and 
assessment of different stochastic deterioration 
effects, together with adept scheduling of action 
sequences, able to mitigate risks and serve multi-
purpose life-cycle goals. Decision-making in such 
complex and uncertain system settings comes with 
major computational challenges, due to heterogen-
eity of different asset classes, large number of com-
ponents resulting in intractable state and action 
spaces, noisy observations, limited availability of 
resources, and performance-based constraints. 
Advanced I&M frameworks and their respective 

computational approaches must, therefore, facilitate 
integrated consideration of the above characteristics, 
a quest that needs to reach beyond the limits of exist-
ing methodologies. 

There is a large variety of optimization methods 
that propose solutions to the I&M planning problem, 
ranging from threshold-based formulations with reli-
ability analysis principles e.g., in (Saydam & Fran-
gopol, 2014; Bocchini & Frangopol, 2011), to 
decision tree analysis, e.g., in (Straub & Faber, 
2005), to renewal theory, e.g., in (Grall, et al., 2002; 
Rackwitz, et al., 2005), to stochastic optimal control, 
e.g., in (Madanat, 1993; Ellis, et al., 1995; Papakon-
stantinou & Shinozuka, 2014; Papakonstantinou, 
et al., 2018). Many of these solutions, however, 
suffer from optimality-, scalability-, and uncertainty-
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induced complexities, and are often not easily 
extendable to environments with constraints (deter-
ministic or stochastic). Moreover, despite the fact 
that the underlying decision problem is dynamic in 
its nature, many optimization techniques use static 
formulations, with the exception of stochastic opti-
mal control approaches which incorporate dynamic 
programming principles (Bellman, 1957). Due to 
these computational challenges, many practical tech-
niques are prone to generating widely sub-optimal 
solutions, especially in settings with large dimen-
sions and long horizons. 

To address the above, in this work, the decision-
making problem is cast within the joint framework 
of Partially Observable Markov Decision Processes 
(POMDP) and multi-agent Deep Reinforcement 
Learning (DRL). The dynamic programming prin-
ciples of POMDPs mitigate the curse of history and 
allow adaptive reasoning in the presence of noisy 
real-time data. Various studies have examined and 
demonstrated their efficacy in I&M planning, e.g., 
(Papakonstantinou & Shinozuka, 2014a,b; Papakon-
stantinou, et al., 2016; Memarzadeh & Pozzi, 2015; 
Schöbi & Chatzi, 2016), among others. 

Based on POMDPs, a Deep Centralized Multia-
gent Actor-Critic (DCMAC) technique has been 
developed in (Andriotis & Papakonstantinou, 2019), 
which is part of the wider family of actor-critic 
methods (Wang, et al., 2016; Degris, et al., 2012). 
DCMAC makes use of the notion of belief-state 
MDPs, a key concept of point-based POMDP algo-
rithms and, therefore, operates directly on the poster-
ior probabilities of system states given previous 
actions and observations. Deep Decentralized Multi-
agent Actor-Critic (DDMAC) (Andriotis & Papa-
konstantinou, 2021) proposes an architectural variant 
of DCMAC. In this architecture, each component is 
represented by a decentralized independent actor and 
their output is used to generate a centralized value 
function, which is then employed in relevant gradi-
ent calculations for updating both the actor and critic 
networks. As a further development, a new DDMAC 
version is proposed in (Saifullah, et al., in review), 
where a fully Centralized Training and Decentralized 
Execution (CTDE) concept is adopted (Lyu, et al., 
2021), with decentralization at both the action and 
information levels, an efficient paradigm in coopera-
tive multi-agent DRL. The architecture, termed as 
DDMAC-CTDE, reduces the parameter space of the 
policy even further by masking for every actor the 
other actors’ input information. 

In this study, a stochastically deteriorating transpor-
tation network with multiple asset classes is con-
sidered, i.e., pavement and bridge components, along 
with various deterministic and stochastic resource and 
condition constraints. The optimization is cast in 
a POMDP framework, utilizing a holistic modeling 
environment for the two classes of assets (Saifullah, 
et al., in review, based on their corresponding damage 
state indices, which characterize their condition states, 

and pertinent maintenance and inspection actions. 
The results are compared with Condition Based Main-
tenance (CBM) and a variant of Virginia’s Department 
of Transportation (VDOT) I&M policy, outperforming 
both significantly. 

2 BACKGROUND 

2.1 Partially observable Markov decision processes 

The POMDP framework is defined by 7 essential elem-
ents consisting of S, A, P, Ω, O, C, and  γ, where  S, 
A and Ω are sets of states, actions, and possible obser-
vations, respectively, and P is the model of transitions, 
O is an observation model, C are the cost functions 
and γ is a discount factor. In POMDPs, the deci-
sion-maker (agent) starts at a state, st at a time step, 
t, takes an action at, receives a cost, ct, transitions to 
the next state, st+1, and receives an observation, ot+1 

ϵ Ω based on the observation probability model, 
p(ot+1|st+1, at). Due to partial observability, the 
agent can only form a belief bt about its state, 
where bt is a probability distribution over S of all 
possible discrete states. A Bayesian update can be 
used to calculate the belief bt+1 (Papakonstantinou 
& Shinozuka, 2014a): 

where probabilities b(st), for all st ϵ S, form the belief 
vector bt of length |S|, and the denominator of Equa-
tion. (1), p(ot+1|bt, at) is the standard normalizing con-
stant. The goal for an agent is to choose actions at each 
time step that minimize its expected future discounted 
cumulative cost, defined by the value or action-value 
function (Papakonstantinou & Shinozuka, 2014a). The 
optimal value function for POMDPs is: 

Despite existing mathematical convergence guarantees 
for POMDPs, traditional point-based POMDP solvers 
encounter scalability issues in very large state, observa-
tion, and actions spaces. Deep reinforcement learning 
allows us to alleviate this curse of dimensionality. 

2.2 Deep reinforcement learning and 
DDMAC-CTDE 

Reinforcement learning (RL) is a computational frame-
work for evaluating and automating goal-directed 
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learning and decision-making that is well-suited for 
solving MDP/POMDP problems as it is usually struc-
tured around them. RL algorithms combined with deep 
neural network parametrizations, give rise to DRL, 
which has shown capabilities of discovering powerful 
strategies in immense state spaces (Silver, et al., 2016; 
Mnih, et al., 2015). 

The methods for solving RL problems can be 
majorly classified as value-based or policy-based 
learning. Value-based methods learn the state or 
state-action value function and act upon it by 
selecting the optimal action in each given state, 
e.g., Q-learning and DQN (Mnih, et al., 2015). In 
policy-based learning, policy π: S →P(A) is dir-
ectly learned using a separate function approxima-
tor (usually a neural network). The policy gradient 
method is customarily used for learning policies in 
policy-based methods and the policy gradient, gθ  , 
can be estimated in a multi-agent actor-critic set-
ting as: 

(i)}mwhere, st = {st state vector for m-component 
(i)}nsystem, at = {at is an action vector for n-agents 

(no. of agents and no. of components can be differ-
ent), θπ is the policy network parameter vector, wt is 
the importance sampling weight, µ is a n-dimen-
sional vector of agents’ behavior policies, ρ is 
the m-dimensional state distribution under these pol-
icies, and Aπ(st,at) is the advantage function: 

where, θV are the weight parameters of the critic 
neural network. The mean squared error is considered 
as a loss function for the critic network and the rele-
vant critic gradient can be accordingly derived. 

Within this context, DDMAC, as proposed in 
(Andriotis & Papakonstantinou, 2021), provides an 
algorithm for I&M optimal planning well-suited for 
large multi-component systems. The framework also 
considers the presence of constraints through state 
augmentation and Lagrange multipliers. DDMAC 
uses a sparse parametrization of the actor-network 
without parameter sharing between agents (i.e., each 
component has its own actor-network). For even 
larger systems, DDMAC-CTDE formulation (Saiful-
lah, et al., in review) is used herein, allowing for 
even sparser actor parametrizations. DDMAC-CTDE 
employs a fully decentralized logic along the lines of 
centralized training and decentralized execution, 

postulating that state accessibility for each actor net-
work is restricted to its corresponding component. 
Component actions, as well as various possible sub-
system actions, are assumed conditionally independ-
ent given their own state, thus the policy and its 
gradient are: 

This technically means that each control unit is seen 
as an autonomous agent that only utilizes compo-
nent-state information to decide about its actions. 
For further details refer to (Saifullah, et al., in 
review). 

3 ENVIRONMENT DESCRIPTION 

3.1 Component states 

The considered network is comprised of 85 pave-
ment and 11 bridge components. Various indicators 
can describe the pavement condition, e.g., Pavement 
Condition Index (PCI), Critical Condition Index 
(CCI), International Roughness Index (IRI), and 
Load Related Distress Index (LDR), among many 
others. CCI and IRI are used in this work as they 
offer a joint quantification of condition, as per struc-
tural distresses and ride quality, respectively. A non-
stationary CCI model is used in this study, devised 
as a modified version based on a VDOT report 
(Katicha, et al., 2016). This model can incorporate 
various aspects, including different traffic levels. 
A gamma process is utilized, with its mean being in 
time equal to the modified mean CCI predictions 
and a relevant model variance (Katicha, et al., 
2016). In Figure 1 (top), simulation results are indi-
catively shown for a heavy traffic level with 300 dif-
ferent realizations. The solid line represents the 
mean CCI and the red curve is the mean CCI 
gamma model prediction. 

To determine the transition probabilities, the 
CCI values are discretized into 6 condition states, 
with 6 being the intact state. These discretized con-
dition states are largely adapted from the pre-
scribed VDOT maintenance guidelines (VDOT, 
2016), and the detailed description is reported in 
(Saifullah, et al., in review). 106 sequences are gen-
erated in total to obtain the transition probabilities 
for a given traffic level. Figure 1 (b) indicatively 
shows a few computed transition probabilities for 
heavy traffic. 

295 



Figure 1. Fitted gamma model for CCI (top). Transition 
probabilities for heavy traffic, with starting state 6 
(bottom). 

Figure 2. Transition probabilities in time, starting from 
state 9. 

The observation uncertainty for CCI is appropri-
ately modeled by the likelihood functions p(ot|st), 
which quantify the probability of receiving an obser-
vation ot at time t given a state st. A normal distribu-
tion is considered in this work as a likelihood 

function, with mean the actual CCI value and 3 differ-
ent error variances, i.e.,∞, 72, and 18, corresponding 
to no-inspection, low- and high-fidelity inspections, 
respectively. Similarly, the IRI (in m/km) can be dis-
cretized into 5 states, with 5 being the intact state, as 
in (FHWA, 1999). Unlike CCI, the IRI transition 
model is stationary. In this case too, three different 
inspection activities are assumed, and the measure-
ment errors associated with the respective inspection 
technologies are considered to be normally distributed 
with zero mean and standard deviations of ∞, 0.32, 
and 0.08 m/km, respectively. All resulting CCI and 
IRI observation probabilities are reported in (Saiful-
lah, et al., in review). 

For the objectives of this study, only the decks of 
bridges are considered, as they are directly influ-
enced by traffic. To determine the serviceability of 
decks, 9 states are considered, with state 9 being the 
undamaged state, as adopted in (FHWA, 1999) and 
other DOTs. Condition 4 now denotes an irreversible 
damage state, and is thus regarded as a terminal 
state, as also suggested by (Manafpour, et al., 2018). 
The nonstationary transition probabilities are based 
on 30 years of in-service performance data for more 
than 22,000 bridges in Pennsylvania, as analyzed in 
(Manafpour, et al., 2018) and illustrated in Figure 2. 
Apart from these 6 nonstationary transitions, station-
ary failure probabilities are also considered, where 
a bridge is assumed to have a failure probability of 
Pf = 0.001 if it is in states 8 and 9, and Pf = 0.005 if 
it is in states 7, 6, 5. Pf finally reaches 0.01 if the 
bridge state is 4. 

3.2 Action description 

There are various guidelines for pavement main-
tenance from different agencies. According to 
(VDOT, 2016), four different maintenance actions 
are recommended, i.e., Do Nothing, Minor 
Repair, Major Repair, and  Reconstruction. Minor 
Repair (crack filling, moderate patching, etc.) can 
improve the CCI and IRI states but does not 
affect the rate of deterioration, Major Repair can 
improve condition states and reduce the deterior-
ation  rate by 5 years, and  Reconstruction resets 
the pavement to an intact condition. A detailed 
description of these actions and their costs can be 
found in (VDOT, 2016). Maintenance actions 
taken at any given time will simultaneously 
improve both CCI and IRI indices. The mainten-
ance action transition probabilities for CCI and 
IRI, their duration, and their costs are reported in 
(Saifullah, et al., in review). 

Similar to pavements, four maintenance actions 
are considered for maintaining the bridge decks, i.e., 
Do Nothing, Minor Repair, Major Repair, and 
Reconstruction, however, the involved performed 
actions are different. It is again assumed that the 
Minor Repair action does not change the rate of 
deterioration of the deck but it can improve the con-
dition state of the structure. Similarly, Major Repair 
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can improve both, and Reconstruction can reset the 
deck to a newly built one. The transition probabil-
ities, action durations, and their costs are described 
in (Saifullah, et al., in review). Maintenance action-
induced delays that can be translated to costs are 
considered as in (Vadakpat, et al., 2000). 

There is a variety of destructive and nondestructive 
inspection techniques that are used for bridge decks, 
such as visual inspections, acoustic sensing, infrared/ 
thermal imaging, ground penetrating radar, coring and 
chipping, and half-cell potential tests, among many 
others. Towards generality, inspection techniques are 
herein characterized as uninformative, low-fidelity, 
and high-fidelity inspection techniques, respectively. 
The observation probabilities for the corresponding 
inspections can be seen in (Saifullah, et al., in 
review). 

3.3 Transportation network 

As a reference example, the Hampton Roads trans-
portation network in Virginia, USA, is considered. 
The original topology and average daily traffic data 
of the network are used along with 11 main bridges. 
Each bridge is bidirectional, with the same number 
of lanes as in the original network, illustrated in 
Figure 3. The different deck types I-III are categor-
ized based on their relevant sizes. Type I bridges 
have length more than 5 km, type II have lengths 
between 1.2-5 km, and type III are the smallest 
having a length less than 1.2 km. 

Similarly, the network has various pavement compo-
nents categorized as type I-III. Type I pavements are 
interstate highways, with bidirectional traffic having  
four lanes in each direction, thus, constituting the class 
of highest vehicular miles. Type II are primary high-
ways with a bidirectional medium level of traffic, 
having two lanes in each direction. Lastly, type III are 
secondary highways with low-level bidirectional traffic 
and one lane in each direction. The deterioration rate of 
pavements is selected based on these classes, as high-
volume roads have a higher rate than low-volume ones. 
These rates are taken from (Saifullah, et al., in review). 

3.4 Network level risks and constraints 

Risk is defined as an expected cumulative discounted 
failure state cost over the life cycle, as in (Andriotis 
& Papakonstantinou, 2021). The risk cost consists of 
two parts: (1) accruable cost, which is taken as two 
times the rebuilding cost of the bridge, and (2) 
instantaneous cost, which is considered here as ten 
times the rebuilding cost of the bridge. The total risk 
is estimated using (i) the risk of individual bridge 
failures (for all network bridges), and (ii) the 
system-level risk, defined based on the connecting 
bridges over James River and York River as in (Sai-
fullah, et al., in review). The system risk has 3 fail-
ure modes, i.e., (A) the bridge over York River fails, 
(B) the 3 bridges over James River fail, and (C) 
modes A and B occur simultaneously. 

Figure 3. Hampton Roads transportation network model. 

There are various constraints that are considered, 
based on the condition states of pavements and 
bridges, imposed by the FHWA and VDOT agencies. 
For National Highway System (NHS) bridges, no 
more than 10% of the total bridge deck area should 
be deficient (i.e., condition rating   4), and for NHS 
pavements, no more than 10% of lane-miles should 
be in poor condition (i.e., CCI<60 and IRI>2.2 m/ 
km). Based on VDOT targets, no more than 18% of 
interstate and primary pavements and 35% of sec-
ondary pavements should be classified as deficient 
(i.e., CCI<60). Regarding serviceability, no more 
than 15% of interstate and primary roadways should 
be classified as deficient in terms of ride quality (i.e., 
IRI>2.2 m/km). VDOT also aims to achieve ‘no’ 
CCI lower than 35 for the interstate system (VDOT, 
2019). It is essential here to mention that the above 
constraints are satisfied in an expectation sense (i.e., 
soft constraints). Therefore, the last constraint is 
modified here from 0 to 2%. 

Finally, a budget constraint is imposed due to 
limited available resources. A five-year budget of 
$1.3 billion is allocated to Hampton Roads districts 
for FY2021-2026 (Nichols, 2021). This budget 
needs to be strictly satisfied (hard constraint) and is 
implemented as an augmented state of the network 
(Andriotis & Papakonstantinou, 2021). 

4 RESULTS 

This study considers a 96-component network with 
a total number of ~7x10134 possible system states at 
any given time instant. 10 actions per component are 
considered which makes the total number of avail-
able actions equal to 1096 for the entire network at 
each time step. The network components start from 
intact states, with an episode length of 20 years, and 
a discount factor γ = 0.97. The DDMAC-CTDE 
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Table 1. Comparison of different solution schemes in 
terms of total cost and performance with respect to average 
condition states of different pavement and bridge 
components. 

DDMAC- CBM VDOT 
Objective & Constraints CTDE policy policy 

Total budget used 
1.86 2.54 3.62

(billion USD) 
CCI<60 and IRI>2.2m/ 
km 2.0 2.9 0.0 
for I-Hwy (%) 
CCI<35 of I-Hwy (%) 1.9 0.5 0.0 
CCI<60 for I and 

7.3 4.7 0.1
P-Hwy (%) 
IRI>2.2 m/km for I and 

15.0 14.0 12.0
P-Hwy (%) 
CCI<60 for S-Hwy (%) 10.3 4.3 0.9 
Bridges with condition 

9.2 2.1 8.7
rating  4 (%) 

Figure 4. Total life cycle costs comparison of 
DDMAC-CTDE solution with CBM and VDOT policy 
baselines (top). Comparison of the total cost and its con-
stituents with CBM and VDOT policy baselines (bottom). 

training is performed for 1.3x106 episodes. Training 
details can be found in (Saifullah, et al., in review). 

To assess the DDMAC-CTDE solutions, we for-
mulate and evaluate 2 baselines, i.e., (i) a condition-
based maintenance (CBM) policy and (ii) a policy 
baseline following VDOT guidelines. The CBM 
policy is heuristically optimized to find the relevant 
thresholds based on the condition of each component 
type, i.e., bridge, interstate, primary, and secondary 
pavements. The policy involves the full suite of 10 
actions at every even time step. However, at every 
odd year, action 6 is taken for every component, i.e., 
do-nothing and high-fidelity-inspection, as also 
shown in Figure 5. The detailed CBM algorithm is 
presented in (Saifullah, et al., in review). The VDOT 
policy baseline is approximated from (VDOT, 2016) 
for pavement components. The original VDOT 
policy uses CCI and other distress metrics for action 
selection, but here only CCI is used. For bridge 
decks, the same criterion is used as for interstate 
components due to their similar importance. 

The expected total costs during training are com-
pared in Figure 4 (top). Figure 4 (bottom) also presents 
a histogram comparing the total costs with their con-
stituents based on Monte-Carlo simulations. It can be 

observed that our DDMAC-CTDE solution surpasses 
both baselines during training and simulation by 
a significant margin, being 27% cheaper than the CBM 
policy and 48% cheaper than the VDOT policy, as 
given in Table 1. Table 1 also compares the average 
performance over 104 simulations in terms of poor 
condition states, as per the 6 different constraints dis-
cussed in Section 3.4. The performance constraints are 
in the rows of the table, and I, P, and S Hwy are the 
abbreviations of interstate, primary, and secondary 
highways, respectively. 

To better understand how policies change over time, 
a detailed policy realization for some representative 
components is shown in Figure 5. The figure illustrates 
actions generated by one of the instances of the opti-
mum policy and the evolution of component belief 
states is shown with contours. Additionally, Figure 5 
displays the discounted budget usage over time and the 
5-year budget discounted for every cycle. The budget 
is a hard constraint that the agents are not allowed to 
exceed, a requirement that is satisfied by the obtained 
solution. The evolution of the total risk cost associated 
with individual bridges and the 3 modes of system risk 
is also presented. Moreover, the cost distribution 
among different types of pavements and bridges is 
shown in a pie chart. 

Plots with control actions represent the actions 
taken over time. The maintenance actions, taken at 
every time step, update the current belief of the 
system, as manifested in the next time step. The evo-
lution of contour plots in the case of pavements 
shows current beliefs for both CCI and IRI states, 
and the current belief states at each step for two 
bridge decks are also shown. For example, the agent 
is shown to take action 7 at t = 6 years for a type III 
bridge, and then the updated belief is shown at t = 7  
years, incorporating both I&M actions. 
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Figure 5. Life-cycle realization of the learned DDMAC-CTDE policy for the transportation network in case of intact 
initial conditions. 
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As seen in Figure 5, control actions are compatible 
with belief states. For example, the agents initially 
choose Do-Nothing actions since the belief states for 
both pavements and bridges initiate in the intact con-
dition. As the conditions gradually worsen, more 
interventions are considered. Similarly, at the horizon 
end, the Do-Nothing action is optimal for pavements, 
as pavements do not contribute to disconnection 
risks, while any action without inspection can be 
optimal for bridges. It has also been observed that 
the agents maintain and inspect type I bridges more 
systematically. This is because type I bridges have 
their individual failure risk as well as mode B and 
mode C system failure risks associated with them. 

From the pie chart, shown in Figure 5, it is 
observed that cost distribution is heavily skewed (as 
much as 75%) towards the bridge components, due 
to their high maintenance cost, associated risk cost, 
and lower traffic delay cost. Among pavements, pri-
mary highways have the largest contribution as they 
represent the most components in the network (47 in 
total). Figure 5 also shows the evolution of the 
system risk with time. As expected, the risk is min-
imal in the beginning and it increases with time, 
with downward jumps mainly due to the mainten-
ance actions taken for bridges, especially of type I. 

CONCLUSIONS 

In this work, the I&M problem of a large deteri-
orating bridge-pavement network with 96-
components is formulated within a POMDP-DRL 
framework, including risks and other condition 
and budget related constraints. Pavement states 
are defined by CCI and IRI metrics and bridge 
states are defined by deck condition ratings. Due 
to immensely large state and action spaces, the 
problem is solved with a newly and originally 
developed DRL algorithmic approach named 
Deep Decentralized Multi-agent Actor Critic with 
Centralized Training and Decentralized Execution 
(DDMAC-CTDE) which uses sparse paramet-
rizations and local component state information 
for actor networks to obtain near optimal solu-
tions. The optimal life-cycle policies are com-
pared against a Condition-Based Maintenance 
(CBM) policy and an adapted VDOT policy. The 
DDMAC-CTDE solution is shown to surpass the 
two baselines by 27% and 48%, respectively, sat-
isfying all the considered constraints. 
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