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A B S T R A C T

In the context of modern engineering, environmental, and societal concerns, there is an increasing demand for
methods able to identify rational management strategies for civil engineering systems, minimizing structural
failure risks while optimally planning inspection and maintenance (I&M) processes. Most available methods
simplify the I&M decision problem to the component level, often assuming statistical, structural, or cost
independence among components, due to the computational complexity associated with global optimization
methodologies under joint system-level state descriptions. In this paper, we propose an efficient algorithmic
framework for inference and decision-making under uncertainty for engineering systems exposed to deteriorat-
ing environments, providing optimal management strategies directly at the system level. In our approach, the
decision problem is formulated as a factored partially observable Markov decision process, whose dynamics are
encoded in Bayesian network conditional structures. The methodology can handle environments under equal
or general, unequal deterioration correlations among components, through Gaussian hierarchical structures
and dynamic Bayesian networks, decoupling the originally joint system state space to component networks
conditional on shared random variables. In terms of policy optimization, we adopt a deep decentralized
multi-agent actor-critic (DDMAC) reinforcement learning approach, in which the policies are approximated
by actor neural networks guided by a critic network. By including deterioration dependence in the simulated
environment, and by formulating the cost model at the system level, DDMAC policies intrinsically consider
the underlying system-effects. This is demonstrated through numerical experiments conducted for both a 9-
out-of-10 system and a steel frame under fatigue deterioration. Results demonstrate that DDMAC policies
offer substantial benefits when compared to state-of-the-art heuristic approaches. The inherent consideration
of system-effects by DDMAC strategies is also interpreted based on the learned policies.
1. Introduction

Managing engineering systems, by controlling the risks of adverse
events and optimally allocating inspection and repair resources, is
crucial for securing societal progress, improving the quality of life at the
community level and maximizing economic returns from an individual
perspective [1]. Increasing societal consciousness on sustainability,
along with the expanding wealth of data from our structural systems
and infrastructure, require, and enable, more efficient management
policies [2]. Engineering systems are exposed to deterioration mech-
nisms during the course of their service life, that negatively influence
heir expected reliability and operational performance. The prediction
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of deterioration evolution and system reliability estimates from engi-
neering models is associated with significant uncertainties. At a certain
economic expense, information can be collected from inspection and/or
monitoring systems and can be used to update reliability metrics in
time, hence supporting more rational and optimal maintenance deci-
sions. Inspection, maintenance, and repair interventions should be thus
timely allocated throughout the lifetime of engineering systems based
on reliability, cost and other related metrics. Research efforts devoted
to the development of risk-based inspection and maintenance planning
methods have increased considerably during the last decade [2]. Such
policies need to support decision-making, for both newly designed
vailable online 11 February 2023
951-8320/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.ress.2023.109144
Received 2 September 2022; Received in revised form 5 February 2023; Accepted 8
 February 2023

https://www.elsevier.com/locate/ress
http://www.elsevier.com/locate/ress
mailto:pgmorato@uliege.be
https://doi.org/10.1016/j.ress.2023.109144
https://doi.org/10.1016/j.ress.2023.109144
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2023.109144&domain=pdf


Reliability Engineering and System Safety 235 (2023) 109144P.G. Morato et al.
systems and existing ones, through life-cycle plans that integrally ac-
count for interventions (e.g., repairs, retrofits, etc.) and data collection
methods (e.g., inspections, structural health monitoring, etc.).

Most available inspection and maintenance (I&M) planning methods
assume independence among the constitutive components, primarily
driven by the practical need to tame the involved computational com-
plexities associated with solving such a system-level decision-making
optimization problem under uncertainty [3,4]. At the component level,
existing risk-based I&M methods can be classified according to their ca-
pabilities of modeling physically-based deterioration processes, e.g., fa-
tigue or corrosion deterioration [5,6], and depending on their policy
optimization approaches, namely, static decision rules, adaptive deci-
sion rules prescribed by heuristics, or adaptive decision rules defined
as a function of the dynamically updated history of actions and obser-
vations. Some methods focus on the optimization of predefined static
decision rules, planning inspections at equidistant intervals or when a
prescribed failure probability threshold is surpassed, and prescribing
maintenance interventions if a certain damage indicator is observed,
e.g., crack detection [3,7,8]. While these approaches can provide rea-
sonable and effective policies in some specific scenarios, the optimality
of the policies depends greatly on the designer’s experience when
defining the heuristic combinations for the policy search, since they
cannot consider all policies within the vast available policy space,
which could in turn produce better results than the originally con-
sidered predefined heuristics [9,10]. In other existing methods, while
inspection planning decision rules are defined a priori, the maintenance
policy is adaptive, properly updating the involved thresholds based on
new information [11]. In these cases, action planning is formulated
based on optimization techniques which need to be repeated for all
desired updates. While still operating on a limited policy subspace, such
sophisticated methods correctly identify the need to go beyond static
thresholds and accordingly provide solution approaches.

Methods based on Markov Decision Processes (MDPs) and Partially
Observable MDPs (POMDPs) aim, on the other hand, at addressing
the problem in a global optimization sense, outside the limitations
of threshold-based or time-based formulations. Early works on the
application of Markov decision processes for managing deteriorating
engineering cases include [12–15]. Founded on the principled mathe-
matical properties offered by dynamic programming, either under full
or partial observability, additional formulations have been proposed,
e.g., in [16–18]. In the same class of applications, a recent POMDP-
based approach proposed in [9] demonstrated that POMDP policies
outperform heuristic-based policies, as exemplified in physically-based
numerical examples featuring fatigue deterioration. POMDP policies
are defined as a function of the belief about the condition states, i.e., the
probability distribution over states, which is a sufficient statistic of
the prior history of actions and observations, recursively encoding it
through forward Bayesian updates.

As mentioned before, many of the existing I&M methods formulate
the decision-making problem at the component level. However, disre-
garding the essential interrelations among the system constituents, al-
though allowing for a substantial simplification of the decision-making
problem, may result in sub-optimal and even non-conservative policies
in some cases. The need for I&M methods capable of determining
policies at the system level has long been identified by the risk research
community. Early works approaching the problem at the system level
include [19,20]. In [21], the fatigue details were classified accord-
ing to the fatigue design factor, establishing a simplified approach
for identifying system policies. More recently, [22] proposed a static
I&M planning optimization relying on dynamic Bayesian networks to
efficiently model deterioration, cost and reliability dependence among
the structural elements. In this method, the policy is computed by
optimizing static heuristic decision rules, with decision variables in-
cluding, among others, equidistant inspections, number of inspected
2

components, component prioritization, and repair thresholds based
on observations. As with all static policy optimization methods, ex-
plained before, the policies are constrained to the set of predefined
heuristic rules, out of the immense space of possible policies, which
is substantially enlarged now in structural system settings.

Addressing the important complexities of managing large engineer-
ing systems, a deep reinforcement learning (DRL) method has been
introduced in [23], motivated by the success of deep reinforcement
learning algorithms in complex game environments, e.g., in [24–26]. In
particular, a multi-agent actor-critic DRL scheme is developed in [23],
relying on (PO)MDPs for simulating the deteriorating environment,
and demonstrating the capabilities of deep reinforcement learning ap-
proaches for identifying optimal policies in high-dimensional state,
action, and observation spaces. Thereafter, a modified version of this
method has also been applied for solving system I&M decision-making
problem under constraints, e.g., imposed risk thresholds or budget lim-
itations [27]. In general, DRL approaches offer computational benefits
in high-dimensional state spaces, mitigating the need for exhaustive
state exploration by leveraging a function parametrization over the
state space [28]. Further verifying the effectiveness of DRL methods for
minimizing long-term costs and system failure risks, DRL approaches
have been recently applied for the maintenance optimization of multi-
component engineering systems [29,30], from gas plant and pipeline
systems [31,32] to rail-road infrastructure [33], and bridge assets [34,
35].

In order to identify optimal management strategies for engineering
systems directly at the system level, we originally formalize here an
efficient modeling framework for inference and decision-making under
uncertainty for general cases with probabilistic dependencies. Inference
and reliability estimation for systems managed through maintenance
actions and inspections is hard when there exist statistical correlations
among components. Addressing this, we provide an approach in this
work that can also be consistently combined with a stochastic control
framework through deep reinforcement learning. In terms of inference,
our proposed methodology builds on top of adept Dynamic Bayesian
Network (DBN) formulations [4,36], modeling environments described
by deterioration dependencies among components through Gaussian
hierarchical structures, with the objective of decoupling the joint sys-
tem space to independent component networks conditional on common
influencing random variables. This decomposition results in a linear
computational complexity with the number of components that other-
wise increases exponentially in the joint system space. Furthermore,
in this paper, the Gaussian hierarchical model is originally expanded
and enhanced to enable the treatment of general, unequal deterioration
correlation scenarios and dependence alterations after a maintenance
action is taken for a subset of the components.

While our developed generalized inference framework is applicable
regardless of the decision-making method used for the generation
of management policies, our proposed approach efficiently models
the decision-making problem as a factored POMDP, whose dynamics
are encoded as Bayesian networks that can then be seamlessly inte-
grated with sophisticated solution methods. In this regard, we adopt a
deep decentralized multi-agent actor-critic (DDMAC) scheme, in which
the system policies are approximated by actor neural networks, at
a component level, guided via system level value function estimates
approximated by a critic network [23]. As DDMAC adjusts the weights
of the actor networks according to noisy rewards collected at the system
level, DDMAC policies intrinsically consider system-effects stemming
from structural and statistical dependencies. Through numerical exper-
iments, we demonstrate the efficacy of the proposed method for I&M
planning of structural systems exposed to fatigue deterioration. DDMAC
policies are compared against state-of-the-art optimized heuristic poli-
cies in all analyzed experiments. In particular, the effects of including
deterioration dependence and campaign cost models are explored for
the case of a 9-out-of-10 system. In the second application studied, of a
steel frame structural system featuring 22 fatigue hotspots, the focus is

on examining and interpreting the inherent allocation of maintenance
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interventions by DDMAC policies according to the element importance
to the global structural reliability. Through the results and discussion
reported in this work, relevant insights for typical structural fatigue
applications can be drawn.

The remainder of the paper is structured as follows: an overview
of POMDP methods along with the proposed factored formulation are
presented in Section 2. In Section 3, the definition and modeling of
aussian hierarchical structures are introduced, together with a belief
pdate algorithm, applicable to environments under general deteri-
ration dependence. The integration of the simulator, defined as a
actored POMDP, with DDMAC is presented in Section 4. The numerical
xperiments are then introduced and discussed in Section 5, concluding
ith some final remarks in Section 6.

. I&M decision problem formulated as a factored POMDP

.1. Factored POMDP definition

The inspection and maintenance (I&M) planning decision-making
roblem is formulated here as a Partially Observable Markov Decision
rocess (POMDP), whose transition and observation models are defined
y Bayesian network structures. POMDPs provide a principled math-
matical framework for optimal planning and decision-making under
ncertainty, formally specified by the tuple ⟨ ,,,  ,,, 𝛾⟩. A deci-
ion maker (henceforth agent) interacts with a stochastic environment,
escribed by the state 𝑠 ∈ , taking actions 𝑎 ∈  over a finite or
nfinite horizon 𝑡𝑁 . The dynamics correspond to those in a MDP: At
ach time step 𝑡, an agent takes an action 𝑎𝑡 ∈ , and the environment
volves from state 𝑠𝑡 ∈  to state 𝑠𝑡+1 ∈ , according to the transition
model  ∶= 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡). In a MDP, the agent receives a reward based
on the cost model  ∶= 𝑟𝑡(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) discounted by factor 𝛾, and the
objective is to find the policy 𝜋∗ that induces the optimal value function
𝑉 ∗(𝑠𝑡):

𝑉 ∗(𝑠𝑡) = max
𝑎𝑡∈

{

𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾
∑

𝑠𝑡+1∈
𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝑉 ∗(𝑠𝑡+1)

}

(1)

In a POMDP, however, states 𝑠 ∈  are not directly observed and,
instead, observations 𝑜 ∈  can be collected according to the obser-
vation model  ∶= 𝑝(𝑜𝑡+1|𝑠𝑡+1, 𝑎𝑡). Note that the observation model is
the likelihood of collecting an observation 𝑜𝑡+1 ∈ 𝑂 after taking an
action 𝑎𝑡 and having transitioned to state 𝑠𝑡+1. In an I&M context, the
observation model is often modeled by Probability of Detection (PoD)
curves or according to inspection/monitoring measurement noise [9].
A POMDP policy is a mapping of the dynamically updated history
of actions and observations, 𝑎0∶𝑡−1, 𝑜0∶𝑡, to the current action 𝑎𝑡. This
history is sufficiently encoded in belief 𝐛, which is the probability over
system states, b(𝑠𝑡). The optimal policy 𝜋∗, therefore, corresponds to
the value function [37] that satisfies the Bellman equation:

𝑉 ∗(𝐛𝑡) = max
𝑎𝑡∈𝐴

{

∑

𝑠𝑡∈
𝑟(𝑠𝑡, 𝑎𝑡)𝑏(𝑠𝑡) + 𝛾

∑

𝑜𝑡+1∈
𝑝(𝑜𝑡+1|𝐛𝑡, 𝑎𝑡)𝑉 ∗(𝐛𝑡+1)

}

, (2)

where 𝑝(𝑜𝑡+1|𝐛𝑡, 𝑎𝑡) is the probability of collecting an observation 𝑜𝑡+1 ∈
𝑂 given the belief 𝐛𝑡 and action 𝑎𝑡 ∈ 𝐴. Assuming a Markovian
environment is reasonable in most practical applications with the aid of
state augmentation techniques [13], any general I&M planning decision
problem can be efficiently formulated as a POMDP. The determination
of the optimal I&M policy 𝜋∗ becomes the main objective, induc-
ing a minimization of the expected life-cycle costs 𝑟𝑡𝑜𝑡, by balancing
structural failure risk against inspection and maintenance costs:

E[𝑟𝑡𝑜𝑡] =
𝑡𝑁
∑

𝑡=0
E
[

𝛾 𝑡(𝑟𝑖𝑛𝑠,𝑡 + 𝑟𝑟𝑒𝑝,𝑡 + 𝑟𝐹 ,𝑡)
]

, (3)

where 𝑟𝑖𝑛𝑠, 𝑟𝑟𝑒𝑝 and 𝑟𝐹 stand for inspection, repair and failure costs,
respectively, defined as negative rewards. In terms of utilities, the fail-
3

ure risk 𝑟𝐹 is typically defined in a structural reliability context as the
annual probability of a failure event weighted by the consequence of a
structural failure, which might also include environmental and societal
consequences, specified in equivalent units. The definition of the failure
risk at the system level will be further elaborated in Section 3.

Existing I&M planning applications often model the deterioration
evolution 𝑑, at the component level, conditional on a set of ran-
dom variables θ𝒅 [4,22,36] or as a function of the deterioration rate
𝜏 [14,23]. Both formulations are equivalent for modeling deterioration
processes, as already discussed and demonstrated in [9] and shown in
Fig. 1. When observations are collected, through inspections or moni-
toring, Bayesian updating can be then conducted. Available algorithms
allow exact Bayesian inference if the problem is formulated in a discrete
state space [38], as the computation of Bayes’ normalization constant
is a challenging task in continuous state spaces [39]. In order to
utilize discrete state based algorithms, the involved continuous random
variables can be discretized. The quality of the discretization has a huge
impact and shall be treated carefully [4,9], especially when the problem
deals with rare events, e.g., failure events.

In a POMDP, the states cannot be directly observed and the decision
maker reasons under partial observability, only informed by a belief
𝐛, which is defined as the probability over states. At each time step,
the belief is dynamically updated, based on Bayes’ rule, depending on
the initial belief, 𝐛𝑡, the action taken, 𝑎𝑡, and the collected observation,
𝑜𝑡+1, following three main steps: (i) the belief evolves according to the
transition model 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), (ii) the belief is updated based on the
collected observation with probability 𝑝(𝑜𝑡+1|𝑠𝑡+1, 𝑎𝑡), and (iii) the belief
state is normalized. This belief update operation is denoted as forward
pass within the context of hidden Markov models [38]. At the system
level, the belief of each component can be updated by implementing
the steps listed in Algorithm 1.

State-of-the-art POMDP solvers often require the modeling of the
POMDPs in a flat structure, which can be usually encoded by augment-
ing the state space [13], particularly if the process is described by mul-
tiple random variables. However, POMDPs can also be formulated in
a factored fashion, exploiting the dependence structure among random
variables and thus significantly alleviating the required computational
effort. We specify here the transition and observation models based on
conditional structures described by dynamic Bayesian networks (DBNs),
and while the belief state 𝐛 remains the same as that for flat POMDPs,
the transition and observation models are now constructed by taking
advantage of the involved dependencies. For instance, the deterioration
rate model can be constructed as 𝑝(𝑑𝑡+1|𝑑𝑡, 𝜏𝑡+1) 𝑝(𝜏𝑡+1|𝜏𝑡) instead of
𝑝(𝑑𝑡+1, 𝜏𝑡+1|𝑑𝑡, 𝜏𝑡), where 𝑠 = 𝑑𝑡, 𝜏𝑡.

Algorithm 1 Belief update for a system of 𝑁𝑐 uncorrelated components
function updateBelief(𝐛𝑡, 𝑎𝑡, 𝑜𝑡+1)

for 1, 𝑁𝑐 do
𝑏(𝑠𝑡+1) ← 𝑏(𝑠𝑡) 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) ⊳ propagation step
𝑏(𝑠𝑡+1) ← 𝑏(𝑠𝑡+1) 𝑝(𝑜𝑡+1|𝑠𝑡+1, 𝑎𝑡) ⊳ estimation step
𝑏(𝑠𝑡+1) ← 𝑏(𝑠𝑡+1)∕𝑝(𝑜𝑡+1|𝐛𝒕, 𝑎𝑡) ⊳ normalization step

end for
end function

This incorporation of conditional structures allows a reduction of
the transition model dimensionality from |𝑑 |

2
|𝜏 |

2 to |𝑑 |
2
|𝜏 |+ |𝜏 |

2

and can achieve significant computational benefits when multiple ran-
dom variables are involved. This formulation can be seamlessly applied
to simulate the deterioration environment, as will be explained in
Section 4, due to the flexibility naturally offered by the proposed deep
reinforcement learning approach.

3. System effects in I&M planning

3.1. Deterioration dependence in a hierarchical Gaussian structure

Existing methods model the deterioration correlation among compo-
nents either via random fields or through common influencing factors.
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Fig. 1. Graphical representation of dynamic Bayesian networks for modeling deterioration processes. At the component level, damage 𝑑𝑡 evolves over time 𝑡 as a function of
the deterioration rate 𝜏𝑡 (left) or conditional on a set of parameters θ𝒅𝒕

(right). While 𝑑𝑡 and θ𝒅𝒕
are hidden states, partially observed through 𝑜𝑑𝑡 , 𝜏𝑡 is fully observable. The

deterioration dependence among components is encoded by the hyperparameter or set of hyperparameters α,β. The binary failure observable state indicates either the survival or
failure state of the system 𝐹𝑠𝑦𝑠𝑡 depending on the components failure hidden state 𝐹𝑡. Note that other variants of the system failure formulation can also be represented accordingly.
hereas the former are particularly useful for applications in which
he dependence is attributed to the geometrical distance between com-
onents, the latter are more suitable for systems in which identical
ttributes of physical phenomena, e.g., similar manufacturing tech-
iques or similar loading, lead to shared sources of model uncertainties
mong the components [36]. In a hierarchical structure, the deterio-
ation of each component is defined conditional on a set of common
nfluencing variables, shared among all the components and repre-
ented at the highest level of the hierarchy. In theory, the state space
f a system under deterioration dependence can be modeled directly
s the joint space of all the parameters involved in the deterioration
rocess of the system. In this case, the discretized state space would
row exponentially with the number of components 𝑁𝐶 included, into
|𝑆|𝑁𝐶 dimensional space. To overcome this increase in dimensional-
ty, we adopt the hierarchical Gaussian structure previously proposed
n [36], in which the belief state of each component is encoded con-
itional on a hyperparameter (common influencing variable) 𝛼 or
et of hyperparameters α. The central idea behind this hierarchical
tructure is that component beliefs for a given hyperparameter 𝐛(𝐬|𝛼)
are independent, enabling an efficient decoupling of the components
joint space. This decoupling alleviates the computational complexity
from the original joint space ||𝑁𝐶 to a space || ⋅ |𝛼| ⋅𝑁𝐶 that grows
linearly with the number of considered components 𝑁𝐶 . Note that the
state space includes now the states of the hyperparameter(s), which
should also be properly discretized. The increase of the state space due
to the incorporation of the hyperparameter(s) is, however, much less
significant than when considering the joint state space.

A graphical representation of the proposed hierarchical structure
is illustrated in Fig. 1, applicable to deterioration processes modeled
either as a function of the deterioration rate or conditional on a set of
parameters [9]. In either case, the deterioration process 𝑑 is encoded
conditional on the hyperparameter(s) α, along with the deterioration
rate 𝜏 or parameters θ𝑑 . Evidence collected through observations 𝐨𝑑𝑡
oes not only serve for updating the damage state, but also for updating
he hyperparameters. Since the hyperparameters are parent nodes for
ll the components, once a component is inspected, the hyperparame-
ers are also updated, influencing all the other components, even those
or which evidence was not directly available. The reliability of the
ystem is represented in Fig. 1 by the binary node 𝐹𝑠𝑦𝑠, conditional
on the failure state of the components 𝐹 (𝑙). At a component level, the
failure state is modeled by the binary variable 𝐹 (𝑙) and corresponds to
the subset of the deterioration space classified as failure 𝐹 ⊆ .

This Gaussian hierarchical structure is a mathematically motivated
model induced by the convenient formulation available for normal
random variables. Let us first consider the special case in which the
marginal probability of each considered component deterioration is
defined as a standard normal random variable 𝑌 . Under correlation,
4

𝑖

the parameters 𝑌𝑖 are, however, defined as normal random variables
with mean 𝜆𝑖𝛼 and standard deviation

√

1 − 𝜆2𝑖 [40]:

𝑌𝑖 =
√

1 − 𝜆2𝑖𝑋𝑖 + 𝜆𝑖𝛼 (4)

Since both 𝑋𝑖 and 𝛼 are independent standard normal random vari-
ables, the covariance of 𝑌𝑖 and 𝑌𝑗 can be formulated as:

𝑐𝑜𝑣(𝑌𝑖, 𝑌𝑗 ) =(1 − 𝜆2𝑖 )𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗 ) +
√

1 − 𝜆2𝑖 (𝜆𝑗 )𝑐𝑜𝑣(𝑋𝑖, 𝛼)

+
√

1 − 𝜆2𝑗 (𝜆𝑖)𝑐𝑜𝑣(𝑋𝑗 , 𝛼) + 𝜆𝑖𝜆𝑗𝑐𝑜𝑣(𝛼, 𝛼) (5)

After removing all the terms associated with zero covariance,
i.e., 𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗 ), 𝑐𝑜𝑣(𝑋𝑖, 𝛼), and 𝑐𝑜𝑣(𝑋𝑗 , 𝛼), we can define the correlation
coefficient between 𝑌𝑖 and 𝑌𝑗 as:

𝜌(𝑌𝑖, 𝑌𝑗 ) = 𝜆𝑖𝜆𝑗 (6)

If all the components are equi-correlated, then 𝜆𝑖 = 𝜆𝑗 =
√

𝜌(𝑌𝑖, 𝑌𝑗 ),
for all 𝑖, 𝑗. This presented Gaussian structure is further generalized in
this work for the general case of unequally correlated components, by
preserving the validity of Eq. (6). For complex correlation configura-
tions, one hyperparameter 𝛼 might not be sufficient to satisfy Eq. (6),
and in that case, one can incorporate additional hyperparameters α, at
the expense of a higher computational cost. When 𝑁ℎ hyperparameters
are included, the best fit for 𝜌(𝑌𝑖, 𝑌𝑗 ) =

∑𝑁ℎ
𝑘=1(𝜆𝑖𝑘𝜆𝑗𝑘) can be found via

optimization procedures, e.g., least squares [41]. Once the Gaussian
correlation structure is specified through the parameters 𝝀, the cumu-
lative distribution of 𝑌𝑖 conditional on the hyperparameter(s) α can be
defined as:

𝐹𝑌𝑖|𝜶(𝑦𝑖) = Φ

⎡

⎢

⎢

⎢

⎣

𝑦𝑖 −
∑𝑁ℎ

𝑘=1 𝜆𝑖𝑘𝛼𝑘
√

1 −
∑𝑁ℎ

𝑘=1 𝜆
2
𝑖𝑘

⎤

⎥

⎥

⎥

⎦

(7)

For the cases in which the deterioration process is modeled by random
variables other than standard Gaussian and considering that a Nataf
transformation is applicable [36], then Eq. (7) can be also redefined as:

𝐹𝐷𝑖|𝜶(𝑑𝑖) = Φ

⎡

⎢

⎢

⎢

⎣

Φ−1[𝐹𝐷𝑖
(𝑑𝑖)] −

∑𝑁ℎ
𝑘=1 𝜆𝑖𝑘𝛼𝑘

√

1 −
∑𝑁ℎ

𝑘=1 𝜆
2
𝑖𝑘

⎤

⎥

⎥

⎥

⎦

(8)

where 𝐹𝐷𝑖|α
(𝑑𝑖) stands for the cumulative distribution function of a

variable 𝑑𝑖 conditional on the hyperparameter(s) α, and Φ is the
standard normal cumulative distribution function. In a discrete state
space, the belief conditional on the hyperparameters is equal to the
difference between the cumulative distribution function at the upper
boundary and at the lower boundary of each belief interval:

+ −
𝑏(𝑑𝑖|α) = 𝐹𝐷𝑖|α
(𝑑𝑖 ) − 𝐹𝐷𝑖|α

(𝑑𝑖 ) (9)
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3.2. Belief update under deterioration dependence

We reformulate here the belief update algorithmic scheme intro-
duced in Section 2 for a system under deterioration dependence among
components. All necessary implementation steps are listed in Algo-
rithm 2. Bayesian inference is firstly conducted for the conditional
beliefs 𝑏(𝑠𝑡+1|α) and hyperparameters 𝑏(α), propagating uncertainty
according to the transition model 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) and observation model
𝑝(𝑜𝑡+1|𝑠𝑡+1, 𝑎𝑡). The likelihood of collecting an observation given the
hyperparameter(s) 𝑝(𝑜𝑡+1|α, 𝑎𝑡), later necessary to update 𝑏(α), can be
easily computed by marginalizing out the states other than 𝛼:

𝑝(𝑜𝑡+1|α, 𝑎𝑡) =
∑

𝑠𝑡+1∈

[

𝑏(𝑠𝑡+1|α) 𝑝(𝑜𝑡+1|𝑠𝑡+1, 𝑎𝑡)
]

(10)

Bayesian inference is then conducted for the hyperparameter(s):

𝑝(α|𝑜𝑡+1, 𝑎𝑡) = 𝑏(α)𝑝(𝑜𝑡+1|α, 𝑎𝑡)∕𝑝(𝑜𝑡+1|𝑎𝑡) (11)

After updating the conditional beliefs and common influencing vari-
ables, the marginal deterioration beliefs can be computed by marginal-
izing out the hyperparameter(s) α as:

𝑏(𝑠𝑡+1) =
∑

α∈𝛤

[

𝑝(𝑠𝑡+1|α) 𝑏(α)
]

(12)

The effect of maintenance actions on the Gaussian dependence
structure has not been explored in the existing literature [22,36], to
the best knowledge of the authors. Whereas the defined deterioration
dependence is preserved if no maintenance interventions are planned,
structural interventions can potentially disrupt the underlying corre-
lation structure. For instance, if a structural system is specified with
a correlated initial crack size among fatigue hotspots, this correlation
structure will be perturbed after a component is repaired, along with
the correlation reduction naturally experienced by the system over
time. The correlation evolution associated with the latter is intrin-
sically quantified through the uncertainty propagation and updating
operations formulated in Eqs. (10)–(11), whereas the correlation dis-
ruption associated with the former can be modeled by now defining
the transition model 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡,α) of the involved components also
conditional to the hyperparameter(s) α, enabling therefore the removal
or modification of the deterioration dependence by redefining and
implementing the relevant correlation coefficients 𝜆𝑖 in Eqs. (7)–(9).
Additional discussion and implementation of this aspect is presented in
the numerical experiments section.

Algorithm 2 Belief update under deterioration dependence for a system
of 𝑁𝐶 components
function updateBelief(𝑏(𝑠𝑡|α), 𝑏(α), 𝑎𝑡, 𝑜𝑡+1)

for 1, 𝑁𝑐 do
𝑏(𝑠𝑡+1|α) ← 𝑏(𝑠𝑡|α) 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) ⊳ propagation step
𝑏(𝑠𝑡+1|α) ← 𝑏(𝑠𝑡+1|α) 𝑝(𝑜𝑡+1|𝑠𝑡+1, 𝑎𝑡) ⊳ estimation step
𝑝(𝑜𝑡+1|α) ←

∑

𝑠𝑡+1∈𝑆 [𝑏(𝑠𝑡+1|α) 𝑝(𝑜𝑡+1|𝑠𝑡+1, 𝑎𝑡)] ⊳ likelihood
𝑏(𝑠𝑡+1|α) ← 𝑏(𝑠𝑡+1|α)∕𝑝(𝑜𝑡+1|𝑏𝑡, 𝑎𝑡) ⊳ normalization step
𝑏(α) ← 𝑏(α) 𝑝(𝑜𝑡+1|α, 𝑎𝑡)∕𝑝(𝑜𝑡+1|𝑎𝑡) ⊳ hyperparameter(s)

update
end for
for 1, 𝑁𝑐 do

𝑏(𝑠𝑡+1) ←
∑

𝛼∈𝜶[𝑏(𝑠𝑡+1|𝛼) 𝑏(𝛼)] ⊳ marginalizing out
hyperparameter(s)

end for
return 𝐛(𝑠𝑡+1)

end function

3.3. System structural reliability and system cost model

As input to the I&M decision-making problem (Section 2), utilities,
𝑟 and 𝑟 , are assigned to inspection and repair actions, respectively,
5

𝑖𝑛𝑠 𝑟𝑒𝑝
specified according to available options and settings in each problem.
The annual risk of a system failure, 𝑟𝐹 , is defined accounting for two
consecutive time steps (e.g., years) and its associated system failure
cost, 𝑟𝑓 , as:

𝑟𝐹 = (𝑝𝐹𝑠𝑦𝑠,𝑡+1 − 𝑝𝐹𝑠𝑦𝑠,𝑡 )𝑟𝑓 (13)

The system structural failure event, as illustrated in Fig. 1 by the node
𝐹𝑠𝑦𝑠, is specified by a binary variable 𝑝𝐹𝑠𝑦𝑠 , indicating the failure and
survival states, conditional on the belief state 𝑏(𝑠) of the structural
components, as these are determined by the performed I&M actions
in time. Within the deep reinforcement learning approach presented
in Section 4, 𝑃𝐹𝑠𝑦𝑠 can be computed via closed-form procedures and/or
supported by efficient matricial algorithms [41]; or it can be computed
following a general scheme, obtaining 𝑝𝐹𝑠𝑦𝑠 through a simulator [42].
By assigning utilities to the system state, the importance of each
structural element to the global risk of a system failure is implicitly
accounted. To illustrate the effect of defining the failure risks at the sys-
tem level, I&M strategies for a redundant 2-dimensional frame structure
are later explored in Section 5.

In most structural systems, inspection and repair actions are not
planned separately for each structural element. Maintenance campaigns
are instead scheduled, collecting information or performing repairs
on a group of structural components. The cost model can thus be
adapted from Eq. (3), to include a fixed campaign cost, 𝑟𝑐𝑎𝑚𝑝, incurred
every time a campaign is planned, along with inspection, 𝑟(𝑙)𝑖𝑛𝑠, and
repair, 𝑟(𝑙)𝑟𝑒𝑝, costs assigned to the individual components according to
any linear/nonlinear function of choice, (.), e.g., simple linear sum
operator, as:

𝑟𝑡𝑜𝑡 = 𝑟𝑐𝑎𝑚𝑝 +
(

𝑟(𝑙)𝑖𝑛𝑠, 𝑟
(𝑙)
𝑟𝑒𝑝

)

+ 𝑟𝐹 (14)

4. Optimal I&M planning via deep reinforcement learning

I&M planning decision problems, formulated as POMDPs (as ex-
plained in Sections 2 and 3), can be solved by dynamic programming
algorithms, e.g., via exact alpha-vector value iteration [43]. In practice,
however, exact value iteration can be applied to only very small state
space problems due to the complexity associated with the exponential
increase in the number alpha vectors with the number of observa-
tions at every iteration. Recently, I&M planning decision problems,
at the component level, formulated as POMDPs and characterized by
multiple states have been efficiently solved via point-based POMDP
algorithms [9,14,44]. Point-based solvers exploit the fact that the value
function 𝑉 (𝐛) (Eq. (2)) is piece-wise linear and convex and can be thus
parameterized by a set of 𝐯𝑝 ∈ 𝑝 vectors, each of which is associated
with a specific action 𝑎 ∈ . The optimal value function, 𝑉 ∗(𝐛), can be
therefore defined in terms of a set of 𝐯𝑝 vectors [45].

State-of-the-art point-based POMDP solvers mainly differ on their
approach of sampling reachable belief points, and the way Bellman
backup operations are executed, e.g., in [37,46,47]. The reader is di-
rected to [44] for a detailed comparison of point-based solvers applied
to infrastructure I&M settings. While point-based solvers are able to
efficiently provide optimal policies at the component level and for
realistically large systems, the dimensionality still becomes a limiting
factor in high-dimensional state, action, and observation space settings,
typical in structural systems. Deep Reinforcement Learning (DRL) pro-
vides then a powerful solution in such settings, as the value or policy
function can be parameterized with deep artificial neural networks.
Thereby, the planning task reduces to finding a number of parameters
that is much lower than the number of original states and actions of the
problem. The interested reader is directed to [48,49] for a well elabo-
rated introduction and discussion on DRL. In our proposed approach,
we integrate the factored POMDP formulation introduced in Section 2
with a Decentralized Deep Multi-agent Actor-Critic (DDMAC) scheme,
adopted from [23]. This combination provides an efficient algorithmic
platform for inspection and maintenance planning of structural systems
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Fig. 2. On the left: Representation of a factored POMDP derived from the deterioration rate dynamic Bayesian network introduced in Fig. 1. The deterioration process 𝑑𝑡, influenced
by the deterioration rate 𝜏𝑡, conditional on the hyperparameters α and partially observed through 𝑜𝑑𝑡 , is controlled by the action decision node 𝑎𝑡. A reward 𝑟𝑡 is collected as a
result of taking action 𝑎𝑡 at state 𝑑𝑡. On the right: Deep Decentralized Multi-Agent Actor Critic (DDMAC) featuring the critic network at the top, and a group of actor networks,
one for each component, at the bottom.
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under deterioration, reliability and cost dependencies, in large-scale
multi-component environments.

Each component of the system is controlled by the stochastic policy
𝜋(𝑎(𝑙)|𝐛,θ𝜋 )) provided by a group of multi-agent actor networks, defined
as a function of parameters θ𝜋 , as illustrated on the right side of Fig. 2
with light blue bars. In many applications, DRL policies after training
are nearly deterministic, suggesting one action in particular, whereas
stochastic policies are often optimal in constraint environments [27].
In our implementation, we consider agents acting as independent units
in a decentralized manner, i.e., the actions taken by one actor are
naturally not affected by the actions taken by other actors:

𝜋(𝐚|𝐛) =
𝑁𝐶
∏

𝑙=1
𝜋𝑙(𝑎(𝑙)|𝐛) (15)

The input to the actor networks corresponds to the marginal belief
states of all components along with the deterioration rate and the time
step encoded as a zero–one vector. For instance, if the environment
is described by the factored POMDP represented on the left side of
Fig. 2, the actor networks receive the deterioration belief states 𝐛(𝑠𝑑 )
and deterioration rate states 𝐛(𝑠𝜏 ) for all components (in |𝑑 | ⋅𝑁𝑐 and
𝜏 | ⋅ 𝑁𝑐 matrix formats, respectively), plus an input indicating the
ime step 𝑡 ∈ 𝑡𝑁 . If deterioration dependence is included through a
ierarchical Gaussian model, as explained in Section 3, then conditional
eliefs 𝐛(𝑠𝑑 |α) and hyperparameters beliefs 𝐛(α) should also be used
while simulating the deterioration environment.

Even for environments under deterioration dependence, the neural
networks only receive as input the components’ marginal beliefs 𝐛(𝑙), for
all 𝑙, computed by following the steps listed in Algorithm 2. ReLU ac-
tivation functions are used for the hidden layers of the actor networks,
and the output layer is activated by a softmax function, generating the
output policy as a probability distribution over the available actions.

The actor network weights are adjusted/updated according to the
noisy rewards collected from a batch of previous experiences, following
an off-policy training approach that offers more sample efficiency than
on-policy training algorithms. A replay buffer [50] stores beliefs 𝐛𝑡,
actions 𝐚𝑡, rewards 𝑟(𝐛𝑡, 𝐚𝑡) and behavior policies 𝜇𝑡, experienced during
the simulations of the deterioration environment. The off-policy gradi-
ent estimator is thus formulated with samples generated by a behavior
policy 𝜇, different from 𝜋, and corrected with the truncated importance
sampling weight 𝑤𝑡 = min{𝑐, 𝜋(𝐚𝑡|𝐛𝑡)∕𝜇(𝐚𝑡|𝐛𝑡)}, with 𝑐 > 0 [23]:

𝐠θ𝜋 = 𝐄 𝐚𝑡∼µ

[

𝑤𝑡

{𝑁𝑐
∑

𝑖=1
∇θ𝜋 𝑙𝑜𝑔 𝜋𝑖(𝑎

(𝑖)
𝑡 |𝐛𝑡,θ𝜋 )

}

𝐴𝜋 (𝐛𝑡, 𝐚𝑡|θ𝑉 )
]

(16)

The advantage function 𝐴𝜋 (𝐛𝑡, 𝐚𝑡) indicates how optimal is action 𝐚𝑡
with respect to the current estimated value function 𝑉 𝜋 (𝐛 ) and defined
6

𝑡 f
Algorithm 3 Deep Decentralized Multi-agent Actor Critic (DDMAC)
Initialize replay buffer
Initialize actor and critic network weights θ𝜋 ,θ𝑉
for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1,𝑀 do

for 𝑡 = 1, 𝑡𝑁 do
Select action 𝐚𝑡 at random according to exploration noise
Otherwise select action 𝐚𝑡 ∼ µ𝑡 = {𝜋𝑗 (⋅|𝐛𝑡,θ𝜋 )}

𝑁𝑐
𝑗=1

Collect reward 𝑟(𝐛𝑡, 𝐚𝑡)
Observe 𝑜(𝑙)𝑡+1 ∼ 𝑝(𝑜(𝑙)𝑡+1|𝐛𝑡, 𝐚𝑡) for 𝑙 = 1, 2, ..., 𝑁𝑐
Compute beliefs 𝐛𝑡+1: updateBelief(𝐛𝑡, 𝐚𝑡, 𝐨𝑡+1)
Store experience (𝐛𝑡, 𝐚𝑡, 𝜇𝑡, 𝑟(𝐛𝑡, 𝐚𝑡),𝐛𝑡+1) in replay buffer
Sample batch of (𝐛𝑖, 𝐚𝑖, 𝜇𝑖, 𝑟(𝐛𝑖, 𝐚𝑖),𝐛𝑖+1) from replay buffer
If 𝐛𝑖+1 is terminal state 𝐴𝜋

𝑖 = 𝑟(𝐛𝑖, 𝐚𝑖) − 𝑉 𝜋 (𝐛𝑖,θ𝑉 )
Otherwise 𝐴𝜋

𝑖 = 𝑟(𝐛𝑖, 𝐚𝑖) + 𝛾𝑉 𝜋 (𝐛𝑖+1,θ𝑉 ) − 𝑉 𝜋 (𝐛𝑖,θ𝑉 )
Update actor parameters 𝜃𝜋 according to gradient:
𝐠θ𝜋 ≃

∑

𝑖 𝑤𝑖{
∑𝑁𝑐

𝑗=1 ∇θ𝜋 𝑙𝑜𝑔 𝜋𝑗 (𝑎
(𝑗)
𝑖 |𝐛𝑖,θ𝜋 )}𝐴𝜋

𝑖
Update critic parameters θ𝑉 according to gradient:
𝐠θ𝑉 ≃

∑

𝑖 𝑤𝑖∇θ𝑉 𝑉 𝜋 (𝐛𝑖|θ𝑉 )𝐴𝜋
𝑖

end for
end for

in a temporal difference learning fashion as:

𝐴𝜋 (𝐛𝑡, 𝐚𝑡|θ𝑉 ) ≃ 𝑟(𝐛𝑡, 𝐚𝑡) + 𝛾𝑉 (𝐛𝑡+1|θ𝑉 ) − 𝑉 (𝐛𝑡|θ𝑉 ) (17)

he value function is approximated by the critic network, defined as
function of parameters θ𝑉 , as illustrated on the right side of Fig. 2.

Whereas the critic network receives the same input as the actor network
(components marginalized beliefs, deterioration rates, and a time step
indicator), the output of the critic is the value function, i.e., one scalar
value that indicates the expected reward of the system. The critic
network provides the value function used by the advantage function
𝐴𝜋 (𝐛𝑡, 𝐚𝑡|θ𝑉 ), acting, therefore, as a critic who is determining how
ood the action taken by the actor network is. The training of the
ritic network also follows a temporal difference approach, collecting
xperiences from the replay buffer, and adjusting the critic parameters
𝑽 according to the gradient:

θ𝑉 = 𝐄 𝐚𝑡∼µ

[

𝑤𝑡∇θ𝑉 𝑉
𝜋 (𝐛𝑡|θ𝑉 )𝐴𝜋 (𝐛𝑡, 𝐚𝑡|θ𝑉 )

]

(18)

All the algorithmic steps are described in Algorithm 3. With our pro-
osed method, we are able to find optimal I&M policies for structural
ystems featuring very high dimensional state, action and observation
paces. Moreover, the obtained DDMAC policies intrinsically account
or system-effects (Section 3) as the actor network is adjusted according
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to the rewards collected by simulating the deteriorating environment at
the system level. Specifically, the integration of DDMAC with a dete-
rioration environment simulated with a factored POMDP (Section 2)
nables the identification of optimal I&M policies that concurrently
onsider the following system effects:

(i) Deterioration dependence among components (statistical depen-
dence): A Gaussian hierarchical model efficiently captures the
deterioration dependence, e.g., initial crack size, or loading.
The belief of each component is conditional on the common
hyperparameter(s) 𝐛(𝑠𝑑 |α). Under statistical deterioration de-
pendence, information collected by inspecting one component
informs belief updates for other components as per the observed
deterioration. The influence of this system-effect on the policy
is explored via numerical experiments in Section 5, for a 9-out-
of-10 system and for a steel frame structural system subject to
fatigue deterioration.

(ii) System structural reliability (structural dependence): Failure risk
is computed at the system level, by multiplying annual risk with
a negative reward 𝑟𝐹 that is defined as a function of the compo-
nents structural health, as shown in Eq. (13). The actors, even
though acting individually, are all conditioned on all component
beliefs, thus knowing the system reliability. DDMAC is able to
intrinsically adjust the policy according to the relative impor-
tance of each component to the system structural reliability, as
demonstrated with the numerical experiments conducted for the
steel frame structural system (Section 5).

(iii) Inspection and maintenance cost model (cost dependence): A
campaign cost 𝑟𝑐𝑎𝑚𝑝 is included, in the applications as a base
cost, if at least one component is inspected or repaired, on top
of the inspection or repair cost for each inspected or repaired
component, as shown in Eq. (14). Since DDMAC collects rewards
at the system level, the campaign cost model affects the resulting
I&M policies, concentrating inspection and repair actions at
particular time steps, as observed in the numerical experiments
conducted for the 9-out-of-10 system (Section 5).

5. Numerical experiments

DDMAC inspection and maintenance policies are tested for a 9-
out-of-10 system under fatigue deterioration, exploring the different
statistical, structural, and cost dependencies. A second set of numeri-
cal experiments is conducted to investigate the efficiency of DDMAC
policies for a 2D steel frame, also known as Zayas frame, used as a
benchmark structural system for offshore engineering collapse analy-
ses [51]. The numerical experiments are conducted on an Intel Core
i9-7900X processor with a clock speed of 3.30 GHz.

Fatigue deterioration model

The components explored throughout the numerical investigations
are assumed to be exposed to a similar fatigue deterioration, described
according to the Markovian model, originally proposed in [52]:

𝑑𝑡+1 =
[

(

1 − 𝑚
2

)

𝐶𝐹𝑀𝑆𝑚
𝑅𝜋

𝑚∕2𝑛 + 𝑑1−𝑚∕2𝑡

]2∕(2−𝑚)
(19)

here the crack depth, 𝑑, evolution over time, 𝑡, follows a linear-elastic
racture mechanics law with material parameters 𝐶𝐹𝑀 and 𝑚, stress
ange 𝑆𝑅, and 𝑛 annual stress cycles. At the component level, failure
ccurs if the crack depth, 𝑑, exceeds a critical size, 𝑑𝑐 , that corresponds
o the plate thickness. In a stochastic environment, the initial crack
epth, 𝑑0, along with fracture mechanics model parameters are either
epresented by random variables or deterministic parameters as listed
n Table 1. The failure probability 𝑝𝐹𝑡 , defined as 𝑝𝐹𝑡 = 𝑃𝑟[𝑔𝑡 ≤ 0],
an be computed following, for instance, a through-thickness failure
riterion [10] by formulating the failure limit state at time step 𝑡 as:
7

𝑡 = 𝑑𝑐 − 𝑑𝑡 (20)
Table 1
Random variables and deterministic parameters utilized to model the fatigue
deterioration of the components in the numerical experiments.
Variable Distribution Mean SD

𝑙𝑛(𝐶𝐹𝑀 ) Normal −35.2 0.5
𝑆𝑅 (N∕mm2) Normal 70 10
𝑑0 (mm) Exponential 1 1
𝑚 Deterministic 3.5 –
𝑛 (cycles) Deterministic 106 –
𝑡𝑁 (yr) Deterministic 30 –
𝑑𝑐 (mm) Deterministic 20 –

Table 2
Description of the discretization scheme implemented for the factored
deterioration rate POMDP.
Variable Interval boundaries

Deterioration rate model

𝑑 0, exp
{

ln(10−4) ∶
ln(𝑑𝑐 ) − ln(10−4)

28
∶ ln(𝑑𝑐 )

}

,∞

𝜏 0 ∶ 1 ∶ 30

The fatigue deterioration is encoded in a deterioration rate DBN
model, ultimately shaping a factored POMDP, as shown on the left side
of Fig. 2, and presented in Section 2. The continuous crack depth, 𝑑,
is adequately discretized into |𝑑 | = 30 states conditional on |𝜏 | =
31 fully observable deterioration rates states. The intervals and state
space utilized for this deterioration rate model are listed in Table 2. In
terms of observation model, the inspection quality is quantified with a
Probability of Detection curve 𝑃𝑜𝐷(𝑑) ∼ 𝐸𝑥𝑝[𝜇 = 8]. Further details on
the fatigue deterioration or observation model, including an extensive
investigation of the discretization scheme can be found in [9].

5.1. I&M planning for a 9-out-of-10 system

The system explored in this application is composed of ten com-
ponents, each of which is subjected to a non-stationary fatigue dete-
rioration, as described earlier in this Section. The system is assumed
to be functional if at least 9-out-of-10 components are operational
(not failed), thus characterized with a single step change in terms of
redundancy with respect to a series system, which would correspond to
the case of a 10-out-of-10 system. The system failure probability 𝑝𝐹𝑠𝑦𝑠
is efficiently computed here, as a function of the failure state of all
components, by following the recursive method proposed in [53].

Description of the I&M decision problem

A total of eight I&M planning scenarios are investigated, exploring
different deterioration, risk, and cost dependencies among components.
In terms of deterioration dependence, some environments are specified
with an equally correlated initial crack size, 𝑑0, among components,
defined by an equal correlation 𝜌𝑒𝑞 = 0, 𝜌𝑒𝑞 = 0.4 and 𝜌𝑒𝑞 = 0.8, re-
spectively. Additionally, a deterioration environment is examined with
an unequally correlated 𝜌𝑢𝑞 initial crack size, 𝑑0, among components.
The unequal deterioration dependence case is originally specified with
a different correlation among components of either 𝜌 = 0.4, 𝜌 = 0.6, or
𝜌 = 0.8, as shown on the left side of Fig. 3. After a Gaussian hierarchical
structure with two hyperparameters is optimized, by computing the 𝝀
parameters with the objective of satisfying Eq. (6), an approximated
correlation structure is obtained with relatively small errors, as shown
on the right side of Fig. 3. The approximated correlation structure with
two hyperparameters is deemed to be sufficiently accurate for the con-
ducted experiments. Otherwise, a more accurate correlation structure
can be achieved by adding more hyperparameters, at the expense of
additional computational cost, as explained in Section 3. For each of the
aforementioned environments, specified with different deterioration
dependencies, two I&M cost models are further investigated, i.e., an
I&M cost model that incurs inspection and repair costs individually;
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Fig. 3. Representation of the initial crack size dependence among the components of the unequally correlated 9-out-of-10 system. The original deterioration correlation is represented
by the colored matrix on the left. The approximated correlation structure, resulting from the derived Gaussian hierarchical model with two hyperparameters, is displayed on the
right colored matrix.
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and an I&M cost model in which an initial campaign cost exists, if at
least one component is inspected or repaired, plus a cost surplus per
inspected or repaired component.

Since each component, herein denoted as fatigue hotspot, con-
tains 930 states, defined by the joint space of 30 crack states 𝑑 and
1 deterioration rate states 𝜏 , these are a total of 9,300 states in
he experiments that do not consider deterioration correlation (𝜌𝑒𝑞 =
0). For experiments under equal correlation (𝜌𝑒𝑞) the total states be-
come 744,080, rising up to 5.95 ⋅ 107 for deterioration environments
under unequal correlation (𝜌𝑢𝑞). The increase of the state space cor-
responds to the incorporation of the Gaussian hierarchical model, in
which crack and deterioration rate states are formulated conditional
on the hyperparameter(s) states. When the deterioration correlation
is modeled equally for all components, only one hyperparameter is
sufficient to satisfy Eq. (6), while two hyperparameters are added for
he case of unequal correlation, as explained earlier. Each hyperpa-
ameter is discretized into 80 states, initially prescribed with equal
robability for each state. Note here the importance of optimizing
he number of hyperparameters included in the model, as the state
pace grows exponentially with the number of considered random
ariables. By formulating the POMDPs’ transition model as dynamic
ayesian networks, the dimensionality is reduced from |𝑑 |

2
|𝜏 |

2, in
flat structure, to |𝑑 |

2
|𝜏 | + |𝜏 |

2 for the uncorrelated scenario. In
hat case, the transition model of only one component is reduced
rom 864,900 to 28,861 elements. Moreover, the formulation of the
nvironment through a hierarchical deterioration dependence model
mportantly enables the decoupling of the joint state space at the system
evel, which would grow exponentially for a flat POMDP structure,
ut instead grows linearly now. For instance, in the setting under
nequal deterioration dependence, the joint space would be described
y {|𝑑 ||𝜏 |}𝑁𝐶 , equaling 93010 states, while it is now instead defined
y {|𝑑 ||𝜏 |𝑁𝐶 |𝛼||𝛽 |+|𝛼|+|𝛽 |}, thus resulting in 930⋅10⋅802+80⋅2 ≃
.95 ⋅107 states in the hierarchical model, with two hyperparameters (𝛼
nd 𝛽) discretized into 80 states.
In terms of the neural networks’ architecture, DDMAC is laid out in

his application with two hidden fully-connected layers of 100 neurons
or each actor network, and two hidden fully-connected layers with 200
8

eurons for the critic network. The learning rate is adjusted during the o
raining of the networks from 10−4 to 10−5 for the actor, and from
0−3 to 10−4 for the critic. The exploration is set up initially with a
00% random noise, decreasing linearly over the first 20,000 episodes
o a random noise of 1%, held constant for the remaining episodes.
more stable and efficient training was found when a prioritization
f do-nothing actions is implemented at the beginning of the training,
ecause this allows visitation of more states at various horizon time
teps, thus better exploration. The computational time usually sufficient
or convergence ranged from 30 to 46 hours, with the setting under
nequal deterioration correlation demanding a longer computation due
o its higher-dimensional state space. Please note that the reported com-
utational time is influenced by the specific computational resources
sed and the code efficiency.
Following typical fatigue I&M planning settings, inspection and

epair decisions are combined into three available actions per compo-
ent: do-nothing/no-inspection, do-nothing/inspection, and perfect repair/
o-inspection. The action perfect-repair/inspection is considered a priori
uboptimal, without loss of generality, as it would be unusual to plan an
nspection just after a component returns to its initial state. Inspections
rovide binary indications, i.e., detection or no-detection of a crack
ccording to the observation model. In terms of costs, two different
cenarios are considered. In the first case, inspection and repair costs
re incurred independently per component, i.e., 𝑟𝑖𝑛𝑠 = −1 and 𝑟𝑟𝑒𝑝 =
20, respectively. In the second case, a campaign cost of 𝑟𝑐𝑎𝑚𝑝 = −5
s incurred if at least one component is inspected or repaired, plus a
urplus per inspected or repair component of 𝑟𝑖𝑛𝑠 = −0.2 and 𝑟𝑟𝑒𝑝 =
20 money units, respectively. The consequence of a system structural
ailure is 𝑟𝐹 = −10, 000 money units for both cases, and the discount
actor 𝛾 is 0.95 in all the experiments.
In order to verify the optimality of the obtained DDMAC policies,

redefined heuristic decision rules, adopted from [22], are optimized
nd compared against the results provided by DDMAC strategies. The
nvestigated heuristic-based policies are dictated by (i) the interval
etween equidistant inspections 𝛥𝑖𝑛𝑠, (ii) how many components 𝑛𝑖𝑛𝑠 are
nspected at each campaign, in which the 𝑛𝑖𝑛𝑠 components with higher
ailure probability 𝑝𝐹 are prioritized, and (iii) a perfect repair action
s undertaken after a crack is detected. Initially, all the combinations

f heuristics, i.e., interval between inspections 𝛥𝑖𝑛𝑠 and number of
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Fig. 4. Expected cost results of all the numerical experiments conducted for the 9-out-of-10 system, divided into campaign 𝐄[𝑟𝑐𝑎𝑚𝑝], inspection 𝐄[𝑟𝑖𝑛𝑠], perfect-repair 𝐄[𝑟𝑟𝑒𝑝] and
failure 𝐄[𝑟𝐹 ] expected costs. On the left, DDMAC and heuristic policies, specified with an I&M cost model, are compared for different deterioration correlation environments.

Likewise, on the right, DDMAC and heuristic policies are compared for different levels of deterioration dependence, yet specified with a campaign I&M cost model.
components inspected per campaign 𝑛𝑖𝑛𝑠, are evaluated over 3,000
olicy realizations. Then, the 5 sets of heuristic rules that yielded the
inimum expected costs are evaluated again, this time over 10,000
olicy realizations, and at the end, the set of heuristics that minimized
he expected total costs are selected for comparison against DDMAC-
ased policies, also evaluated over 10,000 policy realizations. The
esulting set of optimized heuristics is listed in Appendix A (Table A.1).

esults and discussion

The life-cycle expected costs obtained by evaluating the investigated
olicies are displayed in Fig. 4, sorted in two main categories according
o the specified cost model, comparing DDMAC and optimized heuristic
olicies and investigating the effect of adding campaign I&M costs. For
ach category, four degrees of deterioration correlation are compared,
.e., no correlation (𝜌𝑒𝑞 = 0), equal correlation with (𝜌𝑒𝑞 = 0.4),
equal correlation with (𝜌𝑒𝑞 = 0.8) and unequal correlation (𝜌𝑢𝑞). In
all explored numerical examples, DDMAC outperforms the optimized
heuristics, yielding life-cycle cost reductions ranging from 9.7% to
21.9%. The difference is more predominant for the case in which
inspections and repairs are planned separately because the explored
heuristic decision rules plan inspections for a group of 𝑛𝐶 components,
being thus more tailored to the campaign I&M setting. A closer exam-
ination reveals that DDMAC policy provides lower inspection, repair,
and failure expected costs, with respect to heuristics-based policies,
for the uncorrelated deterioration experiment specified with the indi-
vidual I&M cost model. In this case, the savings on repairs are more
significant probably because the heuristic policy prescribes a repair
anytime a crack detection is observed, while DDMAC-based policy
usually requires more evidence than a single detection instance. With
9

regard to deterioration dependence, highly correlated environments
result generally in lower expected total cost, as observed in Fig. 4.

In order to facilitate the interpretation of the identified policies, a
snapshot corresponding to a specific policy realization is additionally
displayed in Fig. 5, illustrating the failure probability of the analyzed
systems along with each component failure probability. Evidently,
the resulting strategies importantly influence the results reported in
terms of system reliability, as they control components’ inspection and
maintenance actions. Information collected on one component, in en-
vironments under deterioration correlation, also provides information
to other components’ states in the system. One can clearly observe the
effect of inspection and repairs on the resulting component and system
failure probabilities as well as the oscillation of the hyperparameters
around an uncorrelated mean of 0 when inspections among components
are not consistent, i.e., some inspections indicate damage and some
others do not, whereas the opposite is observed when all inspections
are consistent, e.g., no damage indicators.

For instance, a crack detection observed on component 9 for the
case of equal correlation 𝜌𝑒𝑞 = 0.8, leads to an incremental increase on
the failure probability of other non-repaired components, as indicated
inside the green rectangles on the lower-left corner of Fig. 5. This effect
can be also visualized when observing the impact of a crack detection
on component 4, for the case under unequal deterioration dependence,
marked by green rectangles on the lower-right plot of Fig. 5. In this
case, components 3 and 5, highly correlated with component 4, as
indicated in Fig. 3, are clearly affected by the observed crack detection.

Moreover, highly correlated deteriorating environments induce
higher variability on the expected total costs, as shown by the black
error bars in Fig. 4. The variability can be attributed to the very differ-

ent resulting policy paths following inspections, depending on whether
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Fig. 5. 9-out-of-10 system policy realizations: (Upper-left) uncorrelated deterioration and individual cost model; (Upper-right) uncorrelated deterioration and campaign cost model;
(Lower-left) equally correlated environment (𝜌𝑒𝑞 = 0.8) and individual cost model; (Lower-right) unequally correlated deterioration and individual cost model. Failure probabilities
at the component level are depicted by blue lines, inspection indications are represented by upwards (detection) or downwards (no-detection) triangles and repairs are circled
in red. At the system level, the failure probability is represented by green diagrams and the evolution of the hyperparameters, under correlated deterioration, is described by
light-blue graphs, in which the expected value is bounded by +∕− one standard deviation. As mentioned in the text, specific policy and inference effects are marked with colored

rectangles.
the collected observations indicate cracks or not. If a crack is detected
on one component, the other components’ failure probabilities increase,
and repair actions or additional inspections will be planned thereafter.
Conversely, if a crack is not detected, the failure probability of all
the correlated components will decrease, inducing less repair actions
in the future. Interestingly, policies under dependent environments
do not always plan fewer inspections, as it could be expected due
10
to the additional information gained through the underlying correla-
tion among components, but instead highly correlated environments
might plan more inspections, often resulting in significant failure risk
reductions, as displayed for the case with 𝜌𝑒𝑞 = 0.8 in Fig. 4. The
effect of repair actions on the deterioration dependence structure can
also be clearly observed. Once an element is repaired, its damage
belief becomes independent from the global hyperparameter(s), and
thus inspection outcomes from other components do not influence the
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Fig. 6. Comparison of DDMAC policies specified with either individual (light blue)
r campaign (dark blue) I&M cost models. For each case, the number of inspected
omponents per time step is represented in a histogram based on 10,000 policy
ealizations.

epaired component, and vice versa. As illustrated with a red rectangle
t the lower-left corner of Fig. 5 (i.e., equal correlation 𝜌𝑒𝑞 = 0.8
etting), after component 4 is repaired, its failure probability is not
nfluenced now by inspection results retrieved from other components,
.g., a crack detection observed on component 9.
To further investigate the effect of including campaign utilities

ithin the cost model, a histogram over 10,000 policy realizations
s shown in Fig. 6 for a DDMAC policy in which inspections and
repairs are incurred separately (light blue) and another DDMAC policy
considering the expense of campaign actions (dark blue). The dete-
rioration environment for both DDMAC policies does not consider
deterioration correlation among components. The emphasis of Fig. 6
is on the number of components inspected on every occasion an in-
spection is planned. If inspections and repairs are paid individually
for each component, information on only one or two components
usually suffices, whereas inspection of more than five components per
time step is rare. In contrast, eight-component inspections become the
predominant inspection decision if an initial campaign cost is included
in the cost model. This system effect can be visualized, for example,
in the policy realizations shown at the top of Fig. 5, in which black
rectangle-marked components are inspected at the same year for the
DDMAC policy under campaign costs. The policy for the campaign cost
model, therefore, tends to group inspection and repair actions at the
same year, avoiding, if possible, unnecessary campaign costs associated
with one or two inspected components. In some cases, campaigns are
however planned for only one or two components, contrasting with the
static inspection decision rules imposed by heuristics, where a specific
number of inspections is fixed for all the inspection campaigns. Based
on the above, we observe that DDMAC is able to devise dynamic I&M
policies according to the specified cost model, whether under campaign
costs or individual inspection and repairs, and to provide an advanced,
flexible, and adaptive decision-making framework.

5.2. I&M planning for Zayas frame

In the first set of numerical experiments, conducted for a 9-out-of-
10 system, the focus was mainly directed to the investigation of the
deterioration dependence among identical components and the effects
of including a campaign cost within the cost model. In this second
application, we further explore how I&M DDMAC policies are able to
inherently capture the relative importance of each element with respect
to the system structural reliability. The structural system of study,
in this case, is the 2-dimensional Zayas frame, well studied in many
structural reliability analysis applications [51,54,55]. Zayas frame is
11

composed of two columns, which along with 13 braces, sustain a rigid
beam at the top. The geometry and material properties used in this
work are presented in Appendix B (Fig. B.1) and are the same as the
ones used in [55].

Description of the I&M decision problem

In this application, DDMAC policies are identified for two I&M
settings: (i) under equal deterioration dependence among components
with 𝜌𝑒𝑞 = 0.4, and (ii) assuming independence among components’ de-
terioration. The state space for the latter includes 30 crack states along
with 31 deterioration rate states, for each of the 22 hotspots (i.e., com-
ponents), resulting therefore in a total of 20,460 input variables; while
the input variables for the former climbs to approximately 1.6 ⋅ 106

states, including 80 states for the one discretized hyperparameter. The
benefits associated with the proposed decoupled hierarchical structure
are very significant, since the state space has a dimension of 93022 if
the joint states of all hotspots are explicitly considered.

Similarly to the experiments reported in Section 5.1, the deci-
sion maker is here able to select three actions per hotspot at each
time step: do-nothing/no-inspection, do-nothing/inspection, and perfect
repair/no-inspection. Again, inspections provide binary crack indications
(detected or no-detected), equally modeled for each component by the
observation model described in the beginning of this Section. As for
the cost model, inspections and repairs (planned individually for each
component) cost 𝑟𝑖𝑛𝑠 = −1 and 𝑟𝑟𝑒𝑝 = −15 money units, respectively,
while the system failure cost is defined as 𝑟𝐹 = −50,000 money units.
All costs are discounted to the present value by a 𝛾 = 0.95 factor.
DDMAC’s architecture is similar to the first application, featuring two
hidden fully-connected layers of 150 neurons for each actor, and two
hidden layers of 300 neurons for the critic network. Learning rate,
prioritization of actions and additional exploration settings are equally
defined as for the first application. In this case, the computational
time usually sufficient for convergence ranged from 85 to 96 h for the
uncorrelated and equally correlated settings, respectively, influenced
again by the used computational resources and the code efficiency.
The investigated heuristic-based policies rely here also on the same
set of decision rules introduced in the former numerical experiments,
accounting in this case, for inspections intervals 𝛥𝑖𝑛𝑠 and inspected
hotspots per campaign 𝑛𝐶 . Both DDMAC and heuristic policies are
evaluated over 30,000 episodes and the results, in terms of expected
total costs, are showcased in Fig. 7.

Fig. 7. Expected cost results for the numerical experiments conducted for the Zayas
frame, divided into inspection 𝐄[𝑟𝑖𝑛𝑠], perfect-repair 𝐄[𝑟𝑟𝑒𝑝] and failure 𝐄[𝑟𝐹 ] expected
costs. DDMAC and heuristics are compared under an uncorrelated deterioration
environment at the top, and under an equally correlated environment (𝜌𝑒𝑞 = 0.4) at
the bottom.
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Fig. 8. Zayas frame sample policy realization in an equal deterioration correlation environment (𝜌𝑒𝑞 = 0.4). The failure probability of each hotspot is depicted by a blue line,
inspection indications are represented by upwards (detection) or downwards (no-detection) triangles, and perfect repairs are circled in red. At the system level, the failure probability,
at the top-left corner, and system-effects, as these are explained in the main text, are represented by a green line and squares, respectively. The evolution of the hyperparameters
over time is plotted in a light blue diagram, at the top-right corner.
h
System failure probability

Offshore structures are exposed to fatigue and corrosion deteri-
oration due to the combined cyclic effect of waves and wind in a
harsh marine environment. Initial defects at geometric discontinuities
or at welded regions (hotspots) grow over time, becoming critical if
maintenance actions are not timely undertaken. In this study, and fol-
lowing the experiments conducted in [36,55], a total of 22 hotspots are
considered, located at the joints at the braces or columns. Each brace
is associated with either one or two hotspots, as illustrated in Fig. 8,
t critical locations for fatigue deterioration. The fatigue deterioration
s assumed similar for all hotspots, modeled by the same deterioration
rocess as for the 9-out-of-10 structural system (Section 5.1).
The failure of the system is defined here as the incapacity of the

rame to withstand the concentrated horizontal load applied at the
pper-left corner. At the component level, the health of each hotspot
s described by the vector 𝐅𝐡, in which 𝐹ℎ is a binary variable with

= 0 indicating a hotspot failure and 𝐹 = 1 corresponding to a
12

ℎ ℎ
otspot survival. The failure probability of a hotspot 𝑝(ℎ)𝐹 corresponds
thus to the probability of being in state 𝐹ℎ = 0. At an element level, the
state of each brace is represented by a vector 𝐱𝑒𝑙, considering 𝑥𝑒𝑙 = 0
if the element has failed and 𝑥𝑒𝑙 = 1 otherwise. Assuming that a brace
fails if any of its associated hotspots fail, the failure probability of an
element 𝑝(𝑒𝑙)𝐹 , i.e., 𝑃𝑟[𝑥𝑒𝑙 = 0], can be therefore computed as a series
system:

𝑝(𝑒𝑙)𝐹 = 1 −
∏

ℎ∈𝑁ℎ

[

1 − 𝑝(ℎ)𝐹

]

(21)

At the system scale, the health of the frame depends on the state of
all its constitutive elements, i.e., 13 braces, and the failure probability
of the system 𝑝𝐹𝑠𝑦𝑠 is computed herein as a function of all the element
state combinations. A total of 8,192 (= 213) non-linear static push-over
simulations have been run with the assistance of the computer code
‘USFOS’ (available within the software package Sesam) [56], before
the training of DDMAC, so that the failure probability of the system
conditional on all element state combinations is explicitly and directly
defined. The element configuration for each push-over simulation is
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arranged according to the element state vector 𝐱𝑒𝑙, removing the braces
associated with a failed state 𝑥𝑒𝑙 = 0. The resistance 𝐿𝑐𝑜𝑙(𝐱𝑒𝑙) of
each element state combination cases is retrieved from the conducted
push-over simulations.

The collapse event of the frame is defined as the probability of
the external horizontal load exceeding the structural system resistance
𝑃𝑟[𝐿 > 𝐿𝑐𝑜𝑙]. In this case, the horizontal load is modeled as a lognormal
random variable with mean 𝜇𝐿 = 70 kN and 25% coefficient of
variation, while no uncertainty is associated with the resistance, a
reasonable assumption when the external load is highly uncertain in
comparison with the resistance [55]. The failure probability of the
system, 𝑝𝐹𝑠𝑦𝑠, conditional on the element state vector 𝐱𝑒𝑙 can be then
defined directly from the probability density function of the load, 𝑓𝐿,:

𝑝(𝐱𝑒𝑙 )𝐹𝑠𝑦𝑠 = ∫

∞

𝐿𝑐𝑜𝑙

𝑓𝐿(𝑥)𝑑𝑥 (22)

In the undamaged case, i.e., no elements are removed from the orig-
inal configuration, the collapse load is 247 kN, resulting in a failure
13
probability of approximately 10−4. The state of the frame is, however,
computed conditional on the state of all the elements, and to do so the
probability of being in each state combination should be computed.
We follow the iterative procedure proposed in [41] to compute the
probability of being in each element state 𝐪 ≐ 𝑝(𝐱𝑒𝑙) as a function of
the element failure probability 𝑝(𝑒𝑙)𝐹 and the element survival probability
𝑝̄(𝑒𝑙)𝐹 :

𝐪[𝟏] =
[

𝑝(1)𝐹 𝑝̄(1)𝐹

]𝑇

𝐪[𝐢] =
[

𝐪[𝐢−𝟏] ⋅ 𝑝
(𝑖)
𝐹

𝐪[𝐢 − 𝟏] ⋅ 𝑝̄(𝑖)𝐹

] (23)

Finally, the system failure probability 𝑝𝐹𝑠𝑦𝑠 is equal to the system
failure probability conditional on the element state 𝑝(𝐱𝑒𝑙 )𝐹𝑠𝑦𝑠 multiplied by
the probability of being in that state 𝑞(𝐱𝑒𝑙 ):

𝑝𝐹𝑠𝑦𝑠 =
∑

[

𝑝(𝐱𝑒𝑙 )𝐹𝑠𝑦𝑠 ⋅ 𝑞
(𝐱𝑒𝑙 )

]

(24)

𝐱𝑒𝑙∈𝑒𝑙
Fig. 9. Histograms of DDMAC and heuristics-based policy actions of 30,000 realizations of this Zayas frame setting for a 30-year policy period. The Single Element Importance
metric (SEI) associated with each fatigue hotspot is indicated at the top of each histogram and summarized at the green top-right diagram. The relative importance of each hotspot
is also represented by color, with a darker red being a more critical element for the structural reliability of the system.
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Results and discussion

The comparison between DDMAC and optimized heuristics fol-
lows the same trend as that of the 9-out-10 structural system exper-
iments. In terms of expected life-cycle costs, DDMAC policies outper-
form heuristic-based policies in the two tested settings, as shown in
Fig. 7, with cost savings ranging from 20.1% to 22.8%. A slight decrease
in the expected life-cycle costs can also be observed for the case under
deterioration correlation, as a result of the reduction of failure risk.
This is expected, since under deterioration dependence, i.e., the initial
crack size among the hotspots is correlated, an observation collected
at one hotspot also provides information to other hotspots, accordingly
updating their damage state belief.

As seen in Fig. 8, where the evolution of components’ and system
failure probabilities are illustrated over time, beliefs are updated for
both detection and no detection observation outcomes. At year 12, a
crack is detected at the lower X-brace, and this observation shows up
as a failure probability update for the other components, marked with a
green rectangle in the plots, an effect that can also be observed clearly
in the updated mean of the hyperparameter, 𝛼. The effect of deteriora-
tion dependencies among components on the resulting system failure
probability can also be visualized in Fig. 8, e.g., a crack detection at
hotspot 6 ultimately induces a kink in the system failure probability
around year 20. Essentially, DDMAC is able to discover the importance
of each hotspot regarding the structural reliability of the frame. To
explore this system effect, the Single Element Importance (SEI) measure
is calculated for each hotspot. The concept of SEI, as defined in [57],
determines the importance of each element to the system structural
reliability by subtracting the undamaged system failure probability
𝑝𝐹𝑠𝑦𝑠 from the system failure probability with the element removed
(∼ 𝑒𝑙). In this case, and since each element is defined as a series
system of hotspots, the SEI can be directly computed for each hotspot
ℎ, determining each hotspot importance as:

𝑆𝐸𝐼ℎ = 𝑝(∼ℎ)𝐹𝑠𝑦𝑠
− 𝑝𝐹𝑠𝑦𝑠 (25)

The SEI of a vital element for the structural system is thus higher
than the SEI of a less important component. The structural element im-
portance (SEI) of each hotspot is shown in Fig. 9, along with histograms
of the actions taken at each component during 30,000 DDMAC (dark
blue) and optimized-heuristic (light blue) realizations. As represented
by the dark green bar diagram at the top-right corner of Fig. 9, and in
agreement with the findings reported in [55], the critical hotspots are
located at the X-braces, whereas the less critical hotspots are the ones
connecting the horizontal braces.

While the do-nothing action is dominant and inspection actions are
distributed similarly among components, the distribution of repair ac-
tions among hotspots differs for DDMAC and heuristics-based decision
rules. DDMAC plans repairs mainly for important elements with respect
to the global structural reliability, i.e., with a high SEI, such as hotspots
6 and 7, whereas less important components for the system structural
reliability are less frequently repaired. In contrast, the heuristic-based
policy plans component repairs nearly evenly, disregarding the influ-
ence of each hotspot to the reliability of the system. We can therefore
conclude that DDMAC policies are able to inherently identify the system
effects attributed to the structural and reliability importance of each
element for the entire system.

6. Concluding remarks

This paper introduces an efficient algorithmic framework for infer-
ence and optimal decision-making under uncertainty for engineering
systems exposed to deteriorating environments. In terms of inference, a
Gaussian hierarchical structure is presented, within a dynamic Bayesian
network model, and further formalized here with the objective of
enabling the treatment of engineering systems under general, unequal
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deterioration correlation settings, considering also the effect of main-
tenance actions. The proposed efficient inference framework is then
seamlessly integrated with principled optimization methods by formu-
lating the decision-making problem as a factored Partially Observable
Markov Decision Process (POMDP), with its dynamics encoded by
Bayesian network conditional structures. The system life-cycle realiza-
tions collected by simulating the specified POMDP are employed by
a multi-agent actor-critic deep reinforcement learning algorithm, able
to identify optimal strategies in very high dimensional state, action,
and observation spaces, commonly found in practical structural and
engineering systems. In particular, we demonstrate through numerical
experiments that the proposed approach provides efficient inspection
and maintenance (I&M) policies, outperforming state-of-the-art poli-
cies, and enables a systematic consideration of system effects, that is
autonomously and intrinsically reflected in the identified strategies.

POMDP-based policies, parameterized in high-dimensional settings
through the Deep Decentralized Multi-agent Actor Critic (DDMAC)
algorithm, map the current belief state of the system to a probability
distribution of possible actions. These stochastic policies are thus pre-
scribed as a function of the belief state, which is a sufficient statistic of
the history of actions and observations. Constructing the policies based
on a sufficient statistic enables more effective optimal decision-making
strategies than static optimization approaches, which are constrained
by the limited space explored during the policy search. POMDP-based
policies also provide additional flexibility to the decision maker, who
can opt for an alternative decision at some point, for any reason,
and the policy through the updated belief state will be automatically
adapted thereafter, yielding near-optimal results.

DDMAC policies are approximated by actor neural networks, whose
weights are learned according to noisy rewards collected at the system
level. By including deterioration dependence among components in
the simulated environment, and by formulating the cost model at the
system level, DDMAC policies are able to intrinsically consider the
following system effects:

• In deterioration dependent environments, observing the state of
one component provides indirect information to the other com-
ponents of the system, modulated by their degree of correlation.
In the tested I&M planning scenarios, environments with higher
correlation resulted in a reduction of expected costs, usually
characterized by lower expected failure risk. As structural systems
are designed according to high reliability standards, demanding
a low failure risk, observations mostly indicate sound structural
states, which in highly correlated environments results in a global
reduction of failure risk. As opposed to independent deterioration
settings, higher variability in the expected costs is observed in
dependent environments, in which very different I&M policy
scenarios can be experienced based on the acquired observations.

• A clustering effect on inspections and repairs is observed in
settings that include a campaign cost model, i.e., a fixed cost is
activated if at least one component is repaired or inspected. In this
case, policies seek to avoid planning single or few inspections and
repairs at one time step. Instead, inspection and maintenance ac-
tions are generally grouped, saving the additional campaign cost
associated with inspecting and repairing only few components
within one campaign.

• Maintenance actions are influenced by the relative importance of
the components to the system structural reliability. As observed
in the steel frame application, repairs were mostly allocated
to critical elements, whereas components less important to the
global reliability were less often repaired.

In this work, the proposed factored POMDP approach importantly
enables closed-form Bayesian inference on the discrete state space,
developed by properly discretizing the involved continuous random
variables, to ensure accurate computation of system reliability met-
rics. Yet, the dimensionality of this resulting discrete space might
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significantly increase computational efforts in certain settings and ap-
plications. To allow for additional state/action space dimensionality
reductions in such cases, further future research on the development
of continuous state POMDPs is encouraged.
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Appendix A. Optimized heuristic decision rules

Table A.1 lists the optimized heuristic decision rules used in all
presented numerical experiments.

Table A.1
List of optimized heuristic decision rules employed in the numerical experiments. For
each considered setting, the resulting heuristic decision rules dictate inspections for 𝑛𝐶
omponents at equidistant intervals of 𝛥𝑖𝑛𝑠 years. 𝜌 indicates equal (𝑒𝑞) or unequal (𝑢𝑞)
eterioration correlation among components.
Setting Deterioration correlation Cost model 𝛥𝑖𝑛𝑠 𝑛𝐶
9-out-of-10 system 𝜌𝑒𝑞 = 0 Individual 6 10
9-out-of-10 system 𝜌𝑒𝑞 = 0.4 Individual 6 10
9-out-of-10 system 𝜌𝑒𝑞 = 0.8 Individual 6 8
9-out-of-10 system 𝜌𝑢𝑞 Individual 5 7
9-out-of-10 system 𝜌𝑒𝑞 = 0 Campaign 5 10
9-out-of-10 system 𝜌𝑒𝑞 = 0.4 Campaign 6 10
9-out-of-10 system 𝜌𝑒𝑞 = 0.8 Campaign 5 7
9-out-of-10 system 𝜌𝑢𝑞 Campaign 8 10
Zayas frame 𝜌𝑒𝑞 = 0 Individual 10 16
Zayas frame 𝜌𝑒𝑞 = 0.4 Individual 10 16

Appendix B. Zayas frame geometry and material properties

Fig. B.1 displays characteristics of the Zayas frame used in this
paper.
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Fig. B.1. Zayas frame representation [51,55]. Elements are denoted with lower-case
letters and fatigue hotspots are designated with numbers. The outer diameters, OD,
wall thicknesses, WT, and mechanical properties corresponding to each element of the
frame are specified in the diagram. An external horizontal load, 𝐿, is applied at the
upper-left corner of the frame.
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