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Abstract—Multi-joint hybrid neuroprostheses provide ther-
apeutic benefits for people with spinal cord injury, but they
are typically overactuated, which makes input dimensional-ity
reduction desirable. This can be done through artificial
synergies that function like the biological synergies utilized by
the human neuromuscular system. Bio-inspired synergistic
control is here merged with a model predictive control (MPC)
scheme for cooperative control of a hybrid neuroprosthesis that
combines functional electrical stimulation (FES) with a powered
exoskeleton. The controller assigns activation coefficients to
artificial synergies to produce walking-like movement in a leg
model that includes activation and muscle fatigue dynamics.
The tube-based MPC scheme employs a sliding mode controller
to ensure robustness and is formulated in task space to guide
foot placement. The formulation is employed on a 2-degree of
freedom hybrid neuroprosthesis model with 6 actuators.

I. INTRODUCTION

In 2020, the estimated population of persons living in
the US with spinal cord injury totaled 294,000 [1]. The
injury is often followed by muscle atrophy and bone loss,
increasing the risk of fractures and metabolic complications
[2]. There is evidence that functional electrical stimulation
(FES) can assist in increasing muscle mass [3] as well as
improving bone health [4], [5]. FES provides an electric
current to a muscle while a functional action such as walking is
performed. Recent studies of FES walking have demon-
strated its facilitation of increased unassisted walking speed
[6] and improved bone turnover [7] in patients with SCI,
but FES-induced fatigue poses an obstacle to maximizing
therapeutic benefit [8]. One method for reducing fatigue is
the combination of a powered exoskeleton with FES. The
exoskeleton decreases muscle demand and provides added
torque for completing a motion, reducing fatigue as well as
error [9]. Furthermore, a hybrid scheme reduces the power
required by the exoskeleton motors [10] and improves
kinematics in the presence of severe spasticity, a condition
which can prevent exoskeleton use [11].

Hybrid FES-exoskeleton prostheses, or hybrid neuropros-
theses (HNs), present a case of actuator redundancy; that
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is, the number of actuators exceeds the number of degrees
of freedom (DOFs). A single joint can be actuated by an
electric motor and stimulation of the extensor and flexor
muscle groups. The control allocation problem has been
addressed in multiple ways. In [12], separate controllers
were designed for FES and motor inputs, and fatigue was
minimized by applying FES only when an external dis-
turbance was observed. Because this approach minimizes
stimulation, however, the physiological benefits of FES may
be limited. [10] maximized muscle contribution by using
torque feedback to update FES such that it acted as a
constructive disturbance to the PD motor controller, which
was responsible for trajectory tracking. The design was
applied to a 2-DOF HN with 2 actuators per joint. [13] used an
allocation factor to distribute torque between FES and
motor, updating the allocation factor to account for muscle
fatigue. [14] implemented an iterative learning controller for
a 2-DOF neuroprosthesis with 2 FES inputs per joint. For
each joint, a single iterative learning controller determined
the stimulation patterns for both muscle groups. [15] also
looked at control of 2 FES muscle groups for a single joint.
Modulated stimulation was sent to the extensors or flexors
depending on deviation from the desired knee angle; however,
both [14] and [15] addressed input dimensionality at the joint
level rather than across joints, which may be desirable for
higher-dimensional HNs. Other approaches avoid modulating
FES and apply constant stimulation according to a timing law
designed for a specific task [11], [16]. In [17], for example,
predefined stimulation patterns were applied at specific times
within the gait cycle, and the exoskeleton provided a set burst
of torque at the start of each step.

An alternative method for addressing actuator redundancy
is model predictive control (MPC). MPC is a form of
constrained optimization that considers the state and control
trajectories over a finite time horizon when determining the
next control input; in other words, MPC considers future
costs when choosing a solution. To address actuator redun-
dancy, [18] used MPC for dynamic control allocation. Control
was distributed between an electric motor and FES of the
knee extensors, and the controller mitigated muscle fatigue
by increasing motor demand. [19] used gradient projection
MPC, and [20] employed tube-based MPC (TMPC), a robust
MPC method that constrains inputs and terminal states within
a specified region or “tube.” [21] adapted TMPC for the non-
linear musculoskeletal dynamics, but only single-joint control
was implemented in the aforementioned TMPC schemes.
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Another approach to the actuator redundancy problem is
bio-inspired synergy control. The human spinal cord uses
linear combinations of muscle activations, or muscle syner-
gies, to perform complex motions [22]. Each synergy consists
of a set of weights and an activation signal. It is the time-
varying activation that is controlled in order to produce a
given movement. The advantage of synergy control is that
a few synergies can be used in place of a large number
of actuators, potentially reducing computational burden. As
opposed to natural synergies that recruit muscles, artificial
synergies use FES and motors. For example, rehabilitative
walking may be broken down into two dynamic postural
synergies, so named because each produces a distinct posture.
The first artificial synergy facilitates hip flexion, and the
second produces knee extension [23]. This type of synergy
control was accomplished in [24]. Synergy weights were
extracted for a 4-link gait model with 9 actuators, and the
gait model tracked a desired walking trajectory using only 2
synergies; however, the synergy activation signals were up-
dated through a projection algorithm rather than assigned by
optimization. Dynamic postural synergies were used in [25]
with the added complexity of variable step length control.
Non-robust MPC was used to allocate synergy activations
without consideration of activation and fatigue dynamics.

The aim of this paper is to design a new robust TMPC
scheme for allocating synergy activations to reduce actuator
redundancy in a multi-joint lower-limb model that includes
fatigue and activation dynamics. To the authors’ knowledge,
this is the first time TMPC has been combined with synergy
control. Compared to single-joint TMPC, synergistic multi-
joint control introduces additional design challenges as the
actuator dynamics must be considered synergistically rather
than individually and the torque contributions of motors
and FES cannot simply be separated and summed. This
problem is here addressed by creating a synergistic control
law that serves as an input to the synergy activation signals
rather than to the actuators themselves. Furthermore, whereas
our previous work focused on joint angle tracking, this
controller guides foot placement by considering task-space
error. Task-space controllers are more intuitive for patients
and therapists alike and can incorporate foot placement as a
safety constraint [26]. This controller grants uniformly ulti-
mately bounded stability against disturbances and modeling
uncertainties. Simulation results reduce input dimensionality
by one third and demonstrate close tracking of the desired
trajectory in the presence of random perturbations.

Il. PROBLEM FORMULATION

A. n-Link Musculoskeletal Model

The problem must be formulated for synergy extraction
and control. Consider an n-link model where element g (k
= 1,2,...,n) of angular displacement vector q R"
corresponds to the angle of the kth joint. Each joint is
actuated by the flexors and extensors via FES and by an

electric motor so that there are 3n actuators in total. The

n-link model dynamics is

M (q)g + C(g,d)d + G(q)+ (1)
F(q,d)+ d(t) = T(t),

where M R"*" js the inertia matrix, C RM*M js the
Coriolis matrix, G B R" is the gravitational vector, F BIR" is
the passive torque vector described in [27], d @ R" is the
torque due to unmodeled disturbances, and T R" is the
torque from motor and FES inputs.

The active torque is given by

r(t) = B(a,d, wa(t), (2)

where a @ R3" is the activation signal vectorand B BR"*3" s
defined as B = b(g,d)p. n @ R3"*3" is the matrix of

fatigue states, and the control scaling matrix b(q, ) BR"*3" is
given as follows:
L|J1f -P1. K1 ... 0 0 0
0 0 0 $n, -Pn. Kn

The elements i, (g, dk) are the bounded piecewise mus-
cle force-length/force-velocity functions from [27]. Indices j
= f,e correspond to the flexors and extensors, respec-
tively, and j = m will henceforth correspond to the mo-
tors. The elements K R are the torque-current con-
version constants. The fatigue matrix is given by pu =
dlag([ul , M1 ,1,...,p.nf ,une,l]), and the muscle fatigue

dynamlcs is
i, = Tf_kjl(limink,- —pkj)akj+Tr‘k1j(1—uk,»)(1-ak,»), (3)

B R* are the recovery and
(0,1) is

for j = f,e where T, T¢
fatigue time constants, respectively, and p.m.n
the minimum fatigue value for muscle k;j.

Assumption 1: The disturbance d(t), desired joint trajec-
tories qq(t), and their first and second time derivatives are
bounded.

Assumption 2: The desired activation vector aq(t) @ R3"
and its first derivative are respectively bounded by known
constants ad,,,,, ddn., BR".

B. Synergy-Inspired Decomposition

The activation vector a(t) is driven by a first-order dynam-
ics as
T, (u - a), (4)

where u(t) R3" is the normalized input vector with
elements uy; @ [umink ,1] and T, B R3"*3" is the diagonal
matrix of activation time constants Ta, @ R*. Using an
input dimensionality reduction method such as principal
component analysis (PCA), a(t) can be decomposed into
linear combinations of the actuators, or synergies, denoted

a:

a= wc,

where w R3M*P js a constant synergy weight matrix.
The synergy activation vector c(t) RP, p < 3n can
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be optimized in place of a(t) in order to reduce input
dimensionality.

Assumption 3: Any loss of information during synergy
decomposition of a is negligible.

Assumption 4: The terms in the synergy weight matrix w
are bounded constants.

Using (4), the synergy activation dynamics is

¢= W*T'l(u - wc),

where [wc]k B [@amin . ,1]. Note that amin » Umin . 0
for FES |nputs and -1 for motor inputs.

C. Task-Space Model

Given the Jacobian J(q) B R2*" of the end effectorand
considering frontal and sagittal directions, the Cartesian
endpoint velocity Z(t) B R? is related to the joint velocity by
Z = J(q)q. The endpoint space dynamics is

M, (z2)Z + C,(z,2)Z + Fo(z,Z) + G, (z)+ (5)
dz(t)

(JT)*(c— MJITI)t
= (J7)'d B R, and

=B,(z, Z, u)wc(t)

where M, = (J7)"MIT, C; =
R2*2,G, = (JT)'G,F, = (JT)'F
B, = (JT)"B@R2*3N,

Assumption 5: J(q) is bounded by some Jmax = |J].
Likewise, J (q)" is bounded by J® ~ > [JT|.

Property 1: M, is positive definite and bounded by
constants Az, Az R* such that Bv B RZ, AJ|v]]®2 < VT
M.v < Az |v|]|2

Property 2: M; and C,
vl (M, - 2C;)v = 0, @v @ R2.

are skew-symmetric, i.e.,

D. Error Dynamics Development
The control objective of the MPC is to minimize error
between a desired endpoint trajectory zq(t) R2 andthe
actual endpoint trajectory; thus, to formulate the MPC
problem, the dynamics is first rewritten in terms of the state
error. Let e @ R2, the nominal position error, be given by
e=zq4- Z,
where Z(t) R2 is the nominal trajectory. Define the
auxiliary error, r B R?, as
r=¢&+ ae, (6)

for constant gain a @ R*. The nominal error dynamics is
M i = My(Zg+ aé)+ C,Z + F, + G, - B,wé.  (7)

Introduce an auxiliary function Ng(z4, Zd, Z4) B R2, defined
as

Ng = M;(zq)Zq+ Ci(2d, Z2d)Zd + Fz(2d, Zd) + Gz(z4q).

(8)

where g B R®*€ is simply the identity matrix. By adding
and subtracting Ng and B;agq, (7) can be simplified as

M,f= N - C,r- Bag- B,wc+B,aq- e, (10)

where B @ R2*3" is B = B, - B;(zd, Zd, Md) and N @ R?
is N = N - Ng. Here, N(z, zq, Z, Z4, Z) is defined as

N = M,Zq+ C,(Zg+ ae)+ F, + G, + M,aé + e.

By the Mean Value Theorem and Assumptions 2 and 3, N
and Bag are bounded as

NI < pall Ixel DI el I,

for class K functions p1,p2 BR* and xe = [e

1) Backstepping Error Dynamics: As the actual input, u,
in (4) is cascaded to the actual dynamics in (5), we introduce
a backstepping error e, R3" as e, = wé - ay, where
av(t) @R3" is a virtual input to be designed. By adding and
subtracting B;ay, (10) becomes

(11)

T rT]T R4

1Baall < pall el )l 1%l ,

M.t = N - C,r - Bag- B,ea+ B,aq - B,ay - e. (12)

Defining the virtual input as ay = aq + ki B‘;r for constant
gain k;1 @ R*, (12) becomes

M,i= N - C,r - Bag- B,ea - kir- e. (13)
Using (4), the backstepping error dynamics is
€, = T, w(lsyn - €) - Ay, (14)

where the synergistic input Usyn(t) RP is defined as
Usyn = w'd. To obtain the optimal synergy coefficients, we
define the control law for Usyn as

Gsyn = C + WTTa(é\, + wv), (15)

where v(t) @ RP is the synergistic input to be optimized by
MPC. (14) reduces to
€a = WV. (16)

Finally, collecting error dynamics in (6), (13), and (16),
the state space equation is written as X = f(X,v), where

x BR3™4 isx = el rT e T and f(%, v) is given
by
r- ae
f(x,v) = BEM (N - C,r - Bag - Byea - kir- e)2.
wv
(17)
I11. RoBUST MPC

A. Nominal MPC-based Optimization Scheme

The MPC problem can now be formulated using the
running and terminal costs given by

Given a desired dynamics M;(zq)Zy + Ci(z4,Z)Zq + V = EeTe+ ZrTMyr + Eea ea,
Fo(zd,2d) + Gi(za) = Bi(za,Za, W)ad(t), the term 2 2 2
Na(zd, Zd, Z,) can also be written as where Q B R(3n+4)x(3n+4) g g R3n*3n zre symmetric,
Ng = By(za,Zd, pa)aalt), (9) positive definite weight matrices. Define g, ([, , ak;) as (3),
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and let [tk, tk+T] be the prediction horizon of constant length
T. The optimization problem is posed as follows:
z te+T
minJ(x(t), v(t)|t,) = [dt+ V(x(t, + Tlt))
v(t) ty
s.t. X =f(x,v)

Mk, = 8k (Ak;, ak), j = f,e, Bk
a_kj [aminkJ , 1]: jr k
L_lkj [Mminkj ’ 1]1 jl k
Xk B X(te | te) B Qg
Utube

wv
X(tker
[tc) @ Qq
[(WE+ Tady)k, IS 1= Ur = (Tav)k,, Bk

(Wwe+ Taay)k, < 1- (Tav)y,Jj = f,e, Bk

The final two constraints ensure that u < 1 and |u| £ 1
for FES and motors, respectively. The terminal set Qg is
3n+ 4 |y||?

3n k3

where k BR* and y @ R3" is a vector of constants Vi
R* such that |(wv) |ns vk, Bk, j. C?( is the tube region

[IX(tk + T|t)]]* <

andisdefin%dasQ;= 0 Il e 1+ B—}-Lz z/ A+

v
26 A Az12 , where T = [€"€T]", L@(0,1), and A, Az

R* are the constants from Property 1. The control boundary
Utube constrains the nominal inputs and is defined as

w12 < [IvlI

B. Sliding Mode Controller

In this subsection, we design a sliding mode controller
(SMC) based on [28] that acts as a tube to provide robustness
to the nominal MPC scheme. Let Tz, Tmz @ R? be the task-
space torques generated by FES and motors, respectively.
To account for the disturbance d,(t), introduce SMC torque
Vez = (Tmz =T 2) R2. The dynamics can be rewritten as

M,;Z+C,Z2+ F, + G, +d; = YFz + Tfz + Tz

Let z(t) @ R? be the true endpoint. Next, introduce the
position error term € @ R%2 as € = Z — z and the auxiliary
error § A R? as

6= €+ Pe

for constant gain B @ R*. Let T be the nominal FES torque.
The error dynamics is

M6 = M, (€+PB€) - Tmz— Tz + C.Z + F,
+G,; + d,

(18)

Introduce auxiliary functions P (z, Z, Z, 7, Z), P (Z, Z) @ R?
as

(@]

(7 +
+

+ Be)+ F; + G, - Tr, + M Be
7+ CZ +Fp #+

F G-z_ffz,

Offline Synergy Extraction Online Control

Dynamic
Optimization

aq

Plant

(2-Link Leg Model)

WcCy

Figure 1. High-level control diagram.

and define P BR2 as P = P - P. (18) reduces to
M28= P - C:6+ d; - Vrz. (19)
Because Mk, and (wc)kj are bounded, normalized vari-
ables, it is true that [|T(q, G, wd|lk < [l (G a)[] +
[1W (6,8 ]. By Assumption 5, € ; is also bounded, so P
must be bounded by class K function ps : R* = R* such
that ||P|| < ps(l|ol|)||o]], where 6 = [eT &T]" @ R*. The
SMC torque is thus designed as

5 L
ve: = palllol o] satE) + dsat(Z)+ ked,  (20)

for constant gain ks R*. d @ R* is chosen such that
[1dz(t)| ]2 € d, Et. For known constant € @ R*, the saturation
vector sat(8) B R? is
€

5 & Bl e
_ TRl
sat(;) l8l] < e

€ 8
E,
Assumption 6: The SMC activation may be approximated
as the SMC input, i.e., Ug; = ar;.
Given that p3, 0, and 6 are bounded (see Section IV-C),
the SMC torque is bounded as

[lvez] | € QpQo + d+ Kkt Q. (21)

IV. STABILITY ANALYSIS
A. Terminal State Invariance and Asymptotic Stability

Lemma 1. If the terminal control input is chosen as vt =
-kaw e, for positive constant gain ka, then control gains a,
ki,and k> and weight matrices Q and R can be chosen such
that the terminal state is invariant and the nominal system is
asymptotically stable (AS).

Proof: The control gains, terminal controller, and ter-
minal region can be designed such that V + | < 0 and the
terminal state is invariant. Invoking Property 2, V is given
by
V = —afle]|?+ r" (N - Bagq - B,ea) - kal|r||>+ e] wv.

(22)

Defining the terminal control input as vr = -kaw'e, BRP
for constant ko B R* and recalling (11), (22) is bounded as

Vo< —allel12+@l Ixe| )X 17~ Bzea=ka| Ir]1?~kz|eal |%,
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Figure 2. (a) Weights for the most dominant extracted synergy. (b) Foot

trajectory tracking with TMPC. a  represents hip extensor activation, and
likewise for the other 5 actuators. Algo depicted are the MPC inputs for hip (c)
and knee (d) actuators as well as the SMC inputs for hip (e) and knee (f)
motors.

where g = p1 + p2. Since p.k @ [0,1] and b consists of
bounded functions yix and constants K, and by Assumption 5,
there must be some onstant Bmax @ R* such that |B;| <
Bmax. Hence,

< ~(Kmin = @lxell) - BmaX)”;(Hz:

where Kmin B R* is Kmin = min{a, k1, k2}. As long as
(| I%e|]) + Bmax < Kmin, which is true when ||x]|| <
0 Y (Kmin - Bmax), it follows that V. < 0. Thus, the
terminal state is invariant. Let Q = diag(qs, ..., q3n+4a)
and R = diag(p1,...,p3n), and let ge = max(q1, qz2),
dr = max(gs, ga), 9a = max(ys, ..., 3n+a), and p =
max(p1, ..., Pan). | is thus bounded as

< ellell®+ alIrl1?+ (aa + Bk?)|leal %,

and it is therefore true that

V +1< _(Kmin - dllXe”)_ Bmax — Kmax)llkllzf

where Kmax R* is Kmax = max{ge, qr, qx + 5k2}' As
long as Kmin > @]|Xe|])+ Bmax + Kmax, it is true that
V + | < 0, and the nominal system is AS.

B. Recursive Feasibility

Theorem 2. If § R* is the maximum possible error
magnitude for all Xk , then the nominal system is recursively

)
feasible as long as € < k“ 'Ln
2 3

Proof. Available upon request.

C. Uniform Ultimate Boundedness
Theorem 3. The SMC torque yr, B ['f, ensures the system
in (19) is uniformly ultimately bounded (UUB) such that
o exponentially enters an invariant set Qg and ug(t)
R", the SMC input in joint space, is bounded as U =
url uell < K'lj' 0pQ6 + d + KfQs ,where
Kmin = min{||<1|,m I3[} and Qs, Qp are invariant sets
bounding 6 and ps, respectlvely.

Proof. Available upon request.

D. Input Constraints

Lemma 2. If [(wC+ Taav)k | < 1- Ur - Tavk ,Bk,
then the motor constraint uy,, B [-1, 1] is satisfied.

Proof. Available upon request.

Lemma 3. If (wc'+Taz§\,)kj < 1—(Tay)kj,j = f,e, mk,,
then the FES constraint uy; < 1 is satisfied.

Proof. Available upon request.

V. SIMULATION RESULTS

The TMPC was implemented on a 2-link leg model
with parameters from [27], [29], [30]. The model pos-
sessed bidirectional hip and knee motors and FES-actuated
hip extensors, hip flexors, knee extensors, and knee flex-
ors. The desired “foot” (the distal endpoint of the shank)
trajectory was calculated from the walking-like trajecto-
ries employed in [29]. Defining § = [q" 4T ]7 and

= [ 4" M YBa-Cd-F - G)" ]7, desired activa-
tions were extracted through dynamic optimization with the
following MPC scheme:

z te+T
min  J(§(t), a(t)|t,) = e,(t)Qe,(t) dt
a(t) ty
s.t. §= fq(d,a)
ak; [aminkj;l]l 2k, j

where joint-space error eq B R? is eq = g4 - q and Q
R2*2 js a symmetric, positive definite weight matrix. The
symbolic optimization framework CasADi was used for the
MPC. PCA was performed in MATLAB R2019a to identify
synergy weights from optimal activations. It was found that 4
synergies accounted for 99.97% of the variance. A high-level
diagram of the synergy extraction and simulations can be
seen in Fig. 1, and the weights for the most dominant
synergy are displayed in Fig. 2 (a).

The TMPC was performed with CasADi in MATLAB
R2019a using the 4 most dominant synergies and a 0.0145s
timestep. Simulations were run for 5s to complete 5 cy-
cles with random joint position and velocity perturbations
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(0.01rad, 0.01rad/s, i) applied at each iteration. The average
root-mean-square error (RMSE) in foot position across 10
simulations was 0.27 and 0.83cm in the vertical (x) and
horizontal (y) directions, respectively. Example tracking per-
formance of the controller is shown in Fig. 2 (b), and the
MPC and SMC inputs are displayed in Fig. 2 (c)-(f). Note
that the first 3 curves in Fig. 2 (c) and (d) are elements of
U= wulsyn. As expected, the input magnitude from the SMC is
smaller than that from the MPC.

VI. CONCLUSION AND FUTURE WORK

A TMPC framework was designed in task space to opti-
mize synergy activations for n-link HN with n motor and 2n
FES actuators. The framework included activation and fatigue
dynamics, and stability and recursive feasibility were proven.
The TMPC was implemented on a 2-DOF model with hip and
knee actuation. The controller tracked the desired trajectory
for a walking-like motion even though the synergy paradigm
reduced the number of actuators by one third. Future work
will extend synergistic TMPC to include ankle actuation for
implementation in HN walking experiments. Furthermore, it
is desirable to incorporate step planning into the controller so
that the controller both plans and executes the desired
trajectory. Lastly, FES-induced muscle fatigue feedback can
be incorporated for modulating or switching synergies to
promote muscle recovery.
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