
HALOC: Hardware-Aware Automatic Low-Rank Compression for Compact
Neural Networks

Jinqi Xiao1, Chengming Zhang2, Yu Gong1, Miao Yin1,
Yang Sui1, Lizhi Xiang3, Dingwen Tao2,3, Bo Yuan1

1 Rutgers University, 2 Indiana University, 3 Washington State University
jinqi.xiao@rutgers.edu, czh5@iu.edu, yg430@soe.rutgers.edu, miao.yin@rutgers.edu,
yang.sui@rutgers.edu, lizhi.xiang@wsu.edu, ditao@iu.edu, bo.yuan@soe.rutgers.edu

Abstract

Low-rank compression is an important model compression
strategy for obtaining compact neural network models. In
general, because the rank values directly determine the model
complexity and model accuracy, proper selection of layer-
wise rank is very critical and desired. To date, though many
low-rank compression approaches, either selecting the ranks
in a manual or automatic way, have been proposed, they suffer
from costly manual trials or unsatisfied compression perfor-
mance. In addition, all of the existing works are not designed
in a hardware-aware way, limiting the practical performance
of the compressed models on real-world hardware platforms.
To address these challenges, in this paper we propose
HALOC, a hardware-aware automatic low-rank compression
framework. By interpreting automatic rank selection from an
architecture search perspective, we develop an end-to-end so-
lution to determine the suitable layer-wise ranks in a differ-
entiable and hardware-aware way. We further propose design
principles and mitigation strategy to efficiently explore the
rank space and reduce the potential interference problem.
Experimental results on different datasets and hardware plat-
forms demonstrate the effectiveness of our proposed ap-
proach. On CIFAR-10 dataset, HALOC enables 0.07% and
0.38% accuracy increase over the uncompressed ResNet-20
and VGG-16 models with 72.20% and 86.44% fewer FLOPs,
respectively. On ImageNet dataset, HALOC achieves 0.9%
higher top-1 accuracy than the original ResNet-18 model with
66.16% fewer FLOPs. HALOC also shows 0.66% higher
top-1 accuracy increase than the state-of-the-art automatic
low-rank compression solution with fewer computational and
memory costs. In addition, HALOC demonstrates the practi-
cal speedups on different hardware platforms, verified by the
measurement results on desktop GPU, embedded GPU and
ASIC accelerator.

Introduction
Model compression is an important deep neural network
(DNN) optimization strategy that aims to improve the ex-
ecution efficiency of deep learning. Motivated by the obser-
vation that considerable redundancy exhibits at different lev-
els (e.g., neuron and bit) of DNNs, various compression ap-
proaches, such as pruning (Han et al. 2015; Dong et al. 2020;
Deng et al. 2021) and quantization (Rastegari et al. 2016;
Zhang et al. 2018), have been widely studied and developed
to reduce model redundancy with different granularity.

Among the existing compression methods, low-rank com-
pression is a unique solution that explores the low-rankness
of DNN model at the structure level. By decomposing
the original large-size weight matrices or tensors to a se-
ries of small cores, low-rank compression can bring sig-
nificant storage and computational savings. To date, many
decomposition-based compression approaches have been
proposed. Based on their differences in the factorization
schemes, they can be categorized to 2-D matrix decompo-
sition based (Klema and Laub 1980) and high-order tensor
decomposition based (Tucker 1966; Harshman et al. 1970).

Low-Rank Compression in Practice. From the per-
spective of real-world deployment, practical low-rank DNN
compression should satisfy two requirements: Automatic
Rank Selection and Hardware-awareness. First, assume
that using Tucker-2 decomposition (Kim et al. 2016) to com-
press an N -layer DNN with maximum rank value as M per
layer, there are totalM2N possible rank settings. Consider in
practice N is typically tens to hundreds and M can be up to
tens, the overall rank selection space is extremely huge. Ev-
idently, automatic rank selection is highly desired to reduce
the expensive search efforts and the potential sub-optimality
incurred by the heuristic manual setting. Second, because
the decomposed DNN models are essentially executed on
the practical computing hardware, low-rank compression
should be performed towards reducing the hardware-cost
metrics, e.g., latency and energy, to obtain the actual ben-
efits in the real-world scenarios. Also, consider the large di-
versity of current DNN computing hardware (e.g., desktop
GPU, embedded GPU, application-specific integrated circuit
(ASIC) accelerator, etc.) and different platforms may favor
different network structures, the direct feedback from the
target devices should be included in the low-rank compres-
sion process (Xiang et al. 2022).

Limitations of Existing Works. Measured from the
above two practical requirements, the existing low-rank
DNN compression approaches have several limitations.
First, most of the prior works determine the ranks via rounds
of manual trials and adjustments, causing expensive engi-
neering efforts. Second, even for the state-of-the-art solu-
tions with automatic rank selection, due to the insufficient
exploration of rank space, their compression performance is
still unsatisfied, sometimes even lower than the approaches
with heuristic rank settings. Third, all of the existing low-

ar
X

iv
:2

30
1.

09
42

2v
2

 [c
s.L

G
]

2
Fe

b
20

23

rank decomposition approaches, no matter determining the
ranks manually or automatically, do not consider hardware-
awareness in the design process, limiting their performance
for deployment on practical hardware platforms.

Technical Contributions and Preview. To address these
challenges and promote the widespread adoption of low-
rank compression in practice, in this paper we propose
HALOC, a hardware-aware automatic low-rank compres-
sion framework for compact DNN models. Based on the ob-
servation that rank selection process essentially determines
the architecture of the low-rank models, we interpret auto-
matic rank selection as the automatic search for the proper
low-rank structure, enabling efficient automatic low-rank
compression in an differentiable and hardware-aware way.
Overall, the contributions of this paper is summarized as fol-
lows:

• We identify the hidden connection between setting the
layer-wise ranks and searching the network architecture.
Based on this interesting discovery, we propose to de-
velop a new low-rank compression strategy with neu-
ral architecture search (NAS)-inspired automatic rank se-
lection scheme, which can sufficiently explore the rank
space and strong compatibility for hardware-awareness.

• We propose two low-rank-specific design principles to
realize efficient exploration in the rank space, leading
to significant reduction in the search cost. We also ana-
lyze the potential methods for mitigating the interference
problem in the search process, and identify the suitable
solution to improve compression performance.

• We perform evaluation experiments of compressing var-
ious models on different datasets, and also measure
the practical speedup across different hardware plat-
forms. On CIFAR-10 dataset, HALOC achieves 0.07%
and 0.38% accuracy increase over the original uncom-
pressed ResNet-20 and VGG-16 models with 72.20%
and 86.44% FLOPs reduction, respectively. On Ima-
geNet dataset, HALOC brings 0.9% top-1 accuracy in-
crease over the original ResNet-18 model with 66.16%
FLOPs reduction. When compressing MoblieNetV2 on
ImageNet dataset, HALOC shows 0.66% top-1 accuracy
increase over the state-of-the-art low-rank compression
method with fewer FLOPs and memory cost. The mea-
surement results on various hardware platforms (desk-
top GPU, embedded GPU and ASIC accelerator) demon-
strate the practical speedups brought by our proposed
hardware-aware solution.

Related Work
Low-Rank DNN Compression. Exploring structure-level
low-rankness has been well studied for neural network com-
pression. In general, a compact DNN can be obtained via
performing low-rank matrix or tensor decomposition on the
original large model. For matrix factorization-based meth-
ods (Denton et al. 2014; Wen et al. 2017; Deng et al. 2019b;
Idelbayev and Carreira-Perpinán 2020; Liebenwein et al.
2021), all the weight tensors, including the 4-D type for
the convolutional (CONV) layers, are first flatten to 2-D
format and then decomposed to two small matrices; while

tensor decomposition-based approaches, including Tucker
(Kim et al. 2016; Gusak et al. 2019; Yin et al. 2020, 2021a),
CP (Lebedev et al. 2014; Astrid and Lee 2017), tensor train
(Novikov et al. 2015; Wang et al. 2019; Deng et al. 2019a;
Yin et al. 2022b) and tensor ring (Pan et al. 2019), directly
factorize the high-order tensor objectives to a series of tensor
and matrix cores. No matter which specific decomposition is
adopted, one key challenge is the efficient rank setting. Cur-
rently most of the existing works determine the layer-wise
ranks via hand-crafted manual trials and attempts, a strategy
that requires very expensive engineering efforts.

Automatic Rank Selection. Our work is most closely re-
lated to (Gusak et al. 2019; Liebenwein et al. 2021; Li et al.
2022; Yin et al. 2022a), the state-of-the-art automatic rank
selection solutions. Specifically, (Gusak et al. 2019) pro-
poses to utilize variational Bayesian matrix factorization to
determine the ranks of the tensor decomposed DNNs in a
multi-stage way. In (Liebenwein et al. 2021), Eckhart-Young
theorem (Golub and Van Loan 2013) is used to determine the
layer-wise ranks of the factorized weight matrices towards
minimizing compression error. Besides, (Li et al. 2022) ap-
plies genetic algorithm to the rank search process of ten-
sor ring decomposed DNNs. Compared with the manual tri-
als, these automatic selection approaches indeed facilitate
the rank determination procedure. However, their accuracy
performance is still limited because of the insufficient ex-
ploration of rank space. Also, similar to the existing man-
ual setting-based solutions, these automatic compression ap-
proaches are not designed in a hardware-aware way, limiting
the performance of the compressed models on the practical
hardware platforms.

Preliminaries

Notation. We denote a tensor by using boldface calligraphic
script letter, e.g., X . Matrices and vectors are represented in
the format of boldface capital letters and lower-case capital
letters, e.g.X and x, respectively. In addition, non-boldface
letters with indices X (i1, · · · , id), X(i, j) and x(i) repre-
sent the entries for d-dimensional tensor X , matrix X and
vector x, respectively.
Tucker-2 Decomposed CONV Layer. Without loss of gen-
erality, in this paper we study the automatic low-rank com-
pression using Tucker-2 decomposition. In general, for a
CONV layer with weight tensorW ∈ RF×C×K1×K2 , where
C is the number of input channels,K1 andK2 are the kernel
size, and F is the number of output channels, it can be fac-
torized to a core tensor and two matrices along each mode
of Tucker-2 decomposition as follows:

W(f, c, i, j) =

r(1)∑
r1=1

r(2)∑
r2=1

C(r1, r2, i, j)M1(r1, f)M2(r2, c),

(1)
where C ∈ Rr(1)×r(2)×K1×K2 , M1 ∈ Rr(1)×F , M2 ∈
Rr(2)×C , and r(1) and r(2) denote the tensor rank. Then
given an input tensor X ∈ RW×H×C and an output ten-
sor Y ∈ RW ′×H′×F , the Tucker-2-format convolution is

performed as follows:

K1(w, h, r2) =

C∑
c=1

M2(r2, c)X (w, h, c), (2)

K2(w′, h′, r1) =

K1∑
k1=1

K2∑
k2=1

r(2)∑
r2=1

C(r1, r2, k1, k2)K1(w, h, r2),

(3)

Y(w′, h′, f) =

r(1)∑
r1=1

M1(r1, f)K2(w′, h′, r1), (4)

where K1 ∈ RW×H×r(2) and K2 ∈ RW ′×H′×r(1) .

Method
Problem Formulation
To realize practical and high-performance low-rank com-
pression, we aim to automatically find the optimal ranks to
minimize the accuracy loss and maximize the hardware per-
formance (e.g., inference speed). Mathematically, for an n-
layer convolutional neural network, this process can be for-
mulated as a constrained optimization problem as below:

min
{Wi}ni=1

L({Wi}) s.t.
n∑
i=1

~(rank(Wi)) ≤ ε, (5)

where {Wi}ni=1 represents the weights of all layers of n-
layer CNN model, rank(·) is the function that returns the
tensor ranks of the factorized tensor cores, and ε is the spe-
cific constraint for the practical hardware performance (e.g.,
latency). In addition, L(·) and ~(·) denote the loss function
and the layer-wise hardware performance, respectively.

Design Challenges
Solving the constrained problem described in Eq. 5 is non-
trivial but facing two main challenges. First, because we can-
not explicitly construct rank(·), the implicit mechanism that
can automatically determine the rank setting is needed. To
that end, some methods, such as approximation error-aware
minimization and genetic algorithm, have been used to guide
the search process. However, a common problem for the ex-
isting solutions is the insufficient exploration for the rank
space. For instance, because the higher similarity between
the original and the decomposed models does not necessar-
ily mean higher accuracy, minimizing the approximation er-
ror will severely limit the exploration scope, causing unsat-
isfied compression performance. Second, the search process
of the state-of-the-art rank determination works cannot be
extended to consider the hardware performance constraint
described in Eq. 5. More specifically, the underlying mech-
anisms of the existing automatic rank selection methods, by
their nature, can only support the differentiable constraint
such as compression ratio; while the practical hardware per-
formance, e.g., the measured latency, is non-differentiable,
making it challenging to extend the prior solutions to the
hardware-aware format.

HALOC: Selecting Ranks as Architecture Search
The above analyzed limitations of the existing rank selection
methods call for more efficient solutions. To that end, we
propose HALOC, a novel hardware-aware automatic low-
rank DNN compression technique. HALOC is built on a key
observation – because low-rank compression aims to explore
the structure-level redundancy of DNNs, the rank selection
process essentially determines the architecture of the com-
pressed models. Based on this perspective, automatic search
for the suitable ranks can be interpreted as the automatic
search for the proper low-rank structure, opening up the op-
portunities of designing new rank selection solution guided
by the philosophy of neural architecture search (NAS) (Cai,
Zhu, and Han 2018; Wu et al. 2019).

Motivated by this hidden connection between setting the
layer-wise ranks and searching the network architecture,
we propose to develop efficient low-rank compression with
NAS-inspired automatic rank selection. Our key idea is iter-
atively sampling and evaluating different candidate rank set-
tings to learn the most suitable one in a differentiable way.
More specifically, as illustrated in Figure 1, the HALOC
framework consists of the following operations.

Step-1. Constructing Low-Rank Search Space. We first
build an over-parameterized network N that consists of
multiple candidate rank combinations. Notice that different
from the case for NAS methods aiming to select from a
group of candidate operators, the n-layer N (T1, · · · , Tn)
built for HALOC represents the ensemble of the candi-
date rank settings. More specifically, for the i-th layer of
N as Ti, it consists of m1m2 decomposition candidates as
τi,j with rank setting (r

(1)
i,j1
, r

(2)
i,j2

), where j1 = 1, 2, ...,m1,
j2 = 1, 2, ...,m2, and j = 1, 2, ...m1m2. At the setup stage
of automatic search, each τi,j is initialized via performing
Tucker-2 decomposition on the i-th layer of the uncom-
pressed model with rank set as (r

(1)
i,j1
, r

(2)
i,j2

).
Step-2. Updating Probabilities & Weights. Upon the

construction and initialization of N , we then alternately up-
date the parameters of τi,j and the corresponding selection
probability pi,j for the i-th layer. To be specific, because pi,j
is calculated as pi = Softmax(αi), where pi,j ∈ pi and
αi is an learnable vector, the update of all pi,j’s can be si-
multaneously performed via using the backward propaga-
tion on the validation dataset. On the other hand, HALOC
updates the weights of τi,j in a selective way. To reduce the
computational cost, guided by the selection probability pi,j ,
each time only one τi,j is sampled and updated per layer,
and this weight update process is based on the loss func-
tion defined on the training dataset. After multiple iterations
of alternated update for probabilities and weights, the final
selected decomposed candidate for the i-th layer is the τi,j
with the largest pi,j .

Considering Hardware Constraints. As outlined in Eq.
5, the constraints on the hardware performance should be
taken into account when designing low-rank compression
technique towards practical applications. Unlike the existing
automatic low-rank compression works that cannot prop-
erly include hardware performance into the design phase,
HALOC enjoys an attractive benefit of its inherent com-

(i‐1)‐th
CONV

i‐th
CONV

(i+1)‐th
CONV

...
(i‐1)‐th
CONV

i‐th
CONV

(i+1)‐th
CONV

Update Prob

Input

...

Rank Space

Pi,1 Pi,2 Pi,j... ...

... ...

...

...

Pre‐trained M
odel

...

... ...

...

Update Weight

MSEi‐1

MSEi

MSEi+1Forward propogation
Back propagation
Sampled rank setting
Feature map

Figure 1: The automatic rank selection process of HALOC via alternately updating rank selection probability and model weight.

patibility for hardware-awareness. More specifically, con-
sidering the hardware performance (e.g., latency) is non-
differentiable, we use a prediction model to estimate the ex-
pected hardware performance of the i-th layer as follows:

Ei =

m1m2∑
j=1

pi,j ·M(rank(τi,j)), (6)

where M(·) denotes the layer-wise hardware performance
for the decomposition candidate τi,j with rank setting
(r

(1)
i,j1
, r

(2)
i,j2

). Here the hardware performance for one candi-
date can be either pre-measured from the target computing
devices or estimated from a regression model. Essentially,
the layer-wise prediction model described in Eq. 6 can be
viewed as the weighted sum of the performance of the de-
composition candidates for the current layer, and it is then
integrated to the process for updating the selection probabil-
ities as follows:

LProb = LCE(Prob) · η(

∑n
i=1 Ei
ε

)θ, (7)

where LCE(Prob) is the cross-entropy loss on the validation
dataset, and η and θ are the hyperparameters that adjust the
impact of hardware constraints on the overall search process
(Wu et al. 2019).

Questions to be Answered
As outlined above, the HALOC framework can be developed
from the perspective of architecture search. However, as
we will further analyze in this subsection, because HALOC
aims to perform automatic low-rank compression, a task that
is essentially different from NAS, it is facing several unique
design challenges when searching in the rank space. To ad-
dress these issues and realize automatic rank selection effi-
ciently, next we explore to answer two important questions.

Question 1: How should we set the proper search scope
to realize sufficient exploration in the rank space with af-
fordable search cost?

Analysis. A very key challenge for HALOC is the ex-
tremely huge search space, which is much larger than the

scope explored in the existing NAS works. For instance,
there are only 1.5 × 1017 potential network architectures
when searching an 18-layer CNN using NAS (Wu et al.
2019); while there exist 2.2×1071 candidates of rank combi-
nation when performing low-rank compression on a ResNet-
18 model. In other words, the rank space for low-rank com-
pression is much larger than the architecture space for NAS,
hindering the automatic rank selection in a timely and effi-
cient way.

Essentially, the ultra-large search space of HALOC re-
sults from two sources. First, for each layer, the number
of rank candidates is inherently much more than that of
operator candidates. For instance, the uncompressed layer
(layer3.1.conv1) in ResNet-18 model has full rank size as
256, meaning that there exist at least 256 possible ranks for
r(1) or r(2) can be selected for low-rank compression; while
the operator for building one layer are only considered and
selected from a limited set, e.g., around 10 candidates as in-
dicated in (Liu, Simonyan, and Yang 2018; Cai, Zhu, and
Han 2018; Wu et al. 2019). Second, because it is very com-
mon that multiple rank modes are needed in low-rank com-
pression, e.g., a Tucker-2 decomposed layer is determined
by two ranks (r(1) and r(2) in Eq. 1), the corresponding
combinatorial effect further drastically enlarges the overall
to-be-explored rank space.

Our Proposal. Based on the above analysis, we propose to
perform efficient search in the rank space to achieve good
balance between the efficiency and globality of the explo-
ration. First, we reduce the numbers of the rank candidates
in a hardware-aware way. More specifically, we analyze the
impact of different rank settings of single layer on the mea-
sured latency, and we discover that many ranks, though cor-
responding to different FLOPs, bring very similar latency on
the hardware platforms. For instance, as illustrated in Fig-
ure 2, when performing Tucker-2 decomposition on a con-
volutional layer with different rank settings, obvious latency
change can only be observed when r(1) and r(2) increase by
32 or 64 – a phenomenon that exists across different types of
computing platforms. We hypothesize that the most proba-
ble reason causing this phenomenon is the under-utilization

Wi+1 from τi+1,j via using Eq. 1. Unfortunately, such re-
construction operation is not well supported by the current
version of PyTorch/Tensorflow, causing very slow execu-
tion speed. On the other hand, calculating the output fea-
ture maps of Wi+1 is equivalent to performing forward pro-
rogation for the original model, an execution that is much
faster and well supported by GPU acceleration. 2) Rich
information. As indicated in (Lin et al. 2020) the feature
maps naturally capture and contain the rich and critical in-
formation for both model and data. Compared with weight-
approaching strategy that only reflects static model charac-
teristics, approaching feature maps can provide additional
dynamic data-aware alignment. We observe that such feature
map-preferred philosophy is also advocated and adopted in
a set of channel pruning works (Hou et al. 2022; Sui et al.
2021; Tang et al. 2020; Lin et al. 2020), demonstrating
the importance and usefulness of feature map information.
Therefore, we use the following mean square error (MSE)-
based loss to measure the feature map similarity:

Lapproach =
n∑
i=1

MSE(Fmapdecomp,i, Fmaporg,i), (8)

where Fmaporg,i and Fmapdecomp,i denote the feature
maps of the original weight tensor and the sampled τi,j in
the i-th layer, respectively. Then the loss function for updat-
ing the weights is as follows:

Lweight = LCE(weight) + λLapproach, (9)

where LCE(weight) is the cross-entropy loss defined on the
training dataset, and λ is the scaling parameter that controls
the impact of feature map-approaching loss.

Experiments
We evaluate the performance of HALOC for compressing
different CNN models on CIFAR10 (Krizhevsky, Hinton
et al. 2009), and ImageNet (Deng et al. 2009) datasets. We
also measure the practical latency of the automatic com-
pressed models on different types of hardware platforms,
including desktop GPU, embedded GPU and ASIC accel-
erator.

Training Details. We use the standard SGD optimizer
with Nesterov momentum as 0.9 for model training. The
learning rates are initilized as 0.1 and 0.01 for CIFAR-10
and ImageNet, respectively, and they are then scaled down
by 0.2 every 55 epochs. In addition, batch size and weight
decay are set as 256 and 0.0001, respectively.

CIFAR-10 Results
Table 1 shows the evaluation results for compressing dif-
ferent CNN models on CIFAR-10 dataset. For compress-
ing ResNet-20 model, our method can achieve even 0.07%
higher top-1 accuracy than the baseline model with 72.6%
FLOPs reduction and 76.1% model size reduction. Com-
pared with ALDS (Liebenwein et al. 2021), the state-of-the-
art automatic low-rank compression work, HALOC achieves
0.35% accuracy increase with higher computational and
memory cost reductions, demonstrating the outstanding
compression performance of our proposed approach.

Method Comp.
Type

Auto.
Rank

Top-1
(%)

FLOPs
(↓%)

Params.
(↓%)

ResNet-20 Baseline - 91.25 - -

HALOC Low-rank 3 91.32 72.20 76.10
ALDS Low-rank 3 90.92 67.86 74.91
LCNN Low-rank 3 90.13 66.78 65.38
PSTR-S Low-rank 3 90.80 - 60.87
Std. Tucker Low-rank 7 87.41 - 61.54

VGG-16 Baseline - 92.78 - -

HALOC Low-rank 3 93.16 86.44 98.56
ALDS Low-rank 3 92.67 86.23 95.77
LCNN Low-rank 3 92.72 85.47 91.14
DECORE Pruning - 92.44 81.50 96.60
Spike-Thrift Pruning - 91.79 - 97.01

Table 1: Comparison with different compression approaches
for ResNet-20 and VGG-16 on CIFAR-10. ALDS (Lieben-
wein et al. 2021), LCNN (Idelbayev and Carreira-Perpinán
2020), PSTR-S (Li et al. 2022), Std. Tucker (Kim et al.
2016), DECORE (Alwani, Wang, and Madhavan 2022),
Spike-Thrift (Kundu et al. 2021).

Method Comp.
Type

Auto.
Rank

Top-1
(%)

Top-5
(%)

FLOPs
(↓%)

Params.
(↓%)

ResNet-18 Baseline - 69.75 89.08 - -

HALOC Low-rank 3 70.65 89.42 66.16 63.64
HALOC Low-rank 3 70.14 89.38 63.81 71.31
ALDS Low-rank 3 69.22 89.03 43.51 66.70
TETD Low-rank 7 - 89.08 59.51 -
Stable EPC Low-rank 3 - 89.08 59.51 -
MUSCO Low-rank 7 69.29 88.78 58.67 -
CHEX Pruning - 69.60 - 43.38 -
EE Pruning - 68.27 88.44 46.60 -
SCOP Pruning - 69.18 88.89 38.80 39.30

MobileNetV2 Baseline - 71.85 90.33 - -

HALOC Low-rank 3 70.98 89.77 24.84 40.03
HALOC Low-rank 3 66.37 87.02 45.65 62.59
ALDS Low-rank 3 70.32 89.60 11.01 32.97
HOSA Pruning - 64.43 - 43.65 27.13
DCP Pruning - 64.22 - 44.75 25.93
FT Pruning - 70.12 89.48 20.23 21.31

Table 2: Comparison with different compression approaches
for ResNet-18 and MobileNetV2 on ImageNet. ALDS
(Liebenwein et al. 2021), TETD (Yin et al. 2021b), Stable
EPC (Phan et al. 2020), MUSCO (Gusak et al. 2019), CHEX
(Hou et al. 2022), EE (Zhang, Gao, and Huang 2021), SCOP
(Tang et al. 2020), HOSA (Chatzikonstantinou et al. 2020),
DCP (Zhuang et al. 2018), FT (He, Zhang, and Sun 2017).

For compressing VGG-16 model, HALOC also shows
high compression performance. It brings 0.38% higher ac-
curacy than the original uncompressed model with 86.44%
FLOPs reduction and 98.56% model size reduction. Com-
pared with the state-of-the-art pruning and low-rank com-
pression works, HALOC consistently achieves higher accu-
racy with more aggressive compression efforts.

References
Alwani, M.; Wang, Y.; and Madhavan, V. 2022. DECORE:
Deep Compression With Reinforcement Learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 12349–12359.
Astrid, M.; and Lee, S.-I. 2017. Cp-decomposition with ten-
sor power method for convolutional neural networks com-
pression. In 2017 IEEE International Conference on Big
Data and Smart Computing (BigComp), 115–118. IEEE.
Cai, H.; Zhu, L.; and Han, S. 2018. Proxylessnas: Direct
neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332.
Chatzikonstantinou, C.; Papadopoulos, G. T.; Dimitropou-
los, K.; and Daras, P. 2020. Neural network compres-
sion using higher-order statistics and auxiliary reconstruc-
tion losses. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 716–
717.
Chen, Y.-H.; Emer, J.; and Sze, V. 2016. Eyeriss: A spatial
architecture for energy-efficient dataflow for convolutional
neural networks. ACM SIGARCH Computer Architecture
News, 44(3): 367–379.
De Lathauwer, L.; De Moor, B.; and Vandewalle, J. 2000. A
multilinear singular value decomposition. SIAM journal on
Matrix Analysis and Applications, 21(4): 1253–1278.
Deng, C.; Sui, Y.; Liao, S.; Qian, X.; and Yuan, B. 2021.
GoSPA: An Energy-efficient High-performance Globally
Optimized SParse Convolutional Neural Network Acceler-
ator. In 2021 ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA), 1110–1123.
Deng, C.; Sun, F.; Qian, X.; Lin, J.; Wang, Z.; and Yuan,
B. 2019a. TIE: Energy-efficient tensor train-based inference
engine for deep neural network. In Proceedings of the 46th
International Symposium on Computer Architecture, 264–
278.
Deng, C.; Yin, M.; Liu, X.-Y.; Wang, X.; and Yuan, B.
2019b. High-performance Hardware Architecture for Ten-
sor Singular Value Decomposition: Invited Paper. In 2019
IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 1–6.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
Denton, E. L.; Zaremba, W.; Bruna, J.; LeCun, Y.; and Fer-
gus, R. 2014. Exploiting linear structure within convolu-
tional networks for efficient evaluation. Advances in neural
information processing systems, 27.
Dong, P.; Wang, S.; Niu, W.; Zhang, C.; Lin, S.; Li, Z.;
Gong, Y.; Ren, B.; Lin, X.; and Tao, D. 2020. Rtmobile: Be-
yond real-time mobile acceleration of rnns for speech recog-
nition. In 2020 57th ACM/IEEE Design Automation Confer-
ence (DAC), 1–6. IEEE.
Golub, G. H.; and Van Loan, C. F. 2013. Matrix computa-
tions. JHU press.

Gusak, J.; Kholiavchenko, M.; Ponomarev, E.; Markeeva,
L.; Blagoveschensky, P.; Cichocki, A.; and Oseledets, I.
2019. Automated multi-stage compression of neural net-
works. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision Workshops, 0–0.
Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning
both weights and connections for efficient neural network.
Advances in neural information processing systems, 28.
Harshman, R. A.; et al. 1970. Foundations of the PARAFAC
procedure: Models and conditions for an” explanatory” mul-
timodal factor analysis.
He, Y.; Zhang, X.; and Sun, J. 2017. Channel pruning for ac-
celerating very deep neural networks. In Proceedings of the
IEEE international conference on computer vision, 1389–
1397.
Hitchcock, F. L. 1928. Multiple invariants and generalized
rank of a p-way matrix or tensor. Journal of Mathematics
and Physics, 7(1-4): 39–79.
Hou, Z.; Qin, M.; Sun, F.; Ma, X.; Yuan, K.; Xu, Y.; Chen,
Y.-K.; Jin, R.; Xie, Y.; and Kung, S.-Y. 2022. CHEX: CHan-
nel EXploration for CNN Model Compression. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 12287–12298.
Idelbayev, Y.; and Carreira-Perpinán, M. A. 2020. Low-rank
compression of neural nets: Learning the rank of each layer.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 8049–8059.
Kim, Y.-D.; Park, E.; Yoo, S.; Choi, T.; Yang, L.; and Shin,
D. 2016. Compression of deep convolutional neural net-
works for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530v2.
Klema, V.; and Laub, A. 1980. The singular value decompo-
sition: Its computation and some applications. IEEE Trans-
actions on automatic control, 25(2): 164–176.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
Kundu, S.; Datta, G.; Pedram, M.; and Beerel, P. A. 2021.
Spike-Thrift: Towards Energy-Efficient Deep Spiking Neu-
ral Networks by Limiting Spiking Activity via Attention-
Guided Compression. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision (WACV),
3953–3962.
Lebedev, V.; Ganin, Y.; Rakhuba, M.; Oseledets, I.; and
Lempitsky, V. 2014. Speeding-up convolutional neural net-
works using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553.
Li, N.; Pan, Y.; Chen, Y.; Ding, Z.; Zhao, D.; and Xu, Z.
2022. Heuristic rank selection with progressively searching
tensor ring network. Complex & Intelligent Systems, 8(2):
771–785.
Liebenwein, L.; Maalouf, A.; Feldman, D.; and Rus, D.
2021. Compressing neural networks: Towards determining
the optimal layer-wise decomposition. Advances in Neural
Information Processing Systems, 34: 5328–5344.
Lin, M.; Ji, R.; Wang, Y.; Zhang, Y.; Zhang, B.; Tian, Y.;
and Shao, L. 2020. Hrank: Filter pruning using high-rank

feature map. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 1529–1538.
Liu, H.; Simonyan, K.; and Yang, Y. 2018. Darts: Differen-
tiable architecture search. arXiv preprint arXiv:1806.09055.
Novikov, A.; Podoprikhin, D.; Osokin, A.; and Vetrov, D. P.
2015. Tensorizing neural networks. Advances in neural in-
formation processing systems, 28.
Pan, Y.; Xu, J.; Wang, M.; Ye, J.; Wang, F.; Bai, K.; and Xu,
Z. 2019. Compressing recurrent neural networks with tensor
ring for action recognition. 4683–4690.
Parashar, A.; Raina, P.; Shao, Y. S.; Chen, Y.-H.; Ying, V. A.;
Mukkara, A.; Venkatesan, R.; Khailany, B.; Keckler, S. W.;
and Emer, J. 2019. Timeloop: A systematic approach to dnn
accelerator evaluation. In 2019 IEEE international sympo-
sium on performance analysis of systems and software (IS-
PASS), 304–315. IEEE.
Phan, A.-H.; Sobolev, K.; Sozykin, K.; Ermilov, D.; Gusak,
J.; Tichavskỳ, P.; Glukhov, V.; Oseledets, I.; and Cichocki,
A. 2020. Stable low-rank tensor decomposition for compres-
sion of convolutional neural network. In European Confer-
ence on Computer Vision, 522–539. Springer.
Qin, E.; Samajdar, A.; Kwon, H.; Nadella, V.; Srinivasan, S.;
Das, D.; Kaul, B.; and Krishna, T. 2020. Sigma: A sparse
and irregular gemm accelerator with flexible interconnects
for dnn training. In 2020 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 58–70.
IEEE.
Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A.
2016. Xnor-net: Imagenet classification using binary convo-
lutional neural networks. In European conference on com-
puter vision, 525–542. Springer.
Shu, Y.; Wang, W.; and Cai, S. 2019. Understanding ar-
chitectures learnt by cell-based neural architecture search.
arXiv preprint arXiv:1909.09569.
Sui, Y.; Yin, M.; Xie, Y.; Phan, H.; Aliari Zonouz, S.; and
Yuan, B. 2021. CHIP: CHannel Independence-based Prun-
ing for Compact Neural Networks. In Ranzato, M.; Beygelz-
imer, A.; Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds.,
Advances in Neural Information Processing Systems, vol-
ume 34, 24604–24616. Curran Associates, Inc.
Tang, Y.; Wang, Y.; Xu, Y.; Tao, D.; Xu, C.; Xu, C.; and
Xu, C. 2020. Scop: Scientific control for reliable neural net-
work pruning. Advances in Neural Information Processing
Systems, 33: 10936–10947.
Tucker, L. R. 1966. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3): 279–311.
Wang, D.; Zhao, G.; Li, G.; Deng, L.; and Wu, Y. 2019.
Lossless Compression for 3DCNNs Based on Tensor Train
Decomposition.
Wen, W.; Xu, C.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H.
2017. Coordinating filters for faster deep neural networks. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 658–666.
Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian,
Y.; Vajda, P.; Jia, Y.; and Keutzer, K. 2019. Fbnet: Hardware-
aware efficient convnet design via differentiable neural ar-

chitecture search. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 10734–
10742.
Xiang, L.; Yin, M.; Zhang, C.; Sukumaran-Rajam, A.; Sa-
dayappan, P.; Yuan, B.; and Tao, D. 2022. TDC: Towards
Extremely Efficient CNNs on GPUs via Hardware-Aware
Tucker Decomposition. arXiv preprint arXiv:2211.03715.
Yin, M.; Liao, S.; Liu, X.-Y.; Wang, X.; and Yuan, B.
2020. Compressing recurrent neural networks using hi-
erarchical tucker tensor decomposition. arXiv preprint
arXiv:2005.04366.
Yin, M.; Liao, S.; Liu, X.-Y.; Wang, X.; and Yuan, B. 2021a.
Towards extremely compact rnns for video recognition with
fully decomposed hierarchical tucker structure. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 12085–12094.
Yin, M.; Phan, H.; Zang, X.; Liao, S.; and Yuan, B. 2022a.
Batude: Budget-aware neural network compression based on
tucker decomposition. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 1.
Yin, M.; Sui, Y.; Liao, S.; and Yuan, B. 2021b. Towards
Efficient Tensor Decomposition-Based DNN Model Com-
pression With Optimization Framework. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 10674–10683.
Yin, M.; Sui, Y.; Yang, W.; Zang, X.; Gong, Y.; and Yuan,
B. 2022b. HODEC: Towards Efficient High-Order DEcom-
posed Convolutional Neural Networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 12299–12308.
Zhang, D.; Yang, J.; Ye, D.; and Hua, G. 2018. Lq-nets:
Learned quantization for highly accurate and compact deep
neural networks. In Proceedings of the European conference
on computer vision (ECCV), 365–382.
Zhang, Y.; Gao, S.; and Huang, H. 2021. Exploration and
Estimation for Model Compression. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 487–496.
Zhang, Y.; Lin, Z.; Jiang, J.; Zhang, Q.; Wang, Y.; Xue,
H.; Zhang, C.; and Yang, Y. 2020. Deeper insights into
weight sharing in neural architecture search. arXiv preprint
arXiv:2001.01431.
Zhuang, Z.; Tan, M.; Zhuang, B.; Liu, J.; Guo, Y.; Wu, Q.;
Huang, J.; and Zhu, J. 2018. Discrimination-aware Channel
Pruning for Deep Neural Networks. In Bengio, S.; Wallach,
H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Gar-
nett, R., eds., Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.

Appendix
Rank Space with Pre-set Compression Ratio. Design
Principle-1 of the main manuscript discusses the suggested
empirical setting of the rank granularity. Here we present a
more analytic solution for a special case – when the target
model compression ratio is pre-known. Our key idea is to
first use the overall compression ratio to obtain a relaxed
range for the estimated layer-wise rank value reduction
(as compared to full rank), which can be then used to
construct the rank space, and then we leverage the rank
search process described in the main manuscript to identify
the accurate rank setting that satisfies with the compression
ratio requirement.

More specifically, suppose the overall target compression
ratio is α, then the average compression ratio of each layer
is also first roughly set as α. For a CONV layer with weight
tensor W ∈ RF×C×K1×K2 , the number of parameters for
original CONV and Tucker-2 Decomposed CONV can be
calculated as norg = FCK1K2 and ntucker = Fr(1) +

Cr(2) + r(1)r(2)K1K2, respectively. Then we have
ntucker =

C2

αrank
+

F 2

αrank
+
C2F 2

α2
rank

norg
α

=
FCK1K2

α
= ntucker

αrank =
2FCK1K2√

(C2 + F 2)2 + 4(FCK1K2)2

α − C2 − F 2

,

(10)
where αrank is a scaling parameter which represents the
reduction of the assigned ranks from the original full rank
value, r(1) = F

αrank
and r(2) = C

αrank
. Then we can use Al-

gorithm 1 to determine the search rank space for Tucker-2
decomposition.

Determining Discrepancy between r(1) and r(2). To ex-
plore the best suitable |∆Rank = r(1) − r(2)|, we aim to
minimize the approximation error given the same number
of post-decomposition parameters. According to the Higher-
Order Singular Value Decomposition (HOSVD) (Hitchcock
1928; De Lathauwer, De Moor, and Vandewalle 2000), we
use the percentage of the sum of the truncated singular val-
ues to evaluate the degree of information preservation after
decomposition as follows:

ρ =

∑r(1)

i=1 s1,i∑F
i=1 s1,i

·
∑r(2)

j=1 s2,j∑C
j=1 s2,j

, (11)

where s1,i and s2,j indicate the singular values, and ρ is the
percentage of the sum of the truncated singular values. With-
out loss of generality, we simplify the calculation by assum-
ing that the s1,i = s2,j , then we have

ρ =
r(1)s1,1
Fs1,1

· r
(2)s2,1
Cs2,1

=
r(1)r(2)

CF
. (12)

Recall that our goal can be described as the following op-

timization problem:

max ρ(r(1), r(2))

s.t. ntucker = Cr(2) +K1K2r
(1)r(2) + Fr(1).

(13)

From Eq. 12 and the constraint of the above optimization
problem, we can have:

ρ =
ntucker − Fr(1) − Cr(2)

K1K2CF

⇒ ∂ρ

∂r(1)
=

−1

K1K2C
,

∂ρ

∂r(2)
=

−1

K1K2F
.

(14)

Consider 1) Eq. 14 shows that ρ monotonically decreases
when r(1) or r(2) increases; and 2) when r(1) or r(2) in-
creases, the constant ntucker means the corresponding r(2)

or r(1) decreases, increasing the value of |∆Rank|. We can
find that smaller |∆Rank| brings larger ρ, i.e., more infor-
mation is preserved after decomposition. increases. There-
fore, when constructing the rank search space, we suggest
|∆Rank| should be small, e.g., r(1) = r(2).

Algorithm 1 Rank Search Space Determination
1: Inputs: Overall compression ratio α,

List of the number of input channels {Ci},
List of the number of out channels {Fi},

2: Output: Low-rank space {{(r(1)i,j , r
(2)
i,j)}}.

Initialize step size
3: if max({Ci} ∪ {Fi}) ≥ 128 then
4: # Corresponding number of channels is

{16, 32, 64, 128, 256, 512}
{sk} ← {4, 8, 16, 16, 32, 32}

5: else
6: # For the number of channels less than 128,

the setp size is 4
{sk} ← {4}

7: end if
8: Calculate αrank by Eq. 10

Generating rank space for each layer
9: for each i ∈ [0, len({Ci})] do

10: t← min(Ci, Fi), k ← t
16
− 1

Relaxing the range of scaling parameter αrank
11: Generate {rj} from [t

αrank+2
, t
αrank−2

] with step size sk
The size relation between r(1) and r(2) is consistent
with the original channels, except r(1) = r(2)

12: if Ci ≥ Fi then
13: m← Ci

Fi

14: {(r(1)i,j , r
(2)
i,j)} ← {(rj ,

rj
m
)} ∪ {(rj , rj)}

15: else
16: m← Fi

Ci

17: {(r(1)i,j , r
(2)
i,j)} ← {(

rj
m
, rj)} ∪ {(rj , rj)}

18: end if
19: end for

	Introduction
	Related Work
	Preliminaries
	Method
	Problem Formulation
	Design Challenges
	HALOC: Selecting Ranks as Architecture Search
	Questions to be Answered

	Experiments
	CIFAR-10 Results
	ImageNet Results
	Practical Speedups on Hardware Platforms
	Analysis & Discussion

	Conclusion

