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Abstract

In recent years, researchers have made significant
progress in devising reinforcement-learning algo-
rithms for optimizing linear temporal logic (LTL)
objectives and LTL-like objectives. Despite these
advancements, there are fundamental limitations to
how well this problem can be solved. Previous
studies have alluded to this fact but have not ex-
amined it in depth. In this paper, we address the
tractability of reinforcement learning for general
LTL objectives from a theoretical perspective. We
formalize the problem under the probably approx-
imately correct learning in Markov decision pro-
cesses (PAC-MDP) framework, a standard frame-
work for measuring sample complexity in rein-
forcement learning. In this formalization, we prove
that the optimal policy for any LTL formula is PAC-
MDP-learnable if and only if the formula is in the
most limited class in the LTL hierarchy, consist-
ing of formulas that are decidable within a finite
horizon. Practically, our result implies that it is im-
possible for a reinforcement-learning algorithm to
obtain a PAC-MDP guarantee on the performance
of its learned policy after finitely many interactions
with an unconstrained environment for LTL objec-
tives that are not decidable within a finite horizon.

1 Introduction
In reinforcement learning, we situate an autonomous agent
in an unknown environment and specify an objective. We
want the agent to learn the optimal behavior for achieving the
specified objective by interacting with the environment.

Specifying an Objective. The objective for the agent
is a specification over possible trajectories of the overall
system—the environment and the agent. Each trajectory is an
infinite sequence of the states of the system, evolving through
time. The objective specifies which trajectories are desirable
so that the agent can identify optimal or near-optimal behav-
iors with respect to the objective.

The Reward Objective. One form of an objective is a re-
ward function. A reward function specifies a scalar value,

a reward, for each state of the system. The desired trajec-
tories are those with higher cumulative discounted rewards.
The reward-function objective is well studied [Sutton and
Barto, 1998]. It has desirable properties that allow reinforce-
ment-learning algorithms to provide performance guarantees
on learned behavior [Strehl et al., 2006], meaning that algo-
rithms can guarantee learning behaviors that achieve almost
optimal cumulative discounted rewards with high probability.
Due to its versatility, researchers have adopted the reward-
function objective as the de facto standard of behavior speci-
fication in reinforcement learning.

1.1 The Linear Temporal Logic Objective

However, reward engineering, the practice of encoding desir-
able behaviors into a reward function, is a difficult challenge
in applied reinforcement learning [Dewey, 2014; Littman et
al., 2017]. To reduce the burden of reward engineering, lin-
ear temporal logic (LTL) has attracted researchers’ attention
as an alternative objective.

LTL is a formal logic used initially to specify behaviors for
system verification [Pnueli, 1977]. An LTL formula is built
from a set of propositions about the state of the environment,
logical connectives, and temporal operators such as G (al-
ways) and F (eventually). Many reinforcement-learning tasks
are naturally expressible with LTL [Littman et al., 2017]. For
some classic control examples, we can express: 1) Cart-Pole
as G up (i.e., the pole always stays up), 2) Mountain-Car
as F goal (i.e., the car eventually reaches the goal), and 3)
Pendulum-Swing-Up as FG up (i.e., the pendulum eventually
always stays up).

Researchers have thus used LTL as an alternative objec-
tive specification for reinforcement learning [Fu and Topcu,
2014; Sadigh et al., 2014; Li et al., 2017; Hahn et al., 2019;
Hasanbeig et al., 2019; Bozkurt et al., 2020]. Given an
LTL objective specified by an LTL formula, each trajectory
of the system either satisfies or violates that formula. The
agent should learn the behavior that maximizes the prob-
ability of satisfying that formula. Moreover, research has
shown that using LTL objectives supports automated reward
shaping [Jothimurugan et al., 2019; Camacho et al., 2019;
Jiang et al., 2020].
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1.2 Trouble with Infinite Horizons
The general class of LTL objectives consists of infinite-hori-
zon objectives—objectives that require inspecting infinitely
many steps of a trajectory to determine if the trajectory satis-
fies the objective. For example, consider the objective F goal
(eventually reach the goal). Given an infinite trajectory, the
objective requires inspecting the entire trajectory in the worst
case to determine that the trajectory violates the objective.

Despite the above developments on reinforcement learning
with LTL objectives, the infinite-horizon nature of these ob-
jectives presents challenges that have been alluded to—but
not formally treated—in prior work. [Henriques et al., 2012;
Ashok et al., 2019; Jiang et al., 2020] noted slow learning
times for mastering infinite-horizon properties. [Littman et
al., 2017] provided a specific environment that illustrates the
intractability of learning for a specific infinite-horizon objec-
tive, arguing for the use of a discounted variant of LTL.

A similar issue exists for the infinite-horizon, average-
reward objectives. In particular, it is understood that re-
inforcement-learning algorithms do not have guarantees on
the learned behavior for infinite-horizon, average-reward
problems without additional assumptions on the environ-
ment [Kearns and Singh, 2002].

However, to our knowledge, no prior work has formally
analyzed the learnability of LTL objectives.1

Our Results. We leverage the PAC-MDP frame-
work [Strehl et al., 2006] to prove that reinforcement
learning for infinite-horizon LTL objectives is intractable.
The intuition for this intractability is: Any finite number of
interactions with an environment with unknown transition
dynamics is insufficient to identify the environment dynam-
ics perfectly. Moreover, for an infinite-horizon objective,
a behavior’s satisfaction probability under the inaccurate
environment dynamics can be arbitrarily different from the
behavior’s satisfaction probability under the true dynamics.
Consequently, a learner cannot guarantee with any confi-
dence that it has identified near-optimal behavior for an
infinite-horizon objective.

1.3 Implications for Relevant and Future Work
Our results provide a framework to categorize approaches
that either focus on tractable LTL objectives or weaken the
guarantees of an algorithm. As a result, we interpret several
previous approaches as instantiations of the following cate-
gories:

• Work with finite-horizon LTL objectives, the complement
of infinite-horizon objectives, to obtain guarantees on the
learned behavior [Henriques et al., 2012]. These objectives,
like a ∧ Xa (a is true for two steps), are decidable within a
known finite number of steps.

• Seek a best-effort confidence interval [Ashok et al., 2019].
Specifically, the interval can be trivial in the worst case, de-

1Concurrent to this work, [Alur et al., 2021] also examine the
intractability of LTL objectives. They state and prove a theorem that
is a weaker version of the core theorem of this work. Their work
was made public while this work was under conference review. We
discuss their work in Appendix I.

noting that learned behavior is a maximally poor approxima-
tion of the optimal behavior.

• Make additional assumptions about the environment to ob-
tain guarantees on the learned behavior [Fu and Topcu, 2014;
Brázdil et al., 2014].

• Change the problem by working with LTL-like objectives
such as: 1. relaxed LTL objectives that become exactly LTL in
the (unreachable) limit [Sadigh et al., 2014; Hahn et al., 2019;
Hasanbeig et al., 2019; Bozkurt et al., 2020] and 2. objec-
tives that use temporal operators but employ a different se-
mantics [Littman et al., 2017; Li et al., 2017; Giacomo et al.,
2019; Camacho et al., 2019]. The learnability of these objec-
tives is a potential future research direction.

1.4 Contributions
We make the following contributions:

• A formalization of reinforcement learning with LTL ob-
jectives under the probably approximately correct in Markov
decision processes (PAC-MDP) framework [Fiechter, 1994;
Kearns and Singh, 2002; Kakade, 2003], a standard frame-
work for measuring sample complexity for reinforcement-
learning algorithms; and a formal definition of LTL-PAC-
learnable, a learnability criterion for LTL objectives.

• A statement and proof that: 1. Any infinite-horizon LTL
formula is not LTL-PAC-learnable. 2. Any finite-horizon LTL
formula is LTL-PAC-learnable. To that end, for any infinite-
horizon formula, we give a construction of two special fam-
ilies of MDPs as counterexamples with which we prove that
the formula is not LTL-PAC-learnable.

• Experiments with current reinforcement-learning algo-
rithms for LTL objectives that provide empirical support for
our theoretical result.

• A categorization of approaches that focus on tractable ob-
jectives or weaken the guarantees of LTL-PAC-learnable and
a classification of previous approaches into these categories.

2 Preliminaries: Reinforcement Learning
This section provides definitions for MDPs, planning, rein-
forcement learning, and PAC-MDP.

2.1 Markov Processes
We first review some basic notations for Markov processes.

A Markov decision process (MDP) is a tuple M =
(S,A, P, s0), where S and A are finite sets of states and ac-
tions, P : (S × A) → ∆ (S) is a transition probability func-
tion that maps a current state and an action to a distribution
over next states, and s0 ∈ S is an initial state. The MDP is
sometimes referred to as the environment MDP to distinguish
it from any specific objective.

A (stochastic) Markovian policy π for an MDP is a func-
tion π : S → ∆ (A) that maps each state of the MDP to a
distribution over the actions.

A (stochastic) non-Markovian policy π for an MDP is a
function π : ((S ×A)

∗ × S)→ ∆ (A) that maps a history of
states and actions of the MDP to a distribution over actions.
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An MDP and a policy on the MDP induce a discrete-time
Markov chain (DTMC). A DTMC is a tuple D = (S, P, s0),
where S is a finite set of states, P : S → ∆ (S) is a transition-
probability function that maps a current state to a distribution
over next states, and s0 ∈ S is an initial state. A sample path
of D is an infinite sequence of states w ∈ Sω. The sample
paths of a DTMC form a probability space.

2.2 Objective
An objective for an MDPM = (S,A, P, s0) is a measurable
function κ : Sω → R on the probability space of the DTMC
D induced by M and a policy π. The value of the objec-
tive for the MDPM and a policy π is the expectation of the
objective under that probability space:

V πM,κ = Ew∼D[κ(w)] (D induced byM and π).

For example, the cumulative discounted rewards objec-
tive [Puterman, 1994] with discount γ and a reward function
R : S → R is: κreward(w) ,

∑∞
i=0 γ

i ·R(w[i]).
An optimal policy maximizes the objective’s value: π∗ =

arg maxπ V
π
M,κ. The optimal value V π

∗

M,κ is then the objec-
tive value of the optimal policy. A policy π is ε-optimal if its
value is ε-close to the optimal value: V πM,κ ≥ V π

∗

M,κ − ε.

2.3 Planning with a Generative Model
A planning-with-generative-model algorithm [Kearns et al.,
1999; Grill et al., 2016] has access to a generative model,
a sampler, of an MDP’s transitions but does not have direct
access to the underlying probability values. It can take any
state and action and sample a next state. It learns a policy
from those sampled transitions.

Formally, a planning-with-generative-model algorithm A
is a tuple (AS,AL), where AS is a sampling algorithm that
drives how the environment is sampled, and AL is a learning
algorithm that learns a policy from the samples obtained by
applying the sampling algorithm.

In particular, the sampling algorithm AS is a function
that maps from a history of sampled environment transitions
((s0, a0, s

′
0) . . . (sk, ak, s

′
k)) to the next state and action to sam-

ple (sk+1, ak+1) , resulting in s′k+1 ∼ P( · | sk+1, ak+1 ). Iter-
ative application of the sampling algorithm AS produces a
sequence of sampled environment transitions.

The learning algorithm is a function that maps that se-
quence of sampled environment transitions to a non-Marko-
vian policy of the environment MDP. Note that the sampling
algorithm can internally consider alternative policies as part
of its decision of what to sample. Also, note that we deliber-
ately consider non-Markovian policies since the optimal pol-
icy for an LTL objective (defined later) is non-Markovian in
general (unlike a cumulative discounted rewards objective).

2.4 Reinforcement Learning
In reinforcement learning, an agent is situated in an environ-
ment MDP and only observes state transitions. We also allow
the agent to reset to the initial state as in [Fiechter, 1994].

We can view a reinforcement-learning algorithm as a
special kind of planning-with-generative-model algorithm

(AS,AL) such that the sampling algorithm always either fol-
lows the next state sampled from the environment or resets to
the initial state of the environment.

2.5 Probably Approximately Correct in MDPs
A successful planning-with-generative-model algorithm (or
reinforcement-learning algorithm) should learn from the sam-
pled environment transitions and produce an optimal policy
for the objective in the environment MDP. However, since the
environment transitions may be stochastic, we cannot expect
an algorithm to always produce the optimal policy. Instead,
we seek an algorithm that, with high probability, produces a
nearly optimal policy. The PAC-MDP framework [Fiechter,
1994; Kearns and Singh, 2002; Kakade, 2003], which takes
inspiration from probably approximately correct (PAC) learn-
ing [Valiant, 1984], formalizes this notion. The PAC-MDP
framework requires efficiency in both sampling and algorith-
mic complexity. In this work, we only consider sample ef-
ficiency and thus omit the requirement on algorithmic com-
plexity. Next, we generalize the PAC-MDP framework from
reinforcement-learning with a reward objective to planning-
with-generative-model with a generic objective.
Definition 1. Given an objective κ, a planning-with-genera-
tive-model algorithm (AS,AL) is κ-PAC (probably approxi-
mately correct for objective κ) in an environment MDP M
if, with the sequence of transitions T of length N sampled
using the sampling algorithm AS, the learning algorithm AL

outputs a non-Markovian ε-optimal policy with probability at
least 1− δ for any given ε > 0 and 0 < δ < 1. That is:

PT∼〈M,AS〉N

(
V
AL(T )
M,κ ≥ V π

∗

M,κ − ε
)
≥ 1− δ. (1)

We use T∼
〈
M,AS〉

N
to denote that the probability space

is over the set of length-N transition sequences sampled from
the environment M using the sampling algorithm AS. For
brevity, we will drop

〈
M,AS

〉
N

when it is clear from context
and simply write PT(.) to denote that the probability space is
over the sampled transitions.
Definition 2. Given an objective κ, a κ-PAC planning-with-
generative-model algorithm is sample efficiently κ-PAC if the
number of sampled transitions N is asymptotically polyno-
mial in 1

ε , 1
δ , |S|, |A|.

Note that the definition allows the polynomial to have con-
stant coefficients that depends on κ.

3 Linear Temporal Logic Objectives
This section describes LTL and its use in objectives.

3.1 Linear Temporal Logic
A linear temporal logic (LTL) formula is built from a finite set
of atomic propositions Π, logical connectives ¬,∧,∨, tem-
poral next X, and temporal operators G (always), F (even-
tually), and U (until). Equation (2) gives the grammar of an
LTL formula φ over the set of atomic propositions Π:

φ ··= a
∣∣¬φ ∣∣φ∧φ ∣∣φ∨φ ∣∣Xφ ∣∣Gφ ∣∣Fφ ∣∣φUφ, a ∈ Π. (2)

LTL is a logic over infinite-length words. Informally, these
temporal operators have the following meanings: Xφ asserts
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Restricted General

Figure 1: The hierarchy of LTL

that φ is true at the next time step; Gφ asserts that φ is always
true; Fφ asserts that φ is eventually true; ψ U φ asserts that ψ
needs to stay true until φ eventually becomes true. We give
the formal semantics of each operator in Appendix A.2. We
write w � φ to denote that the infinite word w satisfies φ.

3.2 MDP with LTL Objectives
An LTL objective maximizes the probability of satisfying an
LTL formula. We formalize this notion below.

An LTL specification for an MDP is a tuple (L, φ), where
L : S → 2Π is a labeling function, and φ is an LTL formula
over atomic propositions Π. The labeling function is a classi-
fier mapping each MDP state to a tuple of truth values of the
atomic propositions in φ. For a sample path w, we use L (w)
to denote the element-wise application of L on w.

The LTL objective ξ specified by the LTL specification is
the satisfaction of the formula φ of a sample path mapped by
the labeling function L, that is: κ(w) , 1L(w)�φ. The value
of this objective is called the satisfaction probability of ξ:

V πM,ξ = Pw∼D(L (w) � φ) (D induced byM and π).

3.3 Infinite Horizons in LTL Objectives
An LTL formula describes either a finite-horizon or infinite-
horizon property. [Manna and Pnueli, 1987] classified LTL
formulas into seven classes, as shown in Figure 1. Each
class includes all the classes to the left of that class (e.g.,
Finitary ⊂Guarantee , but Safety 6⊂Guarantee), with the
Finitary class being the most restricted and the Reactivity
class being the most general. Below we briefly describe the
key properties of the leftmost three classes relevant to the core
of this paper. We present a complete description of all the
classes in Appendix A.2.

• φ∈Finitary iff there exists a horizon H such that infinite-
length words sharing the same prefix of length H are either
all accepted or all rejected by φ. E.g., a ∧ Xa (i.e., a is true
for two steps) is in Finitary .

• φ∈Guarantee iff there exists a language of finite words L
(i.e., a Boolean function on finite-length words) such that
w � φ if L accepts a prefix of w. Informally, a formula
in Guarantee asserts that something eventually happens.
E.g., F a (i.e., eventually a is true) is in Guarantee .

• φ∈Safety iff there exists a language of finite words L such
that w � φ if L accepts all prefixes of w. Informally, a
formula in Safety asserts that something always happens.
E.g., G a (i.e., a is always true) is in Safety .

Moreover, the set of finitary is the intersection of the set
of guarantee formulas and the set of safety formulas. Any
φ∈Finitary , or equivalently φ∈Guarantee∩Safety , inher-
ently describes finite-horizon properties. Any φ 6∈Finitary ,

g
h

q

a1, p

a2, p

a1, 1− p

a2, 1− p

g
h

q

a2, p

a1, p

a1, 1− p

a2, 1− p

Figure 2: Two MDPs parameterized by p in range 0 < p < 1.
Action a1 in the MDP on the left and action a2 in the MDP on the
right have probability p of transitioning to the state h. Conversely,
action a2 in the MDP on the left and action a1 in the MDP on the
right have probability p of transitioning to the state q. Both actions
in both MDPs have probability 1− p to loop around the state g.

or equivalently φ∈Guarantee{ ∪ Safety{, inherently de-
scribes infinite-horizon properties. We will show that rein-
forcement-learning algorithms cannot provide PAC guaran-
tees for LTL objectives specified by formulas that describe
infinite-horizon properties.

3.4 Intuition of the Problem
Suppose that we send an agent into one of the MDPs in Fig-
ure 2, and want its behavior to satisfy “eventually reach the
state h”, expressed as the LTL formula Fh. The optimal
behavior is to always choose the action along the transition
g → h for both MDPs (i.e., a1 for the MDP on the left and a2

for the MDP on the right). This optimal behavior satisfies the
objective with probability one. However, the agent does not
know which of the two MDPs it is in. The agent must follow
its sampling algorithm to explore the MDP’s dynamics and
use its learning algorithm to learn this optimal behavior.

If the agent observes neither transitions going out of g (i.e.,
g → h or g → q) during sampling, it will not be able to dis-
tinguish between the two actions. The best it can do is a 50%
chance guess and cannot provide any non-trivial guarantee on
the probability of learning the optimal action.

On the other hand, if the agent observes one of the tran-
sitions going out of g, it will be able to determine which
action leads to state h, thereby learning always to take that
action. However, the probability of observing any such tran-
sition with N interactions is at most 1 − (1 − p)N . This is
problematic: with any finite N , there always exists a value of
p such that this probability is arbitrarily close to 0. In other
words, with any finite number of interactions, without know-
ing the value of p, the agent cannot guarantee (a non-zero
lower bound on) its chance of learning a policy that satisfies
the LTL formula Fh.

Further, the problem is not limited to this formula. For ex-
ample, the objective “never reach the state q”, expressed as
the formula G¬q, has the same problem in these two MDPs.
More generally, for any LTL formula describing an infinite-
horizon property, we construct two counterexample MDPs
with the same nature as the ones in Figure 2, and prove that it
is impossible to guarantee learning the optimal policy.

4 Learnability of LTL Objectives
This section states and outlines the proof to the main result.

By specializing the κ-PAC definitions (Definitions 1 and 2)
with the definition of LTL objectives in Section 3.2, we obtain
the following definitions of LTL-PAC.
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g0 . . . gk . . . gl
a1, 1− p

a2, 1− p h0 . . . hu . . . hv

q0 . . . qm . . . qn

a1, p

a2, p
a2, p

a1, p

M1

M2

M1 &M2

Figure 3: Counterexample MDPsM1 andM2, with transitions distinguished by arrow types (see legend). Both MDPs are parameterized
by the parameter p that is in range 0 < p < 1. Unlabeled edges are deterministic (actions a1 and a2 transition with probability 1). Ellipsis
indicates a deterministic chain of states.

Definition 3. Given an LTL objective ξ, a planning-with-gen-
erative-model algorithm (AS,AL) is LTL-PAC (probably ap-
proximated correct for LTL objective ξ) in an environment
MDPM for the LTL objective ξ if, with the sequence of tran-
sitions T of length N sampled using the sampling algorithm
AS, the learning algorithm AL outputs a non-Markovian ε-
optimal policy with a probability of at least 1−δ for all ε > 0
and 0 < δ < 1. That is,

PT∼〈M,AS〉N

(
V
AL(T )
M,ξ ≥ V π

∗

M,ξ − ε
)
≥ 1− δ. (3)

We call the probability on the left of the inequality the LTL-
PAC probability of the algorithm (AS,AL).
Definition 4. Given an LTL objective ξ, an LTL-PAC plan-
ning-with-generative-model algorithm for ξ is sample effi-
ciently LTL-PAC if the number of sampled transitions N is
asymptotically polynomial to 1

ε , 1
δ , |S|, |A|.

With the above definitions, we can now define the PAC
learnability of an LTL objective and state the main theorem.
Definition 5. An LTL formula φ over atomic proposi-
tions Π is LTL-PAC-learnable by planning-with-generative-
model (reinforcement-learning) if there exists a sample effi-
ciently LTL-PAC planning-with-generative-model (reinforce-
ment-learning) algorithm for all environment MDPs and all
consistent labeling functions L (that is, L maps from the
MDP’s states to 2Π) for the LTL objective specified by (L, φ).
Theorem 1. An LTL formula φ is LTL-PAC-learnable by
reinforcement-learning (planning-with-generative-model) if
(and only if) φ is finitary.

Between the two directions of Theorem 1, the forward di-
rection (“only if”) is more important. The forward direc-
tion states that for any LTL formula not in Finitary (that is,
infinite-horizon properties), there does not exist a planning-
with-generative-model algorithm—which by definition also
excludes any reinforcement-learning algorithm—that is sam-
ple efficiently LTL-PAC for all environments. This result is
the core contribution of the paper—infinite-horizon LTL for-
mulas are not sample efficiently LTL-PAC-learnable.

Alternatively, the reverse direction of Theorem 1 states
that, for any finitary formula (finite-horizon properties), there
exists a reinforcement-learning algorithm—which by defi-
nition is also a planning-with-generative-model algorithm—
that is sample efficiently LTL-PAC for all environments.

4.1 Proof of Theorem 1: Forward Direction
This section proves the forward direction of Theorem 1. First,
we construct a family of pairs of MDPs. Then, for the sin-
gular case of the LTL formula Fh0, we derive a sample

complexity lower bound for any LTL-PAC planning-with-
generative-model algorithm applied to our family of MDPs.
This lower bound necessarily depends on a specific transition
probability in the MDPs. Finally, we generalize this bound to
any non-finitary LTL formula and conclude the proof.

MDP Family
We give two constructions of parameterized counterexample
MDPsM1 andM2 shown in Figure 3. The key design be-
hind each pair in the family is that no planning-with-genera-
tive-model algorithm can learn a policy that is simultaneously
ε-optimal on both MDPs without observing a number of sam-
ples that depends on the probability of a specific transition.

Both MDPs are parameterized by the shape parameters k,
l, u, v,m, n, and an unknown transition probability parameter
p. The actions are {a1, a2}, and the state space is partitioned
into three regions (as shown in Figure 3: states g0...l (the grey
states), states h0...v (the line-hatched states), and states q0...n

(the white states). All transitions, except gl → h0 and gl →
q0, are the same between M1 and M2. The effect of this
difference between the two MDPs is that, forMi, i ∈ {1, 2}:
• Action ai in Mi at the state gl will transition to the state
h0 with probability p, inducing a run that cycles in the region
hu...v forever.

• Action a3−i (the alternative to ai) inMi at the state gl will
transition to the state q0 with probability p, inducing a run
that cycles in the region qm...n forever.

Further, for any policy, a run of the policy on both MDPs
must eventually reach h0 or q0 with probability 1, and ends
in an infinite cycle in either hu...v or qm...n.

Sample Complexity of Fh0

We next consider the LTL objective ξh0 specified by the LTL
formula Fh0 and the labeling function Lh0 that labels only
the state h0 as true . A sample path on the MDPs (Figure 3)
satisfies this objective iff the path reaches the state h0.

Given ε > 0 and 0 < δ < 1, our goal is to derive a lower
bound on the number of sampled environment transitions per-
formed by an algorithm, so that the satisfaction probability of
π, the learned policy, is ε-optimal (i.e., V πM,ξh0

≥ V π
∗

M,ξh0
− ε)

with a probability of least 1− δ.
The key rationale behind the following lemma is that, if a

planning-with-generative-model algorithm has not observed
any transition to either h0 or q0, the learned policy cannot be
ε-optimal in bothM1 andM2.

Lemma 2. For any planning-with-generative-model algo-
rithm (AS,AL), it must be the case that: min (ζ1, ζ2) ≤
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1
2 , where ζi = PT

(
V
AL(T )

Mi,ξ
h0
≥ V π

∗

Mi,ξ
h0
− ε

∣∣∣ n (T ) = 0
)

and
n(T ) is the number of transitions in T that start from gl and
end in either h0 or q0.

The value ζi is the LTL-PAC probability of a learned policy
onMi, given that the planning-with-generative-model algo-
rithm did not observe any information that allows the algo-
rithm to distinguish betweenM1 andM2.

Proof. We present a proof of Lemma 2 in Appendix B.

A planning-with-generative-model algorithm cannot learn
an ε-optimal policy without observing a transition to either
h0 or q0. Therefore, we bound the sample complexity of the
algorithm from below by the probability that the sampling
algorithm does observe such a transition:

Lemma 3. For the LTL objective ξh0 , the number of sam-
ples, N , for an LTL-PAC planning-with-generative-model al-
gorithm for bothM1 andM2 (for any instantiation of the pa-
rameters k, l, u, v,m, n) has a lower bound of N ≥ log(2δ)

log(1−p) .

Below we give a proof sketch of Lemma 3; we give the
complete proof in Appendix C.

Proof Sketch of Lemma 3. First, we assert that the two in-
equalities of Equation (3) for both M1 and M2 holds true
for a planning-with-generative-model algorithm. Next, by
conditioning on n(T ) = 0, plugging in the notation of ζi,
and relaxing both inequalities, we get (1 − ζi)PT(n(T ) =
0) ≤ δ, for i ∈ {1, 2}. Then, since n(T ) = 0 only
occurs when all transitions from gl end in gk, we have
PT(n(T ) = 0) ≥ (1 − p)N . Combining the inequalities,
we get (1 − min(ζ1, ζ2))(1 − p)N ≤ δ. Finally, we apply
Lemma 2 to get the desired lower bound ofN ≥ log(2δ)

log(1−p) .

Sample Complexity of Non-finitary Formulas
This section generalizes our lower bound on Fh0 to all non-
finitary LTL formulas. The key observation is that for any
non-finitary LTL formula, we can choose a pair of MDPs,
M1 andM2, from our MDP family. For both MDPs in this
pair, finding an ε-optimal policy for Fh0 is reducible to find-
ing an ε-optimal policy for the given formula. By this reduc-
tion, the established lower bound for the case of Fh0 also
applies to the case of any non-finitary formula. Therefore,
the sample complexity of learning an ε-optimal policy for any
non-finitary formula has a lower bound of log(2δ)

log(1−p) .
We will use [w1;w2; . . . wn] to denote the concatenation of

the finite-length words w1 . . . wn. We will use wi to denote
the repetition of the finite-length word w by i times, and w∞
to denote the infinite repetition of w.

Definition 6. An accepting (resp. rejecting) infinite-length
word [wa;w∞b ] of φ is uncommittable if there exists finite-
length words wc, wd such that φ rejects (resp. accepts)
[wa;wib;wc;w

∞
d ] for all i ∈ N.

Lemma 4. If φ has an uncommittable word w, there is an
instantiation ofM1 (orM2) in Figure 3 and a labeling func-
tion L, such that, for any policy, the satisfaction probabilities
of that policy inM1 (orM2) for the LTL objectives specified
by (L, φ) and (Lh0 ,Fh0) are the same.

Proof. For an uncommittable word w, we first find the finite-
length words wa,wb,wc,wd according to Definition 6. We
then instantiateM1 andM2 in Figure 3 as follows.
• If w is an uncommittable accepting word, we set k, l, u,
v, m, n (Figure 3) to |wa|, |wa| + |wb|, 0, |wb|, |wc| and
|wc|+ |wd|, respectively. We then set the labeling function as
in Equation (4).
• If w is an uncommittable rejecting word, we set k, l, u, v,
m, n (Figure 3) to |wa|, |wa| + |wb|, |wc|, |wc| + |wd|, 0
and |wb|, respectively. We then set the labeling function as in
Equation (5).

L(s)=


[wa;wb][j] if s=gj
wb[j] if s=hj
[wc;wd][j] if s=qj

L(s)=


[wa;wb][j] if s=gj
[wc;wd][j] if s=hj
wb[j] if s=qj

(4) (5)

In words, for an uncommittable accepting word, we label
the states g0...l one-by-one by [wa;wb]; we label the states
h0...v one-by-one by wb (and set u = 0, which eliminates the
chain of states h0...u); we label the states q0...n one-by-one
by [wc;wd]. Symmetrically, for an uncommittable rejecting
word, we label the states g0...l one-by-one by [wa;wb]; we
label the states h0...v one-by-one by [wc;wd]; we label the
states q0...n one-by-one by wb (and set m = 0, which elimi-
nates the chain of states q0...m).

By the above instantiation, the two objectives specified by
(L, φ) and (Lh0 ,Fh0) are equivalent in M1 and M2. In
particular, any path in M1 or M2 satisfies the LTL objec-
tive specified by (L, φ) if and only if the path visits the state
h0 and therefore also satisfies the LTL objective specified by
(Lh0 ,Fh0). Therefore, any policy must have the same satis-
faction probability for both objectives.

Lemma 5. For φ 6∈Finitary , the number of samples for
a planning-with-generative-model algorithm to be LTL-PAC
has a lower bound of N ≥ log(2δ)

log(1−p) .

Proof. A corollary of Lemma 4 is: for any φ that has an un-
committable word, we can construct a pair of MDPsM1 and
M2 in the family of pairs of MDPs in Figure 3, such that, in
both MDPs, a policy is sample efficiently LTL-PAC for the
LTL objective specified by (L, φ) if it is sample efficiently
LTL-PAC for the LTL objective specified by (Lh0 ,Fh0).
This property implies that the lower bound in Lemma 3 for
the objective specified by (Lh0 ,Fh0) also applies to the ob-
jective specified by (L, φ), provided that any φ 6∈Finitary
has an uncommittable word. In Appendix D, we prove a
lemma that any formula φ 6∈Guarantee has an uncommit-
table accepting word, and any formula φ 6∈Safety has an un-
committable rejecting word. Since Finitary is the intersec-
tion of Guarantee and Safety , this completes the proof.

Conclusion
Note that the lower bound log(2δ)

log(1−p) depends on p, the tran-
sition probability in the constructed MDPs. Moreover, for
δ < 1

2
, as p approaches 0, this lower bound goes to infin-

ity. As a result, the bound does not satisfy the definition of
sample efficiently LTL-PAC planning-with-generative-model
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algorithm for the LTL objective (Definition 2), and thus no al-
gorithm is sample efficiently LTL-PAC. Therefore, LTL for-
mulas not in Finitary are not LTL-PAC-learnable. This com-
pletes the proof of the forward direction of Theorem 1.

4.2 Proof Sketch of Theorem 1: Reverse Direction
This section gives a proof sketch to the reverse direction of
Theorem 1. We give a complete proof in Appendix E.

We prove the reverse direction of Theorem 1 by reducing
the problem of learning a policy for any finitary formula to
the problem of learning a policy for a finite-horizon cumula-
tive rewards objective. We conclude the reverse direction of
the theorem by invoking a known PAC reinforcement-learn-
ing algorithm on the later problem.

• Reduction to Infinite-horizon Cumulative Rewards.
First, given an LTL formula in Finitary and an environment
MDP, we will construct an augmented MDP with rewards
similar to [Giacomo et al., 2019; Camacho et al., 2019]. We
reduce the problem of finding the optimal non-Markovian
policy for satisfying the formula in the original MDP to the
problem of finding the optimal Markovian policy that maxi-
mizes the infinite-horizon (undiscounted) cumulative rewards
in this augmented MDP.

• Reduction to Finite-horizon Cumulative Rewards.
Next, we reduce the infinite-horizon cumulative rewards to
a finite-horizon cumulative rewards, using the fact that the
formula is finitary.

• Sample Complexity Upper Bound. Lastly, [Dann et al.,
2019] have derived an upper bound on the sample complex-
ity for a reinforcement-learning algorithm for finite-horizon
MDPs. We thus specialize this known upper bound to our
problem setup of the augmented MDP and conclude that any
finitary formula is PAC-learnable.

4.3 Consequence of the Core Theorem
Theorem 1 implies that: For any non-finitary LTL objective,
given any arbitrarily large finite sample of transitions, the
learned policy need not perform near-optimally. This im-
plication is unacceptable in applications that require strong
guarantees of the overall system’s behavior.

5 Empirical Justifications
This section empirically demonstrates our main result, the
forward direction of Theorem 1.

Previous work has introduced various reinforcement-learn-
ing algorithms for LTL objectives [Sadigh et al., 2014;
Hahn et al., 2019; Hasanbeig et al., 2019; Bozkurt et al.,
2020]. We ask the research question: Do the sample complex-
ities of these algorithms depend on the transition probabili-
ties of the environment? To answer the question, we evaluate
various algorithms and empirically measure the sample sizes
for them to obtain near-optimal policies with high probability.

5.1 Methodology
We consider various recent reinforcement-learning algo-
rithms for LTL objectives [Sadigh et al., 2014; Hahn et al.,
2019; Bozkurt et al., 2020]. We consider two pairs of LTL

Figure 4: Left: LTL-PAC probabilities vs. number of samples, vary-
ing parameters p. Right: number of samples needed to reach 0.9
LTL-PAC probability vs. parameter p.

formulas and environment MDPs (LTL-MDP pair). The first
pair is the formula Fh and the counterexample MDP as
shown in Figure 2. The second pair is adapted from a case
study in [Sadigh et al., 2014]. We focus on the first pair in
this section and defer the complete evaluation to Appendix G.

We run the considered algorithms on each chosen LTL-
MDP pair with a range of values for the parameter p and let
the algorithms perform N environment samples. For each al-
gorithm and each pair of values of p and N , we fix ε = 0.1
and repeatedly run the algorithm to obtain a Monte Carlo esti-
mation of the LTL-PAC probability (left side of Equation (3))
for that setting of p, N and ε. We repeat each setting until
the estimated standard deviation of the estimated probability
is within 0.01. In the end, for each algorithm and LTL-MDP
pair we obtain 5×21 = 105 LTL-PAC probabilities and their
estimated standard deviations.

For the first LTL-MDP pair, we vary p by a geometric pro-
gression from 10−1 to 10−3 in 5 steps. We vary N by a geo-
metric progression from 101 to 105 in 21 steps. For the second
LTL-MDP pair, we vary p by a geometric progression from
0.9 to 0.6 in 5 steps. We vary N by a geometric progression
from 3540 to 9 × 104 in 21 steps. If an algorithm does not
converge to the desired LTL-PAC probability within 9 × 104

steps, we rerun the experiment with an extended range of N
from 3540 to 1.5× 105.

5.2 Results
Figure 4 presents the results for the algorithm in [Bozkurt et
al., 2020] with the setting of Multi-discount, Q-learning, and
the first LTL-MDP pair. On the left, we plot the LTL-PAC
probabilities vs. the number of samplesN , one curve for each
p. On the right, we plot the intersections of the curves in the
left plot with a horizontal cutoff of 0.9.

As we see from the left plot of Figure 4, for each p, the
curve starts at 0 and grows to 1 in a sigmoidal shape as the
number of samples increases. However, as p decreases, the
MDP becomes harder: As shown on the right plot of Figure 4,
the number of samples required to reach the particular LTL-
PAC probability of 0.9 grows exponentially. Results for other
algorithms, environments and LTL formulas are similar and
lead to the same conclusion.

5.3 Conclusion
Since the transition probabilities (p in this case) are unknown
in practice, one can’t know which curve in the left plot a given
environment will follow. Therefore, given any finite number
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of samples, these reinforcement-learning algorithms cannot
provide guarantees on the LTL-PAC probability of the learned
policy. This result supports Theorem 1.

6 Directions Forward
We have established the intractability of reinforcement learn-
ing for infinite-horizon LTL objectives. Specifically, for any
infinite-horizon LTL objective, the learned policy need not
perform near-optimally given any finite number of environ-
ment interactions. This intractability is undesirable in ap-
plications that require strong guarantees, such as traffic con-
trol, robotics, and autonomous vehicles [Temizer et al., 2010;
Kober et al., 2013; Schwarting et al., 2018].

Going forward, we categorize approaches that either focus
on tractable objectives or weaken the guarantees required by
an LTL-PAC algorithm. We obtain the first category from the
reverse direction of Theorem 1, and each of the other cat-
egories by relaxing a specific requirement that Theorem 1
places on an algorithm. Further, we classify previous ap-
proaches into these categories.

6.1 Use a Finitary Objective
Researchers have introduced specification languages that
express finitary properties and have applied reinforcement
learning to objectives expressed in these languages [Hen-
riques et al., 2012; Jothimurugan et al., 2019]. One value
proposition of these approaches is that they provide succinct
specifications because finitary properties written in LTL di-
rectly are verbose. For example, the finitary property “a holds
for 100 steps” is equivalent to an LTL formula with a conjunc-
tion of 100 terms: a ∧ Xa ∧ · · · ∧ (X . . .X︸ ︷︷ ︸

99 times

a).

For these succinct specification languages, by the reduc-
tion of these languages to finitary properties and the reverse
direction of Theorem 1, there exist reinforcement-learning al-
gorithms that give LTL-PAC guarantees.

6.2 Best-effort Guarantee
The definition of LTL-PAC (Definition 3) requires a rein-
forcement-learning algorithm to learn a policy with satisfac-
tion probability within ε of optimal, for all ε> 0. However, it
is possible to relax this quantification over ε so that an algo-
rithm only returns a policy with the best-available ε it finds.

For example, [Ashok et al., 2019] introduced a reinforce-
ment-learning algorithm for objectives in the Guarantee
class. Using a specified time budget, the algorithm returns
a policy and an ε. Notably, it is possible for the returned ε to
be 1, a vacuous bound on performance.

6.3 Know More About the Environment
The definition of LTL-PAC (Definition 3) requires a rein-
forcement-learning algorithm to provide a guarantee for all
environments. However, on occasion, one can have prior in-
formation on the transition probabilities of the MDP at hand.

For example, [Fu and Topcu, 2014] introduced a reinforce-
ment-learning algorithm with a PAC-MDP guarantee that de-
pends on the time horizon until the MDP reaches a steady
state. Given an MDP, this time horizon is generally unknown;

however, if one has knowledge of this time horizon a priori, it
constrains the set of MDPs and yields an LTL-PAC guarantee
dependent on this time horizon.

As another example, [Brázdil et al., 2014] introduced a
reinforcement-learning algorithm that provides an LTL-PAC
guarantee provided a declaration of the minimum transition
probability of the MDP. This constraint, again, bounds the
space of considered MDPs.

6.4 Use an LTL-like Objective
Theorem 1 only considers LTL objectives. However, one
opportunity for obtaining a PAC guarantee is to change
the problem—use a specification language that is LTL-like,
defining similar temporal operators but also giving those op-
erators a different, less demanding, semantics.

LTL-in-the-limit Objectives
One line of work [Sadigh et al., 2014; Hahn et al., 2019;
Hasanbeig et al., 2019; Bozkurt et al., 2020] uses LTL for-
mulas as the objective, but also introduces one or more hyper-
parameters λ to relax the formula’s semantics. The rein-
forcement-learning algorithms in these works learn a policy
for the environment MDP given fixed values of the hyper-
parameters. Moreover, as hyper-parameter values approach a
limit point, the learned policy becomes optimal for the hyper-
parameter-free LTL formula.2 The relationship between these
relaxed semantics and the original LTL semantics is anal-
ogous to the relationship between discounted and average-
reward infinite-horizon MDPs. Since discounted MDPs are
PAC-MDP-learnable [Strehl et al., 2006], we conjecture that
these relaxed LTL objectives (at any fixed hyper-parameter
setting) are PAC-learnable.

General LTL-like Objectives
Prior approaches [Littman et al., 2017; Li et al., 2017;
Giacomo et al., 2019; Camacho et al., 2019] also use gen-
eral LTL-like specifications that do not or are not known to
converge to LTL in a limit. For example, [Camacho et al.,
2019] introduced the reward-machine objective that uses a fi-
nite state automaton to specify a reward function. As another
example, [Littman et al., 2017] introduced geometric LTL.
Geometric LTL attaches a geometrically distributed horizon
to each temporal operator. The learnability of these general
LTL-like objectives is a potential future research direction.

7 Conclusion
In this work, we have formally proved that infinite-horizon
LTL objectives in reinforcement learning cannot be learned in
unrestricted environments. By inspecting the core result, we
have identified various possible directions forward for future
research. Our work resolves the apparent lack of a formal
treatment of this fundamental limitation of infinite-horizon
objectives, helps increase the community’s awareness of this
problem, and will help organize the community’s efforts in
reinforcement learning with LTL objectives.

2[Hahn et al., 2019] and [Bozkurt et al., 2020] showed that there
exists a critical setting of the parameters λ∗ that produces the opti-
mal policy. However, λ∗ depends on the transition probabilities of
the MDP and is therefore consistent with our findings.
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