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Research on the genetic mechanisms underlying human skeletal development and
disease have largely relied on studies in mice. However, recently the zebrafish has
emerged as a popular model for skeletal research. Despite anatomical differences
such as a lack of long bones in their limbs and no hematopoietic bone marrow,
both the cell types in cartilage and bone as well as the genetic pathways that
regulate their development are remarkably conserved between teleost fish and
humans. Here we review recent studies that highlight this conservation, focusing
specifically on the cartilaginous growth zones (GZs) of endochondral bones. GZs
can be unidirectional such as the growth plates (GPs) of long bones in tetrapod
limbs or bidirectional, such as in the synchondroses of the mammalian skull base. In
addition to endochondral growth, GZs play key roles in cartilage maturation and
replacement by bone. Recent studies in zebrafish suggest key roles for cartilage
polarity in GZ function, surprisingly early establishment of signaling systems that
regulate cartilage during embryonic development, and important roles for cartilage
proliferation rather than hypertrophy in bone size. Despite anatomical differences,
there are now many zebrafish models for human skeletal disorders including
mutations in genes that cause defects in cartilage associated with endochondral
GZs. These point to conserved developmental mechanisms, some of which
operate both in cranial GZs and limb GPs, as well as others that act earlier or in
parallel to known GP regulators. Experimental advantages of zebrafish for genetic
screens, high resolution live imaging and drug screens, set the stage for many novel
insights into causes and potential therapies for human endochondral bone diseases.
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1 Introduction

Research on the growth plates (GPs) of endochondral bones in mice has greatly
impacted our understanding of skeletal development as well as the causes of human
skeletal disorders. Early studies showed that the epiphyses of limb long bones remain
cartilaginous and proliferative, thereby allowing bone growth (1). Genetic studies showed
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mechanisms regulating cartilage maturation, gradual
replacement by osteoblasts, matrix deposition and continuous
bone remodeling by osteoclasts (2). These discoveries laid the
groundwork for much of modern skeletal research. Given the
limited knowledge of the cellular and molecular mechanisms
regulating the huge variety of sizes and shapes of other bones,
such as those of the skull or vertebrae, much of our current
understanding of skeletal development is based on work on GPs
of long bones in the tetrapod limb.

Over the past several decades, the zebrafish has become a
powerful system for genetic analysis of skeletal development.
Despite having fins that lack the long bones found in tetrapod
limbs and many other obvious anatomical differences in their
skeletons, zebrafish have the same array of skeletal cell types
found in humans. Furthermore, the work that has been done to
date has shown that the molecular mechanisms that control
skeletal development, growth and physiology are largely
conserved despite over 400 million years since their lineages
diverged from a common ancestor (3).

In this review, we present an overview of skeletal research in
zebrafish with a special focus on endochondral growth zones (GZs),
defined as regions of cartilage proliferation and maturation, which
include the well-known GPs of long bones. For reviews covering
other aspects of skeletal research in zebrafish (e.g. osteoblasts/
osteoclasts, intramembranous skull bones, fin rays, scales), we
refer the reader to the following (4-11). First, we provide a brief
introduction to adult zebrafish skeletal anatomy with a specific
focus on similarities with human endochondral bones. Next, we
present the cellular architecture of GZs between zebrafish and
humans and across the three major skeletal regions, cranial, axial
and appendicular. Third, we compare endochondral development
and physiology between zebrafish and mammals and review key
recent studies that have led to insights into conserved cellular
pathways that control bone size and shape in health and disease.

2 Skeletal anatomy in adult zebrafish
and humans

2.1 Anatomical distribution of
endochondral and intramembranous
bones

2.1.1 Modes of ossification

Two modes of ossification produce the vertebrate skeleton:
endochondral and intramembranous. In endochondral
ossification, typified by long bones of the mammalian limb,
mesenchymal condensations differentiate into cartilage that is
eventually replaced by bone (2). In contrast, intramembranous
bones, such as those of the skull vault, differentiate directly from
mesenchyme (12). Some bones form by a combination of
intramembranous and endochondral ossification, such as
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mammalian clavicles (13). The relative contributions of these
two modes of ossification vary widely across different taxa, both
in the axial skeleton, which consists of bones associated with the
craniofacial complex and vertebrae, as well as the appendicular
skeleton that supports the limbs and fins (Figure 1). Human and
zebrafish skulls are both composed of a mixture of endochondral
and intramembranous bones (14). While the mammalian calvaria
occupies a large surface area, the chondrocranium and pharyngeal
skeleton are composed of many smaller endochondral bones, just
as in zebrafish (14, 15). In contrast, most of the zebrafish vertebral
and limb skeletons are intramembranous while they are
endochondral in humans. Despite these differences, zebrafish
and humans are generally very similar in their development and
basic structure. However, homologies between individual axial
and appendicular bones of teleost fish and humans can be difficult
to determine due to phylogenetic divergence and adaptation to
different environments.

2.1.2 Bones of the axial and appendicular
skeletons

In the skull, difficulty in identifying homologous bones
between humans and other vertebrates is thought to be partly
a consequence of progressive fusion of skeletal elements during
mammalian evolution (16). The human skull contains 29 bones,
all joined by fibrous joints known as sutures, except for the
mandible, hyoid bone, and middle ear ossicles (17). Two thirds
of these cranial bones are intramembranous, while the hyoid
bone, middle ear ossicles, and several bones of the cranial base
(ethmoid, body and lesser wings of the sphenoid, petrous
portion and otic capsule of the temporal bone, and basal
portion of the occipital bone) are endochondral (Figure 1). In
contrast, the zebrafish skull contains 134 bones, 78 of which are
endochondral (14). As in humans, the intramembranous bones
of the zebrafish braincase suture together, while bones
supporting the jaws, opercle, gills and other parts of the skull,
articulate with each other by mobile joints (Figure 1).

The non-cranial portion of the axial skeleton includes the
vertebral column and rib cage in both humans and zebrafish, in
addition to the unpaired fins (dorsal, anal, caudal) in zebrafish
(Figure 1). Vertebrae and ribs are endochondral in humans but
intramembranous in zebrafish (4, 18-20). In addition, unlike in
humans, the zebrafish ribcage remains open ventrally and lacks a
sternum. The zebrafish axial skeleton also includes appendages
with no homologs in humans: the dorsal, anal, and caudal fins.
Fins consist of an exoskeleton of rays made of intramembranous
bone, and a supporting internal skeleton made of endochondral
hypurals in the caudal fin and radials in the dorsal and anal fins
(Figure 1B). Lastly, the Weberian apparatus, an evolutionary
innovation linking the ear to the swim bladder to enhance
audition (a character found only in the Ostariophysan
superorder), contains both intramembranous and endochondral
bones (21) (Figure 1B).
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General overview of the intramembranous and endochondral composition of the zebrafish and human skeletons. (A) Human adult skeleton. In
the head, intramembranous bones such as those of the calvaria (the top portion of the neurocranium) dominate the human skull in surface area,
while endochondral bones mostly occupy the cranial base. All of the bones that compose the trunk and appendicular skeletons are
endochondral, except for portions of the clavicle and scapula. (B) Zebrafish adult skeleton. The zebrafish skull, trunk and appendage skeletons
are composed of both intramembranous and endochondral bones. The zebrafish skull is composed of 134 bones, 78 of which are
endochondral. The zebrafish trunk skeleton is composed of intramembranous vertebrae and ribs. The zebrafish appendage skeleton is
composed mostly of endochondral bones, while the fin ray exoskeleton is completely intramembranous

Human and zebrafish appendicular skeletons consist of
pectoral (shoulder) and pelvic (hip) girdles with associated
appendages: fore- and hindlimbs in humans, pectoral and pelvic
fins in zebrafish. Human limbs are entirely composed of
endochondral bones, while paired fins in zebrafish consist of fin
rays made of intramembranous bone supported proximally by
endochondral radial bones (22). In humans, most of the pectoral
and pelvic girdles are also endochondral, though portions of the
clavicle (collar bone) and scapula (shoulder blade) form by
intramembranous ossification (Figure 1A). Similarly, the
zebrafish pectoral girdle contains a mixture of intramembranous
(cleithrum, postcleithrum, supracleithrum) and endochondral
(coracoid, mesocoracoid, scapula) bones, while the pelvic girdle
is exclusively endochondral (basipterygium) (14).

2.2 Endochondral growth zone structure
2.2.1 Cellular architecture of endochondral
growth zones

In endochondral GZs, step-by-step chondrocyte maturation
regulates bone elongation (Figure 2) (1). The maturation process
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starts in the resting zone (RZ), which serves the role of stem-cell
niche (Figure 2A). Slow-dividing RZ cells transit into the
proliferative zone (PZ), where they proliferate at a higher rate
and stack to form chondrocyte arrays characteristic of avian and
murine long bone GPs. They subsequently stop dividing and
enlarge as they enter the hypertrophic zone (HZ). Most undergo
apoptosis at the chondro-osseous junction and are subsequently
replaced by bone. In GPs with steady-state growth, pools of cells
in each zone remain constant as: 1) the rate of PZ cell division
offsets the rate of cells leaving the PZ, 2) the rate of cells leaving
offsets the rate of cells entering the PZ, and 3) the rate of cells
entering the HZ offsets the rate of cells lost at the chondro-
osseous junction (25). These aspects of cartilage maturation
appear broadly similar between mammalian and zebrafish
endochondral GZs, though chondrocytes are not aligned into
linear stacks in zebrafish PZs (26, 27).

Cartilage maturation can occur in one or both directions at
GZs, parallel to the long axis of bone growth. In unidirectional (or
epiphyseal) GZs (also known as GPs) typical of long bones, the RZ
lies close to the distal-most region of the bone (epiphysis) and
maturing cells progress medially toward the bone’s central shaft
(diaphysis), producing axial elongation at each end (1). In contrast,
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bidirectional GZs produce growth in two opposite directions (28).
This reflects a mirror-image organization where two sets of PZs and
HZs flank a single RZ on either side (Figure 2B). Bidirectional GZs
are often located within synchondroses or cartilaginous joints. In
humans, they can be found in the skull base and vertebrae but in
zebrafish are more common and found in multiple endochondral
bones of the neurocranium and pharyngeal skeleton (Figure 3) (27).

10.3389/fendo.2022.1060187

2.2.2 Tissue architecture of endochondral
bones

Although both human and zebrafish endochondral bones
have GZs, they show several structural differences, including the
fact that zebrafish lack: 1) secondary ossifications, 2) trabecular
bone, and 3) a hematopoietic bone marrow (Figure 2). Human
GPs often have “secondary” ossification centers distal to the RZ,
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FIGURE 2

Cellular organization of epiphyseal and synchondroseal growth zones. (A) Human growth plate chondrocytes transition through resting-,
proliferative- and hypertrophic zones (RZ, PZ, and HZ, respectively) before dying or transitioning to an osteoblast fate at the chondro-osseous
junction. Cartilage cells stop dividing and enlarge in the hypertrophic zone. The bone collar forms a sheath around hypertrophic chondrocytes;
the secondary ossification flanks the growth plate distally. Primary bone trabeculae derived from extracellular matrix channels populate the bone
cavity. (B) In unidirectional (epiphyseal) growth zones, the resting zone is distal to the proliferative zone, itself distal to the hypertrophic zone;
this layout produces unidirectional growth. In bidirectional (synchondroseal) growth zones, the resting zone is flanked by two proliferative zones
and two hypertrophic zones in a mirror image organization; this layout produces bidirectional growth. (C) Stereotypical zebrafish unidirectional
growth zone organization: chondrocytes transition through RZ, PZ and HZ, but they do not enlarge in the HZ. At the zebrafish resorption front,
chondrocytes die or transition to either an osteocyte or adipocyte fate. A perichondral bone collar sheathes the zebrafish hypertrophic zone,
but no secondary ossification is associated with zebrafish epiphyseal growth zones. Trabeculae are not observed in smaller teleosts such as
zebrafish. (D) Histological section of zebrafish proximal radial showing unidirectional endochondral growth zone [originally published in (23)]. (E)
Time series of maturation at two zebrafish bidirectional growth zones located within the ventral (left) and dorsal (right) ceratohyal
synchondroses [originally published in (24)]. (scale bars = 50 pm).
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which appear later in endochondral differentiation (Figure 2A)
(2). In contrast, in zebrafish and other teleost GZs, maturing
cartilage remains continuous with articular cartilage at the joints,
similar to earlier stages of mammalian GP development (Figures
2C-E) (27, 29, 30). Secondary ossification centers in mammals
were recently proposed to have evolved to protect hypertrophic
chondrocytes from mechanical damage in load-bearing tetrapod
bones (31). Another striking structural difference from
mammals is the absence of primary bone trabeculae at the
resorption front in zebrafish (32, 33). Primary trabeculae form
parallel bone channels in mammals through the progressive
replacement of extracellular matrix (ECM) tracks produced by
chondrocyte stacks by bone ECM (Figure 2A), while secondary
trabeculae appear later in response to mechanical stress (34, 35).
Thus, the less well-aligned chondrocyte stacks of zebrafish GZs
as well as the lower amount of ECM produced by GZ
chondrocytes (also observed in other teleosts) may help
explain the lack of primary trabeculae (Figures 2C-E) (29, 30,
36). However, trabeculae have been reported in the bones of
larger teleosts, suggesting that their presence might simply
reflect differences in bone size and strength requirements (37).
In addition, zebrafish HZ chondrocytes are converted into
osteoblasts at the resorption front, become part of the
diaphyseal endosteum and differentiate into osteocytes
embedded in the bone shaft (24). This supports the presence
of endochondral ossification in zebrafish in the form of (1): a
thin layer of bone matrix at the resorption front and (2) bone
matrix deposition inside the bone shaft, instead of the bone
spongiosa described in mammals and larger teleosts (24, 32, 37).
Finally, zebrafish endochondral bones do not form a marrow
that can support hematopoiesis. This instead occurs in the
kidney marrow of zebrafish (38).

2.3 Anatomical distribution of
endochondral growth zones

Rodents and humans have homologous skeletal GZs
inherited from a shared common ancestor, as exemplified by
long bone GPs such as the proximal tibial GP. Though zebrafish
GZs are not individually homologous to any mammalian GZ, a
growing body of research has revealed striking similarities in
their GZ development and physiology. This demonstrates the
relevance of zebrafish for understanding basic principles of
skeletal biology and underlying causes of skeletal disease,
including common chondrodysplasias associated with GPs.
These similarities include the molecular and cellular
mechanisms underlying endochondral differentiation. The
genetic advantages of the zebrafish, along with its small size
and optical accessibility, has led to a growing popularity for their
use in testing new disease candidates discovered in humans and
elucidating their mechanisms of action.
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2.3.1 Bidirectional endochondral growth zone
locations

Postembryonic growth of the human cranial base requires
three bidirectional GZs: the spheno-ethmoidal, intersphenoid
and spheno-occipital synchondroses (Figure 3A). Their
importance in shaping the adult face is exemplified by the
prominent forehead and flattened bridge of the nose associated
with achondroplasia, the most common form of human
dwarfism (39, 40). Reduced cell proliferation in the RZ of
these GZs in achondroplasia results in reduced cranial base
growth in patients, in addition to shortening of their arms and
legs due to GP defects (Figure 3B) (41). The other anatomical
location where bidirectional growth zones are found in humans
are the vertebrae. Neurocentral synchondroses contribute to the
growth of the vertebral body as well as the spinal canal
(Figure 3B), and they fuse between ages 5 to 17 depending on
their anterior-posterior location (42).

Zebrafish bidirectional growth zones are primarily located in
the neurocranial and pharyngeal skeletons. As in mammals, the
zebrafish neurocranium consists of both intramembranous and
endochondral bones and numerous neurocranial synchondroses
arise after the initial stages of chondrocranial ossification, yet
their GZ activity has only recently been investigated (27).
Growth of the zebrafish pharyngeal skeleton is supported by
both uni- and bidirectional growth zones (Figure 3C). The
pharyngeal skeleton derives from the pharyngeal arches (PA),
which form by bilateral segmentation of the embryonic pharynx
in vertebrates and their close relatives (16, 43, 44). Here we
describe the PA-derived bidirectional GZs of the first (PA1,
mandibular) and second (PA2, hyoid) arches, which develop
first and produce the most skeletal growth, as these are most
relevant to model human GZs in health and disease. For a more
complete list of zebrafish pharyngeal GZs, see (27). In the dorsal
PA1 skeleton, the palatoquadrate (PQ) synchondrosis mediates
growth of the quadrate (QA) ventrally and metapterygoid (MP)
dorsally (Figure 3C). In the dorsal PA2 skeleton, the
hyosymplectic (HS) synchondrosis mediates growth of the
symplectic (SY) ventrally and hyomandibular (HM) dorsally.
In the ventral PA2 skeleton, the ventral ceratohyal (CH)
synchondrosis mediates growth of the hypohyal (HH) bones
ventrally and the CH dorsally, while the dorsal CH
synchondrosis mediates growth of the CH (anterior CH)
ventrally and epihyal (EH; posterior CH) dorsally (Figure 3C).
In the PA3-6 (branchial arches 1-4) skeleton, basibranchial (BB)
elongation is mediated by 2 bidirectional GZs (Figure 3C) (27).

The zebrafish PQ and CH synchondroses have been used to
study developmental mechanisms that regulate GZ development
(24, 26, 45, 46). These studies have shown that, like mammalian
GPs, these GZs contain similar zones of cartilage maturation
(RZ, PZ, HZ), though with some interesting differences in the
timing of proliferation and hypertrophy. In addition, they share
similar patterns of gene expression known to control GZ
formation and size, as discussed below.
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FIGURE 3
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Anatomical locations of endochondral growth zones in human vs zebrafish. (A) Three synchondroses mediate growth of the human skull base
(depicted in sagittal view): the spheno-ethmoidal-, intersphenoid- and spheno-occipital synchondroses. (B) Endochondral growth of human
vertebrae and ribs (depicted in transverse view) takes place at neurocentral synchondroses and costochondral joints, respectively. (C) Over thirty
endochondral growth zones mediate zebrafish pharyngeal skeleton growth. Three highly visible synchondroses mediate growth of first and
second pharyngeal arch (PA1-2) skeletons. The PQ synchondrosis mediates growth of the QA and MP. The HS synchondrosis mediates growth
of the SY and HM. The dorsal CH synchondrosis mediates growth of the CH and EH. In PAl and 2, epiphyseal growth zones are found at the
posterior MP, anterior SY, dorsal HM and anterior BH. In the gill supporting skeleton, epiphyseal growth zones are found at the ends of each CB
and EB bone. (D) Axial growth of human stylopod (humerus, femur) and zeugopod (radius, ulna, tibia, fibula) bones is mediated by epiphyseal
growth zones (=growth plates) located at each bone extremity. A single proximal epiphyseal growth zone mediates axial elongation of each
autopod long bone (hand and foot phalanges). (E) In the zebrafish pectoral fin, epiphyseal growth zones are found at the distal end of each
proximal radial. (F) In the zebrafish caudal fin, epiphyseal growth zones located at the distal end of each hypural bone (H1-5), the prehypural and

two last haemal spines mediate axial

elongation. AR, articular; BB, basibranchials; BH, basihyal; CB, ceratobranchial; CH, ceratohyal; DHH, dorsal

hypohyal; EB, epibranchial; EH, epihyal; HM, hyomandibular; HS, hyosymplectic; IH, interhyal; MC, Meckel's cartilage; MP, metapterygoid; PH,
parhypural; PHB, pharyngobranchials; PL, pleurostyle; PT, palatine; QA, quadrate; RA, retroarticular; SY, symplectic; VHH, ventral hypohyal. Red
indicates bidirectional- and blue indicates unidirectional growth zones.
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2.3.2 Unidirectional endochondral growth
zone locations

In humans, unidirectional GZs are primarily found in the
limbs and ribs (Figures 3B, D). Growth of ribs is mediated by
GZs located within costochondral joints, which are
synchondroses linking ribs to the costal cartilages of vertebrae
(Figure 3B) (47, 48). In the limbs, epiphyseal GPs mediate
elongation of the stylopod (humerus, femur) and zeugopod
(radius/ulna, tibia/fibula) at the end of each long bone. In
contrast, each bone of the autopod grows at a single GP
(phalanges/metacarpals/metatarsals; Figure 3D).

Zebrafish unidirectional GZs are primarily found in the
pharyngeal skeleton and fin endoskeleton (Figures 3C, E, F).
In the PA3-6 (branchial arches 1-4) skeleton, the ceratobranchial
(CB) and epibranchial (EB) bones of each arch possess a
unidirectional GZ at each extremity (Figure 3C) (27). In the 2
sets of paired fins (pectoral and pelvic) the endoskeleton is
reduced compared to that of human limbs, and its proximo-
distal pattern is simplified. The endoskeleton of pectoral fins
consists of 4 proximal radials and 6 to 8 distal radials
(Figure 3E), while the pelvic fins contain 3 radials (22). The
caudal fin endoskeleton consists of the pleurostyle of the caudal-
most vertebrae, five hypurals, the parhypural, and the haemal
spines of preural vertebrae 2 and 3 (Figure 3F) (49). Just as in
mammalian limbs, all fin GZs are unidirectional. These are
positioned at the distal ends of (1) proximal radials in the
pectoral, dorsal and anal fins (2), radials in the pelvic fins, and
(3) hypurals, parhypural and haemal spines in the caudal fin
(Figures 3E, F) (50). Interestingly, mutations in conserved
regulators of appendage development can lead to
supernumerary bones in zebrafish consistent with radials and
long bones having evolved from homologous structures in the
common ancestor (23).

3 Development and cellular
architecture of endochondral
growth zones in teleost fish and
humans

3.1 Developmental similarities and
differences in endochondral growth
zones between species

The stereotypical steps of mammalian endochondral long
bone formation consist of: 1) mesenchymal condensation, 2)
differentiation into cartilage, 3) formation of a perichondral
bone collar at the diaphysis and concomitant hypertrophy of
chondrocytes coupled with cartilage matrix mineralization, 4)
blood vessel invasion, hypertrophic chondrocyte death and
resorption of mineralized matrix by chondroclasts, all at the
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diaphysis 5) replacement of cartilage by endochondral bone and
marrow, 6) appearance of distinct RZ, PZ, and HZ zones at each
epiphysis, and lastly 7) epiphyseal formation of secondary
ossification centers (2, 12). These features of GZs are largely
conserved between teleost fish and tetrapods, at both the cellular
and molecular levels, despite the later invasion of blood vessels
in teleosts, lack of hematopoietic bone marrow or secondary
ossifications. Notably, endochondral bone formation in smaller
teleosts, such as zebrafish takes the form of (1) a thin layer of
bone matrix at the resorption front and (2) bone matrix
deposition on the inner surface of the bone shaft (24, 29, 30,
32, 36, 51).

3.1.1 From condensation to cartilage template

In tetrapods, the shape of the mesenchymal condensation
determines the shape of the cartilage model (52). In contrast,
cartilage elements differentiate within larger condensations in
both the head and fins of teleosts (22, 53-55). Zebrafish
embryonic and larval cartilage shapes generally prefigure the
shape of adult skeletal elements (Figures 4A, B). One exception is
the endoskeleton that supports the pectoral fins, in which a
transient endoskeletal disc of cartilage supports the functional
larval fin, but localized cartilage decomposition within the disc
defines four proximal radials that prefigure the adult fin
endoskeleton (Figures 3E, 4C) (56).

The shapes of pharyngeal cartilage elements in teleost
embryos are regulated by complex morphogenetic cell
behaviors such as localized cell-cell intercalations that take
place hours before cartilage matrix deposition (56-59). Linear
stacking of chondrocytes driven by such intercalations underlies
the directionality of the GP or GZ as well as cartilage and bone
elongation. Cartilage elements of mutants with cell-cell
intercalation defects are shorter and wider than in wild-type
individuals (26, 60). A growing body of research supports
conserved control of cell-cell intercalation during cartilage
morphogenesis in the RZs of vertebrate GPs (including
mammals) by planar cell polarity (PCP) pathways (26, 58,
60-66).

Though initially studied in the context of epithelia, it has
become clear that noncanonical Wnt/Wnt-PCP and Fat-Dchs/
Fat-PCP signaling play important roles in regulating cell and
tissue polarity in diverse cell and tissue types, including
mesenchyme and cartilage. Several human syndromes that
affect skeletal morphology are caused by mutations in Wnt-
PCP and Fat-PCP signaling genes (67-77). Studies in zebrafish
have successfully modeled craniofacial defects associated with
loss-of-function of gpc4, frizzled, wnt5b, fat3a and dchs2 in
cartilage morphogenesis, and demonstrated requirements for
these factors in mediating the polarized cell-cell intercalation of
chondrocytes in the craniofacial skeleton (26, 58, 63, 64, 66).
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Early anatomy of zebrafish endochondral growth zones. (A) Endochondral growth zones start to appear in the zebrafish skeleton around 12days
post-fertilization (dpf). One or more ossification centers appear on each bone. Unossified cartilage regions at bone ends become unidirectional
growth zones, while those flanked by ossifying cartilage become bidirectional growth zones. In the 12dpf pharyngeal skeleton, the QA and MP
bones ossify over the PQ cartilage, the HM and SY bones ossify over the HS cartilage, the HH, CH and EH bones ossify over the CH cartilage,
BB1 and 2 ossify over the BB cartilage. Single ossifications appear on other pharyngeal bones. (B) In the caudal fin endoskeleton, single
ossifications appear on each cartilage element, resulting in a single distal endochondral growth zone per element. (C) In the pectoral fin
endoskeleton, the endoskeletal disc is progressively carved into four proximal- and seven distal radials. Ossification of each proximal radial
leaves a single endochondral growth zone at the distal end. Distal radials do not ossify. BB, basibranchial; BH, basihyal; CB, ceratobranchial; CC,
compound centrum; DR, distal radial; ED, endoskeletal disc; H, hypural; HB, hypobranchial; IH, interhyal; MC, Meckel's cartilage; NO, notochord;
PH, parhypural; PHB, pharyngobranchials; PR, proximal radial; SCO, scapulocoracoid, VHH, ventral hypohyal.

3.1.2 Maturation of endochondral bones

The first signs of GZ development in the craniofacial
skeleton in zebrafish are the simultaneous appearance of a
perichondral bone collar and flattening of presumptive PZ
chondrocytes during early metamorphosis (Standard Length =
6-7 mm) (26, 27). Unlike mammalian GZs, hypertrophic
chondrocytes in zebrafish only enlarge slightly and transiently
during zebrafish GZ development. Blood vessel invasion of the
cartilage template coincides with the onset of HZ cell apoptosis,
but unlike in mammals, it starts well after the onset of bone
collar formation and GZ-mediated bone elongation (24, 27). It
was long thought that osteocytes replacing HZ chondrocytes in
GPs were introduced in the bone diaphysis by invading
vasculature (2), but histological studies in chick and more
recent lineage analyses using transgenic mice have shown a
contribution to trabecular bone by HZ chondrocytes themselves
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(78-81). Similarly, recent clonal analysis using zebrafish
transgenics has shown that HZ chondrocytes may undergo
several fates at the resorption front: apoptosis, or transition
into osteoblast or adipocyte fates (24). Unlike mammals, but
similar to amphibians, reptiles and most bird species, secondary
ossification centers do not develop in GZs of endochondral
bones in zebrafish or other teleosts (1, 27, 29, 30).

3.1.3 Patterning of endochondral growth zones

Our understanding of GZ patterning mechanisms is largely
based on studies of mouse limb GPs. Two signaling pathways
activated by Indian Hedgehog (Ihh) and Parathyroid Hormone-
like Hormone (Pthlh), respectively, interact at a distance to
pattern long bone GPs (Figure 5A). Ihh is first expressed
throughout the diaphysis of long bone cartilage templates
before becoming restricted to chondrocytes in the pre-
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hypertrophic zone (PHZ) (82, 86). Ihh activates Pthlh expression
at a distance in periarticular chondrocytes, and Pthlh in turn
represses Ihh expression. Mosaic analyses of Ihh, Pthlh, and
Pthlr mutants have shown that this negative feedback loop
effectively patterns the distance between RZ and HZ (83, 84). Ihh
expression levels are also regulated by BMP and FGF signaling:
Smadl/5 promotes Ihh expression, while Smad2/3 and Fgfr3
repress its expression (87-90). In addition to their role in scaling
the GP, Thh promotes bone collar formation by inducing the
differentiation of osteoblasts in the perichondrium (91, 92),
while Pthlh promotes the proliferation of PZ chondrocytes
and delays cell-cycle exit and the onset of chondrocyte
enlargement, both in mice and zebrafish (82, 92). In contrast,
little is known about the molecular pathways regulating HZ
chondrocyte enlargement. Three phases of enlargement have
been identified in mice, which include an initial three-fold
volume increase through hypertrophy, that is, cell enlargement
with a corresponding increase in organelle dry mass, followed by
a four-fold increase through vacuole swelling by
disproportionate intake of fluid, and a final two-fold increase
through hypertrophy again. Interestingly, the duration of the last
phase (hypertrophy) varies the most between rapidly and slowly
expanding growth plates, and regulation of this phase requires
Insulin-like growth factor 1 (Igf1) (93).

The Ihh-Pthlh feedback loop appears to be conserved in
mammalian cranial base synchondroses, although Pthlh is
expressed throughout the RZ and PZ (94, 95). A few studies in
zebrafish have shown the conservation of GZ patterning
mechanisms between teleost fish and mammals (45, 96), and
an earlier onset of Pthlha expression than previously described,
namely at the onset of chondrogenesis and before the onset of
ihha expression (Figure 5B) (46). Novel findings in zebrafish
have also shown the potential of this model for expanding our
understanding of GZ patterning, as they suggest that the Thh-
Pthlh feedback loop maintains but does not establish the GZ
pattern, at least in some pharyngeal endochondral bones (46).
Instead, the zebrafish Pthih ortholog, pthlha, and mechanical
force from muscle contraction initiate the HZ and the location of
subsequent ihha expression, thereby establishing the negative
feedback-loop that maintains GZs (Figure 5B) (46).

3.2 Cellular basis of similarities and
differences in endochondral growth
zones between species

3.2.1 Bone elongation and differential growth
The rate of bone elongation changes throughout the life of
a GZ, and differs between GZs of an individual, as well as
homologous GZs of different species. Such growth rate
variation is referred to as differential growth (1). In rats,
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three cellular mechanisms mediate endochondral bone
elongation: cell proliferation, cell enlargement, and ECM
production. Cell proliferation takes place in the PZ and
enlargement in the HZ, while ECM production takes place in
both zones. These three cellular mechanisms contribute
unequally to bone elongation in mammalian GPs:
proliferation 7-10%, ECM production 32-49%, and cell
enlargement 44-59% (25). The relatively minor contribution
of proliferation to growth serves to compensate for the loss of
chondrocytes at the chondro-osseous junction. Between
mammalian species, as shown for bat metacarpal and jerboa
metatarsal GZs, the largest driver of growth rate is the degree of
cell enlargement of HZ chondrocytes (93, 97). In contrast,
proliferation is the major contributor to endochondral bone
elongation in zebrafish, as no significant cell enlargement or
increase in ECM content are observed in active GZs (27). In
other teleost fishes, the cellular basis of endochondral growth
has been explored in several African cichlids: ECM production
is the main driver of growth in H. elegans, while differences in
cell proliferation and/or enlargement mediate differential
growth in Lake Malawi cichlids (98, 99).

3.2.2 Life history differences

Mammals and teleost fishes also differ dramatically in the
timing of growth over their lifespans. Human limb GPs are
already active at birth and mediate axial elongation until the end
of puberty, when estrogens trigger GP closure and growth arrest
through complete replacement of epiphyseal cartilage by bone
(100). In rats, GPs also become inactive at sexual maturity but
they are not replaced by bone (1). Not all GPs become inactive at
the same age: in humans, the three GZs of the cranial base ossify
at different times: the intersphenoid GZ ossifies immediately
before birth, the spheno-ethmoidal GZ ossifies at 6 years, and the
spheno-occipital GZ remains active until the end of puberty
(101-103). In contrast, most teleost fish grow throughout life,
although the rate of growth slows with age, as described by the
individual growth model of von Bertalanffy (104). Accordingly,
zebrafish growth is indeterminate (105, 106), yet its pharyngeal
GZs become inactive in adults and do not ossify, similar to rats.
Further adult growth is mediated by intramembranous
ossification (27).

3.3 Modeling human endochondral
growth zone disorders in zebrafish

Despite the many similarities in development and

physiology of their GZs, there have been relatively few studies
modeling human GZ disorders in zebrafish. Recent reviews
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Zebrafish models of endochondral growth zone development and disease (A) Model for the patterning of growth zones (GZs) based on genetic
studies of mouse long bones (82-84). Indian hedgehog (lhh) is first expressed in the nascent diaphysis of the cartilage model. Its expression
domain expands towards the epiphyses and activates Parathyroid hormone-like hormone (Pthlh) expression in periarticular cartilage. Pthlh
represses |hh at a distance, which sets the distance between the hypertrophic zone (HZ) and resting zone (RZ). (B) Model for the patterning of
CH GZs in zebrafish based on (46). pthlha is expressed at the epiphyses of the differentiating CH. The HZ is then patterned by pthlha and muscle
contractions before the onset of ihha expression. According to this model, ihha plays a role in the maintenance of GZs, not their patterning. (C)
Zebrafish fam20b mutants recapitulates the skeletal phenotype of Raine syndrome, a particular form of osteosclerotic bone dysplasia (45). Short
overossified long bones are observed in Raine syndrome newborns. Premature ossification of the CH diaphysis is observed in zebrafish fam20b
mutants. (D) Zebrafish chimaeras recapitulate the formation of cartilage nodules observed in the human condition hereditary multiple exostosis,
which results from a mutation in the EXT2 gene. ext2-/- chondrocytes are excluded from WT cartilage stacks in zebrafish chimaeras, leading to
the hypothesis that osteochondromas observed in EXT2+/- patients result from loss-of-heterozygosity (85). Ihh and ihha expression domains in
yellow, Pthlh and pthlha expression domains in pink, ectonucleoside triphosphate diphosphohydrolase 5a (entpd5a) expression domain in light
blue, cartilage in blue, and bone in red. CH, ceratohyal; GPs, growth plates; WT, wild type; dpf, days post-fertilization.
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largely focus on the many models for other types of bone
diseases such as osteogenesis imperfecta, osteoporosis,
osteopetrosis and osteoarthritis, that alter ossification and
osteoblasts (4-10). Notable exceptions include mutations in
genes encoding proteoglycan core proteins or enzymes
involved in their biosynthesis or assembly, as models for such
cartilage diseases as Keipert syndrome (Glypican 4, GPC4;
discussed in section la), osteosclerotic bone dysplasia
(FAM20C), and hereditary multiple exostoses (Exostosin
2, EXT2).

Zebrafish provided some of the first insights into
requirements for proteoglycans in craniofacial development
(45, 96). A variety of Human conditions result from mutations
in the proteoglycan biosynthesis pathway that builds
chondroitin-sulfate- (CSPGs) and heparin-sulfate-
proteoglycans (HSPGs) from UDP-glucose. Zebrafish mutants
in seven of the nine enzymes of the O-linked-glycosylation
pathway required for HSPG production have been described,
several of which recapitulate endochondral skeletal defects of
human patients (107).

A surprising discovery associated with the cartilage
phenotypes of zebrafish mutants in UDP-xylose synthase
(uxs1), xylotransferase 1 (xyltl) and glycosaminoglycan xylosyl
kinase (fam20b) is the premature maturation of hypertrophic
chondrocytes and bone collar ossification (Figure 5C). This
suggested a role for proteoglycans in regulating the timing of
cartilage and bone differentiation, perhaps through the
modulation of ligand-based cell-cell signaling (45, 96). Further,
premature ossification in fam20b mutants provided a new
etiology for Raine syndrome, a human disease resulting from
mutations in FAM20C. Also known as osteosclerotic bone
dysplasia, Raine syndrome patients have craniofacial defects
such as low nasal bridge and midfacial hypoplasia indicative of
defects in growth at synchondroses, as well as short and
overossified long bones in newborns (Figure 5C). The
zebrafish fam20b mutant phenotype suggests that Raine
syndrome craniofacial and limb skeletal defects result from
premature maturation of the skeleton (45).

Further down the HSPG biosynthetic pathway, exostosin
(ext) -1 and-2 code for glycosyltransferases involved in the
polymerization of heparan sulfate chains. Mutations in EXTI
or EXT2 result in hereditary multiple exostoses (HME) in
humans, a disease that causes the formation of benign bone
tumors (osteochondromas) that are associated with GPs
(Figure 5D). Most HME patients are heterozygous for
mutations in either EXTI or EXT2 (108-110). A study of
zebrafish ext2 mutants (dackel) supports a model where
osteochondromas arise from local loss of heterozygosity
(LOH): zebrafish ext2”/" embryos do not develop
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osteochondromas but their skeleton is generally misshapen,
demonstrating a requirement for ext2 in cartilage
morphogenesis/stacking (85). Instead, ext2”” cells form
osteochondroma-like nodules when transplanted in wild type
(WT) individuals: homozygous mutant cells are excluded from
WT stacks, providing support to the LOH model for the etiology
of HME (Figure 5D) (85).

4 Conclusions and future directions

In this review, we have highlighted the many similarities
and differences between zebrafish and human skeletal
anatomy, their endochondral GZs and recent studies of
developmental and physiological mechanisms that control
endochondral bone growth. Despite the apparent anatomical
differences between human and teleost fish skeletons, the
overwhelming conservation of different cell types and
molecular mechanisms underlying skeletal development
makes the zebrafish a powerful model for further studies of
the causes and potential therapies for human skeletal diseases.
This power lies in (1): the unique and well-known properties
that have already made zebrafish a popular model system,
which include ease of care, their small size, large number of
offspring, suitability for large forward genetic screens and
embryo transparency to name a few and (2) an ever-
expanding toolkit to reach a diversity of research goals.
CRISPR-Cas9-mediated mutagenesis is relatively easy in
zebrafish and protocols have been developed for the rapid
production of loss-of-function phenotypes in CRISPR-injected
individuals (111, 112). Numerous transgenic lines labeling
various skeletal cell lineages and their precursors have been
used to image cartilage and bone morphogenesis in vivo, and
also conduct lineage tracing in endochondral bones (24, 58,
113, 114). Transgenic zebrafish can also be utilized for cell-type
and stage-specific ablation using the nitroreductase system
(115), as well as in mosaic transgenic conditions to test the
cell-autonomous and non-cell autonomous properties of
particular genes and their mutant alleles (46, 116, 117).
Lastly, recent improvements in single-cell RNAseq and
ATACseq methodologies have allowed gene expression
profiling of entire cell lineages and even whole organs or
organisms at single cell resolution, made possible by the
small size of zebrafish embryos and larvae (118-122). Future
deployment of these single-cell techniques for the study of all
skeletal cell types will undoubtedly lead to new insights into
endochondral and GZ development in health and disease.
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