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Model studies of fluctuations in the background for jets in heavy ion collisions
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Jets produced in high energy heavy ion collisions are quenched by the quark gluon plasma. Measurements
of these jets are influenced by the methods used to suppress and subtract the large, fluctuating background
and the assumptions inherent in these methods. We compare the measurements of the background in Pb+Pb
collisions at

√
sNN = 2.76 TeV by the ALICE Collaboration (Abelev et al., J. High Energy Phys. 03 (2012) 053)

to calculations in TENNGEN (a data-driven random background generator) and PYTHIA ANGANTYR. A detailed
understanding of the width of these fluctuations is important for reducing uncertainties due to unfolding and
extending measurements to lower momenta and larger resolution parameters. The standard deviation of the
energy in random cones in TENNGEN is approximately in agreement with the form predicted in the ALICE
paper, with deviations of 1–6%. The standard deviation of energy in random cones in ANGANTYR exceeds the
same predictions by approximately 13%. Deviations in both models can be explained by the assumption that
the single-particle d2N/dy d pT is a gamma distribution in the derivation of the prediction, whereas the model
uses a different distribution. This indicates that model comparisons are potentially sensitive to the treatment of
the background. We demonstrate that unfolding methods used to remove background fluctuations from jets can
affect the comparisons between models and data, even in the absence of detector effects. Our findings suggest
the need to more carefully consider methods for comparing simulations and data.

DOI: 10.1103/PhysRevC.106.044915

I. INTRODUCTION

A hot, dense, strongly interacting liquid of quarks and
gluons called the quark gluon plasma (QGP) is briefly created
in high energy heavy ion collisions [1–4]. Two of the key
signatures of the formation of the QGP are hydrodynamical
flow and jet quenching. The strong azimuthal asymmetry in
the final state particles’ momenta is a signature of hydrody-
namical flow. There are manymeasurements of jets which can,
in principle, provide quantitative constraints on the properties
of the medium [5]. While there have been some constraints on
the properties of the medium from measurements of jets [6,7],
the era of quantitative measurements is just beginning.

Improving quantitative constraints on the medium us-
ing jet measurements requires a quantitative understanding
of the background. The correlations due to flow lead to
an anisotropic background, which can in turn influence
jet measurements. At the Relativistic Heavy Ion Collider
(RHIC), mixed events were able to successfully describe the
background in measurements of hadron-jet correlations [8],
indicating that the background is dominated by random com-
binations of particles. Studies of the background at the Large
Hadron Collider (LHC) by the ALICE Collaboration found
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that the distribution of background energy density measured
by using random cones with the leading jet removed were
described well by predictions for a random background with
correlations due to flow [9].

We study the measurements in [9] in two models. We com-
pare to a data-driven random background generator, TENNGEN
[10], which uses the measured single-particle spectra and flow
to generate a realistic background without any jets. We also
use PYTHIA ANGANTYR [11], a Monte Carlo generator based
on PYTHIA 8.2 [11,12], which models heavy ion collisions as
a superposition of nucleon-nucleon collisions. We stress that
an understanding of this background is important for reducing
uncertainties in jet measurements, which would help extend
measurements in heavy ion collisions to higher resolution
parameters and lower momenta. The uncertainties due to un-
folding are driven by the width of the distribution rather than
the overall level of the background.

We emphasize that while models may simplify the physics
of heavy ion collisions, they still contain background and
background fluctuations. We examine different approaches to
unfolding to correct for background fluctuations in models.
We discuss how the presence of this background can affect
observables in Monte Carlo simulations, underscoring the
need for a treatment of background in model studies similar
to that in data.

II. SIMULATIONS

A. TENNGEN

The measured single particle double differential spectra for
π±, K±, p, and p̄ from [13] are fit to a Boltzmann-Gibbs blast
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wave distribution [14,15]:
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where pT is the transverse momentum, y is the rapidity, N
is the normalization, m is the mass of the particle, βs is the
surface velocity, n is an exponent describing the evolution of
the velocity profile, and Tkin. is the kinetic freeze-out tempera-
ture. The I0 andK1 are modified Bessel functions. The reduced
radius, r′, is integrated over from 0 to 1. The multiplicity
of each particle species is determined from charged particle
ratios [16] and is scaled up assuming a constant charged
particle multiplicity per unit pseudorapidity, dNch/dη. This
is a reasonable approximation for the pseudorapidity region
used in this analysis, −0.9 < η < 0.9. The multiplicities are
determined from measurements of the charged particle multi-
plicities in ALICE at the LHC [17]. Only the centrality bins in
[16] are available (0–5%, 5–10%, 10–20%, 20–30%, 30–40%,
and 40–50%) and there are no fluctuations in the multiplicity
within a centrality bin. Only charged hadrons are generated
for this analysis. Furthermore, all particles produced from
TENNGEN are uncorrelated except through correlations with
the event planes.

The azimuthal asymmetry in heavy ion collisions is decom-
posed using

dN

dφ
= N0

2π

(
1 +

5∑
n=1

2vn cos[n(φ − �n)]

)
, (2)

where N0 is the number of particles, the vn coefficients are
defined as vn = 〈cos[n(φ − �n)]〉, and φ is the azimuthal
position of the track. The symmetry planes �n are set to zero
for even n for simplicity. This differs from the physical cor-
relations between the second and fourth event planes, which
have been observed to fluctuate relative to each other [18].
While this difference between the TENNGEN simulation and
measurements would affect observables sensitive to flow, the
simulation is only intended to capture most of the correla-
tions due to flow and not intended as an exact quantitative
reproduction. The �n for odd n are randomly thrown from a
flat distribution for the odd n, roughly matching correlations
observed in data [18]. A random pT is thrown from the distri-
bution in Eq. (1), which is then used to determine the vn. This
is used to construct an azimuthal distribution of particles at the
momentum pT and a random φ is drawn from that distribution.
This is repeated for all the particles in the event. The vn can
also be set to zero to remove the impact of correlations due to
flow, leaving a uniform distribution of particles.

When the vn are included, the pT -dependent vn from [19]
are fit to a polynomial for n > 1. For n = 1, a rapidity-even v1
comparable to v2 and v3 has been observed [20–22], but it is
difficult to measure and is still poorly constrained. To roughly

match these measurements, we use v1(pT ) = v2(pT ) − 0.02,
which will give a negative v1 for low pT and a positive v1
for high pT , roughly conserving momentum. The azimuthal
coordinate is then randomly drawn from Eq. (2). The pseu-
dorapidity (η) is randomly drawn from a uniform distribution
for | η |< 0.9. For each centrality bin and combination of vn,
60 000 events are generated. For the 0–10% centrality bin, the
0–5% and 5–10% bins are combined. The code for TENNGEN
is available on Github [10].

B. ANGANTYR

PYTHIA ANGANTYR [11] is a Monte Carlo model for heavy
ion collisions included in PYTHIA 8 [11,12]. It is primarily
a superposition of nucleon-nucleon collisions and includes
inelastic collisions, single-diffractive, double-diffractive, and
absorptive collisions using a model with fluctuating radii.
The fluctuating nucleon radii result in a fluctuating nucleon-
nucleon cross section. This further results in multiplicity
fluctuations. ANGANTYR includes hard scatterings, event-by-
event multiplicity fluctuations, and multiparton interactions.
ANGANTYR does not contain flow (string shoving is not en-
abled in this analysis) or jet quenching. As such, it is a good
baseline for collisions in the absence of a QGP.

Default parameters are used and 20 × 103 minimum bias
Pb+Pb collisions at

√
sNN = 2.76 TeV and 20 × 103 minimum

bias Au+Au collisions at
√
sNN = 200 GeV were generated.

The centrality is determined using the centrality class im-
plemented in RIVET [23], which uses the multiplicity in the
forward pseudorapidity regions matching the ALICE V0-A
(2.8 < η < 5.1) and V0-C (−3.7 < η < −1.7) acceptance
[24] and bins the events in terms of the multiplicity in these
regions in ANGANTYR.

C. Reconstruction efficiency

The measurements in [9] did not include corrections for
detector effects so we implement an approximate single track
reconstruction efficiency, the dominant effect, to make these
model calculations more realistic. We use a parametrized pT -
dependent efficiency roughly matching the efficiency of the
ALICE detector in [25] when comparing to [9].

III. RESULTS

A. Background density ρ

To match the analysis in [9], the background density ρ

is estimated using the kT jet finding algorithm implemented
in FASTJET [26] with the pT recombination scheme and a
resolution parameter of R = 0.4. Reconstructed charged par-
ticles with pT > 0.15 GeV/c are input into the jet finder
and ghost particles are used to estimate the jet area, A. Jet
finding parameters are summarized in Table I. For jet candi-
dates with |η| < 0.5, the median pjetT /A is used to estimate the
background momentum density ρ for each event (as in [27]).
For ANGANTYR, the two leading jet candidates are excluded
from the sample when calculating the median, as done in [9].
Leading jets are not excluded in TENNGEN because it contains
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TABLE I. FASTJET parameters used.

Rparam 0.4
ghost max. rapidity 2.0
repeat 1
ghost area 0.005
grid scatter 1.0
pT scatter 0.1
〈pghostT 〉 10−100 GeV/c

no hard scattering. We simulate the impact of the single track
reconstruction efficiency in these calculations.

Figure 1 shows ρ versus the reconstructed number of tracks
N raw
input for TENNGEN and ANGANTYR. These are fit to a straight

line with the parameters given in Table II and compared to
fits from [9]. The multiplicity dependence is comparable to
ALICE data in both models. Note that the data cover a wider
range of multiplicities because TENNGEN only includes fixed
multiplicities and ANGANTYR underestimates the multiplicity
distribution by 5–10% [11]. This difference in the multiplicity
means that neither model is directly comparable to the data.
We therefore emphasize comparisons to expectations for a
random background in the following sections.

B. Distribution of δpT

The soft background does not make jet measurements diffi-
cult because it is large, but because it fluctuates, which leads to
large, jet-by-jet fluctuations. This smears the reconstructed jet
energy. This smearing is corrected for in data and, because the
background and its fluctuations are present in models which
simulate the entire event, it also must be corrected for to make
valid comparisons to Monte Carlo models which simulate
the entire event. We therefore investigate the distribution of

FIG. 1. Median event-by-event ρ vs N raw
input for TENNGEN (black

points) and ANGANTYR (z axis) Pb+Pb collisions at
√
sNN =

2.76 TeV. The line is from the fit of a straight line to ANGANTYR.
Parameters from fits to a straight line are in Table II.

TABLE II. ρ vs multiplicity fit parameters.

Slope Intercept

ANGANTYR 0.0585 ± 0.0002 −1.67 ± 0.09
TENNGEN 0.0610 ± 0.0029 −1.31 ± 2.38
ALICE data [9] 0.0623 ± 0.0002 −3.3 ± 0.3

these background fluctuations and compare them to ALICE
measurements of background fluctuations.

Two random cones with a radius R = 0.4 are drawn within
|η| < 0.5 for each event. The pT of all reconstructed charged
hadrons in the cone are added and the background density ρ

estimated from jets found with the kT jet finder is subtracted
to get

δpT = pT,cone − Aconeρ, (3)

where Acone = πR2. The distribution of δpT is a measure of
the fluctuations in the background.

Figure 2 shows the distribution of δpT in 3 different sets of
points: ALICE data in Pb+Pb collisions at

√
sNN = 2.76 TeV

[9] and results from TENNGEN and ANGANTYR. The leading
jet has been excluded from both the ALICE data and AN-
GANTYR. Even though TENNGEN uses ALICE single-particle
spectra and vn, the distributions do not overlap. This is in part
because TENNGEN uses the average multiplicity and does not
include fluctuations in the number of particles, leading to a
somewhat narrower distribution than the data. Furthermore,
TENNGEN contains no hard processes, resonances, mini-jets, or
decays. ANGANTYR contains multiplicity fluctuations and the
previously mentioned processes but underestimates the event
multiplicity.

C. Width of the δpT distribution

Understanding the width of fluctuations in the background
is important for possible improvements in methods, since the
width of the background fluctuations drives the uncertainties
from unfolding. In [9], the width of the δpT distribution is

FIG. 2. Comparison of TENNGEN and ANGANTYR to 0–10% cen-
tral Pb+Pb collisions at

√
sNN = 2.76 TeV data from [9]. In both

ANGANTYR and the ALICE data, the leading jet has been excluded.
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compared to predictions assuming only fluctuations in the
number of particles in the random cone and their momenta
and correlations in the distribution of background particles
due to flow. There were small deviations between data and
the predictions, but it is not possible to isolate the source of
these deviations with studies of data alone. We compare our
model to the same predictions.

The distribution of the sum of momenta from a random
sample of particles is discussed in [28], where it is applied to
distributions of transverse energy in events. These derivations
were applied in [9] to the problem of random cones. In [28],
the single-particle pT spectrum is approximated as a gamma
distribution,

d2N

dy d pT
∝ k

	(p)
(kpT )

p−1e−kpT , (4)

where p ≈ 2 and k are constants and 	(p) = p! if p is an
integer. The N-fold convolution of this distribution is itself
another gamma distribution with a mean given by N〈pT 〉 and
standard deviation

√
NσpT . The δpT distribution in Fig. 2 can

therefore be fit to a gamma distribution to extract the width.
When there are Poissonian fluctuations in the number of

particles in the sample, the distribution is a sum of gamma
distributions, with a standard deviation given by

σδpT =
√
Nσ 2

pT + N〈pT 〉2. (5)

For both TENNGEN with vn =0 and ANGANTYR, the distribu-
tions of the number of particles in the random cone were
consistent with a Poissonian distribution. Appendix 1 includes
a detailed derivation of Eq. (5) and Appendix 2 investigates
how Eq. (5) would change if the pT spectrum were more
complicated than a single gamma distribution.

The presence of hydrodynamic flow in Eq. (2) leads to
non-Poissonian number fluctuations. If the fluctuations from
each term are approximated as uncorrelated and constant as a
function of momentum, the width is given by

σδpT =
√√√√Nσ 2

pT +
(
N + 2N2

∞∑
n=1

v2
n

)
〈pT 〉2. (6)

In [9], only n = 2 and n = 3 terms were considered. These
assumptions could be sources of deviations between Eq. (6)
and the observed widths. In addition Eq. (6) assumes that
the vn terms are independent of pT . For the calculations of
Eq. (6) compared to TENNGEN in this analysis, the unweighted
average vn from TENNGEN is used. Note that N in Eqs. (5)
and (6) is the number of particles in the random cone, not the
charged particle multiplicity in the event. In Appendix 3 we
investigate the impact of flow in greater detail.

1. TENNGEN

Figure 3 shows σδpT in TENNGEN with vn = 0 compared to
Eq. (5) and with nonzero vn compared to Eq. (6). The predic-
tions from Eqs. (5) and (6) use N , 〈pT 〉, and σpT in TENNGEN.
The slight deviations seen here are qualitatively consistent
with [9], but the absence of any correlations other than flow
makes the discrepancy easier to interpret in TENNGEN. The
derivation of Eq. (5) assumed that the single-particle spectra

FIG. 3. Comparison of the δpT distribution’s width in TENNGEN

with vn = 0 compared to Eq. (5) and nonzero vn compared to
Eq. (6). TENNGEN is generated from fits to single particle pT spectra
measured in

√
sNN = 2.76 TeV Pb+Pb collisions with ALICE.

were a gamma distribution while TENNGEN uses a blast wave,
which could explain the roughly 2% deviation between TEN-
NGEN with vn = 0 and Eq. (5). This indicates that the width
is dependent on the shape of the spectrum. The derivation of
Eq. (6) assumed that both the vn are independent of pT and
that there are no correlations between number fluctuations due
to flow, explaining the deviations as high as 6% between this
prediction and TENNGEN with nonzero flow. The derivations
in Appendices 1 and 2 confirm that these effects can explain
the deviations from Eqs. (5) and (6).

2. ANGANTYR

Figure 4 compares the δpT widths in ANGANTYR with
no jets excluded, the leading jet excluded, and the lead-
ing two jets excluded from the sample to Eq. (5). Leading
jets are excluded by requiring a large separation between
the axis of the random cone and the anti-kT jet axis,
�R = √

(φjet − φcone)2 + (ηjet − ηcone)2 > 1.0. The predic-
tions from Eq. (5) use the N , 〈pT 〉, and σpT in ANGANTYR.
The widths in ANGANTYR have an average difference of 12%
with respect to what is predicted by Eq. (5) when no leading
jets are removed. The discrepancy gets smaller when jets are
excluded from the sample. The average differences are 4% and
3% when one or two leading jets are removed, respectively.

Figure 5 shows the δpT widths in Pb+Pb collisions at√
sNN = 2.76 TeV and Au+Au collisions at

√
sNN = 200

GeV with the two leading jets removed from the sample.
The predictions from Eq. (5) use the N , 〈pT 〉, and σpT from
ANGANTYR at each energy. The average difference from the
prediction in Au+Au is 2%. The lower energy should have
fewer jets than the higher energy, which could partially ex-
plain why the σδpT is closer to the prediction in Au+Au.
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FIG. 4. Comparison of the δpT distribution’s width in ANGAN-
TYR for Pb+Pb collisions at

√
sNN = 2.76 TeV with Eq. (5) with

zero, one, and two leading jets omitted from the sample.

Additional differences could be from the difference between
the particle pT spectrum in ANGANTYR and a gamma distribu-
tion.

Figure 6 shows fits of the particle spectra from Pb+Pb
collisions at

√
sNN = 2.76 TeV in data and in ANGANTYR to

a gamma distribution. Since these are single-particle spectra,
it is not possible to remove particles from jets. The gamma
distribution describes the data better than it describes ANGAN-

FIG. 5. Comparison of the δpT distribution’s width in ANGAN-
TYR (two leading jets removed from the sample) for Pb+Pb collisions
at

√
sNN = 2.76 TeV and Au+Au collisions at

√
sNN = 200 GeV

compared to Eq. (5).

FIG. 6. Comparison of gamma distribution fits to 10–20% cen-
tral 2.76 TeV Pb+Pb data and 10–20% central 2.76 TeV ANGANTYR

Monte Carlo.

TYR. This indicates that the deviations between ANGANTYR

and predictions from Eq. (5) shown in Fig. 4 may be largely
due to the difference in the shapes of the spectra, as supported
by the calculations in Appendix 2.

D. Unfolding jets in heavy-ion collision Monte Carlo

Experiments correct for the migration of jets from their
correct momentum bin to another bin, which distorts the
momentum, using a procedure called unfolding [29,30]. In
experiment, this smearing arises due to both detector effects
and jet background fluctuations. Usually, a response matrix is
determined from full simulation of the detector response to
a jet. A simulated PYTHIA p+p collision may be embedded
in data from a heavy ion collision in order to use a data-
driven smearing due to fluctuations in the background; we
construct a similar response matrix using a Pb+Pb collision
from ANGANTYR and call this the “embedding response ma-
trix.” Alternatively, a response matrix including both effects
can be determined by multiplying two response matrices, one
describing the detector response to a jet in p+p collision and
one describing background fluctuations observed in the data
[31]. In the absence of detector effects, as is the case in
these studies, the only effect is from background fluctuations;
we construct a similar response matrix for ANGANTYR using
the fluctuations in Fig. 2 and call this the “fluctuation-only
response matrix.” We also construct a response matrix using
a PYTHIA p+p event embedded in an ANGANTYR Pb+Pb event
but only using the particles from the p+p event to determine
the measured jet momentum, and then multiply this matrix
by the background fluctuation response matrix. This should
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FIG. 7. (a) Embedding, (b) fluctuation-only, and (c) fluctuation plus matching response matrices

capture changes in the behavior of the jet finder in a heavy
ion collision while still maintaining the assumption that the
impact of changes in the behavior of the jet finder and fluc-
tuations in the background can be factorized. We call this the
“fluctuation plus matching response matrix.”

Two sets of jets are reconstructed, one containing only
charged particles from the p+p event, which is considered the
generated distribution, and another using all charged particles
in either event, which is considered the smeared distribution.
In order to build the response matrix, a match between the jets
in the two sets is established by requiring a bijective match
and �R =

√
�η2 + �φ2 < 0.45, where �η and �φ are the

differences in η and φ between the generated and smeared
jets. We do not include the impact of the finite single track
reconstruction efficiency.

The response matrices are shown in Fig. 7. The fluctuation-
only response matrix does not describe jets reconstructed well
in the region where the reconstructed momenta is below the
true momenta, which can be seen in the embedding response
matrix, and it predicts a significant contribution from jets
reconstructed well above their true momenta, which is not
evident in the embedding response matrix. The fluctuation
plus matching response matrix is also unable to capture this
behavior.

In order to demonstrate closure, an unfolded distribution
has to converge to the true distribution. We use only the jets
in the combined Pb+Pb plus p+p event which were matched
to a jet in the p+p event and unfold this transverse momentum
spectrum using the different response matrices. We compare
this to the true transverse momentum spectrum in PYTHIA

p+p events. We use Bayesian unfolding implemented in the
ROOUNFOLD [32] package. The singular value decomposition
method was used as a cross-check and all results were consis-
tent with those obtained with Bayesian unfolding.

The ratios of the unfolded spectra to the true distributions
are shown in Fig. 8. The number of iterations in the Bayesian
unfolding procedures is varied from 2 to 7. The results us-
ing the embedding response matrix converge quickly, with
little change after the second iteration, and this procedure
successfully recovers the true distribution to within around
4%. The results using the fluctuation-only response matrix
change more and the difference between the results and the

true distribution is about 5% below 110 GeV/c, increasing to
about 10% above that. The results from the fluctuation plus
matching response matrix are comparable to those with the
fluctuation-only response matrix.

The spectra unfolded using the fluctuation-only and the
fluctuation plus matching response matrices are systemat-
ically lower than the true spectra. This could skew the
interpretation of comparisons between models and data. This
indicates that there is an interplay between background fluc-
tuations and the behavior of the jet finder in a heavy ion
environment, and that robust comparisons between data and
full Monte Carlo models may require not just unfolding, but a
response matrix created using embedding, just like the proce-
dure for data analysis.

FIG. 8. Unfolded spectra over the true distribution of the (a) em-
bedding, (b) fluctuation-only, and (c) fluctuation plus matching
response matrices
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IV. DISCUSSION

Our first observation is that a large, fluctuating background
uncorrelated with jet measurements is, indeed, present in
Monte Carlos which simulate the full event, necessitating
background subtraction in such models.

Other models, such as JEWEL [33], nominally give the user
only the particles from signal jets with only some ambiguity
as to which particles from the medium were influenced by the
jet. This ambiguity can be approached by looking at the two
extremes, when only particles from the hard parton shower are
included and when medium particles which have interacted
with the jet are included [34].

That works well if the only possible uncertainty is theo-
retical. However, the field has made incomplete assumptions
about the background for jet measurements in the past, for
instance omitting v3 from the background for dihadron corre-
lations, leading to several erroneous observations [5]. Biases,
or even mistakes, in measurements due to incomplete as-
sumptions about the background subtraction are possible. We
therefore advocate following the philosophy of RIVET [35]: the
exact same strategy should be used in both the analysis and the
Monte Carlo model, to the extent possible, in order to ensure
that the comparison between data and the model is valid. In
practice, this means that the background subtraction should
be implemented in Monte Carlo. In dihadron correlations, this
would have resulted in valid comparisons between models
and data, even though the result would be more sensitive to
the soft background than was intended in the measurement.
For models such as JEWEL, which nominally contain only
or mostly particles directly from the jet signal, aspects of
the background subtraction could still be applied, particularly
when they might impose a bias in the measurement. For ex-
ample, reflection about η = 0 for the background subtraction
[36,37] could be implemented in JEWEL.

For Monte Carlo models which simulate the full event,
such as ANGANTYR, this means that the exact same back-
ground subtraction method should be applied to the model
as is used in data, including the corrections for fluctuations.
Background fluctuations are significantly different in models
and in data, so it is not sufficient for comparisons to use ex-
perimental observations of the fluctuations or an experimental
response matrix. This poses some complications for uncor-
rected measurements, even if the response matrix is provided
with the measurement, as the fluctuations will be different in
the model and the data. The sensitivity of the shape of the
background to subtle differences in the shape of the spectrum
and the details of correlations between particles in background
poses particular problems for comparisons between data and
models. It implies that the corrections for the background
fluctuations must be done separately for each model, using
a method consistent with that used in data. Moreover, we
find that it is necessary to unfold using a response matrix
constructed in the same way as in the measurement.

V. CONCLUSIONS

While our studies broadly support the conclusions in [9]
that the background fluctuations are dominated by random
combinations of particles, we find that this width is sensi-
tive to both details of the hydrodynamical background and
the shape of the single-particle momentum spectrum. These
effects are less than 6% for TENNGEN, a data-driven random
background generator, and around 13% in PYTHIA ANGANTYR

depending on how many jets are removed from the events.
As measurements of jets in heavy-ion collisions reach

higher precision, it is important to make sure that models are
comparable to data. Some of the details of flow correlations
would be difficult to fully describe in background subtraction
methods. Area-based subtraction techniques such as those
used by ALICE with a data-driven determination of the fluc-
tuations [31,38] and the η-reflection method used by CMS
[36,37] should be robust to these effects.

It is less clear how these subtle effects in the width of fluc-
tuations in the background would be incorporated into mixed
events [8] or impacted by the iterative subtraction techniques
used by CMS [39] and ATLAS [40]. Many models, such as
ANGANTYR, may not accurately reproduce the background in
heavy ion collisions. Implementation of the full experimental
method in model calculations, using tools such as RIVET,
is essential for robust and meaningful comparisons between
models and data.

We note that there are models which do not attempt to
simulate the full event, such as JEWEL [33], as well as models
where it is possible to separate jet “signal.” This may reduce
the direct sensitivity to background models, but it adds an
additional theoretical uncertainty, since arbitrary distinctions
between “signal” and “background” must be made. This may
be less problematic for certain observables, particularly those
less sensitive to soft radiation; however, it is precisely those
observables which are likely to be most interesting for studies
of partonic energy loss. We therefore urge care in comparisons
between data and models, reproducing as many parts of the
experimental method as possible.
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APPENDIX: DERIVATIONS

1. Mean and width of the sum of particles drawn from a � distribution

The derivation of the distribution of energies in [28] and the associated widths in [9] assumed a spectrum of the form
dN

d pT
= apbT e

−cpT , (A1)

where N is the number of particles, pT is the transverse momentum, and a, b, and c are constants. The normalized probability
distribution, dP1/d pT , for the probability of a single random particle drawn from the distribution having a momentum pT takes
the same form, with a = cb+1

	(b+1) . As in [28], it is convenient to parametrize (A1) in terms of the mean (b = μ2/σ 2) and the

variance (c = μ/σ 2):

dN

d pT
(μ, σ, pT ) =

(
μ

σ 2

) μ2

σ2

	( μ

σ 2 )
p

μ2

σ2
−1

T e− μ

σ2
pT . (A2)

It can be shown that the parameters μ and σ are in fact the mean and standard of deviation of (A2):

μ

{
dN

d pT

}
=

∫ ∞

0
pT

dN

d pT
(μ, σ, pT ) d pT =

∫ ∞

0

(
μ

σ 2

) μ2

σ2

	
(

μ

σ 2

) p
μ2

σ2

T e− μ

σ2
pT d pT = μ, (A3)

σ

{
dN

d pT

}
=

√∫ ∞

0
p2T

dN

d pT
(μ, σ, pT ) d pT −

(
μ

{
dN

d pT

})2

=
√

σ 2 + μ2 − μ2 = σ. (A4)

The distribution of the sum of the momenta of two particles is given by the convolution, where dP1

d pT
is (A2):

dP2

d pT,tot
=

∫ pT,tot

0

dP1(x)

d pT

dP1(pT,tot − x)

dx
. (A5)

This is repeated each time an additional particle is added, where each iteration is given by

dPn

d pT,tot
=

∫ pT,tot

0

dP1(x)

d pT

dPn−1(pT,tot − x)

dx
, (A6)

where n is the number of particles. The distribution of the total pT in the sample, pT,tot , for n particles drawn from this distribution
is given by

dPn

d pT,tot
= μ

nμ2

σ2

σ 2	
( nμ2

σ 2

)( pT,tot

σ 2

) nμ2

σ2
−1
e− pT,totμ

σ2 , (A7)

with a corresponding mean in total cone pT given by

μ

{
dPn

d pT,tot

}
=

∫ ∞

0
pT,tot

dPn

d pT,tot
d pT,tot = nμ, (A8)

and the variance is

σ 2

{
dPn

d pT,tot

}
=

∫ ∞

0
p2T,tot

dPn

d pT,tot
d pT,tot −

(
μ

{
dPn

d pT,tot

})2

= nσ 2. (A9)

The total width of fluctuations of the sum of pT in a random cone is the quadrature sum of the Poissonian fluctuations in the
number of particles in the random cone and the width of the n-fold convolution (A9):

σ 2(δpT ) =
(√

nμ

{
dN

d pT

})2

+
(

σ 2

{
dPn

d pT,tot

})
= nμ + nσ 2, (A10)

where n is the number of particles in the cone, μ is the mean pT of the single-particle distribution, and σ is the standard deviation
of the pT of the single-particle distribution. Equation (A10) is the same as Eq. (3) in [13].

2. Deviations from a � distribution

We note that the pj
T e

−cpT for integer j form a complete set and we therefore can write an arbitrary spectral shape as

dP

d pT
=

∞∑
j=0

a j p
j
T e

−cpT . (A11)
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The prescription in Appendix1, in principle, also works for an arbitrary case such as this. Since a single term is shown in [9] to
work well, we assume a form

dN

d pT
= αpaT

(
1 + βpbT

)
e−cpT , (A12)

where α, β, a, b, and c are small and β is much smaller than α. Since the measured spectra are approximately a gamma
distribution, this should provide a realistic quantification of deviations from a perfect gamma distribution. Taking into account
an explicit normalization [such that the integral of Eq. (A12) over all pT is 1], the mean of Eq. (A12) is given by

μ

{
dN

d pT

}
= cb	(a + 2) + β	(a + b+ 2)

c1+b	(a + 1) + cβ	(a + b+ 1)
(A13)

and the variance is given by

σ 2

{
dN

d pT

}
= cb	(a + 3) + β	(a + b+ 3)

c2[cb	(a + 1) + β	(a + b+ 1)]
−

(
cb	(a + 2) + β	(a + b+ 2)

c1+b	(a + 1) + cβ	(a + b+ 1)

)2

. (A14)

Following the procedure laid out in Appendix 1, we find the n-fold convolution of Eq. (A12). We do this using Laplace
transforms, f (n)(x) = L −1{L { f (x)}n}, and induction. The first convolution gives

dP2

d pT,tot
=L −1

{
L

{
dN

d pT

}2}
= c2a+2b+2p2a+1

T,tot e
−cpT,tot

[cb	(a + 1) + β	(a + b+ 1)]2

×
(

	2(a + 1)

	(2a + 2)
+ 2pbT,totβ	(a + 1)	(a + b+ 1)

	(2a + b+ 2)
+ p2bT,totβ

2	2(a + b+ 1)

	(2a + 2b+ 2)

)
(A15)

The second convolution gives

dP3

d pT,tot
=L −1

{
L

{
dN

d pT

}3}
= c3a+3b+3p3a+2

T,tot e
−cpT,tot

[cb	(a + 1) + β	(a + b+ 1)]3

×
(

	3(a + 1)

	(3a + 3)
+ 3pbT,totβ	2(a + 1)	(a + b+ 1)

	(3a + b+ 3)

+3p2bT,totβ
2	(a + 1)	2(a + b+ 1)

	(3a + 2b+ 3)
+ p3bT,totβ

3	3(a + b+ 1)

	(3a + 3b+ 3)

)
. (A16)

By induction the nth convolution is

dPn

d pT,tot
= cn(a+b+1)pna+n−1

T,tot e−cpT,tot

[cb	(a + 1) + β	(a + b+ 1)]n

n∑
m=0

(n
m

)
pbmT,totβ

m	n−m(a + 1)	m(a + b+ 1)

	(na + mb+ n)
. (A17)

The variance of (A17) is

β	(a + b+ 1)]n
n∑

m=0

(n
m

)
c−na−bm−n−2βm	n−m(a + 1)	m(a + b+ 1)	(na + mb+ n + 2)

	(na + mb+ n)

− c2n(a+b+1)

[cb	(a + 1) + β	(a + b+ 1)]2n

(
n∑

m=0

(n
m

)
c−na−bm−n−1βm	n−m(a + 1)	m(a + b+ 1)	(na + mb+ n + 1)

	(na + mb+ n)

)2

. (A18)

When combined with the Poissonian fluctuations in the number of particles in the cone, this can gives the width of the fluctuations
for the sum of momentum in the cone as a function of n particles in the cone:(√

n
cb	(a + 2) + β	(a + b+ 2)

c1+b	(a + 1) + cβ	(a + b+ 1)

)2

+ cn(a+b+1)

[cb	(a + 1) + β	(a + b+ 1)]n

n∑
m=0

(n
m

)
c−na−bm−n−2βm	n−m(a + 1)	m(a + b+ 1)	(na + mb+ n + 2)

	(na + mb+ n)

− c2n(a+b+1)

[cb	(a + 1) + β	(a + b+ 1)]2n

(
n∑

m=0

(n
m

)
c−na−bm−n−1βm	n−m(a + 1)	m(a + b+ 1)	(na + mb+ n + 1)

	(na + mb+ n)

)2

. (A19)
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FIG. 9. Comparison of the widths of background fluctuations for particles drawn from a single 	 distribution in pT from Eq. (A1) with
realistic parameters to widths of background fluctuations [Eq. (A19)] derived from double 	 distributions in pT with the same parameters for
a, α, and c as Eq. (A1) but varying β and b parameters. The single 	 distribution is the same function in each panel, N is the multiplicity of
the collision, and σ pT is the width of the jet background fluctuations.

This expression is difficult to simplify so that the impact of deviations from a Gamma distribution can be interpreted easily.
Instead we use realistic numbers and show the impact in Fig. 9. Deviations from a single gamma distribution always increase
the width, with the deviations increasing monotonically from that of a single gamma distribution. Thus we see that realistic
deviations from a gamma distribution increase the width of the distribution of momenta in random cones.

In addition, we constructed gamma distributions with the same mean and standard deviation as the spectra in ANGANTYR and
TENNGEN for Pb+Pb events at

√
sNN = 2.76 TeV.We drew several samples of the average number of particles observed in random

cones for each generator and added up the total momentum. The track momentum distributions and the distribution of the total
momenta are given in Fig. 10 and the properties of these distributions are given in Table III. This exercise isolates the impact of
the shape of the spectra alone. The shifts in the mean of the sums of all momenta are small. The shift in the standard deviation
of the sum of all momenta from the true distribution to the gamma distribution is small for both, but larger for ANGANTYR. This
also demonstrates that the shapes of the spectra are important for describing fluctuations in the background.

FIG. 10. Charged track momentum distributions dN
d pT

for (a) ANGANTYR events with a multiplicity of 1200–1400 and (b) 10–20% central
TENNGEN events for Pb+Pb collisions at

√
sNN = 2.76 TeV and gamma distributions with the same means and variances. Distributions of the

sum of track momenta for NA = 58 for ANGANTYR and NA = 35.7 for TENNGEN for both the dN
d pT

in the model and the gamma distribution with
the same single track mean and standard deviation.
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TABLE III. Mean (μ
pT ) and standard deviation (σ
pT ) for distribution of total momenta of the average number of particles in a random
cone (NA) for 10–20% central TENNGEN Pb+Pb events at

√
sNN = 2.76 TeV and Pb+Pb events at

√
sNN = 2.76 TeV with ANGANTYR with a

multiplicity of 1200–1400, as well as for gamma distributions with the same mean momenta and standard deviations.

NA μ
pT (GeV/c) σ
pT (GeV/c)

ANGANTYR 58 37.54 ± 0.02 6.29 ± 0.01
ANGANTYR 	 58 36.12 ± 0.02 6.12 ± 0.01
TENNGEN 52 35.68 ± 0.02 6.12 ± 0.01
TENNGEN 	 52 35.70 ± 0.01 6.11 ± 0.01

3. Including azimuthal anisotropy

We consider the azimuthal anisotropy due to vn and show that this is a special case of that derived in Appendix 2. The standard
expression of azimuthal anisotropy in a heavy ion collision is

d2P

dpT d (φ − ψn)
= A

(
1 + 2

∞∑
n=1

vn(pT ) cos[n(φ − ψn)]

)
, (A20)

where A is a normalization factor, φ is the azimuthal angle of a particle’s momentum vector, ψn is the azimuthal position of
the nth-order event plane, and the vn are the nth-order azimuthal anisotropies. Without loss of generality, we can express the
momentum dependence of the vn with a Taylor expansion,

vn =
∞∑
m=0

vn,mp
m
T , (A21)

where the vn,m are constants so that Eq. (A20) can be rewritten as

d2N

dpT d (φ − ψn)
= dN

d pT

(
1 + 2

∞∑
n=0

vn,0 cos[n(φ − ψn)] + 2pT

∞∑
n=0

vn,1 cos[n(φ − ψn)] + · · ·
)

. (A22)

The dominant vn,m can be chosen so that this can be rewritten in the form of Eq. (A11). If only the first term is kept, corresponding
to constant vn, the momentum and azimuthal dependencies factorize. The analysis in Appendix 1 can be applied to the momentum
dependence. The mean is given by

μ

{
dN

d pT

}
=

(
1

2π

∫ 2π

0

(
1 + 2

∞∑
n=0

vn,0 cos(n(φ − ψn))

)
dφ

)(∫ ∞

0
pT

dN

d pT
d pT

)
= μ. (A23)

The average does not change because the average over all azimuthal angles is one. The standard deviation is given by

σ

{
dN

d pT

}
=

√√√√(
1

2π

∫ 2π

0

(
1 + 2

∞∑
n=0

vn,0 cos(n(φ − ψn))

)
dφ

) ∫ ∞

0
p2T

dN

d pT
d pT − μ2 = σ. (A24)

This also does not change. The change in standard deviation due to vn in Eq. (6) is entirely because of the change in the number
of particles. However, including a single momentum-dependent term in the vn in Eq. (A22) increases deviations of dN

d pT
from a

single gamma distribution, increasing the width. Since the vn are momentum dependent, any realistic vn will increase the width.
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