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A  B  S  T  R  A  C  T  
 

Massive blooms of pelagic Sargassum algae have caused serious problems to coastal communities and ecosystems 

throughout the tropical Atlantic, Caribbean Sea, and Gulf of Mexico since 2011. Efforts to monitor and predict 

these occurrences are challenging owing to the vast area impacted and the complexities associated with the 

proliferation and movement of Sargassum. Sargassum Inundation Reports (SIRs) were first produced in 2019 to 

estimate the potential risk to coastlines throughout the Intra-American Sea at weekly intervals at 10 km reso- 

lution. SIRs use satellite-based data products to estimate beaching risk from the amount of offshore Sargassum 

(quantified by a Floating Algal density index). Here we examine whether including wind metrics improves the 

correspondence between the offshore Floating Algal density index and observations of Sargassum along the 

coastline. For coastal observations, we quantified the percent coverage of Sargassum in photos obtained from the 

citizen science project "Sargassum Watch" that collects time-stamped, georeferenced photos at beaches 

throughout the region. Region-wide analyses indicate that including shoreward wind velocity with SIR risk 

indices greatly improves the correspondence with coastal observations of Sargassum beaching compared to SIR 

risk indices alone. Site-specific analyses of photos from southeast Florida, USA, and data from a continuous video 

monitoring study at Puerto Morelos, Mexico, suggest potential uncertainties in the suite of factors controlling 

Sargassum beaching. Nonetheless, the inclusion of wind velocity in the SIR algorithm appears to be a promising 

avenue for improving regional risk indices. 
 

 

 

 
1. Introduction 

 
For more than a decade, massive amounts of pelagic Sargassum, a 

floating macroalgae, have swept through the tropical Atlantic into the 

western Atlantic, Caribbean Sea, and the Gulf of Mexico (Franks et al., 

2016; Wang et al., 2019). These seasonal blooms of Sargassum have led 

to unprecedented inundation of coastlines throughout the region 

resulting in a suite of environmental, economic, and human health 

problems (Devault et al., 2021; Oxenford et al., 2021). Problems range 

 
from disrupting fishing and boat navigation to accumulating arsenic and 

heavy metals in coastal areas as they leach from Sargassum’s tissue 

during decomposition (Hu et al., 2016; Dassie´ et al., 2022; Ortega-Flores 

et al., 2022; Rodriguez-Martinez et al., 2022). Monitoring and fore- 

casting Sargassum beaching events are necessary to improve mitigation 

and clean-up responses, work towards long-term adaptive management 

operations, and provide information to the growing entrepreneurial 

community attempting to valorize these influxes of Sargassum (Lopez 

Miranda et al., 2021; Oxenford et al., 2021). The widespread nature of 
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this phenomenon presents significant challenges for efforts to synopti- 

cally monitor coastal inundations (Mar´echal et al., 2017; Johnson et al., 

2020; Bernard et al., 2022). The application of satellite-based sensors 

with the capability of detecting Sargassum from space has been used to 

develop monitoring tools, such as the Sargassum Inundation Reports 

(SIRs) produced by the National Oceanographic and Atmospheric 

Administration (NOAA) Atlantic Oceanographic and Meteorological 

Laboratory (AOML). The SIRs provide weekly assessments of inundation 

risk to coastlines throughout the Intra-American Sea from 2019 to pre- 

sent (Trin˜anes et al., 2021). 

The SIR risk estimates are based on data from the Alternative 

Floating Algal Index (AFAI), which quantifies the magnitude of red-edge 

reflectance of vegetation on the ocean surface using data derived from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) on the 

Terra and Aqua satellites and the Visible Infrared Imaging Radiometer 

Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (S-NPP) 

satellite (Wang and Hu, 2016, 2018). A Floating Algae (FA) density 

index is computed from the AFAI at a resolution of 0.1◦ (~10 km), 

applying a mask over coastal waters 0–30 km from the shore due to 

unreliability of floating algae estimates in nearshore areas. Such FA 

density maps have been made available in near real-time through the 

Sargassum Watch System (SaWS, Hu et al., 2016; https://optics.marine. 

usf.edu/projects/saws.html). The SIR algorithm then calculates an 

"inundation potential" or "risk" for coastlines using 7-day composites of 

the FA density index within a 50 km radius of each location (thus 

inundation potentials are based on FA densities between 30 and 50 km 

from shore). Inundation potentials are assigned as Low (< 0.05% FA 

density), Medium (0.05 – 0.2%), and High (> 0.2%) (Trin˜anes et al., 

2021). This product is made freely available at: https://www.aoml.noaa 

.gov/phod/sargassum_inundation_report/. 

While these estimates provide an indication of the amount of 

Sargassum within the vicinity of the coastline, they do not assess how 

these risk values correspond to actual beaching (Trin˜anes et al., 2021). 

This is due to two primary reasons: uncertainties in the satellite-based 

Sargassum estimates and lack of physical driving mechanisms in the 

SIR algorithm. Specifically, the algorithms used in estimating Sargassum 

amount in a given location are based on medium-resolution (~ 1 km per 

image pixel) satellite data that do not work well in nearshore waters 

because benthic habitats (e.g., seagrass, coral reefs, hard bottom) often 

lead to high AFAI values that are misinterpreted as being from floating 

algae. On the other hand, the medium-resolution satellite data may miss 

small Sargassum mats, leading to possible underestimates of Sargassum 

amounts (Ody et al., 2019). Therefore, a 30-km nearshore mask was 

used to avoid misinterpretation. Additionally, factors influencing the 

probability of Sargassum remaining offshore or moving onshore are not 

incorporated into the present SIR algorithm. Pelagic Sargassum is 

positively buoyant, and its movement is driven by physical processes 

occurring near the ocean surface. Winds contribute to near-surface 

currents and waves and directly transfer momentum to objects, like 

Sargassum, that extend above the ocean surface (Miron et al., 2020). The 

importance of wind on Sargassum movement has been shown at the 

scale of tracking trajectories of individual mats (Putman et al., 2020), 

accounting for its distribution at the ocean basin scale (Berline et al., 

2020; Beron-Vera et al., 2022) and its seasonal cycle of growth, 

dispersal, and mortality (Putman and Hu, 2022). Winds likely play an 

important role in the movement of Sargassum from offshore to coastal 

areas, and considering wind effects could be an important component 

for improving inundation risk assessments. 

To compare SIR estimates of inundation risk to conditions observed 

at the coastline, we make use of in situ data collected by two monitoring 

programs of beached Sargassum (Rutten et al., 2021; Iporac et al., 2022; 

Fig. 1). The two monitoring programs differ in scale, methodology, and 

purpose. Iporac et al. (2022) opportunistically obtain photos from citi- 

zen scientists at beaches across much of the region monitored by SIRs 

(Iporac et al., 2022). Rutten et al. (2021) use highly standardized 

continuous video monitoring of Sargassum beaching at a single site in 

Puerto Morelos in Quintana Roo, Mexico. These ground-truthing 

methods benefit from a consistent, local-scale monitoring of a site that 

can confirm the presence and intensity of Sargassum. Previous programs 

were adept in detecting algal blooms and influxes, such as of pelagic 

 

Fig. 1. Locations of observations used to assess the rela- 

tionship between satellite-derived Floating Algal (FA) 

densities used in Sargassum Inundation Reports (SIR) and 

conditions at the coast. Maps are Mercator projections, 

north is upward. (A) Orange circles correspond to locations 

of citizen science photos used in the region-wide analyses 

(n = 436 sites), (B) purple squares show locations of citizen 

science photos used in analyses for southeast Florida, USA 

(n = 219 sites), and (C) the white star indicates the loca- 

tion of Puerto Morelos, Quintana Roo, Mexico where 

continuous video monitoring of incoming Sargassum mats 

was obtained (n = 97 weeks). (D) For the regional and 

southeast Florida citizen science datasets, FA density was 

based on a 7-day composite and wind metrics (mean, 

maximum, and minimum shoreward velocity) were taken 

over 1, 3, and 7 days prior to the photo date. (E) For the 

continuous video monitoring data set from Quintana Roo, 

the mat counts, FA density, and wind metrics were taken 

over the same 7-day period. 

https://optics.marine.usf.edu/projects/saws.html
https://optics.marine.usf.edu/projects/saws.html
https://www.aoml.noaa.gov/phod/sargassum_inundation_report/
https://www.aoml.noaa.gov/phod/sargassum_inundation_report/
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Sargassum (Arellano-Verdejo and Lazcano-Herna´ndez, 2021, Trin˜anes 

et al., 2021, Valentini and Balouin, 2020), Didymo blooms (Gillis et al., 

2018), and harmful phytoplankton blooms (Cunha et al., 2017). The 

efficacy of the citizen science programs however varies by the 

commitment and training levels of the volunteers (Iporac et al., 2020), 

the spatial and temporal variability of data collected (Geldmann et al., 

2016, Millar et al., 2019, Nerbonne et al., 2008), and the large output of 

data that would need processing for further analyses (Iporac et al., 

2022). 

Here, we quantified the amount of Sargassum observed by the 

monitoring programs (either percent coverage in photos (Iporac et al., 

2022) or the number of mats detected per week by video (Rutten et al., 

2021)) and correlated them with the corresponding FA density index 

used in the SIR risk assessments. We then tested whether the inclusion of 

different metrics of shoreward wind speed would strengthen the corre- 

lation between offshore FA density and observations at the coast. From 

these analyses, we contribute to a better understanding of the interac- 

tion between pelagic Sargassum and the environment, specifically the 

role of wind in moving Sargassum from offshore into coastal areas. With 

this new information we present recommendations for including wind 

data in future implementations of SIRs or other schemes to refine 

inundation risk estimates. 

 
2. Methods 

 
2.1. Observations of sargassum along the coast 

 
We obtained a database of photos from the citizen science project 

"Sargassum Watch" (https://five.epicollect.net/project/sargassum-watc 

h). The purpose of this database is to collect and store photographs 

taken by individuals at locations along the coastline to capture presence 

and inundation magnitude of beached Sargassum. The methodology and 

data are described in detail in Iporac et al. (2022). Using their smart- 

phone camera, oriented vertically, citizen science participants are 

requested to upload 3 photos taken standing at the shoreline with one to 

the left, one to the center, and one to the right. Date, latitude, and 

longitude were recorded for photos; additionally, participants could 

include information such as the type of Sargassum, its condition (e.g., 

mostly fresh, mostly decomposed, or a mix), and whether there was 

evidence of site cleaning. The photos and associated data were uploaded 

to Epicollect5 by networks of committed volunteers to consistently 

monitor selected sites, and volunteers were given standardization pro- 

tocols and training sessions (in-person or online) to use the smartphone 

app if the volunteer or group requested (Iporac et al., 2022). For the 

years examined in this work (2019–2021), the Epicollect5 database 

contained more than 4000 unique date/locations at coastlines 

throughout the Caribbean Sea, Gulf of Mexico, east coast of Florida, and 

the Bahamas. These photos were unevenly distributed across space and 

through time, with more than 60% occurring in southeast Florida. So as 

not to bias results of a region-wide assessment to a single area, we 

separated the photos taken in southeast Florida to use in separate 

region-wide and site-specific analyses described below. 

 
2.1.1. Region-wide dataset 

For the region-wide analysis (Fig. 1A), photos were selected based on 

whether FA density and wind data were available for comparison at the 

corresponding location and date (Fig. 2). Photos without both FA den- 

sity and wind data were excluded from analysis. Where data were 

available, we randomly selected either the left or right photo for analysis 

at each site (n = 436). In cases where the visibility or orientation of the 

randomly selected photo was compromised (e.g., blurry, improper di- 

rection of camera), we selected the other or removed the sample alto- 

gether if neither photo complied with the protocol. Each photo was 

vertically cropped to remove the sky, then 50 points were randomly 

overlayed across the photo using Coral Point Count with Excel exten- 

sions software (CPCe) (Kohler and Gill, 2006) (Fig. 3). We recorded 

 

 
 

Fig. 2. Examples of FA density, wind velocity, and corresponding Sargassum 

Watch photos at Grand Cayman Island. Colored backgrounds show 7-day 

composite FA density values (white = no data available), grey arrows show 

the 7-day mean wind velocity, the orange circle shows the location of where the 

corresponding photo was taken, and the black contour line denotes the 1000 m 

water depth. Maps are Mercator projections, north is upward, the thick black 

scale bar in the upper corner of panel A shows a distance of 35 km. (A, B) On 

June 9, 2020, the observed site was 86% covered with Sargassum. The corre- 

sponding FA density = 0.4% and shoreward wind speed = 6.65 m/s. (C,D) On 

August 20, 2021, the observed site was 94% covered by Sargassum. The cor- 

responding FA density = 0 and shoreward wind speed = 4.51 m/s. (E,F) On 

June 5, 2020, the observed site was 12% covered by Sargassum. The corre- 

sponding FA density = 0 and shoreward wind speed = -2.51 m/s. (G,H) On 

July 3, 2020 the observed site had 0% Sargassum. The corresponding FA 

density = 0.032% and shoreward wind speed = -5.33 m/s. 

https://five.epicollect.net/project/sargassum-watch
https://five.epicollect.net/project/sargassum-watch


N.F. Putman et al. Aquatic Botany 188 (2023) 103672 

4 

 

 

 

 

 
 

Fig. 3. Example of a Sargassum Watch photo, downloaded from the Epicollect5 

platform that was processed using the Coral Point Counter with Excel exten- 

sions (Kohler and Gill, 2006). The yellow box shows how the photo was 

cropped to remove the sky; green crosses and corresponding letters indicate the 

locations of randomly distributed points where (at the central intersection) the 

location was designated as Sargassum, sand, sky, water, vegetation, or other. 

The percent coverage of Sargassum was determined by dividing the number of 

Sargassum points by the sum of points marking Sargassum, sand, water, and 

vegetation. This photo shows a site with 48% Sargassum coverage. 

 
whether each point coincided with Sargassum, sand, sky, water, vege- 

tation, or "other" (e.g., a person or beach furniture). To estimate the 

relative amount of Sargassum present (percent coverage), we divided 

the number of Sargassum points by the sum of sand, water, vegetation, 

and Sargassum points. Although slight differences in camera specifica- 

tions and angles existed among uploaded photos from citizen scientists, 

such differences appeared to be random throughout the set of photos 

and were therefore deemed to be a minor introduction of noise into the 

subsequent analyses, rather than a source of bias that might skew sta- 

tistical results. 

 
2.1.2. Southeast Florida dataset 

For the southeast Florida dataset we selected "Sargassum Watch" 

photos that had corresponding FA density and wind data and excluded 

photos where the metadata indicated evidence of site cleaning or where 

Sargassum was described as "mostly decomposed." This was done to 

identify photos that would best match the FA density values for a given 

week (i.e., excluding photos that were missing Sargassum because it had 

been removed due to site cleaning or photos that had Sargassum present 

from previous beaching events). Of the sites that met these criteria 

(Fig. 1B), we then attempted to select 10 photos for each month to 

produce a dataset with an even representation among years and seasons. 

However, not all months had at least 10 photos, hence slight differences 

in sample sizes existed among years (2019 = 76 photos, 2020 = 70 

photos, 2021 = 73 photos) and among seasons (April – June = 80 

photos, July – September = 82 photos, October- March = 57 photos). 

The percent coverage of Sargassum in each photo was obtained as 

described above. 

 
2.1.3. Puerto Morelos dataset 

Data were obtained from Rutten et al. (2021). In that study, hourly 

images were collected during daylight hours from two stationary cam- 

eras from September 2015 to November 2020 at Puerto Morelos beach, 

30 km south of Cancun, Quintana Roo, Mexico (Fig. 1C). Cameras were 

mounted on land and oriented along the shoreline. The number of 

Sargassum mat “arrivals” (i.e., beaching) in every day were classified as 

“non-existent”, “small”, “medium”, and “large” in a supervised manner 

to ensure accuracy (Rutten et al., 2021). To compare against the 7-day 

FA density index used in SIRs, we summed the hourly counts of 

Sargassum mats (irrespective of classified size) from the video data 

across the corresponding 7-day periods. These weekly counts were ob- 

tained between January 2019 and November 2020 (n = 97 weeks), 

overlapping with available SIR data. 

 
2.2. Statistical analyses 

 
For the regional and site-specific datasets, we designed our analysis 

to (1) examine the relationship between the FA density metric used in 

SIR risk values and in situ observation of Sargassum at the same sites, 

and (2) determine whether including wind data along with FA density 

could increase the correspondence. For each photo analyzed, we ob- 

tained the corresponding FA density and wind velocity associated with 

that coastal site. The FA density was a composite from the date of the 

picture extending to the previous 7-days, covering a fixed radius of 

50 km from the shoreline with a mask between 0 and 30 km (Fig. 1D,E). 

The FA density for a given location is set as the maximum value within 

that 50 km radius (Trin˜anes et al., 2021). For wind velocities, we used 

the European Centre for Medium-Range Weather Forecasts (ECMWF) 

Reanalysis v.5 (ERA5) (Hersbach et al., 2020). Wind data were available 

at 10 m above sea level at hourly timesteps at a resolution of 30 km. For 

each of the citizen science photos that provided a latitude, longitude and 

date, we took the weighted average of hourly shoreward wind speed at 

the four closest grid points to a given coastal location (grid points closer 

to the coastal location were weighted more heavily than grid points 

more distant). In the analyses presented, shoreward wind velocity was 

positive and offshore wind velocity was negative. From these data we 

calculated the following wind speed metrics (see below regarding the 

time period over which these were calculated): (1) the mean shoreward 

wind speed, (2) the maximum shoreward wind speed, and (3) the 

minimum shoreward wind speed. We examined these three metrics to 

account for different aspects of nearshore wind dynamics, owing to lack 

of information on whether averaged wind conditions acting on 

Sargassum over time or the extremes in wind conditions (max- 

imum/minimum) might be more important for influencing Sargassum 

beaching. Likewise, given that it was not possible to determine when the 

Sargassum observed in the photo washed ashore, there is uncertainty in 

what temporal range is most appropriate for the wind data. We tested 

three different time-lags: 0–1 days before, 0–3 days before, and 0–7 days 

before to the photo date (Fig. 1D). In analyses using data from Puerto 

Morelos, Quintana Roo, Mexico, we only considered 7-day metrics of 

wind velocity because the data were summarized as the number of mats 

per week. (Fig. 1E). 

We used linear regressions to determine how much of the variance in 

Sargassum coverage (or number of Sargassum mats) observed could be 

accounted for by FA density and each of the wind metrics. Analyses were 

conducted separately for the region-wide dataset (436 sites), the 

southeast Florida, USA dataset (219 sites), and the Puerto Morelos 

dataset (97 weeks). We also examined whether there were differences 

among seasons in the relationships between FA density and wind ve- 

locity. To simplify this analysis, we selected the wind metric with the 
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strongest correlation for the full dataset to use in the seasonal compar- 

isons. We chose three seasons in this analysis, spring: April-June (early, 

high pelagic Sargassum season), summer: July-September (late, high 

pelagic Sargassum season) and autumn/winter: October-March (low 

pelagic Sargassum season). In each of these analyses we report the 

Adjusted (Adj.) R2 value to control for differences in the number of 

predictor variables included in the regressions. Finally, for the region- 

wide dataset we used the coefficients and their 95% Confidence In- 

tervals (CI) from the linear regression model with the highest predictive 

ability to examine how wind velocity would influence the amount of 

Sargassum likely to be observed along the coastline. These predictions 

were made assuming there was no Sargassum detected offshore (FA 

density = 0.00%), at the transition point between "low" and "medium" 

risk (FA density = 0.05%), and at the transition point between "medium" 

and "high risk" (FA density = 0.20%). 

 
3. Results 

 
3.1. Comparing offshore FA density and wind metrics to observed coastal 

sargassum 

 
3.1.1. Region-wide dataset 

In the region-wide analysis, linear regressions indicated that offshore 

FA density was weakly but positively related to Sargassum coverage 

observed on the coast (Adj. R2 = 0.035, p < 0.001, n = 436). Including 

any of the wind metrics greatly improved the variance in Sargassum 

coverage that could be accounted for (Table 1). In all cases, the higher 

the shoreward wind velocity was, the higher the percent coverage of 

Sargassum in the corresponding photo. Of the metrics examined, mean 

shoreward wind speed tended to account for more of the variance in 

Sargassum coverage than the maximum or minimum values over the 

same time range (Table 1). Including the 7-day mean wind speed with 

FA density performed best (Adj. R2 = 0.276, p < 0.001, n = 436) 

(Fig. 4). Similar performance was seen when including the 3-day mean 

wind speed (Adj. R2 = 0.273, p < 0.001, n = 436) and the 1-day mean 

wind speed (Adj. R2 = 0.264, p < 0.001, n = 436). The relationships 

detected combining FA density and the 7-day mean shoreward wind 

speed were also seen separately in each season (Table 2). 

 
3.1.2. Southeast Florida dataset 

In the site-specific case along southeast Florida, FA density was not 

correlated with observed Sargassum coverage on the coast (Adj. R2 = 

0.000, p > 0.05, n = 219). Including wind metrics improved the vari- 

ance accounted for somewhat, with 3-day mean wind speed performing 

best (Adj. R2 = 0.033, p = 0.01, n = 219) (Table 1). Examining seasonal 

differences in these relationships also indicated no relationship between 

offshore FA density and observed Sargassum coverage at the coast. 

However, including the 3-day mean wind speed significantly improved 

correlations in the spring and summer (when Sargassum is most abun- 

dant) although it did not improve correlations for autumn/winter 

(Table 2). 

 
3.1.3. Puerto Morelos dataset 

In the site-specific case at Puerto Morelos, FA density was positively 

related to the number of Sargassum mats reaching the coast (Adj. R2 = 

0.238, p < 0.001, n = 97). Including 7-day wind metrics of the mini- 

mum shoreward wind velocity improved correlations the most; the 

higher the minimum shoreward velocity over the course of the week, the 

more mats were expected to wash ashore. Examining seasonal differ- 

ences in these relationships indicated that FA density was only signifi- 

cantly related to the number of Sargassum mats detected in summer. 

Including the minimum shoreward wind velocity greatly improved 

 

Table 1 

Relationships between offshore FA density/wind metrics and the amount of Sargassum observed along the coast. Adjusted R2 are reported, values closer to 1 indicate 

that more of the variance in observations can be accounted for by the predictor variables. Whether FA density alone is a significant predictor of observations is denoted 

with crosses (p < 0.05 = +, p < 0.001 = ++), whether including a wind metric significantly increases the variance accounted for is denoted with asterisks (p < 0.05 = 

* , p < 0.001 = ** ). Results are shown for the region-wide analysis (n = 436 sites), southeast Florida, USA (n = 219 sites) and Puerto Morelos, Mexico (n = 97 weeks). 

The wind metric that most improved FA density predictions and that were subsequently used in the seasonal analysis (Table 2) for each of the datasets are highlighted 

in grey and in bold text. 
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Fig. 4. Region-wide comparison of the percent coverage of coastline covered 

by Sargassum in photos to the corresponding (A) satellite-derived FA density of 

the nearest grid cell to the coastal site and (B) the 7-day mean shoreward wind 

velocity. (C) Adjusted R2 values indicating how much variance in coastal 

coverage of Sargassum is explained by the offshore FA density used in the SIR 

risk estimates (SIR) and by the combination of FA density and the 7-day mean 

shoreward wind velocity (SIR + Wind). 

 
 

Table 2 

Seasonal relationships between offshore FA density/wind metrics and the 

amount of Sargassum observed along the coast (Adjusted R2). For the regional 

dataset the 7-day mean shoreward wind speed was used, for southeast Florida 

the 3-day mean shoreward wind speed was used, and for Puerto Morelos the 7- 

day minimum shoreward wind speed was used. Other conventions as in Table 1. 

Dataset Season FA density 

(Adj. R2) 

+ wind 

(Adj. R2) 

N 

Regional April – June 0.048 + 0.234 ** 118 

Regional July – September 0.006 0.377 ** 192 

Regional October – March 0.031 + 0.211 ** 126 

SE Florida April – June -0.012 0.156 ** 80 

SE Florida July – September -0.007 0.063 * 82 

SE Florida October – March 0.032 0.033 57 

Puerto Morelos April – June -0.044 0.323 * 24 

Puerto Morelos July – September 0.430 ++ 0.435 27 

Puerto Morelos October – March -0.021 -0.041 46 

 

correlations in spring but had little influence in summer or autumn/ 

winter (Table 2). The continuous timeseries of the Puerto Morelos mat 

arrivals relative to the 7-day minimum shoreward wind speed and FA 

density similarly show a reasonable correspondence for the summer 

months, but less consistent predictions for winter and spring months 

(Fig. 5). 

 
3.2. Predicting regional sargassum coverage using FA density and wind 

speed 

 
We used the results of the region-wide regression analyses (Fig. 4) to 

predict the amount of Sargassum that washes ashore across a range of 

wind speeds and FA densities (Fig. 6). The coefficient for FA density was 

62.6 (95% CI = 29.22 – 95.98), 7-day mean shoreward wind speed was 

0.0349 (95% CI = 0.0292 – 0.0406), and the intercept was 0.3145 (95% 

CI = 0.224 – 0.325). We plotted the predicted percent coverage of 

beached Sargassum using FA densities of 0.00% (no Sargassum detected 

offshore), 0.05% (the transition between "low" and "medium" risk in the 

SIR), and 0.2% (the transition between "medium" and "high" risk in the 

SIR) for wind speeds ranging from - 10 to + 10 m/s. Winds appear to 

play a considerable role in the amount of predicted Sargassum coverage 

of a beach. At an FA density of 0.00%, winds blowing shoreward at a 

mean value of 5 m/s are predicted to result in 43–54% of the beach 

being covered in Sargassum, whereas if winds were 5 m/s offshore 

8–19% of the beach is predicted to be covered (Fig. 6A). When offshore 

FA densities = 0.05% (the SIR "medium risk" threshold) and winds are 

blowing in a shoreward direction at a mean value of 5 m/s, ~45–59% of 

the beach might be expected to be covered by Sargassum. In contrast, if 

winds were blowing away from shore at 5 m/s, only 10–24% of the 

beach would be expected to be covered by Sargassum (Fig. 6B). Simi- 

larly, at FA densities = 0.2% (the SIR "high risk" threshold), shoreward 

winds of 5 m/s would be expected to result in 49–74% beach coverage 

whereas with the same FA density but winds blowing away from shore at 

5 m/s only 14–38% of the beach is predicted to be covered by Sargassum 

(Fig. 6C). 

 
4. Discussion 

 
Our analysis indicates that offshore FA densities used in SIRs are only 

weakly related to observations by citizen scientists at corresponding 

coastal sites across the region. There are several methodological factors 

that may confound detecting a strong relationship between these two 

datasets (e.g., non-standardized photos and possible mismatches be- 

tween when photos were taken, when Sargassum washed ashore, and 

the timing and accuracy of composite satellite imagery). Even so, for our 

analysis, including concurrent wind metrics dramatically improved the 

agreement, suggesting that part of the discordance between offshore FA 

densities and Sargassum observed on the coast is due to not accounting 

for the movement of Sargassum. The analyses were not particularly 

sensitive to how shoreward wind was quantified; for each of the three 

datasets the differences in the variance explained by the “best” and 

“worst” performing wind metric was less than 8.5% (Table 1). Our 

region-wide regression analyses, in particular, indicate that the amount 

of Sargassum observed on the beach is highly dependent on wind con- 

ditions and was robust to a wide range of assumptions related to the 

temporal aspects of wind metrics and seasons (Tables 1 and 2). 

We expect that including shoreward wind velocities could be espe- 

cially useful in refining SIR risk estimates. As an example, in the case of 

small islands, in scenarios where the amount of Sargassum offshore may 

be high around the entire island, under the current SIR algorithm, 

inundation risk would be considered high along the island’s entire 

coastline. We hypothesize that, in reality, inundation of Sargassum 

would be less likely on the leeward side of the island compared to the 

windward side (Fig. 2). Such differences would be reflected in risk es- 

timates if shoreward wind velocities were incorporated into the SIR al- 

gorithm. For example, even with the same amount of Sargassum 

detected offshore, the percentage of the beach predicted to be covered 

ranges from 0 to > 75%, depending on the shoreward wind velocity 

(Fig. 6). Uncertainty in beach coverage predictions increases when 

higher FA density is detected offshore. At the highest FA densities 
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Fig. 5. Timeseries showing the number of Sargassum mats 

arriving to Puerto Morelos, Mexico (gold line) relative to 

(A) 7-day composite Floating Algal (FA) density used in the 

Sargassum Inundation Reports (green line); (B) the mini- 

mum shoreward wind speed over the 7-day period, positive 

values = onshore, negative values = offshore (blue line); 

and (C) the predicted number of Sargassum mats based on 

the regression model using the combination of FA density 

and wind speed (purple line). Annual variance explained in 

Sargassum mats arriving are shown in Table 1 and seasonal 

variance explained is shown in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
detected (~0.4%) and 5 m/s shoreward windspeed, Sargassum is pre- 

dicted to cover between 55% and 93% of the beach. Under the same 

wind conditions and an FA density threshold for "medium risk" (0.05%), 45–

59% of the beach is predicted to be covered. These findings point to the 

value of including wind-driven dynamics into SIR risk estimates. 

Interestingly, when wind velocities average 0 m/s and FA density is 

0.00%, there is still predicted to be 31% (28–34%) Sargassum coverage 

on the beach (Fig. 6A). This may imply that offshore FA densities tend to 

be underestimates of the amount of Sargassum in the vicinity of the 

coastline. This is not entirely unexpected given that a large swath of 

ocean (0–30 km) is not depicted in the FA density index and smaller 

patches of Sargassum go undetected by satellite (see below). Addition- 

ally, however, this may also suggest a bias in observers being more likely 

to take photos when Sargassum is present than when coastal areas are 

clear. Possible bias in validation data will be important to consider when 

working to improve SIR risk estimates with wind data. 

Likewise, site-specific analyses suggest that some care is warranted 

in this application and for expectations that this simple addition will 

bring about complete correspondence between risk estimates and 

Sargassum beaching. Despite our attempts to select photos best suited 

for comparison to offshore FA densities in southeast Florida, there was 

no relationship between offshore detections of Sargassum and what was 

observed on the beach. Including wind in the regression analysis only 

had a modest positive influence in improving correspondence. In 

contrast, at Puerto Morelos, the FA densities alone performed reasonably 

well in accounting for the number of incoming Sargassum mats. Wind 

metrics did improve the correspondence between observations, but not 

as much as was seen in the region-wide analysis. The difference between 
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Fig. 6. Predictions of the amount of beached Sargassum (% coverage, y-axis) 

assuming different 7-day mean shoreward wind velocities (negative = offshore, 

positive = onshore, x-axis). The range of wind speeds plotted corresponds to the 

range observed in the regional dataset (n = 436 sites). Solid lines are based on 

the estimated coefficients for FA density and wind velocity, dashed lines 

correspond to the 95% CI. (A) Results assuming FA density = 0.00%, no 

Sargassum detected offshore. (B) Results assuming FA density = 0.05%, the 

threshold for "medium" Sargassum inundation risk. (C) Results assuming FA 

density = 0.20%, the threshold for "high" Sargassum inundation risk. 

 
these two sites may be attributable, in part, to how Sargassum was 

monitored (i.e., in Puerto Morelos the data were collected continuously 

and in a more standardized manner). However, it is likely that differ- 

ences are not just due to how Sargassum at the coast was quantified. 

The factors besides wind that influence Sargassum beaching are 

numerous (e.g., currents, waves, tidal regime, bathymetry, and coastal 

geomorphology), and their interactions are complex and are likely 

weighted differently depending on the physical setting (Cha´vez et al., 

2020; Rutten et al., 2021). For instance, unlike other coastal areas 

monitored, surface currents within < 20 km of the southeast Florida 

coast travel northwards at upwards of 80 km per day. This may intro- 

duce considerable discrepancies between FA densities summed over a 

7-day period and the wind conditions at that location. For southeast 

Florida, 7-day composites of FA density from offshore locations further 

south may be more representative of beaching risk at a given stretch of 

coastline rather than locations immediately adjacent to it. Future work 

could explore varying the radius over which composite FA densities are 

calculated according to surrounding ocean current velocity. In all cases, 

there is a gap in available wind, wave, and current data to estimate the 

final movements of Sargassum within ~10 km from the coast and to 

predict if, when, and where it will wash ashore. Without resolving this 

aspect of Sargassum movement, high variance and uncertainty in pre- 

dicted Sargassum beaching is likely. Another source of variance may 

result from the proportion of Sargassum morphotypes differing between 

sites (Iporac et al., 2022). In principle, the different morphological 

characteristics could influence their movement (García-Sa´nchez et al., 

2020; Magan˜a-Gallegos et al., 2022), and thus the response of 

Sargassum to physical factors could differ also (Beron-Vera and Miron, 

2020). 

This complexity in predicting Sargassum beaching can also be 

inferred from the seasonal analyses conducted here. While seasonal re- 

lationships between FA density/wind velocity and Sargassum observa- 

tions at the coast were consistent at the regional scale, this was not the 

case for either site-specific dataset. For both southeast Florida and 

Puerto Morelos, FA density was unrelated to Sargassum observations at 

the coast during the spring, and including wind metrics greatly 

improved correlations. In summer, however, shoreward wind speed 

marginally improved predictions of beached Sargassum in southeast 

Florida, whereas at Puerto Morelos, FA density alone was a strong pre- 

dictor of beaching Sargassum. In the autumn/winter, neither FA density 

nor wind speed accounted for Sargassum beaching at either location. It 

is encouraging that during the main Sargassum season (spring and 

summer) the combination of offshore FA density, and therefore present 

SIR assessments, and wind speed can reasonably account for Sargassum 

observed along the coast. However, the discrepancies between sites 

suggest that more complex algorithms that account for differences in the 

physical setting may be needed to fine-tune inundation risk estimates at 

smaller scales more practical for site-specific management, for example 

by using high-resolution satellite data collected over nearshore waters 

(Zhang et al., 2022) and numerical models tailored for nearshore ap- 

plications (Liu et al., 2020). 

The satellite-derived FA density maps are subject to large un- 

certainties over coastal waters due to medium resolution and algorithm 

imperfection, which leads to a data gap for waters within 30 km of the 

shoreline (Fig. 2) and possible underestimates of Sargassum in offshore 

waters due to small Sargassum mats that are not detected by the satel- 

lites. For example, the detection limit from the medium-resolution sat- 

ellite data is 0.2% of a pixel size (Wang and Hu, 2016; i.e., if all 

Sargassum mats within an image pixel have an integrated size of < 0.2% 

of a pixel, then they are not detectable). These uncertainties may lead to 

variable relationships between the satellite-detected offshore Sargassum 

amount and the beaching amount. For example, while the Sargassum 

amount removed from beaches of Fort Lauderdale (Florida, USA) 

correlated with region-wide satellite observations in offshore waters 

(Fig. 4e of Tomenchok et al., 2021), such correspondence was not 

observed along beaches on the northern Mexican Caribbean (Fig. 4 of 

Rodriguez-Martinez et al., 2022). In the future, the 30-km nearshore 

mask may be reduced to 10 km by using a new machine learning algo- 

rithm applied to the same medium-resolution data (Hu et al., 2023), and 

uncertainties due to the use of medium-resolution data may be mini- 

mized through the use of fine-resolution satellite data and better algo- 

rithms (Cuevas et al., 2018; Wang and Hu, 2021). For example, Zhang 

et al. (2022) showed greatly improved monitoring capacity on beaches 

and nearshore waters using high-resolution commercial satellites, which 

could potentially be operationalized in future monitoring efforts and 

progressive iterations of SIR risk estimates. The temporal resolution can 

also be improved through the use of multi-sensor satellite data as clouds 

(a normal visually limiting factor) are not persistent in one location. 

Similarly, improving consistency of citizen science monitoring pro- 

grams, rather than full reliance on opportunistic data contributions, 

could aid in directly linking satellite, wind and in situ observations. For 

example, capitalizing on existing systematic monitoring programs might 

be especially useful contributions to the “Sargassum Watch” citizen 

science program, thereby providing more regular, standardized obser- 

vations of beached Sargassum (Arellano-Verdejo et al., 2021; Marsh 

et al., 2021; Herna´ndez et al., 2023). Additionally, expanded continual 

video monitoring, such as used by Rutten et al. (2021) in the Puerto 
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Morelos dataset, may offer benefits to Sargassum beaching validation in 

additional locations. Ultimately, reducing the uncertainties between 

offshore algal detection and Sargassum beaching events will require the 

combination of multiple approaches. 

The complexities noted above point to the challenges of under- 

standing the spatial ecology of pelagic Sargassum. Our work is a step 

towards quantifying the role and implications of wind-driven movement 

of Sargassum from open ocean habitats into coastal areas. Improvement 

of region-wide SIR risk assessments are likely to be achieved by 

including shoreward wind velocities into existing algorithms. These 

findings are in line with other studies that have shown the importance of 

considering wind effects on the movement and distribution of 

Sargassum (Putman et al., 2020; Berline et al., 2020; Beron-Vera et al., 

2022). It is also worth considering that, because both FA densities and 

wind data are taken offshore, there may be utility in examining whether 

SIRs could provide short-term (~1 week) forecasts of inundation risk to 

supplement their use as a monitoring tool. Future work in this area as 

well as considering other aspects that influence the transport of 

Sargassum such as ocean currents, waves, and the inertial effects asso- 

ciated with specific Sargassum morphotypes deserve prioritization 

(Brooks et al., 2019; Beron-Vera and Miron, 2020; Trin˜anes et al., 2022; 

Putman and Hu, 2022). 
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