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Abstract—Quantitative Viscoelastic Response (QVisR) ultra-
sound uses in silico on-axis VisR displacement profiles to estimate
the elastic and viscous moduli of an interrogated material. This
work fine-tunes QVisR models with scanner data acquired in a
CIRS elasticity phantom to adapt the modulus estimation domain
from simulation to phantom. Before fine-tuning, QVisR is able
to distinguish material property relative to others within the
same image, however it fails to estimate the actual moduli of the
materials within reasonable bounds. After fine-tuning, QVisR
much more closely estimates the CIRS phantom moduli while
still showing the correct relative trends within images. These
results suggest fine tuning can be used to adapt simulation trained
QVisR models to more realistic imaging environments with a
small, labeled dataset.

Index Terms—Acoustic Radiation Force (ARF), Viscoelastic
Response (VisR), Quantitative Viscoelastic Response (QVisR),
Viscoelasticity, Elastography, Machine Learning

I. INTRODUCTION

Viscoelastic Response (VisR) [1] ultrasound uses a double-
push acoustic radiation force (ARF) excitation to interrogate
the stress response of viscoelastic materials. Conventional
VisR fits tracked displacements to a 1D mass spring damper
model [2], [3], and the fit parameters can be rearranged
to generate local force amplitude normalized measures of
elasticity and viscosity. These metrics are limited to qualitative
comparisons since the local force amplitude is generally
unknown.

Quantitative Viscoelastic Response (QVisR) ultrasound es-
timates elastic and viscous moduli from VisR displacement
profiles using machine learning [4], [5]. Previous QVisR
studies have been limited to model training and evaluations
on simulated VisR displacements. Differences in simulation
and real scanner acquisition environment (i.e., changes in the
estimation domain distribution) would lead to generalization
error when using QVisR models to estimate material property.
Transfer learning is often used to adapt machine learning
models from one domain to another. These techniques is
particularly useful when there is an abundance of training data
from one domain and very limited data from a similar domain
to be used for final model testing. Fine-tuning, a type of trans-
fer learning, uses the model weights from a previously trained
model and updates them with further training on a different
dataset. This study fine-tunes simulation trained QVisR models
with data acquired in a CIRS elasticity phantom to evaluate
the ability to adapt QVisR models to non-simulation domains.

II. METHODS

A. Simulation Trained QVisR Model

A QVisR model was trained following methods from exist-
ing QVisR studies [4], [5]. This study uses an extension of the
previous study material database which includes viscoelastic
inclusions. Details of the database extension and a summary
of the simulation QVisR fit methods are documented below.

1) Simulation Method Summary: VisR displacements were
simulated in viscoelastic heterogeneous materials using a Field
II [6] and finite element method pipeline developed by Palmeri
et al. [7]. Acoustic radiation force point spread functions were
modeled in Field II and then used as the forcing function for
LS-DYNA (Ansys Inc., Canonsburg, PA) viscoelastic material
finite element meshes. Resulting nodal displacements through
time were mapped to random scatterer displacements, which
were then ultrasonically imaged using Field II. White Gaussian
noise from 30-50dB SNR was added to the RF data before 1-
D axial normalized cross correlation (3λ kernel, 50µm search
window) displacement tracking [8].

2) Heterogeneous Material Simulations: The VisR beamse-
quence applied to the heterogeneous material meshes consisted
of ARF pushes with F/3.0 focal configuration and 4.21MHz
center frequency as well as tracking pulses at 6.15MHz with
aperture growth and dynamic receive focusing. The finite
element materials were defined using the Kelvin-Maxwell
Viscoelastic material model, a Poisson’s Ratio of 0.499, and an
equivalent elastic perfectly matched layer (PML). The finite el-
ement mesh had a 10mm diameter spherical inclusion centered
at 25mm axially. Four elasticities (15.56, 22, 28, 36.67 kPa)
and four viscosities (0.01, 1.57, 2.6, 3.9 Pa.s) were paired to
create sixteen combinations of inclusion viscoelasticities. The
material background was fixed to 26.11 kPa and 2.34 Pa.s.
VisR sequences were simulated with ARF push focal depths
ranging from 15-35 mm in steps of 5 mm.

3) QVisR Model Fit: Simulated displacements were min-
max normalized to remove information related to the un-
known applied force amplitude. Normalized displacements
were paired with the associated measurement axial depth and
ARF push focal depths then used as the input to a multi-
layer perceptron neural network trained to estimate the elastic
and viscous moduli of the simulated materials. The network
was 5 layers deep with tanh activation on the hidden layers
and a softplus output activation to enforce positive moduli
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estimates. Huber loss, a combined L1 and L2 metric, was
minimized with the ADAM optimizer with a 0.004 learning
rate and 4096 displacement profile batch size over 150 training
epochs. The model was fit using displacements sampled from
both homogeneous and heterogeneous simulations with vali-
dation displacements sampled from different random scatterer
realizations from the training set.

B. CIRS Phantom Imaging

A CIRS cylindrical elasticity phantom was imaged with a
VisR beam sequence using a Siemens Antares scanner and
VF7-3 transducer (Siemens Healthineers, Ultrasound Division,
Issaquah, WA). Imaging configuration was chosen to match
simulations. The phantom inclusions were in a transverse view
to approximate the simulated spherical inclusions. Acquisi-
tions were taken for three of the inclusion elasticities (6.49,
15.3, and 49.0 kPa), three inclusion cross-sectional diameters
(6.49, 10.41, 16.67 mm), and with three ARF push focal depths
(25, 30, 35 mm). Displacements acquired were processed in
the same manner as simulations to be used with the QVisR
model.

C. QVisR Model Fine Tuning

The simulation trained QVisR model was fine tuned with a
subset of the CIRS phantom data for 5 epochs. The optimizer
learning rate was lowered to 0.0001 and displacements were
sparsely sampled between 20-40mm to reduce overfitting. All
displacements from the 6.49 mm cross-sectional diameter and
30 mm focal depth were excluded from fine tune training to
be used as a validation set.

III. RESULTS AND DISCUSSION

Elastic modulus estimates are shown for both the simulation
trained and CIRS phantom fine tuned QVisR models on the
phantom validation set. Before fine tuning (Fig. 1 2nd row),
model estimates show the correct qualitative trend (i.e. inclu-
sion softer/stiffer than background), but background estimates
are not consistent preventing any comparisons between differ-
ent images. After fine tuning (3rd row), background estimates
closely match calibrated values with median absolute errors
(MAE) of 0.54, 0.48, and 0.26 kPa (Fig. 1 g, h, i, respectively).
Inclusion estimates are most accurate near the center of the
inclusion and smooth into the background modulus values
near boundaries. Despite the edge underestimation, fine-tuned
QVisR estimates still have relatively low MAEs (2.42, 2.41,
and 4.60 kPa) measured over the entire inclusion geometry.

Viscosity in the CIRS phantom was negligible, both within
the inclusion and background, and QVisR MAE was less than
0.1 Pa.s post fine tune. Since there was no variation in the
viscosity of the fine-tuning dataset, QVisR is likely overfitting
to isoviscous phantom material which would bias estimates
using any viscous materials. Extension to viscous phantoms is
a topic of ongoing research.
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Fig. 1. CIRS cylindrical elastic phantom modulus estimates for simulation
trained (middle row) and phantom fine-tuned (bottom row) QVisR models. Top
row shows calibrated elastic modulus values with geometry segmented from
Bmode. Cylindrical inclusion cross-section boundary overlaid on estimate
images as a faint white mask. Inclusion elastic modulus varies by column as
indicated by the bottom x-axis of the colorbar. Background elastic modulus
for each inclusion type was fixed at 26 kPa. Estimates are shown for 30mm
focal depth. Viscous estimates excluded from figure since the ground truth
value is 0 Pa.s and phantom fine-tuned model estimates are nearly uniformly
0 Pa.s.

IV. CONCLUSION

This study shows the validity of fine-tuning to adapt the
estimation domain of QVisR models from viscoelastic simu-
lations to elastic phantoms. Future work will focus on incor-
porating prior information from estimation domain geometry,
application of physics informed models, and domain adaption
to clinical datasets. This work is part of an ongoing study with
further statistical performance analysis and model extensions.
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