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Fed-HANet: Federated Visual Grasping Learning for
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Abstract—Human-robot handover is a key capability of service
robots, such as those used to perform routine logistical tasks for
healthcare workers. Recent algorithms have achieved tremendous
advances in object-agnostic end-to-end planar grasping with up
to six degrees of freedom (DoF); however, compiling the requisite
datasets is simply not feasible in many situations and many users
consider the use of camera feeds invasive. This letter presents an
end-to-end control system for the visual grasping of unseen objects
with 6-DoF without infringing on the privacy or personal space of
human counterparts. In experiments, the proposed Fed-HANet sys-
tem trained using the federated learning framework achieved ac-
curacy close to that of centralized non-privacy-preserving systems,
while outperforming baseline methods that rely on fine-tuning. We
also explores the use of a depth-only method and compares its
performance to a state-of-the-art method, but ultimately empha-
sizes the importance of using RGB inputs for better grasp success.
The practical applicability of the proposed system in a robotic
system was assessed in a user study involving 12 participants.
The dataset for training and all pretrained models are available
at https://arg-nctu.github.io/projects/fed-hanet.html.

Index Terms—Federated learning, human-robot interaction,
service robots.
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I. INTRODUCTION

HUMAN-ROBOT handover, referring to the transfer of
an object between a human and robot, is a fundamental

capability for service robots. This issue was initially addressed
by having the robot remain in a stationary position, while the
human places the object in the robot’s gripper [1], [2], [3].
Since that time, researchers have addressed the handover of
objects of various shapes and sizes using grippers of various
designs [4], [5]. Researchers have also made an effort to consider
the perceptions of humans involved in these interactions [4],
[5]. Some researchers have sought to classify human grasp
modes or hand pose estimates to generate a corresponding robot
grasp pose [5], [6]. Note however that those methods require
hard-coded associations between hand and object poses, which
are impractical in most situations.

One common approach to human-to-robot handover involves
hand/object detection in conjunction with algorithms for pose
estimation and grasp point prediction [6], [7]. Yang et al. trained
a deep neural network using PointNet++ [8] to classify point
clouds around human hands into one of seven pre-defined grasp
categories, each of which would trigger a specific motion plan to
complete the handover [7]. Rosenberger et al. [9] expanded this
work to include object-independent handover actions for a wide
range of objects based on a YOLO-v3 object detector [10]. Their
system simultaneously predicts hand and body segmentation
effects to ensure that the grasping action of the robot is performed
safely. Saputra et al. [11] focused on the real-time affordance
detection of gripping pose using vision and depth sensors. The
method also used YOLO-v3 object detector [10] and generates
a topological map of the desired object with an inlier-outlier
method to compute the possible gripping position. In [6], the
authors addressed the challenges in handling unseen objects
(occluded by the hands) using a grasp selection model based
on the 6-DoF GraspNet system [12]. Success in human-to-
robot handovers depends on the tracking of objects and hands;
however, any action involving a human agent will introduce
occlusions, which can affect the effectiveness of segmentation
and pose estimation.

Recently, researchers have had considerable success in devel-
oping end-to-end algorithms for visual grasping. The objective
behind these data-driven methods is the training of object-
agnostic grasping policies based on learned visual features
without the need for a priori object-specific knowledge. One
project featured in the Amazon Robotics Competition used an
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Fig. 1. Our approach allows human robot handovers without privacy concerns,
which is well-suited for service robots.

end-to-end network to generate affordance maps for suction
devices or two-finger parallel grippers in heavily cluttered
scenes [13]. DexNet models [12] use large simulation-only
datasets pertaining to thousands of objects to train end-to-end
CNN networks. Some visual grasping algorithms focus on planar
grasping [13], [14], wherein the grasping point (x, y) and the θ
of a two-finger gripper are generated from an input image. Note
however that human-to-robot handovers are performed within a
3D space, and therefore require grasping actions with six DoFs.

A number of studies have addressed the problem of grasping
unknown objects using movements with 6-DoFs [15], [16],
[17], [18]. In [17], the authors presented an overview of crucial
issues related to the collection of training data for learning-based
algorithms. It is possible to increase the size of a dataset by
including datapoints from simulations; however, that approach
is unable to deal with many thorny issues associated with visual
perception. For example, most previous studies conducted in a
lab setting use a plain background, which is not generalizable to
other environments [19]. Overall, collecting a sufficient amount
of training data and annotations in a variety of environments is
infeasible in most practical situations, particularly in light of the
fact that the robots must operate in close proximity to humans,
such that robot cameras could be viewed as an intrusion on the
privacy of the human user.

Federated learning (FL) is one approach to safeguarding the
personal space and privacy of human participants [20]. This
involves exchanging model weights among distributed clients,
rather than collecting a large amount of imagery data directly,
thereby making it possible to train models to grasp a variety
of objects in a variety of situations. FL has been used in the
analysis of medical images [21] and domain transfer for semantic
segmentation in autonomous driving [22]; however, it has not
previously been used for visual grasping or handover tasks. This
letter makes the following contributions:
� Federated training scheme for handover visual grasping

(Fed-HANet). This is the first ever study to use federated
learning to facilitate the training of a handover system for
service robot applications, as demonstrated in Fig. 1.

� Practical evaluation of handover system. The practicality
of Fed-HANet was assessed in a user study involving 12
participants.

TABLE I
COMPARISONS OF HANDOVER AND VISUAL GRASPING METHODS

� Open access toolkit applicable to federated learning for
human-robot handover operations. We collected and man-
ually labeled a dataset (with subsets) for handover opera-
tions. The dataset and pretrained weights are available as
open access resources for download.

II. RELATED WORK

Handovers tasks have been addressed in the context of human-
robot interactions, computer vision, and visual grasping by
robots. As shown in Table I, 6-DoF grasping is preferable
to planar grasping for handover tasks, closed-loop control is
well-suited to dynamic situations, and object-independence
makes it possible to handle a variety of objects.

In this section, we examine a number of visual grasping
algorithms of relevance to the proposed scheme. Readers are
referred to [5], [9] for other aspects of human-robot handovers.

The adoption of deep learning techniques has greatly ad-
vanced research into visual grasping. Most previous research has
focused on object-agnostic grasping. Data-driven methods avoid
dependence on specific objects and many studies have compiled
real-world datasets for training. One pioneering study [14] used a
self-supervised robot to collect a dataset related to 50 k instances
of grasping and trained a deep neural network classifier to predict
the success of grasp attempts. In [13], researchers presented a
category agnostic algorithm to map RGB-D images to a pixel-
level probability affordance map. In [25] the authors sought to
compile a more diverse dataset by including images captured
in homes instead of a lab setting. In [17], a low-cost hardware
interface was used to collect instances of human grasping in
diverse environments for the training of a 6-DoF closed-loop
algorithm via reinforcement learning.

Another approach to augmenting datasets involves simula-
tions. DexNet [12], [26], [27] is an end-to-end robotic manipu-
lator that includes code and algorithms for use in generating
datasets of synthetic point clouds based on a dataset of 6.7
million datapoints generated entirely through simulation. Note
however that datasets generated entirely via simulations make it
difficult to incorporate data related to human intentions.

In [13], the authors implemented an end-to-end affordance
prediction method, which is similar to an affordance map in
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that it evaluates the probability of success in grasping an object
based on each pixel in an image rather than the object itself.
This eliminates the need to detect or identify the object and then
determine the optimal grasping point for that object. Note that
the purpose of our study was not to introduce any new model
architectures in the field of logistic pick-and-place tasks. Instead,
the main contribution of this work lies in the development of a
federated learning-based training scheme for visual grasping.
As described in Section III, this iterative training process makes
it possible to continuously improve the handover affordance
map, which in turn makes it possible to formulate an end-to-end
control system for service robots without impinging on the
privacy of human users.

III. FEDERATED TRAINING SCHEME FOR HANDOVER VISUAL

GRASPING

Federated learning makes it possible to train a shared predic-
tion model collaboratively at each local client without the need
for direct access to client data from a server.

Our work addresses the following research questions:
� How does the performance of models trained using the fed-

erated learning scheme compare with those trained using
other methods?

� How does the proposed method compare with existing
methods when evaluated using a variety of datasets?

A. Federated Training Scheme

This study employed the open-source federated learning
framework, (Flower [28]), which has been widely adopted in
the research community. Flower employed binary serialization
format Remote Procedure Call (gRPC) streams and numerous
cross-platform clients to enhance efficiency and scalability. We
prepared three workstations (i7-7700 CPU and RTX 2060 GPU)
for the respective hosting of training data subsets as clients.
A server (i7-8750H CPU and RTX 2070 GPU) was used to
aggregate model weights using the FedAvg algorithm [20].
The Adam optimizer was used to train the model for each
client, and binary cross-entropy was used as the loss function
(BCEWithLogitsLoss in PyTorch) with a batch size of 5, a fixed
learning rate of 10−3, and momentum of 0.99. The model was
trained in PyTorch running on a PC with an Intel Core i5-9400F
and NVIDIA RTX2080. Training was completed in roughly one
hour.

We designated N-epoch individual training runs for each
client, after which the trained model weights were transmitted
to a server within a specified time frame. Upon completion
of the aggregation process, the weights were returned to each
individual client. Note that each weight aggregation cycle is
referred to as a round, and the server proceeds to the next round
only after the weights from all three clients (i.e., under all three
conditions) have been aggregated. Our network was initially
trained for 50 epochs without the federated learning pipeline.
To assess the impact of the number of rounds and epochs per
round on performance, we trained the network model using the
federated learning pipeline under two different conditions:

Fig. 2. Proposed HANet produced a 6-DoF prediction of orientations θ and
the directions of grasping attempt ψ from multiple views.

� Fed-HANet (5E): With 5 epochs per round and 10 rounds
of training.

� Fed-HANet (10E): With 10 epochs per round and 5 rounds
of training.

B. Network Architecture

In the current study, we developed an affordance prediction
method using an architecture similar to that of ConvNet [13].
The proposed model architecture comprises two ResNet-101
networks, the respective inputs of which are RGB images and
corresponding depth data captured by the same RGB-D camera
(see Fig. 2). Captured depth data undergoes pre-processing, such
that all depths exceeding 75 cm are assigned the same value (i.e.,
a flat surface) to reduce noise and thereby enhance prediction
accuracy. We concatenate the two ResNet-101 outputs (RGB
and depth), followed by three additional spatial convolution
layers to merge the corresponding features. We then spatially
up sample the outputs bilinearly and apply a softmax function
to output two pixel-wise layers (non-graspable and graspable)
to represent the inferred affordances. The fully convolutional
networks (FCNs) then output four affordance maps. Note that
our network is a modification of the system proposed in [13]
with several fundamental differences. Our aim in designing the
proposed Fed-HANet architecture was to enhance the efficiency
of multi-view inference by implementing specific modifications,
as shown in Fig. 2.
� Orientation for First Person Perspective (FPP). Con-

vNet [13] uses multiple inferences to estimate the optimal
orientation for planar grasping; however, this process is
slow. The proposed model is able to generate four affor-
dance maps representing four candidate grasp orientations
θ (0◦, 45◦, 90◦, and− 45◦). using as an input a single
RGB-D image from a camera mounted on the robot arm.
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Fig. 3. Training datasets with different scenarios.

The affordance maps describe the probability of success
in grasping an object with respect to each pixel in an
image. The point on the image with the highest affordance
score corresponds to the optimal location at which to grasp
the object. This location was set as the target point for
the effector on the end of the robot arm. The affordance
maps and depth information are used to generate a 6-DoF
pose for the pre-grasp position (set 4 cm from the predicted
handover point) based on the length of the robot fingers.

� Multi-view (MV). We sought to resolve the bin-picking
problem by adopting the ConvNet approach [13], which
involves utilizing multiple grasp primitives with inter-
changeable end-effectors (e.g., two-finger or vacuum grip-
pers), based on a single top-down view. The robot arm in
this study was equipped with a two-finger gripper rather
than a vacuum gripper. The size of the gap between the
fingers limited the size of object that could be gripped;
however even large objects could potentially be picked up
if they were gripped along their narrowest side. Our use
of two cameras to capture the surrounding environment in
conjunction with the camera on the robot arm provided
multiple views of the object, thereby making it possible
to identify the narrow side of the object from which it
should be grasped. We also synthesized two additional
scenes (at ψ 22.5◦ and 67.5◦ relative to the object) using
point clouds obtained from the three cameras at 0◦ (overall
scene), 45◦ (robot arm), and 90◦ (overall scene) relative to
the object. This involves calibrating and then fusing raw
RGB-D streams from the two scene cameras to form a
dense point cloud. Note that specific pre-defined views
were selected for the synthesis of 2D images as model
inputs. This strategy allowed the camera on the robot
arm to provide an optimal viewpoint without the need to
physically move the camera into position.

C. Handover Datasets

1) Training Datasets: We compiled a series of handover
datasets, with a diversity of backgrounds, objects, and viewing
angles, to enable federated learning. As shown in Fig. 3 and
Table II, the proposed handover dataset included three subsets:

TABLE II
SUMMARY OF TRAINING AND TESTING DATASETS

(1) HA-Office, (2) HA-MedBed, and (3) HA-MultiView. HA-
Office and HA-MedBed comprised RGB-D images (640× 480)
of an object held in either the right or left hand, as recorded
using an Intel RealSense D435 RGBD camera. For the sake
of reproducibility, most of the objects used in this study were
adopted from YCB object set [29]. Nonetheless, we also in-
cluded several additional objects, including household objects
and labeled bottles applicable to nursing. The imaging data were
collected in a variety of scenes with ambient light from a variety
of angles.

We compiled a series of handover datasets featuring a diver-
sity of backgrounds, objects, and view angles for use in federated
learning. As shown in Fig. 3 and Table II, the proposed handover
dataset included three subsets: (1) HA-Office, (2) HA-MedBed,
and (3) HA-MultiView. HA-Office and HA-MedBed comprised
RGB-D images (640× 480) of an object held in either the right
or left hand, as recorded using an Intel RealSense D435 RGBD
camera. For the sake of reproducibility, most of the objects
used in this study were adopted from the YCB object set [29].
Nonetheless, we also included several additional objects, includ-
ing household objects and labeled bottles applicable to nursing.
The imaging data were collected in a variety of scenes with
ambient light from a variety of angles.

HA-MultiView comprised images captured in a multi-camera
setup, in which the 3D point cloud from cameras 1 and 3 were
re-projected from arbitrary perspectives, similar to the height
map in [13]. Note that some of the re-projected RGB-D images
in HA-MultiViewcontained null values, which were filled in with
black pixels. Fig. 3(c) presents sample images from the datasets.
In preparing the training data, we captured images of objects
held in a human hand and labeled the graspable regions of the
object with their orientation and direction. This made it possible
to train the model to simultaneously predict the direction ψ (i.e.,
the direction the robot arm relative to the user as it approaches the
object) and orientation θ (i.e., the angle of the gripper relative to
the object as it closes the gripper assembly) within a simulation
space with 6-DoFs.

All images were manually labeled using the open-source
annotation tool, LabelMe [30]. Note that for each image, we
labelled several line segments indicating the location and ori-
entation that would allow a two-finger gripper to grasp the
object without touching the human hand. The output is a densely
labeled pixel-wise map (640× 480 px) with each pixel value
normalized to between 0 and 1 in the form of a heat map. The
dataset included a total of 1,075 RGB-D images with annotations
for a total of 8,734 possible grasp configurations.
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2) Testing Datasets: We included HA-Rotated and additional
3 test datasets for the assessments. Two of which are open-source
datasets pertaining to object grasping, while the other two were
collected in this study Assessments were performed using HA-
Rotated and three additional test datasets. Note that two datasets
(YCB-Obj and ARC-Cluttered) were open-source, while the
other two (HA-Upright and HA-Rotated) were compiled in the
current study (see Table II). Sample images of those datasets can
be found in the supplementary materials.
� YCB-Obj: The 92 images in this dataset were extracted

from the first frame of the videos provided in [31]. This
dataset features 21 objects placed on a table. The original
video did not include ground truth examples of grasping af-
fordance; therefore, we manually verified the performance
of each method.

� ARC-Cluttered: The 77 images in this dataset were used
in the 2017 Amazon Robotic Challenge (ARC) [9]. This
dataset features several objects in cluttered scenes (an
average of 3.4 objects per scene). The test dataset includes
human-annotated two-finger grasping labels.

� HA-Upright: These 200 images of a handover scenario
respectively featured one object held upright in the hand.
We selected five of the objects in [9] based on whether they
would fit in the gripper of the robot used in this study.

� HA-Rotated: We collected an additional 240 images (in-
cluding 10 YCB objects), none of which appeared in our
training dataset. We were confident that all of the objects
could be grasped by our robot, as they were smaller than
6 cm along at least one side. The dataset included images of
objects that were occluded to various degrees by the human
hand in which they were held. Each object was held by a
person lying on a medical bed, while the camera was held
at various orientations ([0, 45, 90,−45], unit: deg.) with
various degrees of occlusion [>40%, <40%] and viewing
ranges ([10, 20, 30, 40], unit: cm).

D. Training Scheme Evaluation

1) Effectiveness of Federated Learning: We compared the
performance of models trained using federated learning with
those of models trained using non-federated methods, as shown
in Fig. 4. When applied to the HA-Rotated test set, the accuracy
of Fed-HANet (5E) and Fed-HANet (10E) approached that of
the non-privacy-preserving (centralized) method after several
training rounds. The accuracy of Fed-HANet (5E) converged
more quickly than did Fed-HANet (10E), due perhaps to the
overfitting of Fed-HANet (10E) to local datasets. These results
demonstrate that federated learning can achieve a high degree of
accuracy without the need to share raw data pertaining to each
client.

We trained a non-privacy-preserving HANet model using
a dataset comprising three sub-datasets collected under three
conditions. The first subset was trained from scratch, while the
second and third subsets were trained using pre-trained weights,
resulting in a total of six training sequences. The accuracy of
the fine-tuning sequences ranged from 22.92% (Finetune-2-1-3:
subset 2, 1, and 3) to 83.33% (Finetune-2-3-1: subset 2, 3, and

Fig. 4. Training scheme evaluations.

1). The performance of the model was significantly affected
by the order in which fine-tuning was applied to the training
subsets. Nonetheless, Fed-HANet significantly outperformed the
fine-tuning method.

2) Depth-Only Inputs: We employed a baseline model called
Fed-HANet-Depth, trained solely using depth images, to in-
vestigate the efficacy of using depth-only sensors in medical
applications for remote service robots. The success rate of grasp
attempts varied depending on the test dataset (HA-Rotated),
with Fed-HANet-Depth achieving lower success rates (63%)
compared to Fed-HANet (94%), which used RGB inputs in
addition to depth. These results emphasize the importance of
using RGB inputs for better accuracy and grasp success. Addi-
tionally, in the Supplementary Materials, we provided inference
results from handover examples executed using FedHANet,
FedHANet-Depth, and state-of-the-art Grasp Quality Convolu-
tional Neural Networks (GQ-CNNs), demonstrating that the use
of depth-only inputs led to erroneous target point predictions,
causing the robot to grasp the human’s arm or fingers.

E. Comparisons to Existing Methods

The performance of the proposed system was compared with
that of existing systems in terms of grasp success/failure. We
also sought to elucidate the reasons for the failures. Each method
was tasked with identifying the optimal grasp point (within a 3D
simulation space), defined as the point at which the object could
be stably grasped without touching the fingers of the human user.

Three existing methods were adopted as baselines for com-
parison:
� DOPE [31]: This state-of-the-art object pose estimation

approach was used as a baseline. DOPE is constrained
by the need for pre-trained models of known objects. In
the current study, the DOPE baseline was combined with
pre-defined poses related to the grasping of known YCB
objects. As shown in Table III, DOPE was effective in
estimating the pose of objects in YCB-Obj; however, it
was not nearly as effective when applied to HA-Upright
or HA-Rotated, due to interference caused by hand occlu-
sions. Nonetheless, DOPE performed satisfactorily when
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TABLE III
ESTIMATION OF GRASP POINT OUTCOMES VIA DIFFERENT APPROACH BY

HANET TESTING DATASET

the fingers were placed on the sides of the object. Note
that DOPE was of limited benefit when applied to the
ARC-Cluttered database containing unknown objects.

� ConvNet [13]: Note that this is the unmodified framework
on which the network in this study was based. We em-
ployed an FCN network architecture with a ResNet-101
backbone with weights pre-trained by ImageNet. ConvNet
with pre-trained weights performed well when applied to
ARC-Cluttered (98.7%); however, it often led to contact
with human hands when applied to HA-Upright and HA-
Rotated, thereby indicating the need to fine-tune the dataset
specifically for handover scenarios. ConvNet performed
poorly when applied to YCB-Obj, indicating that it is
limited to planar grasping and scenarios with a uniform
background.

� Ro. [9]: This state-of-the-art method (considered a strong
baseline) integrates multiple modules to process input im-
ages for object detection, hand and body segmentation,
and grasp selection for use in identifying the pixels that
are most likely to coincide with the optimal grasp point.
This method performed well when applied to HA-Upright
(80.5%); however, it was not nearly as effective when
applied to HA-Rotated, which is ill-suited to objects held in
arbitrary orientations. It also proved ineffective when ap-
plied to object-only datasets, due to its use of the YOLO-v3
object detector [10], which is prone to false positives when
dealing with a complex background or situations involving
occlusion.

The proposed Fed-HANet system consistently outperformed
all baseline methods when applied to the YCB-Obj, HA-Upright,
or HA-Rotated test datasets. These results demonstrate the
efficacy of the proposed method in preventing contact with
human fingers when handing over objects. These results also
demonstrate that an end-to-end method can be more reliable
than discrete predictions pertaining to the position of hands
and objects in situations involving occlusion. Note however that
the accuracy dropped to below that of ConvNet (68.8%) when
applied to the ARC-Cluttered dataset, which may be the result
of trade-offs during model optimization for handover scenarios.

IV. HANDOVER USER STUDY

The practicality of the proposed Fed-HANet was evaluated in
a robot-human handover scenario involving 12 participants (ages
20-30) with no prior experience using such systems. The objects
were selected from the YCB object set. We also evaluated multi-
view performance by including six box-shaped objects that were
graspable from only one side. This user study was conducted
with the approval of the NYCU (NYCU-REC-110-097E)

A. System Overview

The system proposed in the current study included a low-cost
manipulator (Trossen Robotics ViperX 300) equipped with a
first-person perspective (FPP) RGB-D camera (Intel RealSense
D435) in conjunction with two RGB-D scene cameras, respec-
tively facing the front and left sides of the user (see Fig. 2).
To ensure safety in this study, a force sensor (Robotiq FT300)
was installed at the last joint of the arm behind the gripper. This
provides a fail-safe mechanism in case of issues with recog-
nition or user movement, allowing for prompt detection and
intervention to prevent potential harm. All hardware modules
were connected to a computer (Intel NUC) via USB cables
to enable the processing of three image streams as well as
tactile force feedback and control commands. An additional
GPU-equipped computer was connected via intranet to genrate
Fed-HANet predictions. We equipped the robot with indicators
(green, orange, and red lights) to make the user aware of the
current state of the robot. When the robot arm was ready to move,
the indicator would turn green. As the robot arm approached the
user (i.e., while moving), the indicator would turn red.

B. Methods

We selected the Fed-HANet model for this assessment, due to
its effectiveness (exceeding that of all other methods) in avoiding
human contact (fingers or arms) during handover scenarios.
Trials were run in FPP and MV modes. The objective in all trials
was to determine direction ψ and orientation θ. We defined five
candidate directions, including 0◦ (perpendicular to the user),
22.5◦, 45◦, and 67.5◦ to 90◦ (facing the user). We also defined
four candidate orientations (0◦, 45◦, 90◦, and 135◦). Fed-HANet
inferred the predicted grasp pose based on depth data and then
computed the desired trajectory by an inverse kinematic (IK)
module in conjunction with the MoveIt [32] path planning node.
We implemented a state machine using the ROS Smach package
to control arm movements, as illustrated in the Supplementary
Materials.
� First Person Perspective (FPP) mode: We implemented a

closed-loop design to handle dynamic situations in which
the hands of our user are prone to movement during the
approach stage. The average inference time per frame was
0.031 seconds, which was fast enough to enable operations
at 10 frames per second (fps). The use of only one camera
(attached to the robot arm) necessitated moving the robot
arm to five positions from which to capture images corre-
sponding to the five candidate directions.

� Multi-View (MV) mode: We utilized the two scene cameras
calibrated to merge the point clouds. Unlike FPP mode,
Fed-HANet inference operations were performed for the
five views without moving the robot arm. Inference oper-
ations were completed in roughly 0.16 seconds.

In MV mode, the need to compute multiple inferences from
multiple views greatly increased the computation time. Note
also that the design of the joints used in this low-cost robot
arm occasionally skewed the trajectories during closed-loop
processing. We sought to mitigate this issue by using only
open-loop processing in both FPP and MV modes, based on
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the assumption that the user would keep the object stationary
after the Fed-HANet inference phase.

C. Human-to-Robot Handover Workflow

The participants were tasked with holding objects in arbitrary
directions (ψ) and orientations (θ) to be grasped by the robot.
The robot arm was programmed to take the object only if the
participant’s hand was still, similar to the user studies in [6],
[7], [9]. The participants were allowed to hold the objects
by pinching them using two fingers, grasping them between
multiple fingers, or balancing them on an open palm. Each of the
participants performed the handover task twice for each of the
16 objects in FPP and MV modes, which resulted in 768 trials.

The object should be reachable as long as it is within 50
to 60 cm from the initial ‘home’ arm position. The reachable
grasping points are visualized in the Supplementary Materials.
When the end effector reached a point 4 cm in front of the target
handover point, the effector was slowed down for its approach
toward the target. This slowing-down movement was intended to
reduce the anxiety felt by the individual interacting with a robot
arm. In some situations, where depth information was missing
due to light reflective or light absorptive materials or situations
where the illumination was less than ideal, the system attempted
to move the robot arm 2 cm toward the object. After the end
effector reached the target point and the gripper closed, the unit
returned to its home position.

To mimic the behavior typical of patients on a hospital bed,
we opted not to require that participants hold the objects within a
certain zone. In situations where the target point fell outside the
range of the arm robot, the arm was moved to the point closest to
the predicted pose. At this point, the system waited for the user to
place the object between the two fingers of the end effector. Note
that during the handover, the indicator turned orange to inform
the user that the object must be placed in any area between the
two fingers, excluding the fingertips. We set a threshold value for
the force torque sensor, which if exceeded, would trigger the
gripper to close and the arm to return to the home position. This
so-called hand-in mode is discussed separately below.

D. Human-to-Robot Handover Results

1) Metrics: The system was evaluated in terms of effective-
ness (mean success rate in completing the task) and efficiency
(mean time to completion). After each round, the participants
also filled out a 7-point Likert questionnaire evaluating the
system. The participants were asked to choose the number that
best represented their level of agreement or disagreement with
each aspect of the system.

2) MV vs.FPP Approaches: In terms of completion time, the
proposed MV method (mean: 24.8s; std: 2.1s) outperformed the
baseline FPP method (mean: 48.2s; std: 3.1s). Our results re-
vealed that the multiple view approach made it easier to identify
the graspable side of the objects, particularly when dealing with
the six objects that were graspable from only one side. The
handover success rate was as follows: Baseline FPP method
(96.5%; std: 7.2%) and MV method (mean: 86.9%; std: 8.4%).
Note that the difference did not meet the level of significance.

Fig. 5. Questionnaire analysis. The 7 points on the scale range from 1 (strongly
disagree; negative feedback) to 7 (strongly agree; positive feedback).

Note also that the robot arm did not pinch the participants’
fingers in any of the trials.

3) Exceptional Cases – Hand-In Mode: In some trials, the
participant held the object too far from the robot arm, such that
the task had to be completed in hand-in mode, which involved
the robot arm moving to a point close to the user and waiting
for the user to place the object between the two gripper fingers,
the force of which triggered the gripper to close. The incidence
of hand-in mode was similar between the two methods: FPP
(29.9%) and MV (25.7%). The success rate in hand-in mode
was also similar: FPP (96.3%) and MV (98.3%).

E. Questionnaire Analysis

The questionnaire was meant to obtain subjective feedback
pertaining to the performance of the proposed system. The
results are summarized in Fig 5.
� Q1: Feeling of Safety. The participants were asked if they

were worried about being injured by the robot. The system
received high ratings for safety, regardless of the operating
mode. We presume that this favorable assessment can
be attributed to the accuracy of the model and speed at
which the robot arm moved while in the vicinity of the
participants.

� Q2: Reactivity. TThe participants rated the system on its
ability to detect and react appropriately to their movements,
which presumably affected their confidence in the capabil-
ity of the robot arm. High ratings were obtained for both
modes.

� Q3: Efficiency. Participants rated the efficiency of the sys-
tem in terms of their satisfaction with the speed of the robot
arm. The responses were less positive here (close to 1).
In fact, the participants reported feeling impatient with the
the entire operation. Overall, the MV method outperformed
FPP.

� Q4: Willingness to use. Participants rated their willingness
to use the proposed handover system in a real-world setting.
Both methods received high ratings.
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V. CONCLUSION

This study adopted federated learning to tackle privacy con-
cerns in amassing training databases for service robot applica-
tions. To the best of our knowledge, this is the first application
of federated learning in tasks that involve visual grasping. The
effectiveness of the proposed system was compared with non-
federated baselines, depth-only methods, and state-of-the-art
methods. The practicality of the proposed system was assessed in
a user study using a low-cost robot arm with inexperienced users.
This method holds potential for use in various human-robot
collaboration scenarios.
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