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Proposition 1. Consider solving (1) with both the objective and the constraint function being nonconvex and satisfying 
Assumptions 1–3. Then, by running Algorithm 2 with K àO(1=✏), we obtain an (✏, 2✏=2µ0µmax)-KKT point, where µmax :à
max{µ1, : : : ,µm}. Hence, the total number of calls to the stochastic zeroth-order oracle is given by O (m + 1)n( )=✏3� ⇥

.

The proof of this proposition follows immediately by Theorem 1 and corollary 3.19 from Boob et al. (2022) and 
is hence omitted. The parameters µ0 and µi, i 2 [m], in Algorithm 2 are set according to the desired level of accu-
racy based on Proposition 1. To the best of our knowledge, we are not aware of a nonasymptotic result on the 
oracle complexity of stochastic zeroth-order optimization with stochastic zeroth-order functional constraints in 
both the convex and nonconvex settings.

3.3. Detailed Comparison with Boob et al. (2022)
In this subsection, we highlight the main differences between our work and Boob et al. (2022). As mentioned pre-
viously, our methodological and theoretical results build on the work of Boob et al. (2022). 

• Methodology: At a methodological level, our work focuses on the case when we only have noisy function evalu-
ations, whereas Boob et al. (2022) focused on the case when we have access to noisy gradients. To deal with this, we 
use the Gaussian smoothing-based zeroth-order gradient estimator in combination with the constraint extrapola-
tion technique from Boob et al. (2022).

• Biased gradients: The use of the Gaussian smoothing-based zeroth-order gradient estimator leads to stochastic 
gradients that are biased. Although Boob et al. (2022) considered noisy gradients, they assumed that their stochastic 
gradients were unbiased. This complicates the analysis of the zeroth-order setting we work with.

• Nonuniform variance: Apart from the unbiased stochastic gradient assumption, Boob et al. (2022) required the 
variance of their stochastic gradient to be uniformly bounded over the entire parameter space. However, the Gaussian 
smoothing-based gradient estimator does not satisfy this assumption. A major technical part of our analysis 
involves dealing with stochastic gradients that are not uniformly bounded.

• Smoothing parameters: Our method requires dealing with the additional tuning parameters (νi’s) that determine 
the level of smoothing in the zeroth-order gradient estimator. Dealing with this requires a careful analysis, as other-
wise, one would end up with a worse oracle complexity than what we have established in this work; see Remark 2
for details. By contrast, Boob et al. (2022) did not require dealing with any tuning parameters for their stochastic 
gradient because of their generic set of assumptions.

• Experiments: Boob et al. (2022) did not provide any experimental verification of their algorithm. By contrast, in 
Section 4, we provide a detailed experimental evaluation, comparing it with the existing state-of-the-art methods 
for constrained zeroth-order optimization, and demonstrate the advantages of the proposed approach.

4. Experimental Results
We compare the performance of our algorithm (Algorithm 1) with the following widely used algorithms for con-
strained zeroth-order optimization. 

• The ALBO method by Gramacy et al. (2016): This method takes a hybrid approach for constrained zeroth-order 
optimization, based on combining Bayesian optimization (i.e., Gaussian process-based approaches) with aug-
mented Lagrangian methods. Specifically, the objective function of augmented Lagrangian (which is similar in spi-
rit to (5)) is estimated using Gaussian process priors. This method has various tuning parameters, which makes the 
implementation a bit difficult. In fact, Gramacy et al. (2016) did not provide the full implementation details and 
mention that “many specifics have been omitted for space considerations.” We use the implementation provided 
in Gramacy (2016, p. 7) as recommended by Gramacy et al. (2016).

• The Slack-AL method by Picheny et al. (2016): This method builds on the ALBO method and is also a hybrid 
method. Specifically, a particular step in estimating the objective function using Gaussian process technique 
(referred to as the Expected-Improvement step) is avoided by using slack variables. Similar to the previous method, 
we use the implementation provided in Gramacy (2016).

• The ADMMBO method by Ariafar et al. (2019): This method is also a hybrid method that uses Bayesian optimiza-
tion methods. However, the authors used an approach based on an alternating direction method of multipliers 
(ADMM) to solve the augmented Lagrangian problem. We follow the recommendation in section 5.1 of Ariafar 
et al. (2019) for the implementation.

• The PESC method by Hernández-Lobato et al. (2015): This is a purely Bayesian optimization method that uses 
predictive entropy search for solving constrained zeroth-order optimization methods. As mentioned in Hernán-
dez-Lobato et al. (2015, p. 5), “One disadvantage of PESC is that it is relatively difficult to implement.” Further-
more, all the implementation details are not provided in detail in Ariafar et al. (2019). Hence, we follow the 
implementation provided in Ariafar et al. (2019) for our experiments.
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the UCI Machine Learning Repository (Dua and Graff 2017). The data set contains 1,000 observations that are 
normalized to have unit variance. We initialize each chain randomly with independent draws from a Gaussian 
distribution with mean 0 and standard deviation 10�3. For each set of inputs, we compute two chains, each with 
5 minutes of computation time. As mentioned previously, all our simulation settings following those of Gelbart 
et al. (2014) and Hernández-Lobato et al. (2015). We conduct our experiments by subsampling data sets of size 
800 from the original data set and repeating the procedure for 100 trials. We compare the performance of our 
algorithm (with K à 50) with that of the ALBO method by Gramacy et al. (2016), the Slack-AL method by 
Picheny et al. (2016), the ADMMBO method by Ariafar et al. (2019), and the PESC method by Hernández-Lobato 
et al. (2015). The tuning parameters of the respective methods were set according to the guidelines provided in 
the papers. For our algorithm, we found the performance was robust to the choice of the smoothing parameters, 
as long as it was sufficiently small. For the performance reported in Table 1, we set it to νi à 0:05. In Table 1, we 
report the average effective sample size (ESS) for the various methods, along with the standard deviation. We 
notice that the performance of SZO-ConEx is significantly better than that of the other methods, thereby demon-
strating the effectiveness of our method for the problem of hyperparameter tuning for the HMC sampling 
algorithm.

Figure 2. (Color online) Performance Comparison on Simulation Experiment: Plot of Number of Queries vs. Norm of the 
Gradient 

Notes. The plots represent average curves over 100 trials, and the shaded region corresponds to the standard error. In the legend, the curves 
corresponding to νi correspond to the SZO-ConEX algorithm.

Table 1. ESS of Hamiltonian Monte Carlo Sampling Algorithm Tuned by Various Methods, Along with Their Standard 
Errors.

Algorithm ALBO Slack-AL ADMMBO PESC SZO-ConEx

ESS 9:4 ⇥ 104 6 924 9:3 ⇥ 104 6 982 9:4 ⇥ 104 6 884 9:9 ⇥ 104 6 998 10:8 ⇥ 104 6 992
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to the case of mixed constraints (i.e., equality and inequality constraints) and to develop novel methodology and anal-
ysis for constrained zeroth-order optimization with both binary and real-valued decision variables.
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