
L

ar
X

iv
:2

21
2.

02
04

6v
1

[c
s.

C
V

]
5

D
ec

 2
02

2
1

Algorithm and Hardware Co-Design of
Energy-Efficient L S T M Networks for Video

Recognition with Hierarchical Tucker Tensor
Decomposition

Yu Gong, Miao Yin, Lingyi Huang, Chunhua Deng, Yang Sui, and Bo Yuan

Abstract—Long short-term memory (LSTM) is a type of powerful deep neural network that has been widely used in many sequence
analysis and modeling applications. However, the large model size problem of LST M networks make their practical deployment still
very challenging, especially for the video recognition tasks that require high-dimensional input data. Aiming to overcome this limitation
and fully unlock the potentials of LST M models, in this paper we propose to perform algorithm and hardware co-design towards
high-performance energy-efficient LST M networks. At algorithm level, we propose to develop fully decomposed hierarchical Tucker
(FDHT) structure-based LSTM, namely FDHT-LSTM, which enjoys ultra-low model complexity while still achieving high accuracy. In
order to fully reap such attractive algorithmic benefit, we further develop the corresponding customized hardware architecture to
support the efficient execution of the proposed FDHT-LSTM model. With the delicate design of memory access scheme, the
complicated matrix transformation can be efficiently supported by the underlying hardware without any access conflict in an on-the-fly
way. Our evaluation results show that both the proposed ultra-compact FDHT-LSTM models and the corresponding hardware
accelerator achieve very high performance. Compared with the state-of-the-art compressed LST M models, FDHT-LSTM enjoys both
order-of-magnitude reduction (more than 1000) in model size and significant accuracy improvement (0.6% to 12.7%) across different
video recognition datasets. Meanwhile, compared with the state-of-the-art tensor decomposed model-oriented hardware TIE, our
proposed FDHT-LSTM architecture achieve 2:5, 1:46 and 2:41 increase in throughput, area efficiency and energy efficiency,
respectively on LSTM-Youtube workload. For LSTM-UCF workload, our proposed design also outperforms TIE with 1:9 higher
throughput, 1:83 higher energy efficiency and comparable area efficiency.

Index Terms—Long Short-term Memory (LSTM), Hardware Architecture, Tensor Decomposition, Hierarchical Tucker (HT), Video
Recognition.

F

1 INT RODUC T ION

ONG short-term memory (LSTM) networks are popularly
used in many real-world sequential analysis and processing

tasks. Thanks to their inherent strong capability of capturing the
temporal dependency and modeling the sequential correlation, the
state-of-the-art LSTMs have achieved unprecedented success in
many important temporal sequence-involved applications, such as
video recognition [7], speech recognition [9] and natural language
processing (NLP) [3].

Despite their current widespread adoptions, the large model
sizes of LSTM networks make the practical deployment still very
challenging. To be specific, because the input data of many real-
world applications, e.g., video processing and NLP, naturally
exhibit high dimensionality, the corresponding input-to-hidden
weight matrices of LSTMs are typically extremely large. For
instance, as analyzed in [20], even with small-size (256 states)

 Yu Gong, Miao Yin, Lingyi Huang, Yang Sui and Bo Yuan are
with the Department of Electrical and Computer Engineering, Rut-
gers University, Piscataway, NJ, 08854. E-mail: yg430@soe.rutgers.edu,
miao.yin@rutgers.edu, lingyi.huang@rutgers.edu, yang.sui@rutgers.edu,
bo.yuan@soe.rutgers.edu.

 Chunhua Deng is currently with ScaleFlux Inc. This work was done
when the author was with Rutgers University. E-mail: chun-
hua.deng518@gmail.com.

 Yang Sui contributed to this work but was accidentally omitted in the
published version.

hidden layer, the LSTM evaluated on UCF11 video recognition
dataset [16] already requires more than 50 million weights.
Evidently, such ultra-large model size poses a series of severe
challenges for the efficient deployment of LSTMs, including
but not limited to high memory footprint, long processing time,
low energy efficiency, and insufficient accuracy incurred by high
difficulty of training.

To address these challenges, various model compression meth-
ods, such as pruning and quantization, have been proposed to build
compact LSTMs. Consider the compression ratio provided by
these methods are typically limited and may be insufficient for the
very large LSTMs, tensor decomposition, as a low-rank approxi-
mation approach, have attracted a lot of attention towards high-
performance compression of LSTM models. In general, tensor
decomposition aims to factorize a large-size tensor to a series of
small tensor cores with maintaining small approximation error. Af-
ter performing tensor decomposition, a very elegant mathematical
phenomenon is that the resulting space and time complexity can
be significantly reduced, sometimes even with order-of-magnitude
reduction. Motivated by this attractive property, recently several
different tensor decomposition approaches, such as tensor train
(TT), tensor ring (TR) and block-term (BT), have been adopted to
build compact LSTMs models [6] [17] [21] for various temporal
data analysis tasks, e.g., video recognition and long-term dynamic
forecasting. Compared with the original uncompressed large-size

LSTMs, these tensor decomposed models exhibit much smaller
memory footprints and competitive classification/prediction accu-
racy.

Although the state-of-the-art tensor decomposed LSTMs
demonstrate their promising potentials, they are still facing two
inherent limitations. First, the existing approaches can only factor-
ize the input-to-hidden layers instead of the entire model, thereby
limiting the overall compression performance. Notice that, as
will be shown in Section 3, the straightforward decomposition
on the hidden-to-hidden layers cannot solve this problem due to
the significant accuracy degradation. Second, the tensor decom-
position approaches adopted in the existing LSTM compression
works have inherent limitations. To be specific, T T decomposition
requires that the border tensor cores be rank-1 tensors, thereby
directly limiting the overall representation power. Also, using B T
decomposition brings extra flatten and permutation operations,
which causes significant computation overhead for the resulting
BT-LSTM models. More importantly, as will be analyzed in
Section 3, the existing adopted tensor decomposition approaches
(TT, T R and BT) in model compression, theoretically, do not
provide the best space complexity reduction. Consequently, they
are not the ideal solutions for building tensor factorized high-
accuracy ultra-compact LSTM models.

To overcome these limitations and develop high-performance
LSTM models, in this paper 1 we propose to leverage Hierarchical
Tucker (HT) [10] technique, an under-explored yet powerful tensor
tool, to fully decompose the LSTM networks. The resulting com-
pressed model, namely FDHT-LSTM, enjoys ultra-low complexity
with still maintaining high accuracy. Then, to fully reap the
benefits brought by the proposed efficient compression approach,
we further develop the corresponding hardware architecture to
accelerate the execution of FDHT-LSTM models. Overall, the
contributions of this paper are summarized as follows:

At the algorithm level, we propose to impose fully decom-
posed hierarchical Tucker (FDHT) structure on the LSTM
networks to achieve ultra-high compression performance.
The proposed FDHT structure contains two main features
(as shown in Figure 1). First, the underlying LSTM is
built via using HT decomposition, a powerful approach
that can properly capture and model the correlation and
structure in high-dimensional data. Second, the entire
LSTM model, instead of one or few component layers, is
fully decomposed in the HT format in a homogeneous way.
In other words, the low-rank correlation among different
component layers are fully exploited, and thereby bringing
order-of-magnitude reduction in model size while still
achieving very high accuracy.
At the hardware level, we design and implement the
corresponding FDHT-LSTM hardware architecture to fully
leverage the algorithmic benefits. In order to support
various complicated matrix transformations introduced by
the computation flow of FDHT-LSTM, we first propose to
utilize 2-D SRAM array to properly map the high-order
tensor transpose on the physical 2-D memory component.
Based on this philosophy, we further propose novel write
and read access schemes to the 2-D SRAM array, thereby
enabling conflict-free memory access with high flexibility
and reconfigurability to different workloads.

1. This paper is the extension of the authors’ prior work [22].

2

TT Decomposition

(a)

HT Decomposition

(b)

Fig. 1: Architecture of tensor decomposition-based LSTM. (a)
Prior TT-LSTM. (b) The proposed FDHT-LSTM. Reproduced
from [22].

Evaluation results demonstrate the superior performance
of our proposed FDHT-LSTM and the corresponding hard-
ware accelerator. Experiments show that the FDHT-LSTM
models can use very few parameters (less than 10,000
weights) to achieve very high accuracy across different
video recognition datasets. Compared with the state-of-
the-art compressed LSTM models, FDHT-LSTM enjoys
both order-of-magnitude reduction (more than 1000) in
model size and significant accuracy improvement (0.6%
to 12.7%). Meanwhile, compared with the state-of-the-art
tensor decomposed model-oriented hardware TIE, our pro-
posed FDHT-LSTM architecture achieves 2:5, 1:46 and
2:41 increase in throughput, area efficiency and 2:41
energy efficiency, respectively on LSTM-Youtube
workload. For LSTM-UCF workload, our proposed design
also outperforms T IE with 1:9 higher throughput, 1:83
higher energy efficiency and comparable area efficiency.

The rest of this paper is organized as follows. Section 2 intro-
duces the background of tensor decomposition and the motivation
of hierarchical Tucker (HT)-based LSTM compression. The pro-
posed fully decomposed HT-structured (FDHT) LSTM algorithm
is described in Section 3. Section 4 presents the corresponding
FDHT-LSTM hardware architecture. The evaluation performance
at both algorithm and hardware levels is reported in Section 5.
Section 7 draws the conclusions.

2 B A C K G R O U N D AND MOTIVATION

2.1 Preliminaries

2.1.1 Notation

In this paper, boldface lower-case, boldface capital and boldface
calligraphic letters represent vectors, matrices and higher-order
tensors, respectively, e.g. x , X and X . Additionally, letters
with indices in bracket denote the entry, e.g., xpiq, X pi; j q,
X pi1 ; ; idq.

N
o

n
-l

e
a

f
L

e
a
f

tensor:

1

C

s s

s

2 2

– –
i1 j 1

Root
Node:

Frame:

Transfer

Fig. 2: Standard HT decomposition example for a 4-order tensor.
The hierarchy is a binary tree with root t1; 2; 3; 4u, where nodes
are denoted by rounded rectangles. t1u, t2u, t3u t4u are leaf
nodes, and t1; 2u, t3; 4u are their parents. In HT format, only
colored leaf frames and transfer tensors are needed to store.
Reproduced from [22].

2.1.2 Tensor Contraction

Tensor contraction is the multiplication between two higher-order
tensors where more than one dimension matches. For example,
given two tensors A P R M 1 M 2 C and B P R C N 1 N 2 , where the 3rd
dimension of A is identical to the 1st dimension of B with size C ,
the result of tensor contraction C A 3 B , as a size-M1 M2 N1
N2 tensor, can be calculated as:

Cpi1; i2; j1; j2q
‚

Api1; i2; kqBpk; j1; j2q: (1)
k1

2.1.3 Hierarchical Tucker Decomposition

As a special case of tensor decomposition, hierarchical Tucker
(HT) approach recursively decomposes the original tensor into
small tensor cores with hierarchical levels from top to bottom in a
binary tree. As illustrated in Figure 2, the upper-level intermediate
components can be factorized to lower-level components. Here
the intermediate components are referred as frames, each of
which corresponds to a unique node. Additionally, each node
in the binary tree is represented by a dimension set. In gen-
eral, given a d-order tensor A P R N 1 N d , we can build a binary
tree to split the original dimension set t1; ; du and assign the
index to each node. To be specific, the root node D t1; 2; ; du
is associated with the root frame A U D , s ˆ D is the node
corresponding to frame U s, and s1; s2 ˆ s are the left and right
child nodes of node s. Notice that if we define minpsq;
maxpsq, then each non-leaf frame U P R R s N s N s can be
recursively decomposed to frames (U s1 and U s2) and transfer
tensor B s P R R s R s 1 R s 2 as

U s B s 1 U s1 1 U s2 ; (2)

where R s ; R s 1 ; R s 2 are referred as hierarchical ranks. Overall, by
using hierarchical Tucker decomposition that recursively decom-
poses the frames from top to bottom, we can use the combination
of the small-size 2-order leaf frames and 3-order transfer tensors
to store the original large-size d-order tensor X U D .

3

2.2 Compressing L S T M s via Tensor Decomposition

In the recent years tensor decomposition has emerged as a very
attractive technique to compress very large LSTM models. In
[20], tensor train (TT) decomposition is applied to factorize the
input-to-hidden layer of LSTMs and GRUs for video recognition.
The reported experimental results show that very significant com-
pression ratio can be achieved while maintaining high accuracy.
Motivated by this success, other advanced tensor decomposition
approach, such as block-term (BT) [21] decomposition and tensor
ring (TR) decomposition [21], are also used to build compact
LSTM models (BT-LSTM and TR-LSTM) in video processing
tasks. In addition, tensor decomposed LSTMs also demonstrate
high performance in other sequential analysis and prediction tasks.
For instance, [23] proposes a TT-format LSTM to perform long-
term forecasting in dynamic systems.

2.3 Motivation of Compressing L S T M via HT Decompo-
sition

In this paper we propose to adopt HT decomposition, a relatively
little noticed yet powerful tensor factorization approach for LSTM
compression. Our choice is motivated by two reasons. First,
compared with its well-explored counterparts (e.g. TT, T R and
B T decomposition) in the model compression field, HT decompo-
sition, by it nature, can provide higher space complexity reduction
on the same-size tensor data with the same selected rank, thereby
implying that even smaller LSTM models can be constructed in
the HT format. Second, from the perspective of tensor theory, the
inherent hierarchical structure of HT also enables better weight
sharing and hierarchical representation from high-dimensional
data, which are very important to guarantee the representation
capability of tensor decomposed LSTM models. As we will report
in Section 5, the HT structure-based LSTM models consistently
demonstrate superior performance than the existing compressed
LSTMs using other tensor decomposition methods with respect to
both model accuracy and compression ratio.

3 T H E P R O P O S E D F D H T- L S T M : AL G O R I T H M

3.1 Compact HT-structure Linear Layer

Consider the linear layer is the foundation of LSTM models, in this
subsection we first build a compact HT-structure layer that serves
as the key component of the proposed FDHT-LSTM model.

3.1.1 Tensorization
In the compact HT-layer, computations are performed with high-
order tensor contraction, thus we first need to transform all the
original variables into tensor format. In general, for an original
linear layer with weight matrix W P R O I that linearly maps an
input vector x P R I to an output vector y P R O in HT-based
format, we first transform the weight matrix W to an d-
order tensor W P R O 1 O d I 1 I d . In addition, by defining
I d I i and O d Oj , we can also tensorize the
affiliated input vector x and output vector y to input and output
tensor X P R I 1 I d and Y P R O 1 O d , respectively.

3.1.2 Decomposing W
After tensorizing the large-size weight matrix W as weight tensor
W P R O 1 O d I 1 I d , we can then utilize HT decompo-sition to
denote the original W with a set of small-size matrices

Tensor

‚ ‚ ‚

‚ ‚

(4)

‚ ‚ ‚ ‚

(5)

i1

and tensors. With the definition of HT decomposition in Eq. (2),
W can be factorized as

4

Contraction

R D R D 1 R D 2

Wpo1; ; od; i1; ; idq BDpk; p; qq
k1 p1 q1

U D 1 pp; ’D 1 po; iqqUD2 pq ; ’D 2 po; iqq;

(3)

where ’s po; iq is a mapping function which returns the associate
indices o po1; ; odq and i pi1; ; idq for a specified frame U s
with a given node s and d. For example, with d 6 and s t3; 4u, the
output of ’s po; iq is po3; o4; i3; i4q. Additionally, U D 1 and U D 2

can be further recursively decomposed as

R s 1 R s 2

pUsqpk; ’spo; iqq pBsqpk; p; qq
p1 q1

pU s1 qpp; ’s1 po; iqqpUs2 qpq; ’s1 po; iqq;

where D t1; 2; ; du, D 1 t1; ; td{2uu and D 2 trd{2s; ; du
are the left and right child nodes of the root node D .

3.1.3 HT-Structure Layer
As the original weight matrix is decomposed to HT-format, the
HT-structured linear layer can be readily constructed via HT-
format matrix-vector multiplication instead of recovering back to
original format. To be specific, the forward pass of an HT-layer is
computed as:

R D R D 1 R D 2

Ypoq pBDqpk; p; qq
i k1 p1 q1

U D 1 pp; ’D 1 po; iqqUD2 pq ; ’D 2 po; iqqX piq:

After the above computation, we need to reshape the output tensor
Y back to the original vector-format y . Hence, we can simplify
the entire computing process as a single HT-structure layer:

y H T LpW ; xq: (6)

As depicted in Figure 3, the consecutive arrows denote the
computation flow in the computation process of an HT-structure
layer. Specifically, the input vector x is first tensorized, and then
it is contracted with the HT-format weight tensor in a hierarchical
way. Finally, the obtained output tensor is reshaped back to output
vector y .

3.1.4 Benefits on Low Cost
With the proposed HT-layer, one most important benefit is huge
complexity reduction. Table 1 shows the theoretical space com-
plexity in comparison with other tensor factorized linear layer as
well as the uncompressed one. Considering tensor rank R is gener-
ally smaller than I or O, HT-structure layer can provide the lowest
space complexity as shown in this table. Additionally, to verity the
practical ability of parameters reduction, we plot curves of number
of parameters with respect to R in different tensor decomposition
formats. As shown in Figure 4, to store size-57; 600 256 weight
matrix used in [17], [20], [21], our HT-structure layer requires
the fewest number of parameters with the same rank settings
among all different types of tensor factorization methods. As will
be shown in Section 5, such advantages will further be verified
via empirical experimental results across various popular video
recognition datasets.

Fig. 3: Computation flow in the HT-layer for d=4. Arrows repre-
sent the directions of tensor contractions among the decomposed
tensors. Here leaf frames tU u4 are 3-order tensors since the
weight tensor is tensorized from a matrix. Reproduced from [22].

TA B L E 1: Space complexities for different tensor-format linear
layers. Here R maxsˆD R s , I 1 maxkPD I k , O1 maxk PD
Ok . Reproduced from [22].

Compressed Linear Layer Space Complexity

Uncompressed OpI1O1q
Tensor Train (TT)-structure OpdI1O1R2q
Tensor Ring (TR)-structure OpdI1O1R2q
Block-Term (BT)-structure OpdI1O1R Rdq

Hierarchical Tucker (HT)-structure OpdI1O1R dR3q

3.2 Fully Decomposing the HT-structure L S T M

3.2.1 Challenges of Fully Compressing L S T M

Recall that a typical LSTM model consists of input-to-hidden
layer and hidden-to-hidden layer. Built on the top of the under-
lying HT structure for each component layer, performing fully
decomposition on the entire LSTM models can evidently bring
further performance improvement. To that end, one naive way
is to simply compress each layer with HT decomposition. In
other words, all weight matrices in the LSTM model are inde-
pendently decomposed to HT format. Although this strategy can
indeed bring full compression on the entire LSTM network, such
straightforward layer-wise compression strategy suffers from huge
accuracy drop. Figure 5 shows the experimental results using
the layer-wise compression with HT decomposition. Here more
than 2% accuracy drop can be observed as compared to the
conventional input-to-hidden-only compression adopted in [17],
[20], [21]. Overall, fully compressing the entire LSTM model
using HT decomposition without accuracy drop is challenging and
non-trivial.

3.2.2 Proposed FDHT-LSTM
To fully compress LSTM models without performance degrada-
tion, we propose a homogeneous compression method, namely
fully decomposed HT (FDHT) decomposition, to obtain highly-
compact LSTM models. Figure 1 illustrates the key idea of the
proposed full decomposition. To be specific, in order to maxi-
mally leverage the linear correlation across all weight matrices

^
^
^
^

^
ûrts
^
^

^

^
^

^

D

BU D

BU s
1

BU F psq
;

; (11)

1 1 U s

2 2
sU : (12)

1

B B U U U U
1 1 1 1 1 1

X
1

5

where , tanh and d are the sigmoid function, hyperbolic
function and element-wise product, respectively.

3.2.3 HT-based Gradient Calculation

Fig. 4: Curves for number of parameters in different tensor-format
layer with respect to tensor rank R . Here we use settings in
the related works, i.e., d 5, pI1; ; I5q p8; 10; 10; 9; 8q, pO1;
; O5q p4; 4; 2; 4; 2q. Reproduced from [22].

Fig. 5: Comparison between naive layer-wise compression and our
proposed full decomposition in terms of number of parameters and
test accuracy on UCF11 dataset. Reproduced from [22].

in the entire LSTM model, we first concatenate all the weight
matrices as a single huge matrix such that the entire model can be
considered as a “mega” linear layer. Then, at each time step, all
the intermediate results only need one-time multiplication in the
forward propagation process:

f rts W f Vf

urts W u Vu xrts
crts W c Vc hrt 1s (7)
orts Wo Vo

W I rts:

With the above interpretation, we can directly impose the
desired HT structure on the integrated single huge matrix in an
LSTM model. To be specific, following the scheme described in
Section 3.1, we can tensorize and decompose the entire LSTM
models to the HT format, and then perform forward pass as:

f rts

crts Z rts H T LpW ; I rtsq: (8)

orts

Correspondingly, the outputs of the FDHT-LSTM can be calcu-
lated as follows:

f rts pf rts bf q
urts purts buq

crts f rts d crt 1s urts d tanhpcrts bcq (9)
orts ports boq
hrts orts d tanhpcrtsq;

Notice that in order to ensure that the desired FDHT-LSTM
model can be properly obtained, the backward propagation in the
training process should also be reformulated to HT-based format.
In general, given an HT-structure linear layer W U and
 B Y X , and defining s, F psq and Bpsq as non-root node,
parent and sibling nodes of node s in the binary tree, respectively,
the partial derivative of the output tensor with respect to frames
can be recursively calculated as:

B Y
B F p s q

3 U B psq

1;3; ;2 B p s q 2 B p s q 4 B Y (10)
1; ; B p s q B p s q 2; F p s q F p s q 3;

 ; F p s q F p s q B p s q B p s q 3

where s minpsq; s maxpsq. Notice that when F psq is equal
to node D , the above recursive procedure terminates.

Furthermore, with Eq. (10) the gradients for leaf frames and
transfer tensors can also be recursively calculated as:

B L B Y s s 3; ;d 1 B L BU s

BU s
1; ; s 1 ; s 1; ;d B Y

B L Y 2; ; s s 2 B B s

BU s
2; ; s 1 s 1 2 1

3; ; s s 3 4; ;d 3 B L 2; ; s 2 s 2

2 2 1; ;d B Y
In general, our proposed “integrate-then-decompose” com-

pression strategy can bring significant performance benefit for the
FDHT-LSTM models. As shown in Figure 5, compared with the
naive layer-wise compression strategy that suffers significant ac-
curacy degradation, our proposed approach ensures high accuracy
without performance loss. Furthermore, compared to the input-
to-hidden-only compression counterpart, our FDHT-LSTM enjoys
much smaller model size. More detailed and comprehensive em-
pirical evaluation results across different datasets will be reported
in Section 5.

4 T H E P R O P O S E D F D H T- L S T M : H A R D WA R E A R -
C H I T E C T U R E

Based on the above described FDHT-LSTM structure and algo-
rithm, in this section we further develop the corresponding hard-
ware architecture that can fully leverage the algorithmic benefits
to support the efficient execution of the FDHT-LSTM model.

4.1 Analysis of Computation Flow: A 2-D Matrix Per-
spective
As described in Section 3, the overall computation scheme of
FDHT-LSTM can be interpreted as a series of tensor contraction
along a binary tree (see Figure 3). Consider tensor contraction
(Eq. 1) is essentially a high-dimensional operation; while the
underlying arithmetic and memory hardware components can only
support 2-D operation, a re-analysis of the computational flow,
from 2-D matrix perspective, is very necessary and desired.

Figure 6 illustrates the overall computational flow of the
proposed FDHT-LSTM in the 2-D matrix format. Here B1234 ,

12, 34, 1, 2, 3 and 4 are the weight matrices of
the flatten high-order tensors, is the reshaped input matrix

6

6

 × × × ×

Matrix
Multiplication

Matrix
Transformation

 ×

5

×

 × ×

4 2
× ×

1
 ×

 ×

 × ×

 × × × ×

1 2 3 4 5 6 3

Operation Sequence × × ×

Fig. 6: Computation flow of high-order FDHT-LSTM from the perspective of 2-D matrix multiplication and transformation.

data, and T is the intermediate result. Notice that here T cannot
be multiplied with the next weight matrix directly due to the
mismatch of matrix dimension. Therefore, T needs to be first
transformed to T

1
to ensure functional validity.

As shown in Figure 6, a total of six matrix transformations
(from T to T

1
) is required in the entire computation flow of

FDHT-LSTM. After further analysis, we can obtain two important
observations: First, these transformations are not simple matrix
reshape but essentially permutation that requires complex matrix
operations such as row/column merge and concatenation etc.;
Second the six transformations can be categorized to three types.
To be specific, Type-I (Transformation 1 and 4) is to convert
T P R A p B 1 B 2 q to T

1
P R p A B 1 q B 2 , and the mapping

principle for this transformation is as:

T pm; nq æ T
1
pp; qq; (13)

where m a, n pb1 1q B 2 b2, p pa 1q B 1 b1, q b2, a
1; 2; :::; A, b1 1; 2; :::; B1 and b2 1; 2; :::; B2.

Type-II (Transformation 2 and 5) is to convert T P
R p A 1 A 2 A 3 q p B 1 B 2 q to T

1
P R p A 1 A 3 B 1 q p A 2 B 2 q , and the mapping

principle for this transformation is as:

T pm; nq æ T
1
pp; qq; (14)

where m pa1 1q A2 A3 pa2 1q A3 a3, n pb1 1qB2 b2, p
pa1 1qA3 B 1 pa3 1qB1 b1, q pa2 1q b2, a1 1; 2; :::; A1, a2
1; 2; :::; A2, a3 1; 2; :::; A3, b1 1; 2; :::; B1 and b2 1; 2; :::; B2.

Type-III (Transformation 3 and 6) is to convert T P
R p A 1 A 2 A 3 q B to T

1
P R p A 1 A 3 B q A 2 , and the mapping principle

for this transformation is as:

T pm; nq æ T
1
pp; qq; (15)

where m pa1 1q A2 A3 pa2 1q A3 a3, n b, p pa1qA3B
pa31qB b, q a2, a1 1; 2; :::; A1, a2 1; 2; :::; A2, a3 1; 2; :::; A3
and b 1; 2; :::; B.

4.2 Access Conflict on Conventional SRAM Architec-
ture

Without losing the generality, we use the basic matrix transfor-
mation M P R p A 1 A 2 q p B 1 B 2 q æ M

1
P R p A 1 B 1 q p A 2 B 2 q to

elaborate the challenges incurred by the complicated transfor-
mation above, where A1 A2 B 1 B 2 2. As shown in Figure 7,
when using conventional SRAM architecture, in the writing phase,
each row of the matrix is written to one address (one row) in this
SRAM in one cycle. For example, data 01; 02; 03 and 04 is written
to the address 01 of the SRAM. However, the access conflict
happens in the read phase. When reading the SRAM, the
desired data is 01; 02 and 04; 05. These four data are located at
two different addresses 01 and 02, and these two addresses can not
be accessed simultaneously, thereby causing access conflict.

The basic solution to the access conflict problem is relocating
one address multiple times (as shown in Figure 7). More specif-
ically, in cycle 1, address 01 is located and data 01; 02; 03; 04 is
read out from the SRAM. Data 01; 02 is saved in the register file,
while 03; 04 is the undesired data and discarded. Similarly, in cycle
2, address 02 is located; 05; 06; 07; 08 is read out from SRAM,
and 05; 06 is stored in the register file and 07; 08 is discarded.
In the assemble unit, 01; 02 and 05; 06 form the data array
01; 02; 05; 06. However, such a solution suffers two main
limitations:

1. Additional memory overhead is needed to support matrix
transformation. Since the matrix transformation cannot be ex-
ecuted in an on-the-fly way when using conventional memory
architecture, an additional register file is necessary to save the
desired data. Thus, this solution significantly increases the cost of
the register file, reducing the area and energy performance of the
overall hardware.

2. The write and reading scheme becomes much more com-
plicated because of frequent re-locating of the memory address.
Also, notice that the example we raise here is only a simple case,
and in practical workload, the matrix transformation is very large
and complicated. Hence it is not feasible to read all the data to
register files and assemble them when using conventional SRAM
architecture.

A
d

d
re

ss
Data

01 02

D
epth=M

SRAM Bank 2D SRAM Array

…

k

… …

7

01 02 05 06

03 04 07 08
Clock Cycle: Read phase

Timing Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

09 10 13 14

11 12 15 16

M! " #(A1×B1)×(A2×B2)

Matrix
transformation

Accessed
Data

SRAM
Address

01, 02, 03, 04

01

05, 06, 07, 08

02

 01, 02, 03, 04

01

 05, 06, 07, 08

02

09, 10, 11, 12

03

13, 14, 15, 16 09, 10, 11, 12

04 03

 13, 14, 15, 16

04

01 02 03 04

05 06 07 08

09 10 11 12

13 14 15 16

M ! "(A1×A2)×(B1×B2)

Write flow:

Conventional SRAM

01 01 02 03 04

02 05 06 07 08

03 09 10 11 12

04 13 14 15 16

Read flow:

Clock Cycle: Write phase
Timing Cycle 1 Cycle 2

Accessed
01, 02, 03, 04 05, 06, 07, 08

SRAM
Address

Cycle 3

09, 10, 11, 12

03

Cycle 4

13, 14, 15, 16

04

Fig. 7: Data access in conventional SRAM architecture.

Physical Partitioned Logically Partitioned

#1 #2 #G #1 z #2 #G
x

#1 D D … D

… #2 D D… D

#N D D… D

W W W y W W W

Fig. 8: The physical SRAM bank and logically partitioned 2-D
SRAM array. Here W and M are the width and depth of one
SRAM bank, respectively. D is the depth of one segment of
SRAM bank, where M D N . Here D can be reconfigured
according to workload.

4.3 2-D SRAM Array

In order to implement the desired matrix transformation, which is
essentially the 2-D mapping of high-order tensor transpose, we
propose to read and write the data in the 2-D SRAM array. In
other words, we aim to increase the dimension of the SRAM from
physical 2-D to ”virtually” 4-D, to better support the operation
in the high-order tensor operation. As illustrated in Figure 8, our
proposed SRAM array physically consists of G banks of SRAM,
where each of them has width of W and depth of M. Based
on such fixed arrangement, the controller will logically partition
the SRAM array to more fine-grained format when supporting
different workloads with various matrix sizes. To be specific,
according to the demand of the workload, each SRAM bank is
logically partitioned into N segments along the depth dimension,
and each segment has a depth of D where M N D . Notice that
here G, M and W are the fixed dimensions of the entire SRAM
module, and D and N are reconfigurable and determined by the
main controller, thereby providing the controller sufficient
capability to adjust the granularity of the memory operation for
different workloads.

To achieve this goal without introducing any memory access
conflict, delicate design of memory read/write scheme is required
and will be described next.

4.4 Matrix Transformation on 2-D SRAM Array
Based on the 2-D SRAM array, the corresponding conflict-free
memory access scheme can be developed. Without loss of gener-
ality, in this subsection we first study the read and write schemes
for a basic transformation M P R p A 1 A 2 q p B 1 B 2 q æ M

1
P

R p A 1 B 1 q p A 2 B 2 q . The obtained outcome will further serve as the
foundation of implementing the specific matrix transforma-tions
(Eq.13 – Eq.15) used in FDHT-LSTM.

To facilitate the notation, as illustrated in Figure 8, the bank
and segment indices of the 2-D SRAM array are denoted as x
and y, respectively, where x 1; 2; :::; G and y 1; 2; :::; N . In
addition, z and k are the row and depth indices in each SRAM
segment, respectively, where z 1; 2; :::; W and k 1; 2; :::; D.
Following such notation, one data entry in one SRAM segment,
one row in one SRAM segment, one SRAM segment, and one
SRAM bank can be represented as Spx; y; k; zq, Spx; y; k; :q,
Spx; y; :; :q and Spx; :; :; :q, respectively. Also, we use M pa; :q
and M p:; bq to represent the a-th row vector and the b-th col-
umn vector of M , respectively. In addition, M pa; b : cq and
M pa : b; cq denote the part of M pc; :q and M p:; cq that are with
column and row indices from a to b.

4.4.1 Memory Write Scheme
Next we describe memory write scheme for the example transfor-
mation M P R p A 1 A 2 q p B 1 B 2 q æ M

1
P R p A 1 B 1 q p A 2 B 2 q . Here D ,

as the granularity of 2-D SRAM array, is config-ured as B 2 to
support the operation for this example. Initially, M p1; 1 : B2q is
written along the z dimension into Sp1; 1; 1; :q as the first row of
SRAM segment Sp1; 1q. Then, if we interpret the B 2 data entries
in one row as a group, and one row of M contains B 1 groups, these
B 1 data groups are scheduled to be sequentially written into
Sp1; 1; :; :q in a row-wise way. For instance, the data entries of
M p1; B2 1 : 2 B2q are written into Sp1; 1; 2; :q, and the data
entries of M p1; pB1 1q B 2 1 : B 1 B2q are written into
Sp1; 1; B1; :q. After that, a row of data entries of M is stored in
one segment of 2-D SRAM array. Then, A2 rows of M are written
into A2 SRAM segments along the x dimension, e.g., Sp1; 2; :; :q
stores the data of M p2; :q and Sp1; S2; :; :q stores the data of
M pA2; :q. By using this way, M p1 : A2; :q is written into one
SRAM bank Sp1; :; :; :q. Writing the rest of the data in M to
SRAM follows the similar way, e.g., Sp2; :; :; :q stores the data of
M pA2 1 : 2 A2; :q, and SpA1; :; :; :q stores the data of
M ppA1 1q A2 1 : A1 A2; :q. Figure 9 shows the detailed
scheme for an example matrix transformation, where

ᵇ�′ ∈ ᵇ�

M
at

ri
x

Tr
an

sf
or

m
at

io
n

01 02 03 04

01 02 05 06…

11 12 15 16

#

…

z

11 12 15 16

x

#ᵼ�

Read

03 04 07 08

09 10 13 14

Cycle 2

Cycle 3

Assem
ble U

nit
Access Sequence

Data

SRAM
Segment

SRAM
Data

Matrix

05,06 01 02

…
…

x

(

)

ᵅ� = 1

)

(

1

1

8

01 02 05 06
Assemble Unit

01 02 05 06 Cycle 1 Clock Cycle: Read Phase
03 04 07 08 Timing Cycle 1 Cycle 2 Cycle 3 Cycle 4
09 10 13 14 11 12 15 16

Accessed 01 02 03 04 09 10 11 12
(ᵆ�ᵼ�×ᵆ�ᵼ�)×(ᵆ� ×ᵆ�) 05 06 05 06 13 14 15 16

SRAM Bank 11 12 15 16 Cycle 4
ᵇ�(: ,ᵼ�,ᵼ�, :) ᵇ�(: ,ᵼ�, , :) ᵇ�(: , ,ᵼ�, :) ᵇ�(: , , , :)

01 02 05 06
03 04 07 08

Clock Cycle: Write Phase

05 06 07 08
k Timing Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

09 10 11 12 09 10 13 14 Accessed 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
13 14 15 16

ᵇ� ∈ ᵇ�(ᵆ�ᵼ�×ᵆ�)×(ᵆ�ᵼ�×ᵆ�) y #ᵼ� # Segment ᵇ�(ᵼ�,ᵼ�,ᵼ�, :) ᵇ�(ᵼ�,ᵼ�, , :) ᵇ�(,ᵼ�,ᵼ�, :) ᵇ�(,ᵼ�, , :) ᵇ�(ᵼ�, ,ᵼ�, :) ᵇ�(ᵼ�, , , :) ᵇ�(, ,ᵼ�, :) ᵇ�(, , , :)

: Write Flow : Read Flow

Fig. 9: The proposed write and read scheme to 2-D SRAM array for a basic matrix transformation.

G 2, M 4, W 2, and A1 A2 B 1 B 2 2. It is seen that with
such writing scheme the 2-D SRAM array stores the re-arranged
data, which will be ready to realize the desired transformation
after proper reading scheme.

4.4.2 Memory Read Scheme
In the reading phase, the data in G banks are read simultaneously
in a row-wise way. To be specific, the data in Sp:; 1; :; kq are first
read in the first cycle, and then they are sent to assemble unit to
form M

1
p1; :q. In the following cycles, such operation is repeated

row by row along the k and y dimensions. Figure 9 shows the
details of reading scheme for the example matrix transformation.

In general, the proposed 2-D SRAM with a corresponding
write and read scheme can solve the challenges mentioned above:

1. The matrix transformation can be executed in an on-the-fly
way. In the reading phase, all the to-be-read data is the desired
data and only a small register file is needed to save the data. In
our FDHT-LSTM, the size of the register file is only 448Bytes.

2. Since in the writing and reading phase, the desired memory
address increases sequentially, it is very easy to design and
implement the address controller. Also, because the 2-D SRAM
architecture is logically split, it is very easy to be reconfigured
and very flexible for different matrix transformations with various
shapes.

4.5 Realizing Matrix Transformation for FDHT-LSTM
Recall that the read/write access schemes described in Section 4.4
are designed for a basic matrix transformation that is different
from the ones described in Eq. 13 – Eq. 15. In this subsection
we leverage the approach developed in Section 4.4 to further
realize the three matrix transformations specifically adopted in
the computation flow of FDHT-LSTM.

4.5.1 Memory Access Scheme for Type-I Transformation
In this case D is set as 1. During the memory writing phase,
consider B 2 data as a group, then the data in each group are
written to one row of SRAM segment along the z dimension. Since
each row of T contains B 1 data groups, they are written into one
row of SRAM array along the x dimension sequentially. In other
words, one row of SRAM array Sp:; 1; :; :q stores one row of T
as T p1; :q. Following this strategy, the A rows of T are written
into the SRAM array row by row along the y dimension in a
sequential way. Then during the memory reading phase, consider

01,02
Cycle1 03,04 Assemble Unit

ᵆ� = 1, … , ᵄ�

07,08 03 04
ᵆ� = 1, … , ᵃ� ×ᵃ�*×ᵃ�+

Cycle2 09,10 05 06 ᵆ� = 1, … , ᵄ�(

11,12 ᵃ� = ᵃ� ×ᵃ�*×ᵃ�+ = 3

13,14 ᵃ�) = ᵄ� = 3

Cycle3 15,16 01 02 03 04 05 06
ᵃ�* = ᵄ�(= 2

17,18 Read

ᵄ�’ ∈ ᵄ�("!×""×"#×%$)×&$ z 2-D SRAM Array

Transformation
k 01 02 03 04 05 06

01,02,03,04,05,06 Write 07 08 09 10 11 12 y
07,08,09,10,11,12 13 14 15 16 17 18

13,14,15,16,17,18

ᵄ� ∈ ᵄ�("!×""×"#)×(%$×&$)

Fig. 10: Example memory write and read schemes for Transfor-
mation 1.

each row of SRAM array Sp:; 1; :; :q has B 1 B 2 data; hence the
assemble unit will partition one row data to form a data array with
B 1 columns and B 2 rows. By repeating such reading operation
along the y dimension, T can be read out and sent to PE array
for further processing. Figure 10 illustrates the details of memory
write and read schemes to an example Transformation 1 , where
A I1 I2 I3 3, B 1 O4 3 and B 2 R 4 2.

4.5.2 Memory Access Scheme for Type-II Transformation
In this case, the transformation can be rewritten as T P
R p A 1 A 2 q p p A 3 B 1 q B 2 q æ T

1
P R p A 1 p A 3 B 1 q q p A 2 B 2 q , and then it

becomes the basic format example described in Section 4.4 with D
A3 B1 . Then, during the writing phase, we rearrange the data of
T along B2 , A3 B1 , A2 and A1 dimensions on the z, k, x and y
dimensions of 2-D SRAM array, respectively. In the memory
reading phase, A2 B 2 data entries in the SRAM array are read
simultaneously and combined as one row of T .
In general, by reading along the k and y dimensions of 2-D
SRAM array, the row data of T

1
as A1 A3 B 1 entries can be

obtained. Figure 11 illustrates the details of memory access
scheme to an example Transformation 2 , where B 2 R 3 2, A3 B 1
O4 R34 3, A2 I3 3 and A1 I1 I2 2.

05 06
ᵈ�

11 12 17 18

21 22 27 28 33 34

…
…

Matrix

Cycle3

ᵆ� = 1,… , ᵃ� ×ᵃ�) *

+ (+

(

)

+

* (ᵃ� = ᵄ� =

SRAM #1

Generator

MAC MAC

...

...
... ...

W
eight SRAM

01 02 05 06 09 10

01 05 09

…
…

0501 09

04 08 12

Cycle1)

*

ᵃ� = ᵃ� = 1

*

3

1

9

Cycle1 01,02 07,08 13,14 Assemble Unit ᵆ� = 1,… , ᵃ�(

Cycle2 03,04 09,10 15,16 01 02 07 08 13 14 ᵅ� = 1,… ,ᵄ� ×ᵄ�
05,06 11,12 17,18 ᵆ� = 1,… ,ᵄ�

Cycle4 19,20 25,26 31,32 ᵃ�) = ᵃ� ×ᵃ�* = 2

Cycle5 21,22 27,28 33,34 ᵃ�* = ᵃ�(= 3

Cycle6 23,24 29,30 35,36
01 02 07 08 13 14

ᵃ�(×ᵃ�) = ᵄ�
2

×ᵄ�(+ = 3

ᵄ�’ ∈ ᵄ�("!×""×$$×&#$)×(&#$×&#) Read

Transformation z
2-D SRAM Array

01,02,03,04,05,06 01 02 07 08 13 14
07,08,09,10,11,12 03 04 09 10 15 16

13,14,15,16,17,18
Write

ᵉ�
19,20,21,22,23,24 19 20 25 26 31 32
25,26,27,28,29,30 23 24 29 30 35 36
31,32,33,34,35,36 x

ᵄ� ∈ ᵄ�("!×""×"#×$$)×(&#$×&#)

Fig. 11: Example memory write and read schemes for Transfor-
mation 2.

Assemble Unit ᵆ� = 1, … , ᵃ�(

ᵆ� = 1, … , ᵃ�
02 06 10 ᵅ� = 1, … , ᵄ� ×ᵄ�+*

Cycle2
03 07 11 02 06 10 ᵆ� = 1, … , ᵄ�+

))

ᵃ�(= ᵃ�(= 3

ᵄ�’ ∈ ᵄ�("!×$#×%$#×$$)×"" ᵃ�+ = ᵄ� ×ᵄ�+* = 2

Matrix Transformation ᵃ� = ᵄ�+ = 2

01,02 01 02 05 06 09 10

03,04
Read

05,06
Write

z 2-D SRAM Array

07,08

09,10 ᵈ� 03 04 07 08 11 12
ᵉ�

11,12 x
ᵄ� ∈ ᵄ�("!×""×$#×%$#)×$$

Fig. 12: Example memory write and read schemes for Transfor-
mation 3.

4.5.3 Memory Access Scheme for Type-III Transformation
In the writing phase of this case, consider each row of T as a
group, and the data in each group is written along the dimension
z in each SRAM segment, e.g., Sp1; 1; 1; :q stores the data in
T p1; :q. Consequently, in order to keep A in the column index
of T

1
, D should be set as A3 to ensure that each A3 rows of

T are written along the k dimension in each SRAM segment,
e.g., T p1 : A3; :q is stored in Sp1; 1; :; :q. In addition, the data
of T along A2 and A1 dimensions are re-arranged on the x and
y dimensions of 2-D SRAM array, respectively, to guarantee A2
appear in the row index of T . During the reading phase, A2 B data
entries in the SRAM array are read simultaneously, and they are
reshaped into an array with A2 columns and B rows in the
assemble units. Figure 12 illustrates the details of memory read
and write schemes of the Transformation 3 , where B O3 2, A3
O4 R34 2, and A1 I1 1.

4.6 Overall Architecture
Based on the proposed 2-D SRAM array and the corresponding
read/write access schemes, the hardware architecture that supports
the execution of FDHT-LSTM models can be developed. As
illustrated in Figure 13, the datapath of the accelerator is a PE
Array that consists of multiply-accumulators (MACs) to perform

Working SRAM Address Main Controller
(2-D SRAM Array)

Working
PE Array

MAC MAC
Assemble

Working
Unit

SRAM #2

Fig. 13: The overall hardware architecture.

TA B L E 2: Compression settings for HT-layer. Here because Y T C
dataset is smaller than UCF11 dataset, we choose smaller R (non-
leaf) for LSTM-YTC to achieve higher compression ratio with still
preserving high accuracy.

Model LSTM-UCF11 LSTM-Y T C
Size p57600; 256q p57600; 256q

d 4 4
I r16; 16; 16; 15s r16; 16; 16; 15s

O r4; 4; 4; 4s r4; 4; 4; 4s
R (Leaf) 14 14

R (Non-leaf) 12 11
Compr. Ratio 6,726 7,117

matrix multiplication. Notice that because FDHT-LSTM operates
on the the dense matrices rather than the sparse ones, the multiplier
utilization is very high. In addition, the weight of the factorized
tensor cores and the intermediate results are stored in the weight
SRAM and working SRAM, respectively. Notice that here only
working SRAM is in the format of 2-D array since the desired
matrix transformation is only involved with the intermediate
results. The read/write access schemes described in Section 4.5
are mapped into an individual address generator, which receives
the configuration information from main controller for different
workloads.

5 E VA L UAT I O N

5.1 Performance of FDHT-LSTM Model

We evaluate the performance of our proposed FDHT-LSTM ap-
proach on various video recognition tasks and compare it with
other state-of-the-art tensor decomposition-based LSTM compres-
sion methods. In particular, in order to verify the benefits of our
full decomposition strategy and fairly compare the HT decompo-
sition with other tensor decomposition for LSTM compression, we
also conduct experiments on only performing HT decomposition
on the input-to-hidden layer of LSTM models.

5.1.1 Experimental Settings
For fair comparison, we set d, the order of the target tensors of the
tensorized input, output and weights, identical to the settings in
prior works [20] and [21]. For the tensor ranks, we also follow the
prior works to select r towards reaching a good balance between
compression ratio and model accuracy. For the setting of other
hyper-parameters, dropout rate and batch size are set as 0.25 and
16, respectively, and ADAM is selected as the underlying training
optimizer with weight decay of 0.001.

Model

3,360 79.6

3,387 85.3

(AAAI’19) (225)

1,245 87.2

N/A 87.5

Model

(ICML’17) (223)

810 88.1

(Ours) ,117

Model

TA B L E 3: Compression performance of different tensor
decomposed-based LSTM models on UCF11 dataset.

Number of Parameters Top-1
Input-to-Hidden Overall Acc. (%)

LSTM 58.98M 59.24M 69.7
TT-LSTM [20] 265.50K

(ICML’17) (223)
BT-LSTM [21] 265.53K

(CVPR’18) (223)
TR-LSTM [17] 1,725 263.87K 86.9

HT-LSTM 263.39K
(Ours) (225)

FDHT-LSTM 8,808
(Ours) (6,726)

5.1.2 Results on UCF11 Dataset

The UCF11 dataset [16] is a set of 1,600 human action video
clips which can be categorized as 11 classes. The resolution of
each clip is 320 240. We follow the prior works [21] [17] to pre-
process the video data. To be specific, the resolution of each video
clip is downgraded to 160 120, then we randomly sample 6 frames
from each clip and combine them as a single sequential data point.
In the original uncompressed LSTM model, there are 4 input-to-
hidden layers and 4 hidden-to-hidden layers. We also follow the
prior works to set the input size and the number of hidden states
in the baseline model as 160 120 3 57; 600 and 256, respectively.
For the compressed FDHT-LSTM model, the concatenated vector
I can be reshaped as a tensor of shape as 16 16 16 15, and the
hidden state is reshaped to a tensor of shape as 4 4 4 4. In
addition, all leaf and non-leaf ranks are set as 14 and 12,
respectively.

The compression performance of the proposed FDHT-LSTM
and other state-of-the-art tensor decomposed LSTM are sum-
marized in Table 3. It is seen that compared with the orig-inal
uncompressed LSTM model with 59 million parameters, our
proposed FDHT-LSTM only needs 8,808 parameters while
resulting in a 17.8% accuracy increase. Compared with other
tensor decomposition-based LSTM compression methods, i.e., TT-
LSTM, BT-LSTM and TR-LSTM, FDHT-LSTM enjoys order-of-
magnitude reduction in model parameters and at least 0.6% higher
accuracy.

5.1.3 Results on Youtube Celebrities Face Dataset

Youtube celebrities face dataset [13] contains 1,910 video clips
with different resolutions which are categorized as 47 labels.
Similar to the case of UCF11 dataset, we also follow the prior
works [21] [17] for data pre-processing. To be specific, we scale
down all the video clips to 160 120 and randomly sample 6
frames to form a single sequence. Other experimental settings are
also consistent with the case of UCF11 dataset except that all the
non-leaf ranks are set as 11.

Table 4 summarizes the compression performance on this
dataset for different tensor decomposed LSTMs. It is seen that
compared to the baseline LSTM model our FDHT-LSTM can
provide as high as 7,117 compression ratio with test accuracy in-
crease. Compared with the state-of-the-art TT-LSTM, our FDHT-

10

TA B L E 4: Compression performance of different tensor
decomposed-based LSTM models on Youtube celebrities face
dataset.

Number of Parameters Top-1
Input-to-Hidden Overall Acc. (%)

LSTM 58.98M 59.24M 33.2
TT-LSTM [20] 3,392 265.54K 75.5

HT-LSTM 262.95K
(Ours) (225)

FDHT-LSTM N/A
(7

8,324
)

88.2

TA B L E 5: Experimental comparison among FDHT-LSTM and
other non-tensor decomposition models, e.g., DML-PV [5], VG-
GFACE + RRNN [14] and VGG16-GCR [15], on Youtube celebri-
ties face dataset.

Number of Top-1
Parameters Acc. (%)

DML-PV 220K 82.8
VGGFACE + RRNN ¥42M 84.6
VGG16-GCR 138M 82.9
HT-LSTM (Ours) 263K 88.1
FDHT-LSTM (Ours) 8,324 88.2

LSTM still enjoys 6,894 smaller model size and 12.7% higher
accuracy.

Besides, we also compare the performance of FDHT-LSTM
with several other tensor decomposition-free models for video
recognition, and the results are summarized in Table 5. It is seen
that our FDHT-LSTM can outperform the state-of-the-art work
[14] with 3.6% higher accuracy and much smaller model size.

Rank Selection. As analyzed before, for compressing large
LSTM models, HT decomposition can improve accuracy with
very high compression ratio because it can effectively reduces
the structural redundancy. Therefore, for high rank setting such
as R 32, the accuracy is not as good as low rank setting
because considerable unnecessary redundancy still exists and it
is not friendly for training. On the other hand, for extremely low
rank setting, e.g., R 2, the model size is too small and thus the
model capacity will be hurt. Therefore, as shown in Table 6, in
order to achieve good balance between compression rate and
model accuracy, R 12 and R 11 are set for LSTM-UCF11 and
LSTM-Youtube, respectively.

5.2 Performance of FDHT-LSTM Hardware
5.2.1 Configuration of Experiment and Design Example
A bit-accurate cycle-accurate simulator is developed to model the
high-level behavior of the proposed FDHT-LSTM architecture.
Then, we build a Verilog-based RT L model and verify the func-
tional validation. This model is synthesized with CMOS 28nm
library. Table 7 shows the detailed configuration information of the
design example based on the proposed FDHT-LSTM architecture.
Here the overall hardware consists of 16 PEs, and each PE is
equipped with 16 16-bit multipliers and 16 24-bit accumulators,
hence 256 MAC operations are performed in each clock cycle.
The working memory is composed of 14 banks of SRAM, and

Depth (M) 04

TA B L E 6: Accuracy comparison with various R on LSTM-UCF11
and LSTM-Youtube.

Models R Top-1 Acc.(%)

11

TA B L E 8: Compression performance of EIE, T IE and our FDHT-
LSTM on UCF11 and Youtube dataset. Top-1 accuracy is the
accuracy that the recognition result with the highest probability
is exactly the expected answer.

2 81.4
LSTM-UCF11 12 87.5

32 79.3

2 78.9
LSTM-Youtube 11 88.2

32 77.4

TA B L E 7: Architectural configuration for design example.

System Parameter Value

UCF11

Youtube

Design
EIE
TIE

FDHT-LSTM
(Ours)

E IE
TIE

FDHT-LSTM
(Ours)

Compres. Rate
117

4954

6726

111
4608

7117

Top-1 Acc.(%)
82.9
79.6

87.5

84.2
78.8

88.2

PE 16
Quantization 16-bit

Memory Parameter
Width (W) 256-bit

Working Memory
of Banks (G)

2
14

8

Total Size 1.7MB
Width 16-bit

Weight Memory Depth 8808
Size 17.2KB

PE Parameter
Amount of Multiplier 16

Amount of Accumulator 16

each SRAM bank has the width of 256 bits and the depth
of 2048, thereby leading to 875KB budgeted capacity that is
sufficient for storing the activation and intermediate result in most
applications. Since the working SRAM contains two copies to
serve as a ping-pong buffer, the total size of the working SRAM
is 875KB 2 1:70MB. For the weight SRAM, it has 16-bit
width with depth of 8808 to store the weight parameters of the
compressed FDHT-LSTM models. Thanks to the ultra-strong
compression capability of FDHT technique, the budgeted 17.2KB
weight SRAM can support the storage of many large-scale LSTM
models.

5.2.2 Comparison with GPU
Though the decomposed model reduces the weight size signifi-
cantly and enjoys the parallel processing, the computation flow of
FDHT-LSTM contains complicated matrix transformation, which
is not naturally supported by GPU in an efficient way. We
implement the decomposed LSTM-Youtube and LSTM-UCF11 on
NVIDIA RT X A6000, and compare the inference speed with our
FDHT hardware accelerator. The result shows that FDHT-LSTM
hardware achieves 2.30 and 1.85 inference speedup than GPU for
executing LSTM-Youtube and LSTM-UCF11, respectively.

5.2.3 Comparison with E I E and TIE
In this subsection, we compare the proposed architecture with two
prior compressed model-oriented hardware accelerators E IE [12]
and T IE [6]. Table 9 summarizes the implementation results for the
three listed AS IC designs. Table 8 shows the compression perfor-
mance of FDHT-LSTM, E IE and TIE, where top-1 accuracy is the
accuracy that the recognition result with the highest probability

is exactly the expected answer. It is seen that our FDHT-LSTM
outperforms E IE and T IE with respect to compression rate and
accuracy performance on both UCF11 and Youtube datasets.

Comparison with E I E . E IE is a sparse model-oriented hard-
ware architecture. Consider E IE is implemented with a different
technology node, as reported in Table 9, the performance metrics
of E IE are projected to 28nm technology for fair comparison. Here
the projection follows the scaling rule adopted in [12]: linear,
quadratic and constant scaling for clock frequency, silicon area
and power consumption, respectively. In addition, considering the
different budgeted arithmetic and memory resource, Figure 14
compares our proposed FDHT-LSTM with E IE with respect to
different hardware performance metrics. It is seen that the FDHT-
LSTM achieves 1:69, 8:99 and 6:22 increase in throughput, area
efficiency and energy efficiency on UCF11, and 2:06, 10:94
and 7:58 increase in throughput, area efficiency and energy
efficiency on Youtube respectively.

Comparison with T I E . T IE is the state-of-the-art tensor train
(TT) decomposed model-oriented hardware accelerator, which is
the most related work to our FDHT-LSTM architecture. Figure 14
shows the performance comparison between the two designs
in terms of processing throughput, area efficiency and energy
efficiency on two LSTM workloads 2. It is seen that for executing
LSTM-Youtube workload, our proposed FDHT-LSTM architec-
ture achieves 2:5, 1:46 and 2:41 increase in throughput, area
efficiency and 2:41 energy efficiency, respectively. For LSTM-
UCF workload, our FDHT-LSTM design also outperforms T IE
with 1:9 higher throughput, 1:83 higher energy efficiency and
comparable area efficiency.

5.2.4 Flexibility

The proposed FDHT-LSTM architecture can provide high flexibil-
ity to support different compressed LSTM models with different
topology settings. Considering the rank R is the most important
parameters that directly determines the storage requirement and
computational costs of the underlying models, we study the
flexibility of the proposed hardware architecture with respect to
different R ’s. As reported in Figure 15, FDHT-LSTM hardware
demonstrates strong flexibility.

2. Because T IE is based on the T T decomposition that only compresses the
input-to-hidden layer of the original LSTM, the reported performance of T IE is
evaluated on that single layer.

Pruning

CMOS 28nm

(MHz)

16-bit 16-bit

Th
ro

ug
hp

ut

12

12
EIE TIE Our FDHT

10

8

6

4

2

0
Throughput Area Efficiency Energy Efficiency Throughput

LSTM-UCF11

Area Efficiency Energy Efficiency

LSTM-Youtube

Fig. 14: Hardware performance comparison among FDHT-LSTM, T IE and EIE.

TA B L E 9: Comparison on hardware performance.

Design E I E [12] T I E [6] Our FDH T
Compression Tensor Train Hierarchical

Approach (TT) Tucker (HT)

Technology (projected) 28nm 28nm

F
r
equency 1280 1000 1000

Quantization 4-bit index
Scheme 16-bit weight

Area (mm) 15.7 1.74 2.96
Power (mW) 590 154.8 160.4

optimization. Motivated by this design philosophy, several com-
pressed model-oriented LSTM hardware have been developed in
[19] [11] [12] [6]. To be specific, E IE [12] and ESE [11] are built on
pruned model and the focus of their architectural optimization is to
properly leverage sparsity opportunities. C-LSTM [19] aims to use
FFT-based compression compression to accelerate LSTM, and
hence its underlying architecture mainly consists of optimized FFT
modules. T IE is the first tensor decomposition-based DNN
hardware architecture, which is the most closed work to our
design. By leveraging the tensor train decomposition, T IE [6]
can achieve competitive hardware performance with good resource
utilization.

7 C O N C L U S I O N

25

20

15

10

5

0
2 3 4 5 6 7 8 9 10

R

In this paper, we propose algorithm and hardware co-design
for FDHT-LSTM, a ultra-compact high-performance compressed
LSTM network. By fully decomposing the entire LSTM models
via hierarchical Tucker decomposition, the entire LSTM model
size can be significantly reduced. Meanwhile, an energy-efficient
customized hardware architecture with delicate design of memory
access scheme is developed. The proposed algorithm and hardware
are empirically evaluated on different video recognition datasets
and LSTM workloads. The experimental results show that our
proposed FDHT-LSTM networks and the corresponding hardware
accelerator can achieve very high model performance and hard-
ware performance as compared to the state-of-the-art designs.

Fig. 15: Flexibility of FDHT with respect to different decomposi-
tion ranks.

AC K N OW L E D G M E N T S

This work was partially supported by National Science Foundation
under Grant CCF-1955909.

6 R E L A T E D WO R K R E F E R E N C E S

Customized hardware accelerators for deep neural networks have
been extensively studied in recent years. To accelerate the execu-
tion of convolutional neural networks (CNNs) in a real-time and
energy-efficient way, a series of CNN hardware architecture have
been proposed in [4] [24] [2]. In particular, fully leveraging the
sparsity is a very important optimization strategy towards high-
performance CNN hardware accelerators [18] [1] [8].

Different from computation-bounded CNNs, LSTMs are in-
herently memory-bounded and require very large model size
because of its component linear layer. Therefore, the focus of
efficient LSTM hardware design is to efficiently integrate upper-
level model compression algorithm to the lower-level architecture

[1] Alessandro Aimar, Hesham Mostafa, Enrico Calabrese, Antonio Rios-
Navarro, Ricardo Tapiador-Morales, Iulia-Alexandra Lungu, Moritz B
Milde, Federico Corradi, Alejandro Linares-Barranco, Shih-Chii Liu,
et al. Nullhop: A flexible convolutional neural network accelerator based
on sparse representations of feature maps. IEEE transactions on neural
networks and learning systems, 30(3):644–656, 2018.

[2] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-
layer cnn accelerators. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[3] Elham Azari and Sarma Vrudhula. An Energy-Efficient Reconfigurable
LSTM Accelerator for Natural Language Processing. In 2019 IEEE
International Conference on Big Data (Big Data), pages 4450–4459,
Los Angeles, CA, USA, Dec. 2019. IEEE.

[4] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural networks.
ACM SIGARCH Computer Architecture News, 44(3):367–379, 2016.

¨

[5] Gong Cheng, Peicheng Zhou, and Junwei Han. Duplex metric learning
for image set classification. IEEE Transactions on Image Processing,
27(1):281–292, 2017.

[6] Chunhua Deng, Fangxuan Sun, Xuehai Qian, Jun Lin, Zhongfeng Wang,
and Bo Yuan. TIE: energy-efficient tensor train-based inference engine
for deep neural network. In Proceedings of the 46th International
Symposium on Computer Architecture, pages 264–278, Phoenix Arizona,
June 2019. ACM.

[7] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus
Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell.
Long-Term Recurrent Convolutional Networks for Visual Recognition
and Description. page 10.

[8] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vi-
jaykumar. Sparten: A sparse tensor accelerator for convolutional neural
networks. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 151–165, 2019.

[9] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid
speech recognition with Deep Bidirectional LSTM. In 2013 IEEE
Workshop on Automatic Speech Recognition and Understanding, pages
273–278, Olomouc, Czech Republic, Dec. 2013. IEEE.

[10] Wolfgang Hackbusch and Stefan Kuhn. A new scheme for the tensor
representation. Journal of Fourier Analysis and Applications, 15(5):706–
722, 2009.

[11] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li,
Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al. Ese: Efficient
speech recognition engine with sparse lstm on fpga. In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 75–84, 2017.

[12] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz, and William J. Dally. EIE: Efficient Inference Engine on
Compressed Deep Neural Network. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), pages 243–
254, Seoul, South Korea, June 2016. IEEE.

[13] Minyoung Kim, Sanjiv Kumar, Vladimir Pavlovic, and Henry Rowley.
Face tracking and recognition with visual constraints in real-world
videos. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8. IEEE, 2008.

[14] Yang Li, Wenming Zheng, Zhen Cui, and Tong Zhang. Face recognition
based on recurrent regression neural network. Neurocomputing, 297:50–
58, 2018.

[15] Bo Liu, Liping Jing, Jia Li, Jian Yu, Alex Gittens, and Michael W
Mahoney. Group collaborative representation for image set classification.
International Journal of Computer Vision, 127(2):181–206, 2019.

[16] Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing realistic actions
from videos “in the wild”. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1996–2003. IEEE,
2009.

[17] Yu Pan, Jing Xu, Maolin Wang, Jinmian Ye, Fei Wang, Kun Bai, and
Zenglin Xu. Compressing recurrent neural networks with tensor ring for
action recognition. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 4683–4690, 2019.

[18] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli,
Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keck-
ler, and William J Dally. Scnn: An accelerator for compressed-sparse
convolutional neural networks. ACM SIGARCH Computer Architecture
News, 45(2):27–40, 2017.

[19] Shuo Wang, Zhe Li, Caiwen Ding, Bo Yuan, Qinru Qiu, Yanzhi Wang,
and Yun Liang. C-lstm: Enabling efficient lstm using structured com-
pression techniques on fpgas. In Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages
11–20, 2018.

[20] Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-train recur-
rent neural networks for video classification. In International Conference
on Machine Learning, pages 3891–3900. JMLR. org, 2017.

[21] Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe, Xinqi
Chu, and Zenglin Xu. Learning compact recurrent neural networks with
block-term tensor decomposition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9378–9387, 2018.

[22] Miao Yin, Siyu Liao, Xiao-Yang Liu, Xiaodong Wang, and Bo Yuan.
Towards extremely compact rnns for video recognition with fully de-
composed hierarchical tucker structure. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12085–
12094, 2021.

[23] Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong Yue. Long-
term forecasting using higher order tensor rnns. arXiv preprint
arXiv:1711.00073, 2017.

[24] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong. Optimizing fpga-based accelerator design for deep con-
volutional neural networks. In Proceedings of the 2015 ACM/SIGDA
international symposium on field-programmable gate arrays, pages 161–

13

170, 2015.

Yu Gong received the master’s degree in
Shanghai Jiao Tong University, and bachelor’s
degree in Wuhan University of Technology. Cur-
rently, he is a Ph.D. student in Electrical and
Computer Engineering at Rutgers University.
His research interests include high-performance
architecture for AI and hardware-software co-
design.

Miao Yin is a Ph.D. student in Electrical
and Computer Engineering at Rutgers, The
State University of New Jersey. His research is
focused on algorithm-hardware co-designed
energy-efficient AI system (e.g., on-device im-
age and action recognition) based on higher-
order tensor decomposition and advanced op-
timization. He serves as a P C member of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition.

Lingyi Huang received the master’s degree in
electrical engineering from New York University
and the bachelor’s degree in electrical engineer-
ing from Xidian University. He is currently pursu-
ing the PhD degree in computer engineering at
Rutgers University.

Chunhua Deng is a senior staff design engineer
at ScaleFlux Inc. He received his Ph.D. degree
from the Department of Electrical and Computer
Engineering at Rutgers University. He received
his bachelor’s degree and master’s degree from
China University of Petroleum, Beijing Institute
of Technology, respectively. His research inter-
ests include machine learning, computer archi-
tecture, and VLSI design.

Yang Sui is a Ph.D. student in Electrical and
Computer Engineering at Rutgers, The State
University of New Jersey. His research is fo-
cusing on algorithm-hardware co-designed effi-
cient AI with model compression based on prun-
ing, low-rank decomposition, and advanced al-
gorithms.

14

Bo Yuan received the bachelor’s and master’s
degrees from Nanjing University, Nanjing, China,
in 2007 and 2010, respectively, and the PhD de-
gree from the Department of Electrical and Com-
puter Engineering, University of Minnesota, Twin
Cities, Minnesota, in 2015. His research inter-
ests include algorithm and hardware co-design
and implementation for machine learning and
signal processing systems, error-resilient low-
cost computing techniques for embedded and
IoT systems and machine learning for domain-

specific applications. He is the recipient of Global Research Competition
Finalist Award in Broadcom Corporation and doctoral dissertation fellow-
ship with the University of Minnesota. He serves as technical committee
track chair and technical committee member for several IEEE/ACM
conferences. He is the associated editor of the Springer Journal of
Signal Processing System.

