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ABSTRACT
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resistance genes (ARGs) (i.e., the resistome)

can be screened simultaneously without a

priori selection of targets. Additionally, as new ARGs are discovered and catalogued, stored
sequencing data can be reanalyzed to assess the prevalence of emerging genes or pathogens.
However, best practices for metagenomic data generation and processing are needed to support
comparability across space and time. To support reproducible downstream analysis, guidance is
first needed with respect to sampling design, sample preservation and storage, DNA extraction,
library preparation, sequencing depth, and experimental controls. Here we conducted a systematic
review to assess current practices for the application of metagenomics for AR profiling of waste-
water, recycled water, and surface water and to offer recommendations to support comparability in
the collection, production, and analysis of resulting data. Based on integrated analysis of findings
and data reported across 95 articles identified, a field to benchtop metagenomic workflow is dis-
cussed for optimizing the representativeness and comparability of generated data. Through the
reanalysis of 1474 publicly-available metagenomes, appropriate sequencing depths per environ-
ment and uniform normalization strategies are provided. Further, there is opportunity to harness the
quantitative capacity of metagenomics more overtly through inclusion of sequencing controls. The
recommendations will amplify the overall value of the metagenomic data generated to support within
and between study comparisons, now and in the future.
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Introduction

Antibiotic resistance (AR) is a growing global health threat (O'Neill, 2016; World Health
Organization, 2015) and, increasingly, the importance of environmental dimensions to its transmis-
sion and evolution are being recognized (European Commission, 2017; United Nations, 2017).
Correspondingly, the need for unified approaches to assessing AR in the environment is evident
(Huijbers et al., 2019; JPIAMR, 2019). Environmental monitoring can help to assess baselines of AR
in pristine and anthropogenically-influenced environments, as well as local human and animal popu-
lations, and further aid in identifying high-risk areas for the evolution, selection, and transmission of
antibiotic resistant bacteria (ARB) (Berendonk et al., 2015; Jin et al., 2022; Larsson et al. 2018; Pruden
et al., 2021). Such information promises to be especially valuable toward informing specific policy/mi-
tigation measures (Aarestrup & Woolhouse, 2020). Monitoring of influent sewage to wastewater treat-
ment plants (WWTPs) has especially garnered attention as a means to capture collective antibiotic
resistance genes (ARGs) circulating amongst the corresponding human population (Hendriksen et al.
2019; Prieto Riquelme et al. 2022) and has been shown to reflect local clinical prevalence of ARB
(Parnénen et al. 2019). The WWTP itself also represents a significant barrier to the dissemination of
ARB and ARGs via reuse or to receiving surface waters and therefore removal efficiencies are of inter-est
(Majeed et al., 2021). Furthermore, wastewater reuse and impacted surface waters represent poten-tial
transmission pathways into and out of human populations (Garner et al., 2018; Keely et al., 2022).

Next-generation sequencing (NGS) is a powerful and promising tool for monitoring of aquatic
environments (Garner et al., 2021a). Shotgun metagenomics applies NGS for the sequencing of DNA
extracted across microbial populations inhabiting the sampled environment. The resulting metage-
nome (i.e., the collection of NGS reads captured from a sample) can be analyzed to characterize the
resistome (i.e., the collective ARGs carried across a microbial community). The most common
approach is to align the metagenome against publicly-available databases to compare metagenome-
derived sequences to those of functionally verified ARGs, which currently number in the thousands
(Alcock et al., 2020). The number and types of ARGs can then be compared across samples of inter-est.
Detected ARGs can be classified and ranked by various means; this includes the antibiotics to which
they encode resistance, the mechanism of resistance, and their degree of clinical relevance (i.e., extent
to which they are found to interfere with treatment of human infections). The genetic context of
various ARGs can further be explored to determine more information about the ARG of interest
(chromosomally-bound or inter/intra-cellularly mobile), what kinds of mobile genetic elements
(MGEs, e.g., plasmids, integrons, transposons) they are carried on, or whether they occur in known
human pathogens or the commensal environmental flora. Metagenomics is also being utilized to
mine putative and/or uncharacterized ARGs from public repositories to expand our knowledge of
the known, emerging, and latent resistome (Arango-Argoty et al., 2018; Berglund et al., 2019).

The primary motivation for this critical review is to assess the state of sampling, sequencing, and
analysis of shotgun metagenomics for AR monitoring in wastewater and impacted aquatic environ-
ments. Through a systematic analysis of data reported in relevant scientific literature, we provide
guidance on the implementation of metagenomic workflows for routine monitoring purposes that
support the generation of meaningful and comparable data. In part, our efforts reflect those in clin-
ical and human microbiome domains such as STORMs, which proposes guidelines for improved
reproducibility in metagenomic analysis (Mirzayi et al. 2021). However, these guidelines do not
account for unique challenges related to environmental sampling, sequencing, and analysis of corre-
sponding resistomes. Best practices guidelines for the inclusion of standards have been developed in
the EMMI guidelines for qPCR (Borchardt et al., 2021); however there has been no such effort for
metagenomics-based resistome monitoring. The specific objectives of this review were to:

1. Evaluate strengths and weaknesses of existing workflows for routine metagenomic analysis of
resistomes characteristic of wastewater and impacted water environments
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Figure 1. Overview of key decision points to consider in developing a workflow for metagenomic-based monitoring of ARGs in
aquatic environments that are highlighted in this review.

2. Identify sources of variability introduced by different data generation and processing
techniques

3. Provide recommendations with respect to best practices for supporting generation of find-
able, accessible, interoperable, and reusable data (FAIR) (Wilkinson et al., 2016)

We further assess the current trajectory of the field as it moves toward standardized data
reporting, NGS process controls, and datatypes for integration into future risk assessment models.
The overall recommendations provide a framework to amplify the value of metagenomic data and
analysis for the purpose of AR monitoring of aquatic environments (Fig. 1).

Literature review protocol

To generate a systematic review, search terms were applied in a three-tiered approach (Table S1
and Fig. S1). Tier 1 established topic level keywords that identified studies that were relevant to
wastewater, water reuse, and surface water environments. Tier 2 ensured that the studies were
relevant to AR, while Tier 3 established keywords to identify studies focusing on shotgun metage-
nomics. Literature returned between 2010-Dec 2020 via this search strategy were manually
screened by two independent researchers to ensure that all included articles met the inclusion cri-
teria. Articles focused on aquaculture, biosolids and biosolid treatment (anaerobic digestion, com-
posting, etc.), treated drinking water, or laboratory-scale experiments were excluded. Studies
involving only the use of secondary data (i.c., a collection of metagenomic datasets from other
studies) were also excluded. Any disagreements between the two screeners on relevance were pre-
sented to a broader team of five researchers to reach a consensus on the applicability of the study
toward informing a workflow that includes sampling, DNA sequencing, and data analysis. This
approach produced 95 articles. Studies that met eligibility criteria were subjected to data extrac-
tion for the parameters outlined in Table S2.
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Data extraction and analysis

All publicly-available metagenomes from the 95 included articles were downloaded from the
Sequence Read Archive (SRA) and European Nucleotide Archive (ENA) (n% 1775) for depth,
coverage, and normalization analysis. Samples were then filtered for paired-end Illumina datasets
pertaining to wastewater, recycled water, and surface water matrices using available metadata
(n% 1474). Briefly, we cleaned paired-end data using Trimmomatic (Bolger et al., 2014) (lead-
ing:3, tailing:3, slidingwindow:4:15, minlen:36) and ran forward reads through Nonpareil
(Rodriguez-R et al.,, 2018) with option “-T kmer” to determine the relative metagenomic library
coverage as function of dataset size. Reads were then merged with Vsearch, aligned against the
CARD database (v3.3.1; 80% identity, 80% coverage, min 25 aa), and normalized to RPKM, PPM,
16S TRNA genes, ARGs/cell (rpoB), and an ARG density metric to assess their individual per-
formances in mitigating sequencing bias. The full list of SRA and ENA accessions used, and
details of the data analysis can be found in the supplemental materials (Supp Section 1). Data
were analyzed in R (v 4.1.2) and visualized using ggplot2 (Wickam, 2009).

Sampling frequency, replication, and controls

A growing body of research is providing insight into baseline variability of WWTPs and other
aquatic system resistomes (Majeed et al., 2021; Yin et al., 2019). In a landmark study of a Hong
Kong WWTP, monthly sampling of the activated sludge basin was performed over a nine-year
span and the resistome composition was found to turn over every 2-to-3-years (Yin et al., 2019).
However, it is unclear the extent to which the observed patterns are generalizable across all
WWTPs or how such dynamics vary with each stage and type of treatment. Coordinated surveil-
lance is needed to help inform the sampling frequency and number of replicates needed to
achieve metagenomic monitoring objectives. For example, if influent sewage resistomes are rela-
tively stable across WWTPs with time, as observed in conventional WWTPs in the US (Majeed et
al,, 2021) and Hong Kong (Prieto Riquelme et al., 2022), then less frequent sampling may be
sufficient when the purpose is broader comparison across WWTPs. However, if the purpose is to
determine if anomalous ARGs of clinical concern are present in the influent and escaping into
surface waters, then much more frequent sampling with replication and deep sequencing or target
enrichment may be necessary (Lanza et al., 2018; Majeed et al., 2021). Shallower sequencing may be
sufficient when the aim is to assess removal of dominant ARGs.

Biological replication, i.e., independently processing and sequencing multiple samples repre-
senting a given condition/site, helps to account for variability introduced by incomplete homo-
geneity, or minor spatiotemporal variation in complex biological systems. Technical replication,
where singular biological samples are sequenced multiple times, can control and account for
batch effects across sequencing lanes and flow cells (Borchardt et al., 2021). Among the articles
identified in this study, biological replication was infrequent: 19/95 studies (Table S3). This is
likely due to the high per-sample cost of metagenomics as well as the tendency for ecological sur-vey
designs to favor sampling a larger number of sites/conditions at shallow sequencing depths rather
than a few sites/conditions with deeper sequencing and replication (i.e., breadth over depth)
(Filazzola & Cahill, 2021). We found appreciable levels of variability between biological replicates
across studies and environments (Jia et al., 2021; Roy et al., 2018; Petrovich et al., 2018; Wang 2018).
For example, Petrovich et al. (2018) documented standard errors of ARG ‘abundance per
genome equivalents’ between biological triplicates of influent samples as high as 0.45 for specific
antibiotic resistance classes, although the overall resistome compositions did not fluctuate on
ordination plots. These standard errors decreased two to three orders of magnitude in downstream
activated sludge and effluent samples, suggesting greater spatiotemporal biological stability in
subsequent engineered systems. Based on these observations, we suggest that if the


https://doi.org/10.1080/10643389.2023.2181620
https://doi.org/10.1080/10643389.2023.2181620

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY @ 5

expected biological variability of ARG abundance in a system is high, emphasis should be placed on
implementing biological replication, but if it is low, then emphasis can be placed on less repli-cation
at greater sequencing depths.

Including at least one technical replicate per flow cell is also good practice to help reveal biases
in library preparation and sequencing by sequencing cores. Negative controls serve as a check for
any contamination events that occur during sampling, processing, and DNA extraction that may
contribute to background detection of microbes and ARGs (Fig. 2), however only 15/95 studies
reported the inclusion of any negative controls (Table S4). A field blank, in which a sampling
bottle is filled with molecular-grade water and processed together with samples, is useful for cap-
turing all possible sources of contamination in a workflow. If contamination is found, further
controls (e.g., DNA extraction kit/filter blanks) can be analyzed to identify the source and
improve the workflow. The inclusion of negative controls is also good practice and can be espe-
cially useful in differentiating low abundance taxa or ARGs from technical noise or laboratory
contamination (Borchardt et al., 2021). Unfortunately, only a single study included negative con-
trols in sequencing runs.

In the studies examined in this review, samples were almost exclusively collected as grab sam-
ples. Composite samples, which may be spatially-, flow-, or time-weighted, may be more appro-
priate where replicate grab samples are infeasible (Centers for Disease Control and Prevention,
2020). Studies evaluating time-sensitive wastewater-based surveillance of illicit drugs (Rodayan et
al., 2014), total phosphorus and nutrients (Johannessen et al., 2012), and SARS-CoV-2
(Kopperi et al,, 2021) demonstrated that time-weighted composite and grab samples yielded
highly comparable results. This suggests the relative stability of wastewater compositions and
treatment efficacy over diurnal timescales such that a reasonable degree of replication should be
able to capture signals of interest. This stability may not be the case with more variable sample
types, such as river water, where diurnal variation is more accentuated. For routine monitoring
purposes, ideal samples would be equal flow or equal time composite samples, although a grab
sample is better than no sample.

Sample preservation and storage affect sample representativeness

Appropriate preservation and storage ensure that subsequent analysis is representative of the sam-ple
at the time it was collected. This is particularly critical for time series data and comparisons across
systems. A recent comprehensive analysis of storage conditions of raw pig feces and domestic
wastewater samples revealed systematic biases that impacted downstream metagenomic analysis
(Poulsen et al., 2021). The authors found that both storage time (immediate processing, 16 hrs,
64 hrs; and long-term storage at 4, 8, and 12months) and temperature (deep freezer, 80 C;
freezer, 20 C; refrigerator, 5C; room temperature, 22 C) resulted in significant fluctu-ations in
taxonomic and resistome composition; although if immediately frozen (at either 20 C or 80 C), batch
effects were minimized. If freezer storage is not possible, the authors stressed that samples should
be processed immediately. The need to immediately freeze or analyze the sample poses a challenge
during field work or when seeking to include low income countries in global-scale studies
(Hendriksen et al. 2019; Roy et al,, 2018). Where the shipping of samples is necessary, fixing
samples in 50-100% ethanol, freezing at 20C, and shipping on ice has shown to both prevent
significant fluctuation of resistomes and preserve the integrity of DNA (Li et al.,, 2018). Sample
preservation reagents have been shown to preserve the integrity of soil micro-biomes (Pavlovska
et al, 2021), human microbiomes (Bartolomaeus et al., 2021), and fecal SARS-CoV-2 RNA
(Natarajan et al., 2021), even at room temperature; although these techniques have not been
systematically assessed for analysis of aquatic resistomes. The addition of preservation reagents
may also preclude sub-sampling the same sample for multiple analyses (e.g., transcrip-tomics,
metabolomics, cultivation, pharmaceuticals analysis) (Poulsen et al., 2021). To minimize
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Figure 2. Framework of process controls for metagenomic investigations of environmental AR.

the overall impact of technical variability and batch effects, we recommend adding preservation
reagents commensurate with the sample type being stored, and that all samples within a given
monitoring campaign be processed and handled uniformly. One example protocol is that of the
Global Wastewater Surveillance System, which might provide the additional benefit of being com-

patible with existing data from this consortium (Munk et al 2022).
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Sample concentration techniques

Sample concentration serves to recover an adequate mass of microbial cells for analysis and
ideally should be applied in a way that maintains representativeness of the corresponding micro-bial
populations. Low mass samples yield low concentrations of DNA, which may preclude library
preparation or necessitate amplification, which unfortunately adds a source of bias in the
sequencing (see Library Preparation). Among the articles identified in this review, the two most
common sample concentration methods were membrane filtration (62 studies) and centrifugation
(23 studies). Membrane filtration was more common for less turbid waters (e.g., unimpacted river
water, final treated wastewater effluent) and centrifugation was more common for more turbid
waters (e.g., raw wastewater, activated sludge).

The most applied membrane pore sizes amongst the identified studies were 0.2 mm (12 stud-ies),
022mm (37 studies), and 0.45mm (12 studies). Because the smallest prokaryotic cell diameter is
approximately 02mm (Staley, 1999), a pore size approaching that threshold will allow for the
adequate representation of the bacterial and archaeal composition of a given water sample. The
tradeoff of smaller pore sizes is that less water will be able to pass through due to clogging,
decreasing the representative volume and increasing the detection limit. Pre-filtration of environ-
mental samples using larger pore size membranes (1.0mm 1mm) was common to reduce par-
ticulates before passing through subsequent filters, increasing the representative sample volumes.
However, pre-filtration effectively eliminates the particle-bound fraction of the microbiome and
may significantly alter representativeness of the sample (Xie et al, 2020). For samples with
extremely low cell densities and/or turbidity (e.g., advanced water treatment products), ultrafiltra-
tion is a means to concentrate volumes up to 100 liters, although this may still be insufficient for
recovering enough nucleic acid for sequencing extremely clean samples (Stamps et al., 2018).
Centrifugation workflows typically involve pelleting biomass from raw wastewater at 4,000 to
15,000xg. The supernatant is discarded, and the pellet is resuspended in buffered solution that is
either then passed through an additional 0.22-mm membrane or directly subject to DNA extrac-
tion. Sample concentration methodology can influence the representativeness and comparability of
generated metagenomes (e.g., through size exclusion) across studies and it is recommended that
researchers utilize a unified sample concentration technique, when possible. The best solution for
concentrating various matrices for shotgun metagenomics and routine surveillance remains
unclear. Benchmarking experiments and/or controlled comparisons of spiked samples could help
to resolve differences introduced due to different concentration methods. However, the most
widely used method is filter concentration with pore sizes between 0.20.22mm and has been
shown to provide reliable results.

DNA extraction dictates representativeness and comparability of metagenomes

Because no DNA extraction approach is 100% efficient or unbiased, DNA extraction methodolo-
gies should be consistent across sample sets intended to be compared by metagenomics. This can be
challenging when seeking to compare metagenomic data across published studies, especially as DNA
extraction kits and procedures continue to evolve. At a minimum, DNA extraction method and
protocol versions need to be reported in associated metadata so that they can be accounted for in
any future meta-analyses. Ideally, positive controls such as sample processing controls (mock
community processed as separate sample) or internal standards (exogenous whole-cells, DNA or
RNA added to a sample matrix) should be included to identify potential biases in the extraction.
These can also be used for the identification of biases in sample concentration and bioinformatic
analyses. Process controls were almost entirely absent from workflows reported in the identified
literature (Fig. 2 and Table S4). Generally, process controls are comprised of known mixtures of
organisms with varying susceptibility to common lysis methods (e.g., Gram-positive
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bacteria, Gram-negative bacteria) and thus serve to assess the efficiency of the DNA extraction
method and give insights into the representativeness and reproducibility of NGS workflows.
Process controls are standard practice in many fields of molecular biology, the most recent
example being the inclusion of Bovine Coronavirus as a surrogate RNA extraction control in the
wastewater monitoring of SARS-CoV-2 (Natarajan et al., 2021).

Recently, mock communities have been used as process controls to characterize DNA extrac-
tion and bioinformatic workflow bias in interlaboratory studies, illuminating large deviations in
the observed abundance of specific taxa (Han et al., 2020; O’Sullivan et al. 2021). Although it is
possible to generate reproducible metagenomes across labs implementing the same DNA extrac-
tion workflow (Li et al., 2018a), such reproducibility cannot always be assumed. One study found
that batch effects across sequencing runs resulted in loss of detection of key taxa (Yeh et al.,
2018). Mock communities and process controls are therefore recommended to help assess repro-
ducibility across space, time, and laboratories. Mock community confirmation, which were uti-
lized only twice in the reviewed articles (Table S4), would also be helpful during submission to
public data repositories to support suitability of inclusion of publicly-available data for specific
studies. However, it is acknowledged that mock communities are typically much less diverse than
the target environment of interest and therefore cannot fully reproduce the sampling environment
(Sinha et al., 2015; Yeh et al., 2018). We believe that a single process control used to measure
“total recovery efficiency” of the metagenomic workflow would be the most advantageous control to
implement for the field moving forward.

Bead beating kits are ideal for short-read metagenomics

Across the studies identified, almost all DNA extractions were performed using commercial kits
that employ both chemical lysis and bead beating, along with purification through a spin column
(93%). The most popular were the FastDNA Spin Kit for Soil (36 studies), PowerWater or
PowerSoil Kits (30), and the QIAamp DNA Stool Mini Kit (6). Previous studies comparing the
efficacies of commercial DNA extraction kits for metagenomic sequencing found that the
FastDNA Spin Kit for Soil (MP Biomedicals) generated the highest yield and purity of DNA
from three commonly sampled WWTP compartments (influent, activated sludge, final effluent),
resulting in the detection of the greatest diversity of ARGs when compared using an Illumina
sequencing platform (Guo & Zhang, 2013; Li et al., 2018). Two main distinctions of the FastDNA
Spin Kit for soil are that it employs a range of bead diameters, and that the DNA is suspended with
the binding matrix during isolation as opposed to the binding matrix being confined to the spin
column. A modified standard protocol using the QIAamp DNA stool Mini Kit (Qiagen) has also
proven to be a popular and unbiased approach for aquatic resistome sampling that uses both
mechanical and enzymatic lysis (Knudsen et al., 2016). These approaches aim to evenly lyse both
Gram-negative and Gram-positive cells using a combination of high shear forces, enzymatic lysis of
cellular membranes, and chemical precipitation of protein debris and are near ideal for large-scale
environmental monitoring projects.

High molecular weight DNA extraction optimizes long-read sequencing

The above-cited studies were conducted for optimization of short-read sequencing platforms and
therefore DNA damage during extraction is less of a concern. While bead-beating can reduce bias in
DNA recovery, it also shears and fragments DNA (Quick & Loman, 2019). Commercial spin
column kits with bead-beating generally produce fragment lengths 60 kbp (Quick & Loman, 2019).
Short and damaged DNA fragments can be detrimental to optimized long-read sequencing which
preferentially sequence shorter sequences at higher molarity and thus high-molecular weight
(HMW) DNA extraction methods should be prioritized. For instance, the traditional
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phenol-chloroform method can recover DNA with average fragment lengths approaching 150 kbp
and maximum fragment lengths > 1 Mbp, although this method is inefficient for large numbers of
samples and utilizes carcinogenic reagents. Several commercial HMW kits have been developed but
have not been fully benchmarked for complex environmental matrices or resistome analysis. It
should further be noted that minimum per-sample DNA inputs of 04-2 mg are required for long-read
Nanopore sequencing, and this may be difficult to obtain from some aquatic sample types.

DNA quality control necessary for successful library preparations

It is good practice to preserve DNA extracts in buffer, rather than water, for long-term storage.
This helps to avoid DNA hydrolysis during long-term storage and freeze-thaw cycles. Additional
purification steps for the removal of PCR inhibitors from DNA extracts was uncommon among
the reviewed workflows but is generally recommended. Common PCR inhibitors; such as humic/-
fulvic acids, tannins, melanin, and lingering reagents from DNA extraction, have been shown to
interfere with NGS library preparation (Sidstedt et al., 2020). Inhibitors such as EDTA and other
salts can also cause library preparation failure. DNA sequencing cores commonly determine the
quantity and purity of submitted DNA extracts as a prerequisite for sequencing. A minimum of
Ing of DNA per sample is generally acceptable for PCR-based library preparation (Illumina,
2017). Among the reviewed articles, DNA was quantified using three different platforms: Qubit™
dsDNA HS Assay Kit (Life Technologies, 27 articles), Quant-iT™ PicoGreen™ dsDNA Assay Kit
(Invitrogen, 5 articles), and the NanoDrop™ 2000/2000c  Spectrophotometer (Thermo
Scientific, 24 articles). Qubit and PicoGreen assays use fluorescing dyes that are highly specific to
double-stranded DNA and accurately quantify 10 pg/mL to 100 ng/mL. NanoDrop uses spectropho-
tometry to assess the absorbance profiles of nucleic acids, proteins, and other contaminants. A
260 nm/280 nm (DNA/protein) optical density ratio (OD) of 1.8 to 2.0 is considered high quality
DNA suitable for library preparation. Gel electrophoresis is also commonly used to assess DNA
integrity and the presence of RNA contamination. Samples can be run before and after shearing
and after adaptor ligation to ensure the correct insert sizes of the final library. We recommend
using either PicoGreen or Qubit assays for DNA quantification and the NanoDrop or DeNovix
spectrophotometers with an Agilent TapeStation (gel electrophoresis) for quality control of
extracts. Twenty-six of the ninety-five identified articles did not report quantification or QA/QC of
their DNA extracts and is considered good practice to assess yields and purities from extrac-tion
kits and matrices to assess overall data quality.

Different sequencing platforms achieve different monitoring objectives

Roche 454 Pyrosequencing was the first highly parallelized platform (released in 2005) applied for
shotgun metagenomics in environmental research (Barba et al., 2014), but has since been discon-
tinued, with the Ion Torrent (Thermo Fisher) (released in 2010) and Illumina sequencing plat-
forms (MiSeq released in 2011) still in use today. These technologies all yield relatively short
reads (75-300bp for Ion Torrent and Illumina and 800bp for 454) (Metzker, 2005). Long-read
sequencing, including PacBio (Pacific Biosciences) and Nanopore (Oxford Nanopore
Technologies) platforms, entered the market more recently and are advantageous when the
objective is to examine the genetic context of ARGs with greater accuracy (i.e., their association
with MGEs and host organisms). Short-reads are limited in this regard because they must be
assembled into longer contigs in order to examine neighboring genes, which introduces substantial
uncertainty and bias (Bengtsson-Palme et al., 2017) (See below section on Metagenomic Assembly
for ARG Contextualization). The tradeoff is that long-read sequencing tends to be relatively shallow
(5.4 Gb maximum identified in this review), while deep Illumina sequencing was reported to reach
77.5Gb (Liu et al,, 2019) for wastewater samples and thus can more comprehensively profile ARGs
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(Fig. 3). The average base error rates for Nanopore platforms are also higher (1-20%) (Sahlin et al.,
2021) compared to Illumina (0.1%) (Stoler & Nekrutenko, 2021). Studies surveyed indicated
recovery of 1-500 million reads per sample for Illumina sequencing, while reports of Nanopore
sequencing of aquatic matrices to date were in the tens to hundreds of thousands, limiting the
absolute number of genomic inquiries per sample. These issues of sequencing depth and read
lengths ultimately factor into the degree of sample coverage achievable by each platform (i.e., the
fraction of the total genomic information from the microbial community that was sequenced) (Fig. 3).
However, with the advent of newer Nanopore (PromethION) and PacBio platforms (Sequel II with
HiFi reads), this gap in depth, error rate, and ultimately sample coverage will continue to shrink
between long-read and short-read platforms.

Among the studies identified by the search criteria, 90% utilized Illumina sequencing, 4%
Oxford Nanopore sequencing, 3% lon Torrent sequencing, and 3% Roche 454 Pyrosequencing.
Thus, current understanding of optimal conditions for metagenomic monitoring of AR in aquatic
environments is largely based on what has been learned from Illumina sequencing. However, it is
important to also look to the future as long-read DNA sequencing is rapidly gaining ground and
presents many advantages for certain monitoring objectives, specifically assessing the mobilization
and host-context of ARGs (Che et al., 2019; Dai et al., 2022). Hereafter, we primarily focus on
what is known based on Illumina sequencing but point out distinctions and opportunities related
to long-read sequencing where relevant.

Library preparation techniques exhibit inherent biases

Library preparation generally comprises three steps: DNA fragmentation to a uniform insert size
(enzymatic or mechanical), repairing and end polishing of fragmented DNA, and ligation of plat-
form-specific adaptors (Sato et al., 2019). Illumina library preparation was almost exclusively per-
formed by the core facility performing the sequencing analysis. Consequently, available options are
often restricted to the research facility providing the service.

There are two main categories of library preparation, PCR-free and PCR-based, with the latter
introducing biases associated with PCR amplification. The choice between the two is typically a
function of available sample DNA, where a threshold mass is required (25ng) for PCR-free
preparations. PCR-based library preps, like the Nextera XT DNA Library Preparation Kit, use a
transposome complex to simultaneously shear and ligate adaptor sequences to fragments (tag-
mentation) (Sato et al., 2019). Research by (Bowers et al., 2015) documented the effect of input
DNA quantities and library preparation methods on the ability to reconstruct a mock community
consisting of pre-extracted genomic DNA. Input DNA quantities reaching as low as 1 picogram
could successfully pass library preparation using PCR-based kits, but bias toward GC rich sequen-ces
was apparent as DNA inputs fell below 1ng, as compared to a control generated with the PCR-
free TruSeq kit and 200 ng of DNA. (Sato et al., 2019) carried out a similar study and found that
PCR-based kits were unable to accurately reflect extremes in genomic GC content. The most
variable reconstructions of mock communities were derived from the Nextera XT and TruSeq
nano kits, presumptively due to nonrandom DNA fragmentation during sonication and PCR
amplification. Other kits, including the newer Nextera DNA Flex (now simply Illumina DNA
Prep) and the TruSeq DNA and KAPA HyperPlus PCR-free workflows, reconstructed statistically
identical mock communities, even at a shallow sequencing depth (1 Gb) (Sato et al., 2019). These
studies indicate that PCR-free library prep is the best option, but that newer PCR-based methods
can help to reduce bias observed in previous generation kits. Regardless, metagenomes will be most
comparable when generated from the same library prep method.

Library preparations for long-read sequencing, specifically on Nanopore platforms, were done
in-house and are less flexible. All four articles identified in this review used the SQK-LSK108 1D
ligation genomic DNA kit (Oxford Nanopore Technologies) in-house, with 1—2mg of input
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Figure. 3. Sequencing depth and coverage by water matrix. Sequencing depths were determined from all publicly-available
paired-end Illumina metagenomes from the 95 studied articles downloaded from the Sequence Read Archive and European
Nucleotide Archive (1474 metagenomes). Metagenomic library coverage was estimated using Nonpareil (Rodriguez-R et al.,
2018) with option “-T kmer” on all cleaned and trimmed forward reads. Y-axis represents the density of individual metagenomes
occurring at that depth or coverage factor.

DNA per sample for sequencing on the MinlON platform (Biatasek & MitobRdzka, 2020; Che et
al., 2019; Hamner et al., 2019; Yadav et al., 2020). This library preparation involves four steps: end-
repair of extracted DNA, Nanopore-specific adaptor ligation, barcoding, and purification. As noted
above, the DNA extraction strategy employed will determine the suitability of DNA frag-ment size
distributions for long-read sequencing. A study conducted by (Che et al., 2019) used a bead-beating
and spin column DNA extraction approach for wastewater samples and then selected DNA
fragment sizes > 8 kb by manually excising them from an agarose gel for library preparation. They
then compared long-reads with sequenced and assembled Illumina data and found that the
average N50 from Nanopore was 8.1 kbp (average depth 3.4Gb), compared to 1.7 kbp from
[llumina (14.5Gb). All four articles used a bead-beating and spin column DNA extrac-tion
approach for long-read sequencing, but as HMW extraction techniques continue to emerge
(Maghini et al., 2021), reconstruction of complex microbial communities and optimization of
long-read sequencing from environmental samples will continue to improve.

Sequencing parameters dictate depth and coverage of metagenomes

When selecting a sequencing technology and associated parameters, the platform, target read
length, and depth per sample must be considered. The primary unit of “currency” for sequencing
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platforms is the flow cell. Each flow cell contains one to multiple lanes, i.e., physically partitioned
regions of the solid surface that enable multiple experiments to be run in parallel, but independ-ent
of each other (i.e.,, without cross contamination). For example, the NovaSeq 6000 platform
(Illumina) has SP (2 lanes, 800 M reads per lane), S1 (2 lanes, 1.5B reads per lane), S2 (2 lanes, 1.8B
reads per lane), and S4 flow cells (4 lanes, 2.5B reads per lane). These flow cells can then be run with
varying numbers of paired-end sequencing cycles (50-250bp reads), which dictates the number of
base pairs generated for each experiment. The number of reads generated per flow cell (and therefore
per lane) fall within narrowly defined ranges, meaning the number of reads gener-ated per sample
will be a function of the number of samples multiplexed on that flow cell.

There is typically a need to strike a balance between the depth of sequencing and level of repli-
cation needed to achieve monitoring objectives, while also bearing in mind cost. The level of
microbial diversity anticipated in the sample and the need to detect rare sequences and taxa will
both drive the need for deeper sequencing. Careful consideration is needed when choosing
sequencing depths. Comparing two environmental samples with significant differences in cover-age
interferes with accurate and ecologically-relevant insights into microbiome and resistome
dynamics (Gweon et al., 2019; Rodriguez-R & Konstantinidis, 2014; Zaheer et al., 2018). NGS
platforms preferentially sequences the most abundant features, thus, shallow sequenced datasets
are severely disadvantaged in their ability to detect differentially abundant features at low abun-
dances (Rodriguez-R & Konstantinidis, 2014). To provide guidance with respect to sequencing
depths, metagenomic library coverage was empirically estimated as a function of dataset size
using Nonpareil (Rodriguez-R et al., 2018) across all publicly-available paired-end Illumina data
from the studied articles (n% 1474) (Fig. 3; Tables S5 and S6). The generated models were then
used to predict library coverage at a range of depths (1 Gb, 5Gb, 10Gb, 25Gb, 100Gb) and
found that 10Gb was an optimum metagenome size that will reliably achieve 0.80 coverage
across diverse environments (Table S6). The authors of Nonpareil observed that metagenomes
with coverages 0.60 performed better in terms of assembly and detection of differentially abun-dant
genes and can be regarded as a universal minimum. Comparing samples with greater than two-fold
differences in coverage should be avoided (Rodriguez-R & Konstantinidis, 2014). Effort is needed
to determine whether these general guidelines are also suitable for resistome analysis, especially
considering that ARG diversity does not correspond 1:1 with phylogenetic diversity. Across these
studies, the mean library size of Illumina datasets was 7.0 Gb, which would corres-pond to 0.74
theoretical coverage as estimated by Nonpareil (Fig. 3; Tables S5 and S6).

Sharing of comprehensive metadata is needed to reap the value of metagenomic data

Collection and sharing of raw data and relevant metadata is a challenge across the microbiome
field and should be a critical feature of any standardized framework for AR monitoring. This is
critical as resistomes and microbiomes are inextricably linked to the broader environment of ori-gin
as well as the microbial processing that yields the NGS sequences. Efforts have been made by the
Genomics Standards Consortia through the MiXS checklist and the STORMS reporting guide-lines
to generate recommended meta-data templates and reporting guidelines for human and
environmental microbiome samples these should be followed for water and wastewater AR moni-
toring (Mirzayi et al. 2021). Specifically, such metadata includes not only physicochemical param-
eters (temperature, pH, turbidity, VSS, BOD, etc.), but also water volumes collected, sample
preservation (if any), DNA extraction methods/kits, and library preparation methods/kits (Liang et
al., 2021). These metadata should be shared by researchers in all available instances, especially when
uploading raw data to public repositories. Sparsely collected or vague reporting of metadata and
effects on interpretation of results were common problems across the articles examined in this study.
Notably, inspection of metadata reported across 1474 publicly-available metagenomes housed by SRA
and ENA revealed several instances of sample types labeled “wastewater metagenome”
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without specifying the stage of biological wastewater treatment. Given that each stage of wastewater
treatment is a distinct microbial ecosystem, lack of reporting of this nature renders the data difficult
to contextualize in any subsequent meta-analyses.

Online platforms for resistome analysis

Depending on level of expertise, online data processing tools may be the most feasible option for
resistome analysis (Table S7). These tools also tend to be publicly-available data analysis pipelines,
such as those hosted by Galaxy web portals (Giardine et al., 2005), can be beneficial where com-
putational resources are minimal (no access to a computational server), for labs early along the
adoption curve, or eventually, for when metagenomic methods for resistome monitoring become
more standardized in common practice. The most commonly used online platform for environ-
mental resistome analysis was ARGs-OAP executed in Galaxy with its latest version utilizing
DIAMOND (Buchfink et al., 2015) and minimap2 (Li et al., 2018) against a custom, dereplicated
database of ARGs, the Structured ARG Reference Database (SARG) (Yang et al., 2016; Yin et al.,
2018). MetaStorm is another online platform with dedicated computational servers that enable the
user to upload custom databases (Arango-Argoty et al., 2016). Although implemented in the
command line, MEGARes and its pipeline AmrPlusPlus, is another excellent standalone analysis
resource for environmental AMR analysis with a convenient acyclic hierarchical ARG ontology to
simplify count-based (short-read) analysis (Doster et al., 2020).

Familiarity with command line data handling and processing for large datasets is advantageous
for more advanced metagenomic analysis. This allows exploration and optimization of new ana-
lytical tools as they become available. As metagenomic profiling of ARGs is still largely imple-
mented in the research domain, it is critical to be aware that there are numerous analytical
parameters to choose from and each have implications for the research/monitoring objectives. As
progress is made toward standardizing metagenomics for monitoring of resistomes in water and
wastewater, agreement will be needed on default parameters (e.g., % identity, query coverage,
amino acid length), depending on specific monitoring objectives, databases, and ideally, individual
reference sequences. New workflows used to analyze metagenomic data should be made publicly
available to aid in reproducibility of data analysis. Workflow tools such as Snakemake (Késter &
Rahmann, 2012) and Nextflow (e.g., nf-core) (Ewels et al., 2020) make workflows more sharable
across researchers and scalable.

Read QA/QC and merging essential to accurate resistome analysis

Following the generation and backup of sequencing reads, a critical first step is QA/QC assess-
ment of the generated sequences to distinguish between correct and incorrect base calls and
remove technical artifacts (i.e., adaptors and primer fragments). Because each sequencing run is
unique in the quality of generated data, exploratory analysis of library quality is useful in deter-
mining the degree of cleanup needed. FastQC (Andrews, 2010) with MultiQC (Ewels et al., 2016)
was found to be the most commonly employed software for this purpose, providing visualizations of
key summary statistics of raw data, including read length, GC content, quality score distribu-tions,
number of duplicated reads, adaptor contamination, and number of Ns (unknown bases). These
summary statistics can then inform appropriate read preprocessing, which involves trim-ming
adaptors and low-quality ends, removing low quality and truncated reads, and choosing an
acceptable number of Ns that define a valid sequence.

Across the studies identified in this critical review, the most frequently implemented trimming
and filtering tools were Trimmomatic (31 articles) (Bolger et al., 2014), Sickle (7) (Joshi & Fass,
2011), Fastx-toolkit (5) (Hannon, 2009), BBduk (5) (Bushnell, 2017), Trim Galore! (4) (Babraham
Bioinformatics, 2012), and Cutadapt (3) (Marcel, 2011), although many others exist and perform
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similar functions. The parameters used with each software were study specific, as the degree of
quality filtering is dependent on the outcome of each sequencing run and the researcher’s dis-
cretion. Reporting of trimming and filtering parameters, though, is essential for the reproduci-
bility of metagenomic studies, as improperly cleaned data can result in artifacts that distort
interpretation of the data due to the presence of erroneous sequences in unfiltered reads
(Bharti & Grimm, 2021; Del Fabbro et al., 2013). The removal of reads originating from host
organisms (i.e., host filtering) as a preprocessing tool was uncommon, although some chose to fil-ter
out reads aligning to Homo sapiens when analyzing municipal wastewater. This step is used by the
Joint Genome Institute Metagenomics pipeline and may boost the reliability of assembly-based
analyses by removing contaminant reads that might contain spurious overlaps with the
microbiome (Clum et al., 2021).

After reads have been filtered and trimmed, merging of the paired-end sequences via their
overlapping regions was performed by a minority of studies (15 articles) using FLASH (Magoc &
Salzberg, 2011), Vsearch (Rognes et al., 2016), SeqPrep (St. John, 2011), or PEAR (Zhang et al.,
2014). When insert sizes in paired-end Illumina libraries are shorter than twice the read length,
read pairs can be merged via overlapping regions to generate longer reads (Magoc & Salzberg,
2011), which can improve genome assembly, binning, and read mapping algorithms. Merging of
read pairs should be included in workflows whenever possible; however, it should be noted that
having too small insert sizes can negatively affect genome assembly (Bushnell et al., 2017).

Database selection and curation for ARG annotation

Metagenomic sequence data must be aligned to a database to identify genes of interest. Across the
included studies, the most frequently used databases for ARG annotation were the
Comprehensive Antibiotic Resistance Database (CARD; 42%) (Alcock et al., 2020; Jia et al. 2017),
the Antibiotic Resistance Genes Database (ARDB; 20%) (Liu & Pop, 2009), Structured Antibiotic
Resistance Genes (SARG; 11%) (Yin et al., 2018), ResFinder (10%) (Bortolaia et al. 2020), ARG-
ANNOT (4%) (Gupta et al., 2014), and MEGARes (2%) (Doster et al., 2020) (Table S8). ARDB
and ARG-ANNOT, it should be noted, are no longer maintained and all sequences have been
incorporated into several other databases. ResFinder, SARG, MEGARes, and CARD remain
actively curated. In many cases, a collection of these databases are manually combined and dere-
plicated on a per-study basis to increase the breadth of ARG detection (Ju et al., 2019; Liu et al.,
2019; Subirats et al., 2016). To overcome the difficulties in curation and discrepancies in ARG
nomenclature, ARGminer (Arango-Argoty et al., 2020) is a platform and database that seeks to
maintain active curation through crowd-sourcing, and is useful for exploratory research, bearing in
mind that not all ARGs have been functionally validated in the laboratory.

When choosing an ARG database, it is important to consider that each one is curated for spe-
cific purposes and has strengths and weaknesses. In terms of routine ARG monitoring, a common
objective may be to conservatively identify all known and functionally-validated ARGs with asso-
ciated peer-reviewed literature references, such as those in the CARD database. ResFinder focuses
specifically on acquired resistance genes and contains only nucleotide references. On the other
hand, if the objective is to identify potentially new ARG variants that could be of concern in a
community, then the deep-learning enabled DeepARG or the probabilistic gene model based
fARGene (Berglund et al., 2019) pipelines might be advantageous.

Another concern is that many housekeeping genes confer resistance via single nucleotide poly-
morphisms (SNPs), for example, the rpoB2 gene variant in Nocardia spp. found in the protein
homolog database of CARD. Although a match may be found in the metagenomic dataset, even at
80—100% sequence homology, it cannot be guaranteed that the variant conferring resistance was
detected without significant lateral coverage. This is an intrinsic limitation of short-read shot-gun
metagenomics, where the length of the query is only a fraction of the reference sequence,
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and the sequencing error rate precludes confidence in detecting a SNP without sufficient query
depth. ARGs that are known to be caused by SNPs such as parE, rpoB, phoP, phoQ, evgS, evgA,
crp, evgA, envR, marA, cpxA, cpxR, ompF, gyrA, gyrB, parC, and blaR should be checked for
100% peptide homology over a significant portion of the reference to prevent the overrepresenta-
tion of wild types (Doster et al., 2018). ARGs that are known as global regulators of efflux pump
complexes are also commonly manually excised from databases before annotation (Lee et al.,
2020). Past efforts were made to manually remove such ARGs from the CARD database (e.g.,
through the development of SARG), but recent updates to CARD have continually improved this
issue by demarcating homolog versus SNP database (Alcock et al., 2020).

Read alignment tools and parameters dictate detection stringency

When performing read alignment to identify ARGs and other relevant genes, it is critical to assess
what level of stringency is needed for the monitoring objective. Among the studies examined
here, BLAST and its variants (Johnson et al., 2008), such as DIAMOND (Buchfink et al., 2015)
and UBLAST/USEARCH (Edgar, 2010), are the dominant family of read annotation tools. BLAST
is known for its alignment accuracy (Buchfink et al., 2021), but DIAMOND and USEARCH pro-
vide much more reasonable turnaround time for metagenomic alignment. Given the goal of mon-
itoring would be to identify best ARG hits with high sequence similarity, the accuracy is
comparable across methods.

It is critical to report any cutoff parameters applied, such as the e-value, amino acid identity,
query coverage, and bit score, as these will dictate the stringency of database hits. Some articles
identified in this review did not report these cutoffs, particularly when using online platforms.
Across studies utilizing short-read sequences, the e-values used ranged from 1E-10 to 1E-4, while
amino acid identity ranged from 50-95 percent, depending on the research question (Table S9).
When objectives are to conservatively identify known and functionally verified ARGs of clinical
concern, parameters are stricter (e.g., query coverage 80%, amino acid identity 90%, e-value le-10).
The most applied alignment tool was BLASTx implemented in DIAMOND with an amino acid
length of 25 at 80% identity. These parameters were first introduced by (Kristiansson et al.,
2011) and have since been propagated throughout the field. Although data-bases such as CARD
provide recommended bit score cutoffs for specific protein models, which can help to reduce
guesswork in homology-based cutoffs, these parameters are benchmarked for full-length gene
queries (e.g., long-reads and contigs) and will preclude short-read alignments.

Additionally, traditional sequence-based homology frameworks are not ideal for new gene dis-
covery, where expanded databases and deep learning models (e.g., DeepARG and HMD-ARG (Li et
al.,, 2021b)), Hidden Markov Model-based approaches (e.g., ARGSOAP v2 (Yin et al., 2018) and
ResFams (Gibson et al.,, 2015)), and probabilistic gene models (e.g., fARGenes (Berglund et al.,
2019)) have been developed; although the need for further validation has been duly noted
(Bengtsson-Palme, 2018). Permissive parameters are sometimes applied to more broadly capture
putative ARGs. In any case, an agreed upon classification of allowable stringent to permissive
alignment parameters would greatly enhance the comparability of resistome monitoring studies.

Normalization and comparison of ARGs across environmental samples

Metagenomic data are affected by several sources of systematic technical (e.g., inconsistent DNA
extraction, differential sequencing depths) and biological (e.g., differences in average genome sizes
and GC content) variability. Normalization of gene abundances serves to account for such sys-
tematic variability, while also maintaining statistical power and reducing false positives (Pereira et
al., 2018). Unfortunately, consistency in normalization is notably lacking and detracts from
comparability across studies.
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The most common approaches for normalizing ARG abundances are either biological or tech-
nical in nature. Normalizing to the 16S rRNA gene (Li et al., 2015a) as a housekeeping gene pre-sent
in all bacteria has been the most common approach and provides a biologically-relevant
denominator, e.g., a proxy for ARGs/total bacteria. However, 16S rRNA gene copy numbers vary
across species and therefore cannot be interpreted directly as an “ARG/cell” metric, which would be
more meaningful from a biological standpoint. More accurate ARG/cell equivalent estimates can
be derived through flow cytometry (Liang et al., 2020), by dividing by single copy genes (e.g., the b
subunit of bacterial RNA polymerase, rpoB) (Thornton et al., 2020; Zhang et al., 2019), or by
dividing the number of ARGs by the average of a set of single-copy housekeeping genes (Dang
et al.,, 2020; Lee et al., 2020; Yin et al, 2018). Because longer genomic fragments will innately
generate more reads, gene length is an important component of normalizations. Reads per
kilobase million (RPKM) and fragments per kilobase million (FPKM) are metrics derived from
RNA-Seq and are common normalization approaches when the aim is to compare samples with
significant differences in sequencing depths (Hendriksen et al. 2019; Munk et al. 2022). It is
important to be aware that RPKM is derived for single-end or merged reads whereas FPKM is
designed for paired-end reads, by restricting the double-counting of pairs of sequences aligning to the
same reference. Thus, these two normalizations are not interchangeable. A parts-per-million (PPM)
normalization was also common in the literature, which simply divides the number of ARGs
found by the number of million-reads queried. A similar metric and interpretation as ARGs/cell,
ARG density divides the RPKM of ARGs by the RPKM of a set of 40 single-copy genes (Lee et al.,
2020) (Table S10). Rarefaction, i.e., randomly subsampling to a consistent number of reads per
sample, should be avoided in almost all cases except estimating diversity indices as it results in the
loss of very costly sequencing data and statistical power.

The five most common normalization approaches were RPKM, PPM, ARGs/16S rRNA,
ARGs/cell (rpoB), and ARG density (Table S10). Using the 1474 downloaded metagenomes, we
assessed the effectiveness of these normalizations in negating the influence of sequencing depth
(ie., %)’ a prominent source of technical variability. In unnormalized data, we
found strong correlations between sequencing depth and total ARG counts across all samples
(R%%0.410, p%2.19e-25; Fig. 4A). Comparing R?> and p-values across other normalization strat-
egies, however, we found that all normalizations except PPM (R?%40.21, p % 4.49¢-7; Fig. 4C) pro-
duced non-significant and near-null slopes when plotted against sequencing depth (Fig. 4B-F).
This discrepancy is likely due to the lack of reference gene length normalization in the PPM cal-
culation (Table S10).

The lack of overarching bias across common normalization approaches is encouraging and indi-
cates that ARG abundance data that use these normalizations are comparable across studies, even
with disparate sequencing depths. This analysis cannot account for heterogenous workflows in data
preparation, which would require controlled experiments, but can serve as an initial validation
check. The analysis conducted here is supportive of the ARGs/cell calculation, either using the rpoB
gene or the average of a set of single copy genes, as it accounts for both reference gene length as well
as sequencing depth and provides the most straightforward biological interpretation. For “sterile”
normalizations, the RPKM metric performed the best in terms of highest p-values and can also be
appropriate, depending on the aim of the study. Normalizations, however, should be done on a case-
by-case basis depending on the nature of the data set and aims of the study, but this ana-lysis, the
equations, and data ranges provided can serve as the reference for future studies.

Quantitative metagenomics

Relative abundance metrics are not always ideal for downstream analysis, especially for microbial
risk assessment (Garner et al., 2021b; Haas, 2020; Li et al., 2021a). A few studies to date have
sought to derive absolute ARG abundances (i.c., ARGs per volume or mass of sample) from
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environmental metagenomic data, i.e., quantitative metagenomics (qMeta) (Crossette et al., 2021;
Li et al., 2021a). Hybrid spike-independent approaches convert relative ARG abundances into
absolute abundances by relying on supplementary quantitative analyses. For instance, (Garner et
al., 2016), (Garner et al., 2018), and (Davis et al., 2020) determined the relative abundance of ARGs
per 16S rRNA copies within the metagenomic dataset and correspondingly quantified the 16S
rRNA copies per sample using qPCR. Applying the assumption that the target gene/16S rRNA
quotient is equivalent between metagenomics and qPCR, a gene copy per unit volume met-ric is
derived. Correlations between absolute ARG abundances derived from qPCR and hybrid spike-
independent methods have shown strong correlations across several gene targets (Davis et al.,
2020; Majeed et al., 2021). However, the reliability was shown to diminish for low abun-dance
ARGs where the limit of detection (LOD) for metagenomics exceeded that of the qPCR assay
targets (Davis et al., 2020; Majeed et al., 2021), or where primers fail to capture the full diversity
of target ARGs (Crossette et al., 2021).

Spike-dependent methods use internal nucleic acid reference standards that are incorporated
directly into samples after DNA extraction (Fig. 2). The reference standards are selected to be
highly unlikely to be present in the sample, allowing them to be distinguished from the native
microbial community. Recently, (Crossette et al., 2021) spiked genomic DNA from an exogenous
marine organism (Marninobacter hydrocarbonoclasticus) into DNA extracted from digested and
undigested cow manure to quantify tetracycline ARGs. Reads were mapped to all 4,272 genes
comprising the genome and the average ratio of known spiked-in gene copies to reads mapped
were used to calculate absolute abundances on a per-mass basis. The authors found that qPCR
and gMeta were in strong agreement, but qPCR displayed a lower LOD than qMeta (2 to 8
copies/mg versus 3x10* copies/mg). The LOD for gMeta is directly proportional to the sequenc-ing
depth. Synthetic DNA reference standards (Li et al, 202la) and quantitative ladders
(Hardwick et al., 2018) have recently been developed and are worthy of exploration to support
quantitative environmental monitoring of ARGs.
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Metagenomic assembly for ARG contextualization

Environmental metagenomes are especially difficult to assemble due to the intermingled genomes of
thousands of species at unknown abundance distributions, many of which are closely related or are
not represented in databases (Liao et al., 2019). There are numerous options to assembling short-read
data, each with their own assumptions, computational requirements, and overall limitations (Ayling
et al., 2020). Across the identified studies, MEGAHIT (Li et al., 2015b) (8 articles), IDBA-UD (Peng et
al,, 2012) (7 articles), SOAPdenovo2 (Luo et al., 2012) (7 articles), and metaSPAdes (Nurk et al., 2017)
(2 articles) were the most commonly used assemblers. Universally, assembly algorithms dimin-ish the
absolute quantitative value of the data and direct comparisons to short-read “count” abundan-ces
should be avoided. One workaround is to derive the relative abundance of contigs within
assembled metagenomes by mapping short-reads back to the assembled contigs (Ng et al., 2017; Zhao et
al., 2020; Zhou et al., 2019). Still, the larger challenge is uncertainty in the accuracy of short-read
assembly and lack of means to formally assess the accuracy. Long-read sequencing is a promising way
to circumvent this and has recently been demonstrated for ARG monitoring (Che et al., 2019; Dai
et al., 2022), but comes with the tradeoff of shallower sequencing depth and lower coverage. A recent
systematic evaluation of various assembly approaches for contextualizing ARGs found that a hybrid
assembly approach resulted in the least number of erroneous contigs, suggesting a 10 minimum depth
to minimize chimeric contigs that may skew resistome analysis (Brown et al.,, 2021).

Resistome risk assessment models

Looming large over efforts to monitor aquatic resistomes is the need to take steps toward translating
the measurements to human and ecological health risks. The original framework proposed by
(Martinez et al., 2015) ranks the “risk” posed by individual ARGs as a function of their documented
ability to cause treatment failure, their association with MGEs, their carriage by human and animal
pathogens, and their propensity for being transferred into pathogens. This framework was translated
into a comparative resistome risk metric by (Oh et al., 2018), where the metagenomic reads are de
novo assembled and annotated to identify ARGs, MGEs, and pathogen markers and their co-occur-
rence patterns. MetaCompare calculates a resistome score and ranking for each sample in accordance
with these co-occurrences to identify potential “hot spots” for AMR evolution and transmission. A
key limitation to this approach is the algorithm’s inability to rank the relative importance of individ-ual
ARGs and taxonomic sub-groups of bacteria. For instance, differentiating the relative importance of
MGE-borne carbapenamases in Enterobacterales over ubiquitous efflux pumps in environmental
strains of human pathogenic taxa is a critical distinction (CDC, 2019). More recently, a similar
omics-based framework and software package “arg ranker” was developed to categorize individual
gene targets by their enrichment in anthropogenically-impacted environments, their history of mobil-
ity, and their presence in ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumo-
niae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens (Zhang et
al., 2021). The framework made marked progress in sorting high- from low-risk ARGs from an
environmental perspective and determined human-associated, functionally verified, and mobilized
ARGs to constitute only 3.6% of the known resistome. ARGs found by sequenced-based homology are
ubiquitous in the environment, but only a small fraction pose a direct threat to human health
(Fitzpatrick & Walsh, 2016), while others may serve better as indicators of conditions that are con-
ducive to the evolution and selection of resistant strains.

Conclusion

Metagenomics has emerged as a powerful tool for the routine monitoring of environmental resis-
tomes. The sequencing of all genomic fragments in a sample without a priori identification of
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gene targets allows for comprehensive assessments of microbial dynamics and risk factors for the
development and proliferation of AR. However, several aspects of the workflow, from sample col-
lection to NGS data generation and analysis, require careful consideration to ensure that monitor-ing
objectives can be met, and that data generated are comparable across space and time.
Experimental controls were noticeably absent from identified studies applying NGS for AR moni-
toring of aquatic environments and should be included in future studies. Sequencing depths
should be appropriately targeted based on the monitoring objective and internal and external
standards should be included to verify the accuracy and improve the quantitative capacity of
resulting metagenomic data. The recommendations here can aid in the generation of comparable
sequencing datasets needed to support broader ecological studies and environmental surveys.
Sharing of metadata can also support larger-scale computational modeling. Given that a major
advantage of NGS is the ability to store and analyze data retrospectively, the sooner the field can
move toward improved quality and consistency in application of NGS for environmental AR
monitoring, the better off we will be in our ability to accurately harvest the information needed to
effectively combat the spread of AR.
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