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ARTICLE INFO ABSTRACT

Keywords: Massive blooms of pelagic Sargassum algae have caused serious problems to coastal communities and ecosystems
Caribbean Sea throughout the tropical Atlantic, Caribbean Sea, and Gulf of Mexico since 2011. Efforts to monitor and predict
Gulf of Mexico

these occurrences are challenging owing to the vast area impacted and the complexities associated with the
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Sn r menlcan (Sje:l_ Report proliferation and movement of Sargassum. Sargassum Inundation Reports (SIRs) were first produced in 2019 to
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& P estimate the potential risk to coastlines throughout the Intra-American Sea at weekly intervals at 10 km reso-

Windage lution. SIRs use satellite-based data products to estimate beaching risk from the amount of offshore Sargassum
(quantified by a Floating Algal density index). Here we examine whether including wind metrics improves the
correspondence between the offshore Floating Algal density index and observations of Sargassum along the
coastline. For coastal observations, we quantified the percent coverage of Sargassum in photos obtained from the
citizen science project "Sargassum Watch" that collects time-stamped, georeferenced photos at beaches
throughout the region. Region-wide analyses indicate that including shoreward wind velocity with SIR risk
indices greatly improves the correspondence with coastal observations of Sargassum beaching compared to SIR
risk indices alone. Site-specific analyses of photos from southeast Florida, USA, and data from a continuous video
monitoring study at Puerto Morelos, Mexico, suggest potential uncertainties in the suite of factors controlling
Sargassum beaching. Nonetheless, the inclusion of wind velocity in the SIR algorithm appears to be a promising
avenue for improving regional risk indices.

1. Introduction from disrupting fishing and boat navigation to accumulating arsenic and
heavy metals in coastal areas as they leach from Sargassum’s tissue

For more than a decade, massive amounts of pelagic Sargassum, a during decomposition (Hu et al., 2016; Dassie” et al., 2022; Ortega-Flores

floating macroalgae, have swept through the tropical Atlantic into the
western Atlantic, Caribbean Sea, and the Gulf of Mexico (Franks et al.,
2016; Wang et al., 2019). These seasonal blooms of Sargassum have led
to unprecedented inundation of coastlines throughout the region
resulting in a suite of environmental, economic, and human health
problems (Devault et al., 2021; Oxenford et al., 2021). Problems range
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et al., 2022; Rodriguez-Martinez et al., 2022). Monitoring and fore-
casting Sargassum beaching events are necessary to improve mitigation
and clean-up responses, work towards long-term adaptive management
operations, and provide information to the growing entrepreneurial
community attempting to valorize these influxes of Sargassum (Lopez
Miranda et al., 2021; Oxenford et al., 2021). The widespread nature of
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this phenomenon presents significant challenges for efforts to synopti-
cally monitor coastal inundations (Mar “echal et al., 2017; Johnson et al.,
2020; Bernard et al., 2022). The application of satellite-based sensors
with the capability of detecting Sargassum from space has been used to
develop monitoring tools, such as the Sargassum Inundation Reports
(SIRs) produced by the National Oceanographic and Atmospheric
Administration (NOAA) Atlantic Oceanographic and Meteorological
Laboratory (AOML). The SIRs provide weekly assessments of inundation
risk to coastlines throughout the Intra-American Sea from 2019 to pre-
sent (Trin " anes et al., 2021).

The SIR risk estimates are based on data from the Alternative
Floating Algal Index (AFAI), which quantifies the magnitude of red-edge
reflectance of vegetation on the ocean surface using data derived from
the Moderate Resolution Imaging Spectroradiometer (MODIS) on the
Terra and Aqua satellites and the Visible Infrared Imaging Radiometer
Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (S-NPP)
satellite (Wang and Hu, 2016, 2018). A Floating Algae (FA) density
index is computed from the AFAI at a resolution of 0.1° (~10 km),
applying a mask over coastal waters 0—-30 km from the shore due to
unreliability of floating algae estimates in nearshore areas. Such FA
density maps have been made available in near real-time through the
Sargassum Watch System (SaWS, Hu et al., 2016; https://optics.marine.
usf.edu/projects/saws.html). The SIR algorithm then calculates an
"inundation potential" or "risk" for coastlines using 7-day composites of
the FA density index within a 50 km radius of each location (thus
inundation potentials are based on FA densities between 30 and 50 km
from shore). Inundation potentials are assigned as Low (< 0.05% FA
density), Medium (0.05 — 0.2%), and High (> 0.2%) (Trin" anes et al.,
2021). This product is made freely available at: https://www.aoml.noaa
.gov/phod/sargassum_inundation_report/.

While these estimates provide an indication of the amount of
Sargassum within the vicinity of the coastline, they do not assess how
these risk values correspond to actual beaching (Trin"anes et al., 2021).
This is due to two primary reasons: uncertainties in the satellite-based
Sargassum estimates and lack of physical driving mechanisms in the
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SIR algorithm. Specifically, the algorithms used in estimating Sargassum
amount in a given location are based on medium-resolution (~ 1 km per
image pixel) satellite data that do not work well in nearshore waters
because benthic habitats (e.g., seagrass, coral reefs, hard bottom) often
lead to high AFAI values that are misinterpreted as being from floating
algae. On the other hand, the medium-resolution satellite data may miss
small Sargassum mats, leading to possible underestimates of Sargassum
amounts (Ody et al., 2019). Therefore, a 30-km nearshore mask was
used to avoid misinterpretation. Additionally, factors influencing the
probability of Sargassum remaining offshore or moving onshore are not
incorporated into the present SIR algorithm. Pelagic Sargassum is
positively buoyant, and its movement is driven by physical processes
occurring near the ocean surface. Winds contribute to near-surface
currents and waves and directly transfer momentum to objects, like
Sargassum, that extend above the ocean surface (Miron et al., 2020). The
importance of wind on Sargassum movement has been shown at the
scale of tracking trajectories of individual mats (Putman et al., 2020),
accounting for its distribution at the ocean basin scale (Berline et al.,
2020; Beron-Vera et al., 2022) and its seasonal cycle of growth,
dispersal, and mortality (Putman and Hu, 2022). Winds likely play an
important role in the movement of Sargassum from offshore to coastal
areas, and considering wind effects could be an important component
for improving inundation risk assessments.

To compare SIR estimates of inundation risk to conditions observed
at the coastline, we make use of in situ data collected by two monitoring
programs of beached Sargassum (Rutten et al., 2021; Iporac et al., 2022;
Fig. 1). The two monitoring programs differ in scale, methodology, and
purpose. Iporac et al. (2022) opportunistically obtain photos from citi-
zen scientists at beaches across much of the region monitored by SIRs
(Iporac et al., 2022). Rutten et al. (2021) use highly standardized
continuous video monitoring of Sargassum beaching at a single site in
Puerto Morelos in Quintana Roo, Mexico. These ground-truthing
methods benefit from a consistent, local-scale monitoring of a site that
can confirm the presence and intensity of Sargassum. Previous programs
were adept in detecting algal blooms and influxes, such as of pelagic

Fig. 1. Locations of observations used to assess the rela-
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Sargassum (Arellano-Verdejo and Lazcano-Herna ndez, 2021, Trin"anes
etal., 2021, Valentini and Balouin, 2020), Didymo blooms (Gillis et al.,
2018), and harmful phytoplankton blooms (Cunha et al., 2017). The
efficacy of the citizen science programs however varies by the
commitment and training levels of the volunteers (Iporac et al., 2020),
the spatial and temporal variability of data collected (Geldmann et al.,
2016, Millar et al., 2019, Nerbonne et al., 2008), and the large output of
data that would need processing for further analyses (Iporac et al.,
2022).

Here, we quantified the amount of Sargassum observed by the
monitoring programs (either percent coverage in photos (Iporac et al.,
2022) or the number of mats detected per week by video (Rutten et al.,
2021)) and correlated them with the corresponding FA density index
used in the SIR risk assessments. We then tested whether the inclusion of
different metrics of shoreward wind speed would strengthen the corre-
lation between offshore FA density and observations at the coast. From
these analyses, we contribute to a better understanding of the interac-
tion between pelagic Sargassum and the environment, specifically the
role of wind in moving Sargassum from offshore into coastal areas. With
this new information we present recommendations for including wind
data in future implementations of SIRs or other schemes to refine
inundation risk estimates.

2. Methods
2.1. Observations of sargassum along the coast

We obtained a database of photos from the citizen science project
"Sargassum Watch" (https://five.epicollect.net/project/sargassum-watc
h). The purpose of this database is to collect and store photographs
taken by individuals at locations along the coastline to capture presence
and inundation magnitude of beached Sargassum. The methodology and
data are described in detail in Iporac et al. (2022). Using their smart-
phone camera, oriented vertically, citizen science participants are
requested to upload 3 photos taken standing at the shoreline with one to
the left, one to the center, and one to the right. Date, latitude, and
longitude were recorded for photos; additionally, participants could
include information such as the type of Sargassum, its condition (e.g.,
mostly fresh, mostly decomposed, or a mix), and whether there was
evidence of site cleaning. The photos and associated data were uploaded
to EpicollectS by networks of committed volunteers to consistently
monitor selected sites, and volunteers were given standardization pro-
tocols and training sessions (in-person or online) to use the smartphone
app if the volunteer or group requested (Iporac et al., 2022). For the
years examined in this work (2019-2021), the Epicollect5 database
contained more than 4000 unique date/locations at coastlines
throughout the Caribbean Sea, Gulf of Mexico, east coast of Florida, and
the Bahamas. These photos were unevenly distributed across space and
through time, with more than 60% occurring in southeast Florida. So as
not to bias results of a region-wide assessment to a single area, we
separated the photos taken in southeast Florida to use in separate
region-wide and site-specific analyses described below.

2.1.1. Region-wide dataset

For the region-wide analysis (Fig. 1A), photos were selected based on
whether FA density and wind data were available for comparison at the
corresponding location and date (Fig. 2). Photos without both FA den-
sity and wind data were excluded from analysis. Where data were
available, we randomly selected either the left or right photo for analysis
at each site (n = 436). In cases where the visibility or orientation of the
randomly selected photo was compromised (e.g., blurry, improper di-
rection of camera), we selected the other or removed the sample alto-
gether if neither photo complied with the protocol. Each photo was
vertically cropped to remove the sky, then 50 points were randomly
overlayed across the photo using Coral Point Count with Excel exten-
sions software (CPCe) (Kohler and Gill, 2006) (Fig. 3). We recorded
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Fig. 2. Examples of FA density, wind velocity, and corresponding Sargassum
Watch photos at Grand Cayman Island. Colored backgrounds show 7-day
composite FA density values (white = no data available), grey arrows show
the 7-day mean wind velocity, the orange circle shows the location of where the
corresponding photo was taken, and the black contour line denotes the 1000 m
water depth. Maps are Mercator projections, north is upward, the thick black
scale bar in the upper corner of panel A shows a distance of 35 km. (A, B) On
June 9, 2020, the observed site was 86% covered with Sargassum. The corre-
sponding FA density = 0.4% and shoreward wind speed = 6.65 m/s. (C,D) On
August 20, 2021, the observed site was 94% covered by Sargassum. The cor-
responding FA density = 0 and shoreward wind speed = 4.51 m/s. (E,F) On
June 5, 2020, the observed site was 12% covered by Sargassum. The corre-
sponding FA density = 0 and shoreward wind speed = -2.51 m/s. (G,H) On
July 3, 2020 the observed site had 0% Sargassum. The corresponding FA
density = 0.032% and shoreward wind speed = -5.33 m/s.
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Fig. 3. Example of a Sargassum Watch photo, downloaded from the Epicollect5
platform that was processed using the Coral Point Counter with Excel exten-
sions (Kohler and Gill, 2006). The yellow box shows how the photo was
cropped to remove the sky; green crosses and corresponding letters indicate the
locations of randomly distributed points where (at the central intersection) the
location was designated as Sargassum, sand, sky, water, vegetation, or other.
The percent coverage of Sargassum was determined by dividing the number of
Sargassum points by the sum of points marking Sargassum, sand, water, and
vegetation. This photo shows a site with 48% Sargassum coverage.

whether each point coincided with Sargassum, sand, sky, water, vege-
tation, or "other" (e.g., a person or beach furniture). To estimate the
relative amount of Sargassum present (percent coverage), we divided
the number of Sargassum points by the sum of sand, water, vegetation,
and Sargassum points. Although slight differences in camera specifica-
tions and angles existed among uploaded photos from citizen scientists,
such differences appeared to be random throughout the set of photos
and were therefore deemed to be a minor introduction of noise into the
subsequent analyses, rather than a source of bias that might skew sta-
tistical results.

2.1.2. Southeast Florida dataset

For the southeast Florida dataset we selected "Sargassum Watch"
photos that had corresponding FA density and wind data and excluded
photos where the metadata indicated evidence of site cleaning or where
Sargassum was described as "mostly decomposed." This was done to
identify photos that would best match the FA density values for a given
week (i.e., excluding photos that were missing Sargassum because it had
been removed due to site cleaning or photos that had Sargassum present
from previous beaching events). Of the sites that met these criteria
(Fig. 1B), we then attempted to select 10 photos for each month to
produce a dataset with an even representation among years and seasons.
However, not all months had at least 10 photos, hence slight differences
in sample sizes existed among years (2019 = 76 photos, 2020 = 70
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photos, 2021 = 73 photos) and among seasons (April — June = 80
photos, July — September = 82 photos, October- March = 57 photos).
The percent coverage of Sargassum in each photo was obtained as
described above.

2.1.3. Puerto Morelos dataset

Data were obtained from Rutten et al. (2021). In that study, hourly
images were collected during daylight hours from two stationary cam-
eras from September 2015 to November 2020 at Puerto Morelos beach,
30 km south of Cancun, Quintana Roo, Mexico (Fig. 1 C). Cameras were
mounted on land and oriented along the shoreline. The number of
Sargassum mat “arrivals” (i.e., beaching) in every day were classified as
“non-existent”, “small”, “medium”, and “large” in a supervised manner
to ensure accuracy (Rutten et al., 2021). To compare against the 7-day
FA density index used in SIRs, we summed the hourly counts of
Sargassum mats (irrespective of classified size) from the video data
across the corresponding 7-day periods. These weekly counts were ob-
tained between January 2019 and November 2020 (n = 97 weeks),
overlapping with available SIR data.

2.2. Statistical analyses

For the regional and site-specific datasets, we designed our analysis
to (1) examine the relationship between the FA density metric used in
SIR risk values and in situ observation of Sargassum at the same sites,
and (2) determine whether including wind data along with FA density
could increase the correspondence. For each photo analyzed, we ob-
tained the corresponding FA density and wind velocity associated with
that coastal site. The FA density was a composite from the date of the
picture extending to the previous 7-days, covering a fixed radius of
50 km from the shoreline with a mask between 0 and 30 km (Fig. 1 D,E).
The FA density for a given location is set as the maximum value within
that 50 km radius (Trin"anes et al., 2021). For wind velocities, we used
the European Centre for Medium-Range Weather Forecasts (ECMWF)
Reanalysis v.5 (ERAS5) (Hersbach et al., 2020). Wind data were available
at 10 m above sea level at hourly timesteps at a resolution of 30 km. For
each of the citizen science photos that provided a latitude, longitude and
date, we took the weighted average of hourly shoreward wind speed at
the four closest grid points to a given coastal location (grid points closer
to the coastal location were weighted more heavily than grid points
more distant). In the analyses presented, shoreward wind velocity was
positive and offshore wind velocity was negative. From these data we
calculated the following wind speed metrics (see below regarding the
time period over which these were calculated): (1) the mean shoreward
wind speed, (2) the maximum shoreward wind speed, and (3) the
minimum shoreward wind speed. We examined these three metrics to
account for different aspects of nearshore wind dynamics, owing to lack
of information on whether averaged wind conditions acting on
Sargassum over time or the extremes in wind conditions (max-
imum/minimum) might be more important for influencing Sargassum
beaching. Likewise, given that it was not possible to determine when the
Sargassum observed in the photo washed ashore, there is uncertainty in
what temporal range is most appropriate for the wind data. We tested
three different time-lags: 0—1 days before, 0—3 days before, and 0—7 days
before to the photo date (Fig. 1D). In analyses using data from Puerto
Morelos, Quintana Roo, Mexico, we only considered 7-day metrics of
wind velocity because the data were summarized as the number of mats
per week. (Fig. 1E).

We used linear regressions to determine how much of the variance in
Sargassum coverage (or number of Sargassum mats) observed could be
accounted for by FA density and each of the wind metrics. Analyses were
conducted separately for the region-wide dataset (436 sites), the
southeast Florida, USA dataset (219 sites), and the Puerto Morelos
dataset (97 weeks). We also examined whether there were differences
among seasons in the relationships between FA density and wind ve-
locity. To simplify this analysis, we selected the wind metric with the
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strongest correlation for the full dataset to use in the seasonal compar-
isons. We chose three seasons in this analysis, spring: April-June (early,
high pelagic Sargassum season), summer: July-September (late, high
pelagic Sargassum season) and autumn/winter: October-March (low
pelagic Sargassum season). In each of these analyses we report the
Adjusted (Adj.) R? value to control for differences in the number of
predictor variables included in the regressions. Finally, for the region-
wide dataset we used the coefficients and their 95% Confidence In-
tervals (CI) from the linear regression model with the highest predictive
ability to examine how wind velocity would influence the amount of
Sargassum likely to be observed along the coastline. These predictions
were made assuming there was no Sargassum detected offshore (FA
density = 0.00%), at the transition point between "low" and "medium"
risk (FA density = 0.05%), and at the transition point between "medium"
and "high risk" (FA density = 0.20%).

3. Results

3.1. Comparing offshore FA density and wind metrics to observed coastal
sargassum

3.1.1. Region-wide dataset

In the region-wide analysis, linear regressions indicated that offshore
FA density was weakly but positively related to Sargassum coverage
observed on the coast (Adj. R? = 0.035, p < 0.001, n = 436). Including
any of the wind metrics greatly improved the variance in Sargassum
coverage that could be accounted for (Table 1). In all cases, the higher
the shoreward wind velocity was, the higher the percent coverage of
Sargassum in the corresponding photo. Of the metrics examined, mean
shoreward wind speed tended to account for more of the variance in
Sargassum coverage than the maximum or minimum values over the

Table 1
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same time range (Table 1). Including the 7-day mean wind speed with
FA density performed best (Adj. R?> = 0.276, p < 0.001, n = 436)
(Fig. 4). Similar performance was seen when including the 3-day mean
wind speed (Adj. R? = 0.273, p < 0.001, n = 436) and the 1-day mean
wind speed (Adj. R? = 0.264, p < 0.001, n = 436). The relationships
detected combining FA density and the 7-day mean shoreward wind
speed were also seen separately in each season (Table 2).

3.1.2. Southeast Florida dataset

In the site-specific case along southeast Florida, FA density was not
correlated with observed Sargassum coverage on the coast (Adj. R? =
0.000, p > 0.05, n = 219). Including wind metrics improved the vari-
ance accounted for somewhat, with 3-day mean wind speed performing
best (Adj. R? = 0.033, p = 0.01, n = 219) (Table 1). Examining seasonal
differences in these relationships also indicated no relationship between
offshore FA density and observed Sargassum coverage at the coast.
However, including the 3-day mean wind speed significantly improved
correlations in the spring and summer (when Sargassum is most abun-
dant) although it did not improve correlations for autumn/winter
(Table 2).

3.1.3. Puerto Morelos dataset

In the site-specific case at Puerto Morelos, FA density was positively
related to the number of Sargassum mats reaching the coast (Adj. R? =
0.238, p < 0.001, n = 97). Including 7-day wind metrics of the mini-
mum shoreward wind velocity improved correlations the most; the
higher the minimum shoreward velocity over the course of the week, the
more mats were expected to wash ashore. Examining seasonal differ-
ences in these relationships indicated that FA density was only signifi-
cantly related to the number of Sargassum mats detected in summer.
Including the minimum shoreward wind velocity greatly improved

Relationships between offshore FA density/wind metrics and the amount of Sargassum observed along the coast. Adjusted R? are reported, values closer to 1 indicate
that more of the variance in observations can be accounted for by the predictor variables. Whether FA density alone is a significant predictor of observations is denoted

with crosses (p < 0.05 = +,p < 0.001 = ++), whether including a wind metric significantly increases the variance accounted for is denoted with asterisks (p < 0.05 =

* p < 0.001 =

** ). Results are shown for the region-wide analysis (n = 436 sites), southeast Florida, USA (n = 219 sites) and Puerto Morelos, Mexico (n = 97 weeks).

The wind metric that most improved FA density predictions and that were subsequently used in the seasonal analysis (Table 2) for each of the datasets are highlighted

in grey and in bold text.

Regional SE FL Puerto Morelos
(Adj.R}) | (Adj.R?) (Adj. R?)
FA density 0.035++ 0.000 0.238++
+1d mean wind | 0.264** 0.029** -
+1d max wind 0.249%** 0.030 -
+1d min wind 0.254%** 0.022* -
+3d mean wind | 0.273** 0.033** -
+3d max wind 0.237%** 0.014* --
+3d min wind 0.244%** 0.004 -
+7d mean wind | 0.276** 0.003 0.262*
+7d max wind | 0.193** -0.002 0.241
+7d min wind 0.216** 0.006 0.325**
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Fig. 4. Region-wide comparison of the percent coverage of coastline covered
by Sargassum in photos to the corresponding (A) satellite-derived FA density of
the nearest grid cell to the coastal site and (B) the 7-day mean shoreward wind
velocity. (C) Adjusted R? values indicating how much variance in coastal
coverage of Sargassum is explained by the offshore FA density used in the SIR
risk estimates (SIR) and by the combination of FA density and the 7-day mean
shoreward wind velocity (SIR + Wind).

Table 2

Seasonal relationships between offshore FA density/wind metrics and the
amount of Sargassum observed along the coast (Adjusted R?). For the regional
dataset the 7-day mean shoreward wind speed was used, for southeast Florida
the 3-day mean shoreward wind speed was used, and for Puerto Morelos the 7-
day minimum shoreward wind speed was used. Other conventions as in Table 1.

Dataset Season FA density + wind N
(Adj. R?) (Adj. R?)
Regional April — June 0.048 + 0.234 ** 118
Regional July — September 0.006 0.377 ** 192
Regional October — March 0.031 + 0.211 ** 126
SE Florida April — June -0.012 0.156 ** 80
SE Florida July — September -0.007 0.063 * 82
SE Florida October — March 0.032 0.033 57
Puerto Morelos April — June -0.044 0.323 * 24
Puerto Morelos July — September 0.430 ++ 0.435 27
Puerto Morelos October — March -0.021 -0.041 46

correlations in spring but had little influence in summer or autumn/
winter (Table 2). The continuous timeseries of the Puerto Morelos mat
arrivals relative to the 7-day minimum shoreward wind speed and FA
density similarly show a reasonable correspondence for the summer
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months, but less consistent predictions for winter and spring months
(Fig. 5).

3.2. Predicting regional sargassum coverage using FA density and wind
speed

We used the results of the region-wide regression analyses (Fig. 4) to
predict the amount of Sargassum that washes ashore across a range of
wind speeds and FA densities (Fig. 6). The coefficient for FA density was
62.6 (95% CI = 29.22 — 95.98), 7-day mean shoreward wind speed was
0.0349 (95% CI = 0.0292 — 0.0406), and the intercept was 0.3145 (95%
CI = 0.224 — 0.325). We plotted the predicted percent coverage of
beached Sargassum using FA densities of 0.00% (no Sargassum detected
offshore), 0.05% (the transition between "low" and "medium" risk in the
SIR), and 0.2% (the transition between "medium" and "high" risk in the
SIR) for wind speeds ranging from — 10 to + 10 m/s. Winds appear to
play a considerable role in the amount of predicted Sargassum coverage
of a beach. At an FA density of 0.00%, winds blowing shoreward at a
mean value of 5 m/s are predicted to result in 43—54% of the beach
being covered in Sargassum, whereas if winds were 5 m/s offshore
8—19% of the beach is predicted to be covered (Fig. 6A). When offshore
FA densities = 0.05% (the SIR "medium risk" threshold) and winds are
blowing in a shoreward direction at a mean value of 5 m/s, ~45-59% of
the beach might be expected to be covered by Sargassum. In contrast, if
winds were blowing away from shore at 5 m/s, only 10-24% of the
beach would be expected to be covered by Sargassum (Fig. 6B). Simi-
larly, at FA densities = 0.2% (the SIR "high risk" threshold), shoreward
winds of 5 m/s would be expected to result in 49—74% beach coverage
whereas with the same FA density but winds blowing away from shore at
5 m/s only 14-38% of the beach is predicted to be covered by Sargassum
(Fig. 6C).

4. Discussion

Our analysis indicates that offshore FA densities used in SIRs are only
weakly related to observations by citizen scientists at corresponding
coastal sites across the region. There are several methodological factors
that may confound detecting a strong relationship between these two
datasets (e.g., non-standardized photos and possible mismatches be-
tween when photos were taken, when Sargassum washed ashore, and
the timing and accuracy of composite satellite imagery). Even so, for our
analysis, including concurrent wind metrics dramatically improved the
agreement, suggesting that part of the discordance between offshore FA
densities and Sargassum observed on the coast is due to not accounting
for the movement of Sargassum. The analyses were not particularly
sensitive to how shoreward wind was quantified; for each of the three
datasets the differences in the variance explained by the “best” and
“worst” performing wind metric was less than 8.5% (Table 1). Our
region-wide regression analyses, in particular, indicate that the amount
of Sargassum observed on the beach is highly dependent on wind con-
ditions and was robust to a wide range of assumptions related to the
temporal aspects of wind metrics and seasons (Tables 1 and 2).

We expect that including shoreward wind velocities could be espe-
cially useful in refining SIR risk estimates. As an example, in the case of
small islands, in scenarios where the amount of Sargassum offshore may
be high around the entire island, under the current SIR algorithm,
inundation risk would be considered high along the island’s entire
coastline. We hypothesize that, in reality, inundation of Sargassum
would be less likely on the leeward side of the island compared to the
windward side (Fig. 2). Such differences would be reflected in risk es-
timates if shoreward wind velocities were incorporated into the SIR al-
gorithm. For example, even with the same amount of Sargassum
detected offshore, the percentage of the beach predicted to be covered
ranges from 0 to > 75%, depending on the shoreward wind velocity
(Fig. 6). Uncertainty in beach coverage predictions increases when
higher FA density is detected offshore. At the highest FA densities
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detected (~0.4%) and 5 m/s shoreward windspeed, Sargassum is pre-
dicted to cover between 55% and 93% of the beach. Under the same
wind conditions and an FA density threshold for "medium risk" (0.05%), 45—
59% of the beach is predicted to be covered. These findings point to the
value of including wind-driven dynamics into SIR risk estimates.
Interestingly, when wind velocities average 0 m/s and FA density is
0.00%, there is still predicted to be 31% (28-34%) Sargassum coverage
on the beach (Fig. 6A). This may imply that offshore FA densities tend to
be underestimates of the amount of Sargassum in the vicinity of the
coastline. This is not entirely unexpected given that a large swath of
ocean (0-30 km) is not depicted in the FA density index and smaller
patches of Sargassum go undetected by satellite (see below). Addition-
ally, however, this may also suggest a bias in observers being more likely
to take photos when Sargassum is present than when coastal areas are
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9/15/2020
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Fig. 5. Timeseries showing the number of Sargassum mats

eh arriving to Puerto Morelos, Mexico (gold line) relative to
(A) 7-day composite Floating Algal (FA) density used in the
0.0028 Sargassum Inundation Reports (green line); (B) the mini-

mum shoreward wind speed over the 7-day period, positive
values = onshore, negative values = offshore (blue line);
0.0021 and (C) the predicted number of Sargassum mats based on
the regression model using the combination of FA density
and wind speed (purple line). Annual variance explained in
Sargassum mats arriving are shown in Table 1 and seasonal
variance explained is shown in Table 2.
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clear. Possible bias in validation data will be important to consider when
working to improve SIR risk estimates with wind data.

Likewise, site-specific analyses suggest that some care is warranted
in this application and for expectations that this simple addition will
bring about complete correspondence between risk estimates and
Sargassum beaching. Despite our attempts to select photos best suited
for comparison to offshore FA densities in southeast Florida, there was
no relationship between offshore detections of Sargassum and what was
observed on the beach. Including wind in the regression analysis only
had a modest positive influence in improving correspondence. In
contrast, at Puerto Morelos, the FA densities alone performed reasonably
well in accounting for the number of incoming Sargassum mats. Wind
metrics did improve the correspondence between observations, but not
as much as was seen in the region-wide analysis. The difference between
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Fig. 6. Predictions of the amount of beached Sargassum (% coverage, y-axis)
assuming different 7-day mean shoreward wind velocities (negative = offshore,
positive = onshore, x-axis). The range of wind speeds plotted corresponds to the
range observed in the regional dataset (n = 436 sites). Solid lines are based on
the estimated coefficients for FA density and wind velocity, dashed lines
correspond to the 95% CI. (A) Results assuming FA density = 0.00%, no
Sargassum detected offshore. (B) Results assuming FA density = 0.05%, the
threshold for "medium" Sargassum inundation risk. (C) Results assuming FA
density = 0.20%, the threshold for "high" Sargassum inundation risk.

these two sites may be attributable, in part, to how Sargassum was
monitored (i.e., in Puerto Morelos the data were collected continuously
and in a more standardized manner). However, it is likely that differ-
ences are not just due to how Sargassum at the coast was quantified.
The factors besides wind that influence Sargassum beaching are
numerous (e.g., currents, waves, tidal regime, bathymetry, and coastal
geomorphology), and their interactions are complex and are likely
weighted differently depending on the physical setting (Cha vez et al.,
2020; Rutten et al., 2021). For instance, unlike other coastal areas
monitored, surface currents within < 20 km of the southeast Florida
coast travel northwards at upwards of 80 km per day. This may intro-
duce considerable discrepancies between FA densities summed over a
7-day period and the wind conditions at that location. For southeast
Florida, 7-day composites of FA density from offshore locations further
south may be more representative of beaching risk at a given stretch of
coastline rather than locations immediately adjacent to it. Future work
could explore varying the radius over which composite FA densities are
calculated according to surrounding ocean current velocity. In all cases,
there is a gap in available wind, wave, and current data to estimate the
final movements of Sargassum within ~10 km from the coast and to
predict if, when, and where it will wash ashore. Without resolving this
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aspect of Sargassum movement, high variance and uncertainty in pre-
dicted Sargassum beaching is likely. Another source of variance may
result from the proportion of Sargassum morphotypes differing between
sites (Iporac et al., 2022). In principle, the different morphological
characteristics could influence their movement (Garcia-Sa nchez et al.,
2020; Magan~ a-Gallegos et al., 2022), and thus the response of
Sargassum to physical factors could differ also (Beron-Vera and Miron,
2020).

This complexity in predicting Sargassum beaching can also be
inferred from the seasonal analyses conducted here. While seasonal re-
lationships between FA density/wind velocity and Sargassum observa-
tions at the coast were consistent at the regional scale, this was not the
case for either site-specific dataset. For both southeast Florida and
Puerto Morelos, FA density was unrelated to Sargassum observations at
the coast during the spring, and including wind metrics greatly
improved correlations. In summer, however, shoreward wind speed
marginally improved predictions of beached Sargassum in southeast
Florida, whereas at Puerto Morelos, FA density alone was a strong pre-
dictor of beaching Sargassum. In the autumn/winter, neither FA density
nor wind speed accounted for Sargassum beaching at either location. It
is encouraging that during the main Sargassum season (spring and
summer) the combination of offshore FA density, and therefore present
SIR assessments, and wind speed can reasonably account for Sargassum
observed along the coast. However, the discrepancies between sites
suggest that more complex algorithms that account for differences in the
physical setting may be needed to fine-tune inundation risk estimates at
smaller scales more practical for site-specific management, for example
by using high-resolution satellite data collected over nearshore waters
(Zhang et al., 2022) and numerical models tailored for nearshore ap-
plications (Liu et al., 2020).

The satellite-derived FA density maps are subject to large un-
certainties over coastal waters due to medium resolution and algorithm
imperfection, which leads to a data gap for waters within 30 km of the
shoreline (Fig. 2) and possible underestimates of Sargassum in offshore
waters due to small Sargassum mats that are not detected by the satel-
lites. For example, the detection limit from the medium-resolution sat-
ellite data is 0.2% of a pixel size (Wang and Hu, 2016; i.e., if all
Sargassum mats within an image pixel have an integrated size of < 0.2%
of a pixel, then they are not detectable). These uncertainties may lead to
variable relationships between the satellite-detected offshore Sargassum
amount and the beaching amount. For example, while the Sargassum
amount removed from beaches of Fort Lauderdale (Florida, USA)
correlated with region-wide satellite observations in offshore waters
(Fig. 4e of Tomenchok et al., 2021), such correspondence was not
observed along beaches on the northern Mexican Caribbean (Fig. 4 of
Rodriguez-Martinez et al., 2022). In the future, the 30-km nearshore
mask may be reduced to 10 km by using a new machine learning algo-
rithm applied to the same medium-resolution data (Hu et al., 2023), and
uncertainties due to the use of medium-resolution data may be mini-
mized through the use of fine-resolution satellite data and better algo-
rithms (Cuevas et al., 2018; Wang and Hu, 2021). For example, Zhang
et al. (2022) showed greatly improved monitoring capacity on beaches
and nearshore waters using high-resolution commercial satellites, which
could potentially be operationalized in future monitoring efforts and
progressive iterations of SIR risk estimates. The temporal resolution can
also be improved through the use of multi-sensor satellite data as clouds
(a normal visually limiting factor) are not persistent in one location.
Similarly, improving consistency of citizen science monitoring pro-
grams, rather than full reliance on opportunistic data contributions,
could aid in directly linking satellite, wind and in situ observations. For
example, capitalizing on existing systematic monitoring programs might
be especially useful contributions to the “Sargassum Watch” citizen
science program, thereby providing more regular, standardized obser-
vations of beached Sargassum (Arellano-Verdejo et al., 2021; Marsh
etal.,2021; Herna ndez et al., 2023). Additionally, expanded continual
video monitoring, such as used by Rutten et al. (2021) in the Puerto
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Morelos dataset, may offer benefits to Sargassum beaching validation in
additional locations. Ultimately, reducing the uncertainties between
offshore algal detection and Sargassum beaching events will require the
combination of multiple approaches.

The complexities noted above point to the challenges of under-
standing the spatial ecology of pelagic Sargassum. Our work is a step
towards quantifying the role and implications of wind-driven movement
of Sargassum from open ocean habitats into coastal areas. Improvement
of region-wide SIR risk assessments are likely to be achieved by
including shoreward wind velocities into existing algorithms. These
findings are in line with other studies that have shown the importance of
considering wind effects on the movement and distribution of
Sargassum (Putman et al., 2020; Berline et al., 2020; Beron-Vera et al.,
2022). It is also worth considering that, because both FA densities and
wind data are taken offshore, there may be utility in examining whether
SIRs could provide short-term (~1 week) forecasts of inundation risk to
supplement their use as a monitoring tool. Future work in this area as
well as considering other aspects that influence the transport of
Sargassum such as ocean currents, waves, and the inertial effects asso-
ciated with specific Sargassum morphotypes deserve prioritization
(Brooks et al., 2019; Beron-Vera and Miron, 2020; Trin" anes et al., 2022;
Putman and Hu, 2022).
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