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ABSTRACT
The prevalence of voice spoofing attacks in today’s digital world has
become a critical security concern. Attackers employ various tech-
niques, such as voice conversion (VC) and text-to-speech (TTS), to
generate synthetic speech that imitates the victim’s voice and gain
access to sensitive information. The recent advances in synthetic
speech generation pose a significant threat to modern security
systems, while traditional voice authentication methods are inca-
pable of detecting them effectively. To address this issue, a novel
solution for logical access (LA)-based synthetic speech detection
is proposed in this paper. SpoTNet is an attention-based spoofing
transformer network that includes crafted front-end spoofing fea-
tures and deep attentive features retrieved using the developed
logical spoofing transformer encoder (LSTE). The derived attentive
features were then processed by the proposed multi-layer spoofing
classifier to classify speech samples as bona fide or synthetic. In
synthetic speeches produced by the TTS algorithm, the spectral
characteristics of the synthetic speech are altered to match the
target speaker’s formant frequencies, while in VC attacks, the tem-
poral alignment of the speech segments is manipulated to preserve
the target speaker’s prosodic features. By highlighting these obser-
vations, this paper targets the prosodic and phonetic-based crafted
features, i.e., the Mel-spectrogram, spectral contrast, and spectral
envelope, presenting an effective preprocessing pipeline proven
to be effective in synthetic speech detection. The proposed solu-
tion achieved state-of-the-art performance against eight recent fea-
ture fusion methods with lower EER of 0.95% on the ASVspoof-LA
dataset, demonstrating its potential to advance the field of speaker
identification and improve speaker recognition systems.
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1 INTRODUCTION
The advent of automation in voice technology has offered many
advantages, but it has also raised serious security risks. The pro-
liferation of voice spoofing attacks is one of the most significant
challenges in voice-enabled devices such as Google Assistant, Siri,
and Alexa. These attacks use various techniques to imitate the voice
of legitimate speakers and gain unauthorized access to sensitive
information. Voice spoofing attacks are divided into two categories:
Physical Access (PA) and Logical Access (LA). Replay attacks, which
use pre-recorded voice samples to generate synthetic speech, fall
under PA, while LA uses text-to-speech (TTS) and voice conversion
(VC) techniques to produce synthesized speech. Recent develop-
ments in TTS and VC techniques have enabled the generation of
synthetic speech that is becoming increasingly indistinguishable
from natural human speech. This, however, has led to an increase in
LA attacks, which pose a significant threat to automatic speaker ver-
ification systems (ASVs). One of the most challenging issues facing
ASVs is the inability to differentiate between genuine and synthetic
speech samples. Recent research has highlighted the need for more
advanced methods to detect voice spoofing attacks, particularly
those that use TTS and VC techniques.

Detecting voice spoofing attacks relies on identifying irregulari-
ties in audio transmission caused by these attacks. These irregular-
ities include artifacts such as ambient noise, compression artifacts,
and microphone or speaker distortion for PA attacks, and phase
mismatches, prosodic inconsistencies, and spectral disparities for
LA attacks. Text-to-speech, voice conversion, and replay attacks can
affect the spectral and temporal characteristics of speech signals,
particularly in certain frequency or spectral regions [Bhangale et al.
2018; Huang et al. 2023]. For example, LA attacks induce spectral
mismatches in higher frequency ranges, while PA attacks induce
distortions across lower and higher time frames. To accurately de-
tect these attacks, a comprehensive analysis of both spectral and
temporal characteristics is necessary.
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Several approaches have been proposed to detect logical access
attacks, including traditional feature-based methods, deep learning-
based methods, and hybrid approaches. Recent studies have con-
centrated on developing deep learning-based solutions for audio
spoofing detection that are more efficient and robust deep learning-
based solutions for audio spoofing detection [Liu et al. 2022; Parmar
et al. 2018] [Kulkarni and Khaparde 2017; Wolf et al. 2020]. While
we claims that integrating effective handcrafted detection features
and deep attentive features altogether might increase the accuracy
and endurance of voice spoofing detection systems. In consequence,
we propose SpoTNet, a spoofing-aware transformer network for
effective synthetic speech detection in this paper. SpoTNet includes
a novel logical spoofing transformer encoder (LSTE) that extracts
attentive features from speech signals to differentiate between bona
fide and synthetic speech samples. The proposed LSTE integrates
traditional and deep learning-based methods to extract acoustic
features that accurately capture the characteristics of bona fide
and synthetic speech samples. The presented SpoTNet approach
provides a responsive system for voice synthesis spoofing detec-
tion and increases the security of automatic speaker verification
systems. Our approach can potentially serve as a template for fur-
ther research in detecting voice spoofing attacks, particularly those
using TTS and VC techniques. The main contribution of the paper
are as follows:

• We present an effective acoustic feature set that effectively
captures the traits of bona fide and synthetic speech samples
by highlighting spectral and attentive artifacts in the audio
signal.
• We present a novel spoofing transformer network (SpotNet)
for detecting text-to-speech (TTS) and voice-conversion (VC)
spoofing attacks using a proposed logical spoofing trans-
former encoder (LSTE).
• We provide rigorous experimentation on ASVspoof 2019
corpus to evaluate the significance of our proposed SpotNet
spoofing detector over existing state-of-the-art feature fusion
based recent techniques.
• The experimental results on ASVspoof2019 LA demonstrate
that the proposed SpotNet approach outperforms existing
state-of-the-art methodologies and provides a system re-
sponsive to voice synthesis spoofing detection, as well as the
ability to increase the security of automatic speaker verifica-
tion systems.

The remaining sections of the paper are structured as follows:
In Section 2, the literature review is presented, in Section 3 the
paper describes the proposed method, including the acoustic feature
set, Logical Spoofing Transformer Encoder (LSTE) and spoofing
multi layer classifier. Section 3 presents experimental results and
comparisons with existing state-of-the-art techniques using the
ASVspoof 2019 corpus. Finally, in Section 4, the paper concludes
with a summary of the findings and contributions of the proposed
method.

2 LITERATURE REVIEW
Several countermeasures have been proposed to counter voice
spoofing attacks, and the traditional countermeasures are often

comprised of two parts: the first one (front-end) is a feature rep-
resentation scheme for the input speech signal, and the second
one (back-end) is a classifier to distinguish between bonafide and
spoofed samples. The feature descriptor (front-end) should be capa-
ble of effectively capturing the traits of the dynamic vocal tracts of
a bonafide speaker. Similarly, the back-end classifier should be able
to better learn the distinct traits of bonafide and spoofed speech
samples in order to accurately discriminate against spoofed speech.
Consequently, voice spoofing detection techniques in early ages
have relied on hand-crafted features to identify pitch, duration, and
cepstral characteristics of the speech signal [Borrelli et al. 2021;
Hemavathi and Kumaraswamy 2021; Phapatanaburi et al. 2019;
Xiao et al. 2015]. However, these techniques are often limited in
their ability to detect crucial and subtle features of spoofing attacks.
In addition, handcrafted feature-based approaches are dependent
on relevant expertise and are usually unable to identify subtle char-
acteristics of the speech signal that indicate voice spoofing attacks.
Moreover, these techniques may potentially be subject to attacks
that target the hand-crafted detecting properties in particular.

In the literature, machine learning solutions have been proposed
as a promising approach for detecting voice spoofing attacks. Specif-
ically, there has been significant interest in developing algorithms
to detect logical attacks, which exploit the semantic and contex-
tual information of a conversation to deceive the system. In this
context, various machine learning techniques have been explored,
including SVM, support vector machines, and random forests. Ma-
chine learning-based approaches, such as SVM and random forests
[Bhangale et al. 2018; Javed et al. 2021; Rahmeni et al. 2020, 2022],
have shown promise in detecting voice spoofing attempts by train-
ing on large datasets to understand patterns and features of real
and imposter voice samples. However, the use of computationally
advanced spectrograms can be resource-intensive and computa-
tionally expensive, making scaling to larger datasets difficult and
increasing the risk of over fitting.

Deep learning-based approaches outperformed traditional ma-
chine learning techniques [Chen et al. 2017; Parasu et al. 2020; Tak
et al. 2021; Teng et al. 2022; Zhang et al. 2021], but they may re-
quire much more training data and computational resources. These
techniques may also be prone to overfitting and be incapable of suc-
cessfully generalizing to new and unknown attacks. Deep learning-
based approaches for detecting speech spoofing, such as ResNet
[Chen et al. 2017], Res2Net [Tak et al. 2021], ASSIST [Jung et al.
2022], and ASSERT [Lai et al. 2019], also have vulnerabilities. One
of the major limitations of these models is their high computational
complexity, which can make training and inference prohibitively ex-
pensive. This may limit its use in real-world applications requiring
quick detection, such as bio-metric authentication systems. More-
over, these models require massive amounts of labeled training
data, which might be difficult to get for newer and less common
spoofing attacks.

2.0.1 Problem statement and motivation of the proposed solution.
Voice spoofing detection is critical in areas such as banking and
law enforcement, where malicious actors use techniques to deceive
automatic speaker identification systems. Current solutions for de-
tecting voice spoofing rely on either handcrafted or deep learning
features. However, combining advanced deep learning architectures
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Figure 1: The overall architecture of SpotNet Framework.

such as transformer encoders and decoders with handcrafted fea-
tures has not been explored well. To address this gap, we propose
SpotNet, which uses attention-based attentive spectral and tempo-
ral features along with effective handcrafted features for training
and classification. We introduce the Logical Spoofing Transformer
Encoder (LSTE) to obtain attentive feature maps, and a multi-layer
spoofing network to classify them as bona fide or spoofed speech
samples. This approach has potential to improve the security of
speaker identification systems in sensitive areas such as banking
and law enforcement.

3 PROPOSEDWORK
This section describes the procedure for developing the voice spoof-
ing detection solution, SpotNet. The proposed framework consists
of two folds: In the first fold, data cleansing and essential signal
processing to extract reliable spoofing features (FSF) from the raw
audio signal, and in the second fold, utilizing the obtained FSF maps
as input for the Logical Spoofing Transformer Encoder (LSTE) block,
which extracts attentive spectral and temporal characteristics of
speech samples using token embedding and transformer encoder.
These attentive features are then used for training and classifica-
tion in the multi-layer spoofing classifier. The architecture of our
proposed framework is presented in Fig. 1, and the preprocessing

and data cleansing steps are described in section 4.2. The developed
multi layer spoofing classifier network with 5 dense layers, followed
by batch normalization and dropout, is trained using the extracted
attentive features from LSTE to identify authentic and counterfeit
audio, potentially improving the security of speaker verification
systems.

The Mel-spectrogram, spectral contrast, and spectral envelope
are included in the front-end spoofing features (FSF) set to effec-
tively detect voice conversion (VC) and text-to-speech (TTS) logical
attacks that manipulate speech signal characteristics. These attacks
modify the frequency and spectral properties of speech signals,
making it difficult to distinguish between authentic and fake audio.
However, the FSF approach captures and analyzes multiple spectral
and temporal features, making it highly effective in detecting such
attacks. Therefore, the inclusion of these features in the FSF is cru-
cial for achieving accurate and reliable speech spoofing detection.
The equation below presents the extraction of these FSF features.

𝑀𝑚,𝑘 =

𝑁−1∑︁
𝑛=0

1
𝑁
|𝑥 [𝑛] ·𝑤 [𝑛] | · 𝐻𝑚,𝑛 · 𝑒− 𝑗2𝜋

𝑘 ·𝑛
𝑁 (1)

where 𝑀𝑚,𝑘 is the𝑚-th Mel frequency bin and 𝑘-th discrete fre-
quency bin, 𝐻𝑚,𝑛 is the Mel filterbank, and 𝑤 [𝑛] is the window
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Table 1: Architecture table for the SpotNet model

Layer Input Shape Output Shape Num of Params Operation

Input HxWx1 HxWx1 - -
TokenEmbedding HxWx1 HxWx2 20,200 Token embedding

TransformerEncoder HxWx2 HxWx2 168,514 Multi-head attention, feedforward
Conv2D HxWx2 HxWx16 304 Kernel=3x3, Stride=1, ReLU

BatchNormalization HxWx16 HxWx16 64 -
Squeeze HxWx16 HxWx16 - Squeeze last dimension

MaxPooling2D HxWx16 𝐻
2 x

𝑊
2 x16 - Kernel=2x2, Stride=2, Max pool

Conv2D 𝐻
2 x250x16

𝐻
2 x

𝑊
2 x32 2,080 Kernel=3x3, Stride=1, ReLU

BatchNormalization 𝐻
2 x

𝑊
2 x32 𝐻

2 x250x32 128 -
MaxPooling2D 𝐻

2 x
𝑊
2 x32 𝐻

4 x
𝑊
4 x32 - Kernel=2x2, Stride=2, Max pool

Conv2D 𝐻
4 x

𝑊
4 x32 𝐻

4 x
𝑊
4 x64 8,256 Kernel=3x3, Stride=1, ReLU

BatchNormalization 𝐻
4 x

𝑊
4 x64 𝐻

4 x
𝑊
4 x64 256 -

MaxPooling2D 𝐻
4 x

𝑊
4 x64 𝐻

6 x
𝑊
6 x64 - Kernel=2x2, Stride=2, Max pool

Conv2D 𝐻
6 x

𝑊
6 x64 𝐻

6 x
𝑊
6 x128 32,896 Kernel=3x3, Stride=1, ReLU

BatchNormalization 𝐻
6 x

𝑊
6 x128 𝐻

6 x
𝑊
6 x128 512 -

MaxPooling2D 𝐻
6 x

𝑊
6 x128 𝐻

8 x
𝑊
8 x128 - Kernel=2x2, Stride=2, Max pool

Flatten 𝐻
8 x

𝑊
8 x128 12,288 - Flatten to 1D

Dense 12,288 32 393,248 ReLU
Dropout 32 32 - Dropout (p=0.5)
Dense 32 1 33 Sigmoid

Total Parameters 603,361

function. The Spectral Contrast and Spectral Envelope are com-
puted using the following equations:

𝐶𝑚,𝑘 = log

( ∑𝑛
𝑖=1 𝜔𝑖 |𝑀𝑚,𝑘+𝜔𝑖

|2∑𝑛
𝑖=1 𝜔𝑖 |𝑀𝑚,𝑘−𝜔𝑖

|2

)
(2)

𝐸𝑚 =

𝐾∑︁
𝑘=0
|𝑀𝑚,𝑘 | ·𝑤 [𝑘] (3)

where 𝐶𝑚,𝑘 is the 𝑚-th contrast coefficient for the 𝑘-th discrete
frequency bin, 𝐸𝑚 is the𝑚-th envelope coefficient, 𝑛 is the number
of frequency bins used to calculate contrast, 𝜔𝑖 is the weight of the
𝑖-th frequency bin, and𝑤 [𝑘] is the weighting function.

3.1 Logical Spoofing Transformer Encoder
The Logical Spoofing Transformer Encoder (LSTE) is utilized to
extract deep attentive features from the FSF before classification.
LSTE is a advanced deep learning model that captures attentive
spectral and temporal traits of speech signals and generates a com-
pact and informative representation of the audio. The transformer
encoder block is presented in Table 2. By extracting attentive fea-
tures, we reduce the dimensionality of the feature space, identify
the most relevant features, and enhance the robustness of the classi-
fier. These features aid in distinguishing between real and spoofed
audio and reducing the impact of irrelevant or noisy features.

3.2 Construction of Proposed Classifier
A multi-layer classification network is designed to classify speech
signals into genuine or fake categories using the obtained atten-
tive spectral temporal features. The network consists of five dense

layers followed by batch normalization and dropout, which can
effectively distinguish real and spoof audio. The classifier is based
on a dense network, which can learn complex and non-linear re-
lationships between input features and output classes, improving
the classification accuracy. The architecture of the classifier can be
found in Figure 1 and Table 1.

4 EXPERIMENTAL RESULTS
This section presents the experimental setup and methodology
employed to evaluate the effectiveness of the proposed SpotNet
approach in detecting voice spoofing. It includes information about
the dataset, evaluation metrics, and hyper-parameters used in the
modeling and training process of the SpotNet solution.

4.1 Dataset and Metrics
The effectiveness of the proposed SpoTNet method for detect-
ing voice spoofing attacks was evaluated using the ASVspoof2019
dataset, specifically its LA subpart. The ASVspoof2019-LA dataset
is widely used as a standard dataset for testing speaker verification
systems and comprises 22,800 spoofed and 2,580 real speech sam-
ples, featuring various TTS and VC spoofing technologies such as
neural waveform models and vocoders. The training subset of the
dataset was utilized for training the model, while the development
subset was used for validation purposes. The evaluation subset was
then used to assess the performance of the model using a range
of evaluation metrics such as EER, min-tDCF, precision, recall, F1-
score, and accuracy. The EER and min-tDCF metrics, which are
commonly used to evaluate voice spoofing detection systems, were
used to compare the performance of the proposed method against
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Table 2: Transformer Encoder architecture. In this table 𝐿 refers to the length of the input sequence and 𝐷 refers to the
dimensional of the embedding vectors. The total number of parameters in the model is 8𝐷2 + 4𝐷 .

Layer Input Shape Output Shape Operation Num of Params
Input 𝐿 𝐿 × 𝐷 - -

Positional Encoding 𝐿 × 𝐷 𝐿 × 𝐷 - 0
Multi-Head Attention 𝐿 × 𝐷 𝐿 × 𝐷 Attention(𝑄,𝐾,𝑉 ) 3𝐾𝐷2

Addition 𝐿 × 𝐷 𝐿 × 𝐷 𝑥 + Attention(𝑄,𝐾,𝑉 ) 0
Layer Normalization 𝐿 × 𝐷 𝐿 × 𝐷 - 2𝐷

Position-wise Feedforward 𝐿 × 𝐷 𝐿 × 𝐷 ReLU(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 4𝐷2

Addition 𝐿 × 𝐷 𝐿 × 𝐷 𝑥 + ReLU(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 0
Layer Normalization 𝐿 × 𝐷 𝐿 × 𝐷 - 2𝐷

Algorithm 1: Speech Sample FSF embedding extraction
Input: Raw audio waveform 𝑥 , Sampling rate 𝑓𝑠
Output: Speaker embedding 𝑧

1 𝑤 ←Window(𝑥) // windowing and Framing to 𝑥

2 𝐹 ← Frame(𝑤) 𝑆 ← NonSilenceIndices(𝐹 ) // Retain

non-silent content

3 𝐹𝑆 ← 𝐹 (𝑆, :) 𝐹𝑁 ← Normalize(𝐹𝑆 ) // Normalize mean

and unit variance

4 𝐹𝐵 ← BandPassFilter(𝐹𝑁 , 𝑓𝑛) // band pass filtering

for frequencies between 20 Hz and 8 kHz

5 𝐹𝑃𝑅 ← PreEmphasisFilter(𝐹𝑁 ) // pre-emphasis filter

6 𝑀 ← MelSpectrogram(𝐹𝑃𝑅, 𝑓𝑝𝑟 ) // Compute Mel-scaled

spectrogram with 40 bins

7 𝐶 ← SpectralContrast(𝑀) // Compute spectral

contrast features

8 𝐸 ← SpectralEnvelope(𝑀) // Compute spectral

envelope features

9 𝑋 ← Concatenate(𝑀,𝐶, 𝐸) // Concatenate the

feature matrices along the channel axis

10 𝑋
′ ← PadOrTruncate(𝑋, (48, 501, 3)) // Pad or

truncate the feature tensor

11 𝑧 ← LSTE(𝑋 )

state-of-the-art techniques. Additionally, other statistical parame-
ters such as precision, recall, F1-score, and accuracy were employed
to evaluate the overall performance of the proposed method.

4.2 Data cleansing and pre-processing
The proposed work aims to enhance the efficiency of the SpotNet
model by integrating five preprocessing methods. The first step is
to divide the raw audio stream into short overlapping frames using
the windowing and framing process, as shown in the equation:

𝑦 (𝑛) = 𝑤 (𝑛) · 𝑥 (𝑛) (4)

where 𝑥 (𝑛) is the input audio signal,𝑤 (𝑛) is the window function,
and 𝑦 (𝑛) is the windowed output signal. Then, non-silence indices
retrieval technique is employed to eliminate the silent segments
from the audio signal. Silence intervals in audio recordings contain

no speech information and can lead to false positives or false neg-
atives in audio signal analysis [Sahoo and Patra 2014]. Thus, we
extract the non-silence indices from the speech signal using the
following equation:

𝑛𝑖 = argmax
𝑛

∑𝑛
𝑚=𝑛−𝑇+1 𝑥

2
𝑚

𝑇
> 𝜖 (5)

where 𝑥 (𝑛) is the input audio signal, 𝑇 is the frame size, 𝜖 is the
energy threshold, and 𝑛𝑖 is the index of the first non-silent frame.
Next, the normalization technique is applied to normalize the am-
plitude of the audio signal. The equation used for normalization is
given by:

𝑦 (𝑛) = 𝑥 (𝑛)
max𝑛 |𝑥 (𝑛) |

(6)

where 𝑥 (𝑛) is the input audio signal and 𝑦 (𝑛) is the normalized
output signal. Following this, the bandpass filtering technique is
applied to remove unwanted frequency components from the audio
signal using the equation:

𝑦 (𝑛) = 𝑥 (𝑛) ∗ ℎ(𝑛) (7)

where 𝑥 (𝑛) is the input audio signal, ℎ(𝑛) is the bandpass filter, and
∗ denotes convolution. Finally, the pre-emphasis filtering technique
is applied to boost the high frequency components of the audio
signal. This technique can be represented by the equation:

𝑦 (𝑛) = 𝑥 (𝑛) − 𝛼𝑥 (𝑛 − 1) (8)

where 𝑥 (𝑛) is the input audio signal, 𝑦 (𝑛) is the pre-emphasized
output signal, and 𝛼 is the pre-emphasis coefficient. After applying
the aforementioned preprocessing techniques, the front-end spoof-
ing feature set extraction is performed that explained in the next
subsection below.

4.3 Front-end Spoofing Feature set (FSF)
Extraction

This work aims to extract effective features from voice samples
using robust feature extraction techniques. The audio signals are
segmented into small segments with a window size of𝑤𝑛 of 0.025s
and a step size of ℎ = 0.01s. The Fourier transform 𝐹𝐹𝑇 with a win-
dow function is applied on these segments to transform the input
signals into the frequency domain. The resulting power spectrum
is mapped onto the Mel scale to obtain Mel spectrogram compo-
nents. Mel spectrogram features are extracted using 40 mel filters
and adjusted the lowest and highest frequencies. Spectral contrast
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Table 3: Statistics of ASVspoof2019-LA Dataset.

Subset # of Instances Spoofing Algorithms Waveform Generator

Training 25,380 – –
Development 24,844 A01-A06 WaveNet, WORLD, Waveform, Spectral Filtering
Evaluation 71,237 – STRAIGHT, +OLA, Vocaine

Table 4: Statistics of Clonning ALgorithms of ASVspoof2019-LA Dataset.

Subset Training Development Spoofing System Algorithm Waveform Generator

A01 3,800 3,706 TTS Neural Waveform Model WaveNet
A02 3,800 3,706 TTS Vocoder WORLD
A03 3,800 3,706 TTS Vocoder WORLD
A04 3,800 3,706 TTS Waveform Concatenation Waveform Concatenation
A05 3,800 3,706 VC Vocoderl WORLD
A06 3,800 3,706 VC Spectral filtering Spectral filtering + OLA

and spectral envelope features are also extracted. Spectral contrast
evaluates the difference in spectral energy between neighboring
frequency bands, while the spectral envelope reflects the level of
spectral flatness inside each frame. These features are concatenated
into a single feature vector and fed into the LSTE block to extract
attentive spectral temporal features with an attention mechanism.
The dimension of the resulting feature vector is (48, t), where t is
the maximum number of frames.

4.4 Attentive Feature Extraction from Logical
Spoofing Transformer Encoder and
Classification

The proposed LSTE architecture extracts attentive spectral temporal
features from voice samples for voice spoofing detection. The LSTE
block comprises token embedding and a transformer encoder with
multiple stacked transformer blocks. The output of the transformer
encoder is fed into a dense architecture-based spoofing multi-layer
classification network for classification. The proposed LSTE archi-
tecture is shown in Table 2, while the architecture details of the
multi-layer classification network are presented in Table 1.

4.5 Hyper parameter Modeling and Training
We perform the training of the model on four NVIDIA Tesla V100
16G GPUs, 192 GB of Memory, and 48 CPU cores running at 2.10
GHz. The model takes input of shape (𝐻𝑥𝑊𝑥𝑙) which is (48, 501, 1)
and uses Token Embedding layer with a vocabulary size of 𝑉=100,
maximum sequence length of 𝑁=100, and a hidden size of h=32.
The Transformer Encoder layer has a hidden size of (𝑀𝑥𝑁 ) is 4,
4 attention heads, feed-forward dimension of 128, and a dropout
rate of d=0.1. The CNN layer has four 2D convolutional layers
with 𝑓1=16, 𝑓2= 32, 𝑓3= 64, and 𝑓4= 128 filters, respectively, and
kernel sizes of (𝑘1) = (3,3), (𝑘2) = (2,2), (𝑘3) = (2,2), and (𝑘4) =
(2,2), respectively. The model uses a batch size of 32 and a binary
cross-entropy loss function with metrics including AUC and binary
accuracy. The optimizer used is Adam with an initial learning rate

of 𝑙𝑟 0.001 and a learning rate schedule with an exponential decay
rate of 0.3 every 4800 steps.

4.6 The Performance Analysis of the Proposed
SpotNet

Weevaluated the proposed system’s performance on theASVspoof19-
LA dataset and present the results in Table 6. The system utilized
attentive spectral and temporal features, achieving an EER of 0.95%
and an AUC of 94.11%. We assessed the effectiveness of the system
against each voice cloning algorithm present in the corpus (rang-
ing from A01-A06) and reported the results in Table 7. Our model
obtained an EER of 0.08%, 0.11%, 0.10%, 0.23%, 0.09%, and 0.21% for
A01-A06 spoofing algorithms, respectively. These results demon-
strate that the proposed system performed optimally against each
voice cloning algorithm. Additionally, we evaluated the system’s
performance against an unseen evaluation spoofing algorithm and
report the results in Table 8. The model was effective against most
types of spoofing attacks, achieving a lower EER and higher accu-
racy. While the EER for spoofing algorithms A17–A19 was slightly
higher than for other spoofing algorithms, the model achieved an
EER of less than 1.0% for the remaining 10 unseen and 6 seen spoof-
ing algorithms, indicating its ability to generalize well to unknown
and unseen voice spoofing attacks.

4.7 Comparative Analysis of the Proposed
SpotNet and SOTA feature fusion based
techniques

In this research, we compared the performance of the proposed
SpotNet solution against eight recent studies that utilized feature
fusion-based techniques. The results of the comparison are pre-
sented in Table 5 and Figure 2, which shows that the proposed
SpotNet solution achieves comparable performance with other fea-
ture fusion-based techniques. The proposed method takes Mel-spec,
spec-contrast, and spec-envelope-based robust features as input,
extracts attentive features from them, and achieves a min-tDCF
of 0.045 and an EER of 0.95%. These results are better than most
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Table 5: Comparative Analysis of proposed method with Frontend feature fusion studies.

Study Fusion System Performance
– Classifier Frontend Features t-DCF EER(%)

2019 [Alzantot et al. 2019] ResNet MFCC, Spec, CQCC 0.157 6.02
2019 [Lavrentyeva et al. 2019] LCNN LFCC,CQT,FFT, LFCC+CMVN 0.051 1.84

2020 [Wang et al. 2020] DenseNet spec,LFCC 0.047 1.98
2021 [Luo et al. 2021] Capsule LFCC, STFT-gram 0.033 1.07
2021 [Li et al. 2021] SE-ResNet50 Spec,LFCC,CQT 0.045 1.89

2021 [Zhang12 et al. 2021] SENet dual-band of FFT 0.050 1.56
2022 [Wei et al. 2022] GMM,LCNN LFCC, CQCC, RLFCC 0.074 2.57
2022 [Cui et al. 2022] scDenseNet Spec,LFCC,ARS 0.029 1.01
2022 [Cui et al. 2022] scDenseNet SpecL,LFCC,ARS 0.042 0.98

Proposed SpotNet mel-spec, contrast, Spec-Env 0.045 0.95

Table 6: Performance on ASVspoof19-LA Dataset.

Model EER % min-tDCF Accuracy % Precision % Recall % F1-Score % Auc %

SpotNet 0.95 0.045 93.91 93.32 97.22 95.25 94.11

Table 7: Performance analysis on voice clonning algorithms
of ASVspoof2019.

Algorithm EER% Acc% Precision% Recall% F1-score%

A01 0.08 97.5 94.29 93.20 94.12
A02 0.11 94.6 92.36 92.55 92.42
A03 0.10 98.3 93.63 94.25 93.66
A04 0.23 92.6 90.90 89.56 91.25
A05 0.09 95.3 94.88 94.23 95.36
A06 0.21 0.89 91.32 91.33 90.32

state-of-the-art comparative methods and are closest to those of
the scDeneNet model [Cui et al. 2022].

Figure 2: The overall architecture of SpotNet Framework.

Table 8: Performance analysis on unseen voice spoofing al-
gorithms of ASVspoof2019.

Algorithm EER% Acc% Precision% Recall% F1-score%

A07 0.40 97.50 97.29 93.20 95.50
A08 0.39 98.67 98.36 92.55 95.42
A09 6.10 93.35 82.69 80.25 79.66
A10 0.42 95.60 97.90 92.40 93.25
A11 0.42 95.30 95.88 91.23 93.36
A12 0.40 97.89 93.32 92.33 91.17
A13 0.39 96.50 98.29 93.80 94.78
A14 0.37 96.63 98.36 94.55 95.18
A15 0.40 98.34 97.63 95.25 95.66
A16 0.45 94.62 93.90 91.56 92.25
A17 25.31 75.39 65.88 60.23 63.36
A18 40.23 59.87 55.90 53.56 52.56
A19 44.09 55.93 52.88 40.23 45.36

Although the min-tDCF of the proposed solution is slightly
higher than that of [Cui et al. 2022] and [Luo et al. 2021], it is
important to note that our primary goal was to achieve a lower
EER without performing speaker verification. This is important
because in some scenarios, such as in security and authentication
systems, detecting spoofing attacks is more critical than verifying
the speaker’s identity. Thus, a slightly higher t-DCF is acceptable in
this case. Our study also reveals that the countermeasure contain-
ing spectrogram features concatenated with other spectral features,
such as LFCC, CQCC, CQT, contrast, and envelope, performed
optimally within the range of classifiers shown in Table 5. This
highlights the effectiveness of spectrogram features in detecting
logical access attacks and justifies their use in the proposed method
for spoofing detection.
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Table 9: Performance analysis with different combination of the frontend features.

Performance Mel-Spec Spec-contrast Spec-Envelop mel-Spec+Contrast Mel-Spec+Env Mel-Spec+Env+Cont

t-DCF/EER 0.109/5.49 0.221/7.14 0.262/10.87 0.101/5.65 0.127/4.84 0.045/0.95

4.8 Ablation Study
In this research, we conducted an ablation analysis using the Spot-
Net model to identify the optimal feature combination for detecting
spoofing attacks. We evaluated the performance of the model on
standalone Mel-spectrogram, spectral envelop, and spectral con-
trast features, as well as all possible combinations of the three
features. The results of the study, presented in Table 9, revealed
that the EER for Mel-spec, spec-contrast, spec-envelope, Mel-spec
and contrast, and Mel-spec with envelope feature sets were 5.49%,
7.14%, 10.87%, 5.65%, and 4.84%, respectively.

Our findings suggest that the best performance was achieved
when all three features were combined, resulting in an EER of 0.95%
and a min-tDCF of 0.042. We also tested the SpotNet model with
a feature shape of 25,400, where we computed and classified 20
Mel-spec, 4 spectral contrasts, and 1 envelope using the lighter
SpotNet-model. The results were comparable to those obtained
using the optimal feature combination, with good performance
observed for both EER and min-tDCF. In conclusion, our ablation
study demonstrated that combining the Mel-spectrogram, spec-
tral envelope, and spectral contrast features is the most effective
approach for detecting spoofing attacks using the SpotNet model.

5 CONCLUSION AND FUTUREWORK
In this study, we introduced a novel method for detecting spoof-
ing attacks in automated speaker verification systems using the
proposed SpoTNet model. Our experimental results demonstrate
that the proposed approach, which integrates handcrafted features
with attention-based features, outperforms state-of-the-art meth-
ods on the ASVspoof 2019 dataset. However, it is worth noting that
our approach need for a large amount of training data to train the
transformer encoder. To address this limitation, our future research
will focus on exploring other methods, such as few-shot learning
and utilizing raw audios, to reduce the data dependencies and hand
crafted and spectrogram based computational complexities. Further-
more, we plan to extend this work to other types of voice spoofing
attack detection and develop solutions that focus exclusively on
real speech samples, capable of detecting unseen and novel attacks
and generalizability of the countermeasures.
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