
Fail through the Cracks: Cross-System Interaction
Failures in Modern Cloud Systems

Lilia Tang*
University of Illinois

Urbana-Champaign, IL, USA
liliat2@illinois.edu

Chaitanya Bhandari*
University of Illinois

Urbana-Champaign, IL, USA
cbb1996@illinois.edu

Yongle Zhang
Purdue University

West Lafayette, IN, USA
yonglezh@purdue.edu

Anna Karanika
University of Illinois

Urbana-Champaign, IL, USA
annak8@illinois.edu

Shuyang Ji
University of Illinois

Urbana-Champaign, IL, USA
sji15@illinois.edu

Indranil Gupta
University of Illinois

Urbana-Champaign, IL, USA
indy@illinois.edu

Tianyin Xu
University of Illinois

Urbana-Champaign, IL, USA
tyxu@illinois.edu

Abstract

Modern cloud systems are orchestrations of independent
and interacting (sub-)systems, each specializing in important
services (e.g., data processing, storage, resourcemanagement,
etc.). Hence, cloud system reliability is affected not only by
the reliability of each individual system, but also by the
interplay between these systems. We observe that many
recent production incidents of cloud systems are manifested
through interactions across the system boundaries. However,
there is a lack of systematic understanding of this emerging
mode of failures, which we term as cross-system interaction
failures (or CSI failures). This hinders the development of
better design, integration practices, and new tooling.

In this paper, we discuss cross-system interaction failures
based on analyses of (1) 11 CSI-failure-induced cloud inci-
dents of Google, Azure, andAWS, and (2) 120 CSI failure cases
of seven widely co-deployed open-source systems. We focus
on understanding discrepancies between interacting systems
as the root causes of CSI failuresÐCSI failures cannot be un-
derstood by analyzing one single system in isolation. This pa-
per draws attention to this emerging failure mode, provides

∗Co-primary authors.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’23, May 8ś12, 2023, Rome, Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-9487-1/23/05. . . $15.00

https://doi.org/10.1145/3552326.3587448

a comprehensive understanding of CSI failure patterns, and
discusses potential approaches for mitigation. We advocate
for cross-system testing and verification and demonstrate
its potential by cross-testing the Spark-Hive data plane and
exposing 15 new discrepancies.

CCSConcepts: ·Computer systems organization→Re-

liability; · Software and its engineering → Software

testing and debugging.

Keywords: Cross-system interaction, failure study, root cause
analysis, cloud system

ACM Reference Format:

Lilia Tang*, Chaitanya Bhandari*, Yongle Zhang, Anna Karanika,

Shuyang Ji, Indranil Gupta, and Tianyin Xu. 2023. Fail through

the Cracks: Cross-System Interaction Failures in Modern Cloud

Systems. In Eighteenth European Conference on Computer Systems

(EuroSys ’23), May 8ś12, 2023, Rome, Italy. ACM, New York, NY,

USA, 19 pages. https://doi.org/10.1145/3552326.3587448

1 Introduction

Modern cloud systems are orchestrations of independent and
interacting (sub-)systems, each specializing in important ser-
vices (data processing, storage, resource management, etc.).
For example, to run data analytics jobs, Spark needs to inter-
face with at least a storage system (e.g., HDFS, Cassandra,
or Alluxio) and a cluster management system (e.g., YARN,
Mesos, or Kubernetes), which further interfaces with down-
stream systems. In fact, Spark has been interfaced with tens
of different data/storage systems [11, 27]. Other cloud sys-
tems such as Flink, Storm, and OpenStack require similar
levels of orchestration [36, 91].
We expect this practice of system and data orchestra-

tion to become more prevalent and fine-grained, driven
by recent trends such as Sky Computing [102] and Hybrid
Cloud [59, 106]. Furthermore, recent movements such as

EuroSys ’23, May 8ś12, 2023, Rome, Italy L. Tang, C. Bhandari, Y. Zhang, A. Karanika, S. Ji, I. Gupta, and T. Xu

serverless computing andmicroservices decouple monolithic
systems into interacting, fine-grained ones.

Given the heterogeneity and complexity of cloud systems,
every (sub-)system tends to be developed and maintained
independently, by different projects and teams. This segre-
gation differs from traditional cloud system projects such as
Hadoop, which encapsulates multiple subsystems for data
processing (MapReduce), storage (HDFS), resource manage-
ment (YARN), and previously a key-value store (HBase) and
ML framework (Submarine) (before their spin-offs), with a
common runtime and library (Hadoop Common [20]).
Despite the benefits of decoupling and orchestration, an

emerging software failure model manifests through inter-
actions of independent and interacting systems, which we
term cross-system interaction failures (or, CSI failures) in this
paper. Different from failures of individual systems, the root
cause of a CSI failure is not contained within one system, but
resides in the interactions between multiple systemsÐeach
system inspected in isolation behaves correctly as per its
specification. CSI failures escape existing unit testing and in-
tegration testing which cover functionalities and interactions
across components within a system.
Our study reveals that CSI failures have significant pres-

ence among root causes of cloud incidents (ğ3). For exam-
ple, in a recent Google Cloud Platform (GCP) incident [25],
Google’s User-ID system suffered an outage due to cross-
system interaction between its monitoring system and a
quota system. The root cause was a discrepancy in the mon-
itoring dataÐa deregistered monitor reported a value ł0ž
for the resource usage to the quota system, which misin-
terpreted zero as the expected load of the User-ID system.
Consequently, the quota system incorrectly decreased the
resource quota of the User-ID system, resulting in a major
GCP outage. The outage had a widespread impact on other
upstream services such as YouTube and Gmail [18, 19, 28].

Addressing CSI failures is critical to cloud system reliabil-
ity, because reliability arises not only from the correctness
of each individual system, but also from the correctness of
their interactions. However, there is a lack of systematic
understanding of this emerging mode of failures. An early
cloud failure study [62] mentioned łcross-system bugsž, but
left them for future work. In fact, cross-system bugs in [62]
are different from CSI failuresÐmost of them are not CSI
bugs, but occurred within an orchestrated system (Table 1).
A recent study on Azure cloud incidents [79] revealed the
challenges of data interactions and reported data-format is-
sues as an emerging failure root cause, which corroborates
our analysis of data-related CSI failures (ğ6.1). However, we
find that CSI failures are broader and diverse.
CSI failures are not limited only to cloud systems. The

infamous incident of the Mars Climate Orbiter [31] was a
classic CSI failure caused by a unit discrepancy between two
subsystems: metric units by NASA and US Customary units

by spacecraft builder Lockheed Martin. This expensive inci-
dent drove much research on unit safety and type systems
(e.g., [73, 93, 100]). However, the heterogeneity and compos-
ability of today’s cloud systems significantly magnifies and
diversifies CSI issues beyond a unit or type mismatch.

In this paper, we discuss cross-system interaction failures
based on an analysis of (1) eleven CSI-failure-induced cloud
incidents of Google, Azure, and AWS, and (2) 120 CSI failure
cases of seven widely co-deployed, commonly interacting
open-source systems. Our analysis reveals over a dozen infor-
mative findings with concrete implications for new practices
and research directions in combating CSI failures. Our goal
is to draw attention to the emerging failure mode, provide a
comprehensive, holistic understanding of various CSI failure
patterns, and discuss potential solutions in terms of better
practices of API design, system integration, as well as testing
and verification.
The paper makes the following contributions:

• Prevalence (ğ3 and ğ4). Our study shows CSI failures’
prevalence in both proprietary and open-source cloud sys-
tems. A large fraction (20%) of cloud incidents are caused
by CSI failures. Since cloud vendors typically only report
the most severe incidents, this finding highlights CSI fail-
ures’ catastrophic consequences. In open-source systems
too we find that CSI failures are common (37%).

• Failure location (ğ5.1). Contrary to traditional cloud
bugs [38, 123], data- and management-plane interactions
are major contributors to CSI failures (51% and 32% respec-
tively); control-plane interactions are not as dominant as
reported in early studies on traditional cloud bugs.

• Symptoms (ğ5.2). We find that most (74%) CSI failures
are manifested through crashing behavior, which indicates
that existing fault tolerance or recovery mechanisms are
insufficient or ineffective in handling CSI issues.

• Root causes (ğ6). Most (82%) data-plane CSI failures are
caused by discrepancies of metadata: over two-thirds (69%)
are about typical metadata including addressing/naming
and data schemas, and 13% are about custom metadata
such as non-POSIX file properties. The remaining 18% are
rooted in discrepancies of data operation semantics. On a
different perspective, we find that many (25%) data-plane
CSI failures can be caused by ad-hoc data serialization.
For management-plane CSI failures, most failure-inducing
configuration issues are about coherently configuring mul-
tiple interacting systems (e.g., 60% occur due to silent con-
figuration overwriting across systems), which is funda-
mentally different from traditional configuration issues.
We also find that cross-system actions triggered by moni-
toring data can cause crashing failures.

• Fix strategies (ğ7). We find that 42% of CSI failures’ fixes
are in the form of condition checking and error handling.
Unfortunately, we find that common fixes do not fix the
error-prone interactions.

Cross-System Interaction Failures in Modern Cloud Systems EuroSys ’23, May 8ś12, 2023, Rome, Italy

• Case study of cross-system testing (ğ8). Our findings
suggest that pre-deployment cross-system testing could be
an effective practice to prevent CSI failures. As a feasibility
study, we develop a cross-system integration testing tool
targeting Spark and Hive interfaces and show that our tool
can capture data-plane CSI failures across Spark and Hive.
It exposes 15 new discrepancies on the Spark-Hive data
plane, among which nine have been acknowledged by the
developers.

The research artifact is available at https://github.com/

xlab-uiuc/csi-ae. We hope that our workwill encouragemore
research into this emerging software failure mode.

2 Definition

2.1 CSI Failure Mode

A CSI failure mode manifests through interactions between
independent and interacting systems, instead of within a sin-
gle system. The interaction may take various forms, includ-
ing SQL queries, filesystem reads/writes, resource allocations,
etc. We refer to the system that initializes the interaction as
the upstream and the one that responds to the interaction as
the downstream. The upstream system requests the services
provided by the downstream system. Each system is typically
maintained independently and could function with other in-
terchangeable upstream or downstream systems. We do not
consider resource contention (co-located systems compet-
ing for hardware resources) as a form of interaction. A key
characteristic of CSI failures is that the root causes are dis-
crepancies between the upstream and downstream systems,
i.e., neither the upstream nor the downstream is buggy based
on their own specifications. Hence, CSI failures cannot be
analyzed in the context of one involved system in isolation.

Difference from dependency failures. CSI failures are
fundamentally different from dependency failures [105, 107].
In dependency failures, the downstream system fails indepen-
dently from the upstream. From the upstream’s perspective,
the failure lies in the lack of fault tolerance or error handling;
in other words, the failure does not lie in the interaction.

In CSI failures, the downstream system could be well avail-
able, yet the upstreamwould still not be correctly serviced by
the downstream due to discrepancies in the interaction. The
interaction may also affect the downstream (e.g., overloading
the downstream or triggering unexpected behavior).
Dependency failures can be exposed by simulating un-

availability of dependent services using fault injection and
chaos engineering approaches [35, 42], while exposing CSI
failures requires generating faulty interactions.

Difference from library interaction failures. If we treat
the downstream system as a library of the upstream, CSI fail-
ures resemble library interaction failures [72, 108]. However,
CSI failures are different from library interaction failures in
many ways beyond differences in complexity. For example,

library interaction failures are typically rooted in incompat-
ible API and data types [44, 110], while CSI failures have
more diverse root causes (ğ6). More fundamentally, a library
is a part of the system that integrates it and even runs in the
same address space. In software testing, library code is no dif-
ferent from the other parts of system code and is extensively
exercised by existing tests. However, testing cross-system
interaction is more expensive, because it requires deploying
multiple interacting systems. Furthermore, systems typically
use specific libraries for a given purpose. However, upstream
systems are often designed to support multiple downstream
systems so that users can configure the interacting systems
based on their needs.

2.2 Failure Planes

We observe that patterns of CSI failures are highly corre-
lated with the logical łplanesž of the interaction, and inter-
actions on different planes have drastically different char-
acteristics and implications to potential solutions. There-
fore, we organize our discussion around CSI failures of con-
trol, data, and management planes. The concepts of con-
trol/data/management planes originated from networking
literature [57, 60, 111] and have been used to refer to the con-
struction of cloud systems in recent years [38, 47, 52, 71, 75].
For concreteness, we define each plane as follows:

• Control plane embodies the system core control logic,
such as scheduling, resource allocation, coordination,
fault tolerance, recovery, etc.

• Data plane embodies the components for data opera-
tions, in forms of tables, files, tuples, and streams.

• Management plane embodies the components for sys-
tem configuration and monitoring.

Each plane could be composed of components of multiple
interacting systems and thus is subjective to CSI failures.

2.3 Examples

We present three representative CSI failures on the control,
data, and management planes, respectively.

Control Plane. Figure 1 shows a CSI failure on the con-
trol plane between Flink and YARN (documented in FLINK-
12342). Flink uses a YARN API to request containers. It main-
tains a count𝐶 for the number of containers it requires. This
count is decreased after YARN returns the number of contain-
ers successfully allocated. In this case, Flink periodically re-
quests𝐶 containers every 500ms. However, when𝐶 is large, it
takes YARN more than 500ms to allocate the container. Since
the request is not acknowledged by YARN within 500ms,
Flink requests the aggregated number of pending contain-
ers plus another 𝐶 containers to YARN, overloading it. This
resulted in thousands of container requests. In essence, the
discrepancy lies in the container request/response semantics
of Flink and YARN. Flink’s usage of the YARN API assumes a
synchronous interaction, in which the request is served and

EuroSys ’23, May 8ś12, 2023, Rome, Italy L. Tang, C. Bhandari, Y. Zhang, A. Karanika, S. Ji, I. Gupta, and T. Xu

1 requested

(1+2) requested

(1+2+3) requested

1 allocated
-1 pending req

1 container

2 containers

1 pending req

3 pending req

4000+ requested

2 pending req5
0
0
 m

s

Overloaded

200 containers

1
3
0
0
 m

s

1 allocation

Flink YARN

Allocating containers

3 containers

…

Figure 1. A control-plane CSI failure between Flink and YARN

(FLINK-12342), where the discrepancy lies in the interaction model

(sync vs. async) of container allocations.

Spark

read(f)

return f

assert(f.size >= 0)

Spark job failure

compress(f)
f.size = -1

HDFS

…
…
…
…

Figure 2. A data-plane CSI failure between Spark and HDFS

(SPARK-27239); the discrepancy lies in interpretation of file size.

Flink

use(“yarn.scheduler.mi
n-alloc-mb”)

Could not allocate

required resource.

YARN

use(“yarn.scheduler.
min-alloc-vcores”)

use(“yarn.resource.me
mory-mb.inc-alloc”)

use(“yarn.resource.
vcores.inc-alloc”)

Figure 3. A management-plane CSI failure between Flink and

YARN (FLINK-19141); the discrepancy lies in the misinterpretation

of the configuration values used by Flink and YARN.

returned within the time interval. However, this assumption
is broken if the time interval is smaller than the time needed
by processing at the YARN side.

Data Plane. Figure 2 shows a CSI failure on the data plane
between Spark and HDFS (SPARK-27239). The discrepancy
is that Spark asserts that the size of a valid file it reads from
HDFS should be nonnegative, while HDFS sets the file size
to be -1 for compressed data. This discrepancy causes Spark
job failures if the job operates on compressed data.

Management Plane. Figure 3 shows a CSI failure on the
management plane between Flink and YARN (FLINK-19141).
The discrepancy lies in the interpretation of the configura-
tion values used by Flink and YARN. Essentially, the two
configuration parameters are used by different YARN sched-
ulers with inconsistent semantics.

3 Cloud Incidents Induced by CSI Failures

We first study CSI failures in the field by collecting and ana-
lyzing public incident reports of three public cloud services:
Google Cloud Platform (GCP) [17], Microsoft Azure [14],
and Amazon Web Services (AWS) [13]. We collected in total
55 cloud incident reports. For GCP and Azure, we sampled
20 recent incidents; for AWS, we collected all 15 incidents
with post-event summaries [13]. Due to the often limited
scope of provided information, we use our best judgment in
identifying CSI failures based on the definitions in ğ2.

Finding 1: Among 55 cloud incidents, 11 (20%) were caused
by CSI failures, showing their catastrophic consequences.

The CSI-failure-induced cloud incidents lasted from 10
minutes [24] to 19 hours [14], with a median of 106 minutes.
Many of them (8/11) further impaired other external produc-
tion services that depend on them. For example, the GCP
incident described in ğ1 is such a case.

Postmortem reports typically provide limited information
about the failure. Some reports reveal that the failed interac-
tions happen on different planes, including control plane (e.g.,
scheduling [23]), data plane (e.g., metadata queries [24]), and
management plane (e.g., configuration updates [26], moni-
toring [25]). However, we do not find detailed information
on the failed interactions and corresponding root causes, es-
pecially at the source-code level. We also do not find detailed
information on how the CSI failures are fixed. In fact, only
4/11 reports mentioned code fixes related to the interactions.
The other reports either did not mention interaction-related
fixes, or mentioned generic solutions such as more rigorous
deployment process and more comprehensive testing.

Implication. CSI failures are under-studied, especially given
their prevalence and severity. Specifically, studies on open-
source systems are needed to understand the detailed failure
characteristics (e.g., root causes), because public reports from
cloud providers are limited.

4 Open-Source CSI Failure Dataset

While publicly available incident reports provide high-level
information to identify CSI failures, they lack details to un-
derstand concrete interactions and failure patterns at the
source-code level. Therefore, we collected a CSI failure dataset
of open-source systems that are commonly deployed to-
gether from their issue databases.

Collecting a CSI failure dataset is challenging. Unlike fail-
ures of a standalone system that are documented in their
own issue database, CSI failures do not have a centralized
database. Instead, a CSI failure could be documented by any
of the involved systems. Moreover, there is no label related
to CSI in existing issue databases; in fact, no label indicates
whether a failure involves multiple systems. We addressed
these challenges and collected 120 CSI failures across seven
mature, widely-used open-source systems.

Cross-System Interaction Failures in Modern Cloud Systems EuroSys ’23, May 8ś12, 2023, Rome, Italy

Upstream Downstream Interaction # CSI failures

Spark Hive Data (Hive tables) 26

Spark YARN Control (resource management) 19

Spark HDFS Data (files) 8

Spark Kafka Data (streaming) 5

Flink Kafka Data (streaming) 12

Flink YARN Control (resource management) 14

Flink Hive Data (Hive tables) 8

Flink HDFS Data (file systems) 3

Hive Spark Control (compute) 6

Hive HBase Data (key-value store) 3

Hive HDFS Data (files) 6

Hive Kafka Data (streaming) 1

Hive YARN Control (resource management) 2

HBase HDFS Data (file systems) 4

YARN HDFS Data (file systems) 3

Total 120

Table 1. Target systems, their interactions, and the number of

corresponding CSI failures studied in this paper.

Methodology. We study CSI failures between any two or
more of seven cloud systems: Spark [10], Hive [6], YARN [4],
HDFS [21], Flink [3], Kafka [7], and HBase [5]. The systems
are selected using a data-driven approach. We focus on sys-
tems that use JIRA [12] as their issue database so that we can
apply our search scripts uniformly. We combine all the issue
databases and query for issues that include multiple system
names in the issue title or issue summary. We use a heuristic
to collect issues: if an issue documents a CSI failure, the ti-
tle/summary should mention the involved systems. We then
select the seven most commonly occurring systems from the
selected issues. The relationships between the target systems
are listed in Table 1.

CSI failure collection. Not every issue that involves mul-
tiple systems in the title/summary is a CSI failure (an issue
of a single system could mention co-located systems). Fur-
thermore, not every cross-system failure is a CSI failure (see
ğ2). To collect CSI failures, we randomly sampled 360 issues
that include at least two target systems in title/summary and
manually inspected them, yielding 120 CSI failures (Table 1).
For the remaining ones, 26 are dependency failures, and the
rest are not cross-system issues.

We only consider issues that (1) are resolved because it is
hard to draw conclusions for open issues, (2) have severity
of łBlockerž, łCriticalž, or łMajorž ś we do not consider
łMinorž issues or łImprovements", and (3) occur in the wild,
which excludes issues exposed during testing. We borrow a
heuristic from [120] to filter out developer-reported issues.

With these criteria, we collected 1428 issues for the seven
target systems, from which we randomly sampled 360 issues.
Each issue was labeled by two team members independently.
If the labels differed, a senior team member was consulted
until a consensus was reached. Collection started from a pilot
study of 40 issues synchronously discussed and labeled by all

team members. Data collection took about 180 person-hours,
involving six team members.

Comparison with the CBS dataset. In order to have a
comparable reference, we also studied the Cloud Bug Study
(CBS) dataset released in 2014 [32, 62]. CBS contains JIRA
issues of six Hadoop-based systems (MapReduce, HDFS,
HBase, Cassandra, ZooKeeper, and Flume) from 1/1/2011ś
1/1/2014. Conveniently, the CBS contains a cross label to
indicate whether an issue is a potential cross-system issue.
Applying the same collection criteria described above, we
collected 105 issues: 39 are CSI failures, 15 are dependency
failures, and the remaining are not cross-system issues.

5 General Characteristics

5.1 Failure Plane

We now analyze CSI failures by failure planes (defined in
ğ2.2), because different planes have drastically different CSI
failure characteristics and implications to potential solu-
tions. For example, data-plane CSI failures are mostly about
data/metadata interoperability, whilemanagement-plane CSI
failures are mainly about inconsistent configurations and
monitoring. Solutions to these CSI failures could be tailored
to the nature of failures on each plane, except for a few com-
mon patterns (e.g., misusing downstream APIs is one that
occurs across all planes).

Finding 2: Data- and management-plane interactions con-
tribute to significant percentages of CSI failures: 51% of CSI
failures in our dataset manifest at the data plane, and 32% of
CSI failures manifest at the management plane. Control-plane
interactions contribute to 17%. See Table 2.

Plane # (%) Fail.

Control 20 (17%)

Data 61 (51%)

Management 39 (32%)

Total 120 (100%)

Table 2. Cat. by planes.

The results corroborate recent
studies [79, 115, 126], e.g., it is
reported that 21% of cloud inci-
dents at Azure were caused by
inconsistent data formats across
different components and ver-
sions [79]. We find that data-
plane CSI failures are more di-
verse (ğ6.1).

Control-plane interactions are not as dominating as re-
ported in early studies (e.g., 99% in [38, 123]). The main
reasons are 1) the practice of decoupling the control and
data planes in modern cloud systems, and 2) the increasing
heterogeneity of the data plane. As shown in Table 1, Spark,
Flink, and Hive all support multiple data stores with different
data models (tables, files, tuples, and streams).
We compare our results with CSI failures in the CBS

dataset, which is dominated by Hadoop issues, including
MapReduce, HDFS, and HBase (HBase was a component of
the Hadoop project). In the CBS dataset, control-plane CSI
failures contribute to 69% of 39 studied CSI failures, much
higher than the percentage in our dataset.

EuroSys ’23, May 8ś12, 2023, Rome, Italy L. Tang, C. Bhandari, Y. Zhang, A. Karanika, S. Ji, I. Gupta, and T. Xu

We also observe a significant percentage (32%) of CSI
failures on the management plane, including configuration
and monitoring failures. Specifically, configuration values
and monitoring data fail to cooperate across systems. The
management planes of cloud systems are often overlooked.

Implication. The results draw attention to cross-system
data- and management-plane interactions. We believe that
cloud computing stacks could be orchestrated with even
more heterogeneous, complex data and management planes.
Ensuring CSI correctness of these two planes is crucial.

5.2 Failure Symptoms

Finding 3: Existing fault tolerance or recovery mechanisms
are insufficient or ineffective in handling CSI failures, result-
ing in diverse failure impacts. Most (89/120) CSI failures are
manifested through crashing behavior. See Table 3.

Impact #

C
o
n
tr
o
l

Runtime crash/hang 8

Startup failure 4

Performance issue 3

Data loss 2

Unexpected behavior 3

D
at
a

Job/task failure 47

Job/task startup 6

Wrong results 3

Performance issues 2

Resource leak 2

Usability issue 1

M
g
m
t

Job/task crash/hang 24

Reduced observability 8

Unexpected behavior 5

Performance issue 2

Table 3. Failure symptoms.

Failure impacts are based on
how interactions influence the
entire system and whether the
failed interactions can be toler-
ated or mitigated. All studied
systems employ extensive fault
tolerance and recovery mech-
anisms, such as state and data
replication [66ś68, 116], check-
pointing [54], auto-restart [74],
recomputation [122], etc.While
those mechanisms offer reliabil-
ity for each system, they rarely
protect their interactions.
We do not observe specific

redundancy or recovery mech-
anisms for cross-system inter-
actions. In this sense, interac-
tions are single points of failure
(SPOFs), despite redundancy in components and data. Com-
pared with dependency failures which developers often write
handling code for, CSI failures are mostly unexpected.

Implication. Crashing behavior indicates opportunities for
proactive techniques, such as testing, to detect CSI issues
and prevent CSI failures, e.g., as long as a test could exercise
buggy interactions, it would expose CSI failures without
specialized test oracles. From an observability perspective,
it indicates that most of the reported CSI failures are not
particularly harder to diagnose, compared with other types
of failures (e.g., silent failures [70, 80, 82]).
Given that cross-system interactions are often SPOFs,

there is a need to develop specialized fault-tolerance tech-
niques for CSI. One direction is to leverage existing redun-
dant interfaces and components or build new redundancy to
address failing interactions.

5.3 Why existing tests are not enough?

Mature systems have abundant test cases, including both unit
and integration tests. Unit tests do not cover cross-system in-
teraction. Most existing integration tests only cover multiple
components within a system, not across interacting systems.
Currently, given a deployment of two independent and inter-
acting systems A and B, it is unclear which tests from each
system’s test suite can help test their interactions, and what
interactions would be covered (if any test is available). Even
if there exists an integration test from A that covers certain
interactions with B, it may not cover the deployed versions
and configurations of B, and vice versa. As a case study, we
analyzed all integration tests of Spark and found that only 6%
of them cross-test dependent systems (e.g., the ones shown
in Table 1). All cross-tested systems are of a specific version,
which could be different from co-deployed versions.

We believe that cross-system testing and verificationwould
greatly reduce CSI failures. However, effectively and effi-
ciently conducting cross-system testing and verification re-
mains an open problem. Applying traditional integration
testing techniques by treating each system as a component
is not an effective or cost-efficient technique given the vari-
ety of possible integrated systems and the complexities of
each of their APIs.

6 Discrepancies: The Root Causes

We focus on understanding the discrepancies that manifest
through interactions of the involved systems. As discussed
in ğ2, the root causes of CSI failures are not traditional faults
like software bugs and misconfigurations [50, 62, 76, 83, 84,
88, 103, 112, 113], but are discrepancies.

6.1 Data-Plane Discrepancies

Data-plane CSI failures are rooted in discrepancies of data
operations between interacting systems. We look into their
many facets to understand their discrepancy patterns.

Finding 4: Discrepancies of data-plane CSI failures lie in
many different data properties. The majority (50/61) of data-
plane CSI failures are caused by metadata, namely typical
metadata (42/61) such as addresses/names and data schemas,
and custom metadata (8/61). The others (11/61) are caused by
custom properties and API semantics. See Table 4.

Typical metadata, including names/addresses and data
schemas, look basic and innocuous, but still cause the ma-
jority (42/61) of CSI failures. For example, Flink inserts a
PROCTIME-typed value as the TIMESTAMP type in Hive, but
fails to translate it back (FLINK-17189). These properties
perhaps can be easily unified in one project with canoni-
cal interfaces and centralized implementations. However, it
is challenging to consistently manage all properties across
multiple systems, due to the lack of systematic tooling and
framework support for cross-system interactions.

Cross-System Interaction Failures in Modern Cloud Systems EuroSys ’23, May 8ś12, 2023, Rome, Italy

Property Description # Fail.

Address Name/identifier/address of the data 10

Schema Data schema 32

⊢ Structure Structure representation and serialization ⊢ 14

⊢ Value Values and their interpretation (e.g., type, encoding) ⊢ 18

Custom Custom metadata explicitly defined by the data store 8

Property (e.g., IsCompressed, isPresentLocally)

API Data operation semantics (e.g., concurrency support, 11

semantics data element ordering in a collection)

Total 61

Table 4. Data properties in which discrepancies of data-plane CSI

failures are rooted; these properties apply to different forms of data

(table/file/stream/tuple).

The eight custom metadata issues are file properties that
are not defined by POSIX file system APIs. These properties
include content (e.g., compressed or encrypted), location
(e.g., local or remote), permission for impersonation, etc.
Without POSIX-compliance by design [22, 58], it is natural
for cloud storage systems to extend file properties in order
to expose custom information. However, custom properties
could be error-prone, especially when they require special
handling by upstream systems. For example, in a few cases
upstream systems have to operate on files stored in local and
remote storage differently (FLINK-13758), or be aware of an
overloaded field (e.g., Figure 2). Lastly, non-standard data
APIs often have implicit semantics (e.g., [1, 22, 33]), which
also exist in traditional systems that follow POSIX or SQL
standards [94, 98], but are magnified by the heterogeneity
and composability of cloud APIs.

Implication. Our results indicate that many data-plane CSI
failures, especially those induced by metadata properties,
could potentially be prevented by cross-testing data-plane in-
teractions of involved systems collectively. Such cross-testing
should take a data-centric view to achieve high coverage over
the metadata/data properties listed in Table 5.

We explore the feasibility of cross-testing data-plane cross-
system interactions in ğ8.

Finding 5: Complicated data abstractions (e.g., tables) are
more error-prone to CSI failures, compared with simple data
abstractions. 57% (35/61) of data-plane CSI failures are induced
by table-related operations. None are induced by key-value
tuple operations. See Table 5.

Table operations induced the most data-plane CSI fail-
ures, due to challenges in consistently transforming data
schema, including both structure and value properties. We
find that achieving interoperability between two different
table-related data schemas is very challenging, due to un-
spoken conventions, undefined values, unsupported but ex-
pected operations, type confusion, and wrong assumptions

Data
Address

Schema Custom API
Total

abstraction Struct. Value prop. semantics

Table 1 13 16 0 5 35

File 8 0 0 8 2 18

Stream 1 1 2 0 4 8

KV Tuple 0 0 0 0 0 0

Total 10 14 18 8 11 61

Table 5. Data abstractions in which discrepancies of data-plane

CSI failures are rooted.

Patterns Description and Example # Fail.

Type Data is serialized/deserialized or type-casted in 12

Confusion a conflicting way by the interacting systems.

Ex. FLINK-17189: Flink did not translate

TIMESTAMP of Hive Catalog to PROCTIME.

Unsupported One of the interacting systems fails to support 15

Operations certain data operations.

Ex. SPARK-18910: Spark SQL did not support

UDFs stored as jar files in HDFS.

Unspoken The interacting systems use different conventions 9

Convention for data operation.

Ex. SPARK-21686: Spark failed to read column

names in ORC files written by Hive

Undefined Undefined values interpreted differently by the 7

Values interacting systems.

Ex. -1 represents compressed files (Figure 2)

Wrong API The consumer of data makes wrong assumptions 18

Assumptions (e.g., concurrency/order) about the data operation.

Ex. SPARK-19361: Spark assumes Kafka offsets

always increment by 1, which is not always true.

Total 61

Table 6. Discrepancy patterns and corresponding examples of

data-plane CSI failures.

made by data APIs (see Table 6). However, such interoper-
ability is unavoidable. For example, to read Hive table data,
Spark implements 45 unique object transformers.
Compared with tables, other simpler data abstractions

have fewer CSI failures. File operations have a number of
addressing failures due to heterogeneous file-path and URI
conventions. This again shows that complexity without stan-
dardization or coordination is error-prone.
Data streams have few CSI failures and key-value tuples

have none. However, using simple data abstractions is not
always an option, becausemany applications need structured
data with SQL-like queries. For example, Flink supports SQL
by creating tables on top of data streams [16]. In Table 5, CSI
failures are classified as łStreamž before table creation and
as łTablež after that.

Implications: Many discrepancy patterns of data-plane CSI
failures are due to a lack of enforced data and data-operation
specifications across the involved systems (Table 6). Formal
data and data-operation specifications beyond basic types

EuroSys ’23, May 8ś12, 2023, Rome, Italy L. Tang, C. Bhandari, Y. Zhang, A. Karanika, S. Ji, I. Gupta, and T. Xu

and structures are not yet common in today’s cloud-system
engineering practices, and existing component testing does
not cover CSI data discrepancies. As a result, it is hard to
prevent the discrepancy patterns shown in Table 6. Many
discrepancies are introduced during software evolution, i.e.,
code changes that affect the consistency between the inter-
acting systems. For example, SPARK-21150 was caused by a
code change that loses case sensitivity. Given the prevalence
of data discrepancies, we posit that data specifications are
needed for data-plane orchestration across system bound-
aries, especially for complex data abstractions.

Finding 6: 25% (15/61) data-plane CSI failures are root-caused
by data serialization.

We observe that developers often implement ad-hoc se-
rialization on raw schemas instead of using a unified pro-
cedure. Such practice is error-prone and hard to manage.
For example, SPARK-21686 was caused by the discrepancy
between Spark’s and Hive’s custom serializers used when
exchanging ORC tables. This is because for complicated,
performance-critical data structures developers typically im-
plement custom data layouts as well as ad-hoc serialization
and deserialization with read and write optimization (e.g.,
Spark’s serializer has ORC-specific read optimizations).

Implications. Replacing ad-hoc serialization with serial-
ization libraries could prevent many data-plane CSI failures.
Since popular serialization libraries (e.g., Google Protocol
Buffers [29]) mainly support simple data abstractions, we
posit the need for a unified serialization library that supports
complicated data abstractions.

6.2 Management-Plane Discrepancies

The management plane consists of system components for
configuration, which control and customize system behavior,
and monitoring, which provide observability.

6.2.1 Configuration. Themajority (30/39) ofmanagement-
plane CSI failures are caused by configuration issues, and
the remaining are related to monitoring.

Finding 7: CSI-failure-inducing configuration issues are very
different from traditional configuration issues of individual
systems. The former is mostly about failures of coherently con-
figuring multiple involved systems, while the latter is mainly
on correctness checking of erroneous configuration values.

Prior work has extensively studied misconfigurations of
computer systems [40, 41, 88, 103, 112ś114, 117, 125]. Most
of them focus on configurations of individual systems. The
essential research problem is to understand the impact of con-
figuration values (in terms of correctness and performance),
for misconfiguration detection and troubleshooting.
We find that CSI-failure inducing configuration issues

have fundamentally different characteristicsÐthey aremostly
about failures of coherently configuring multiple involved
systems, as shown in Table 7.

Pattern Description and Example # Fail.

Ignorance Configuration settings are incorrectly ignored. 12

Ex. SPARK-10181: Spark’s Hive client ignored

Kerberos configuration (keytab and principal).

Unexpected Configuration settings are incorrectly overruled. 6

override Ex. SPARK-16901: Spark incorrectly overwrote

Hive’s configuration when merging with

Hadoop configuration.

Inconsist. Configuration values are wrong in a CSI context 10

context Ex. FLINK-19141: Flink and YARN use

inconsistent resource alloc configurations (Fig. 3).

Mishandling Configuration errors that break the CSI code. 2

configuration Ex. SPARK-15046: Spark ApplicationMaster on

values YARN treats an interval configuration as numeric,

which is allowed to be 86400079ms.

Total 30

Table 7. Discrepancy patterns and corresponding examples of

configuration-related CSI failures.

In 18/30 cases, configurations are silently ignored or unex-
pectedly overruled. All these configurations are expected to
be used by the upstream system to configure its interactions
with the downstream system. A recurring pattern is that the
configuration value is lost during transformation or merges
with other configurations, where it is hard to know whether
the values should be kept or overwritten.

In 10/39 cases, configurations are wrong in a specific CSI
context (which could be correct in a different context). For
example, in FLINK-19141, the resource allocation configura-
tions are used inconsistently when a different YARN sched-
uler is used. The same configuration parameters have differ-
ent semantics for different YARN schedulers. It is challenging
to maintain correctness when the configurations are over-
loaded in the interactions between different systems.

Finding 8: Parameter-related configuration issues are the
majority (21/30) of configuration-induced CSI failures. The rest
(9/30) are in configuration components of the involved systems.

Prior studies categorize configuration issues into param-
eter, component, and compatibility (versions) [117]. It is re-
ported that parameter-related issues are the majority of real-
world configuration problems.We find similar characteristics
in CSI failures. Specifically, 70% (21/30) of the configuration-
related CSI failures were caused by parameter-related issues.
All but one of these CSI-failure inducing configuration pa-
rameters were complex string-typed parameters.
Component-related configuration issues are not specific

to any one configuration parameter, but lie in configuration
management between interacting systems. For instance, in
HIVE-11250, Hive ignores all updates to the Spark config-
uration via RemoteHiveSparkClient, due to a bug that does
not set the update flag correctly.

Cross-System Interaction Failures in Modern Cloud Systems EuroSys ’23, May 8ś12, 2023, Rome, Italy

Implications. Few works on configuration management
have touched cross-system configuration. Efforts so far have
focused on the correctness and compatibility of configura-
tion parameters [49, 86, 97]. However, our results show that
a more fundamental problem is to build a consistent config-
uration plane across multiple systems.

Currently, the configuration plane consists of a collection
of configuration files from different systems. How configura-
tion values interact is opaque. As a consequence, seemingly
basic issues like incorrect ignorance and overruling are com-
mon in configuration CSI failures (Table 7). Many of these
issues are not as simple as a lack of a handler or dead code
addressed by prior work [43, 95, 113]; instead, configuration
values are lost when propagating or merging with other
configurations. Traceability of how configuration values are
applied across systems could be useful.
Cross-system configuration testing [86, 103], i.e., cross-

testingmultiple systems under deployment (or to-be-deployed)
configurations, could expose configuration-related CSI fail-
ures. One challenge is to capture unexpected behavior, as CSI
misconfigurations often do not have immediate exceptions.

6.2.2 Monitoring. Weobserve two patterns. First, CSI fail-
ures impair observability due to 1) not storing the expected
metrics/logs, 2) not propagating the expected status code,
3) incorrectly reporting or interpreting metrics and logs be-
tween systems. For example, in SPARK-10851, Spark’s R
runner does not throw the right exception to YARN when an
application fails, but instead exits silently; in SPARK-3627,
Spark reports success for failed YARN jobs.
Second, CSI failures are caused by the discrepancies in

the policies that trigger monitoring actions. For example, in
FLINK-887, Flink’s JobManager running as a YARN container
is killed by YARN’s pmemmonitor if it does not appropriately
adjust its JVM memory configuration.

Finding 9: Monitoring-related CSIs are critical to reliability,
especially when monitoring data is used for critical actions.

Implication. Monitoring logic that could trigger cross-
system termination actions such as kill commands should
be tested to avoid unexpected crashing behaviors.

6.3 Control-Plane Discrepancies

The control plane carries out a diverse set of operationsÐ
service registration, scheduling, load balancing, resource
management, etc. Surprisingly, they contribute to fewer CSI
failures than the data and management planes.

Finding 10: Most control-plane CSI failures are rooted in
discrepancies of implicit properties, including implicit API se-
mantics and state/resource inconsistencies. See Table 8.

The majority of control-plane CSI failures are caused by
the violation of implicit API semantics (such as thread safety,
synchrony, ordering, etc.), which are hard to check effectively.
Another common discrepancy pattern involves inconsistent

Pattern Description and example # Fail.

API semantic Upstream violates semantics of downstream APIs. 13

violation Ex. FLINK-12342: Flink uses container-request

API asynchronously (Figure 1).

State/ Interacting systems have inconsistent views of the 5

resource system states or resources;

inconsist. Ex. HBASE-537: HBase wrongly assumed HDFS

NameNode readiness when it was in safe mode.

Feature Upstream assumes feature consistency across 2

inconsist. different downstream versions/configurations.

Ex. YARN-9724: Spark assumed availability of

getYarnClusterMetrics APIs in all YARN modes

Total 20

Table 8. Discrepancy patterns and corresponding examples of

control-plane CSI failures.

views of the interacting systems’ states or resources, which
lead to non-cooperation between the systems.
The inconsistent views are caused by diverse reasons,

including asynchrony-induced stale states due to concur-
rent events (e.g., HBASE-16621), unawareness of safe/stealth
mode (e.g., HBASE-537), and inconsistent resource calcula-
tions between two systems (e.g., SPARK-2604). Only asyn-
chrony is a fundamental distributed systems challenge [46,
104]; the others are caused by a lack of cooperation.

Feature inconsistencies are common software engineering
flaws, which are in the same vein as unsupported operations
in data-plane CSI failures (Table 6).

Finding 11: API misuses, despite being a classic problem, are
still common defects and contribute to the majority (13/20) of
control-plane CSI failures. The main patterns are implicit se-
mantic violation (8/13) and incorrect invocation context (5/13).

Implicit API semantics such as synchronous call require-
ments (e.g., Figure 1), concurrency, ordering, and even thread-
safety are hard to check and reason about in practice, despite
recent progress [65, 78]. The challenges of adhering to API
semantics are further magnified across the system bound-
ary, due to a lack of machine-checkable specifications and a
shortage of systematic testing and verification.

The other five API misuse cases are caused by API invoca-
tion in a wrong context. For example, in FLINK-5542, an API
used for reading local vcore information is used in a global
context, causing misinformation of available cores. In FLINK-
4155, partition discovery should be done in a Flink context to
interact with Kafka; however, it is invoked in a client context,
which may not have access to the Kafka cluster.

Implications. Despite decades of research in API specifica-
tion checking [39, 77, 99, 109], it is still a challenging problem
to detect API misuses or semantic violations, especially for
implicit and hard-to-check API semantics. CSI failures pro-
vide another motivation to rethink API specifications at the
system boundaries. An arguably more tangible solution is

EuroSys ’23, May 8ś12, 2023, Rome, Italy L. Tang, C. Bhandari, Y. Zhang, A. Karanika, S. Ji, I. Gupta, and T. Xu

Fix Pattern Description and example # Fai.

Checking Check specific conditions to avoid CSI issues 38

Ex. SPARK-27239: Include the -1 as a valid

file size in the checking code (Figure 4).

Error handling Add/improve exceptions handling of CSI issues 8

Ex. FLINK-3081: Add try-catch block to capture

exceptions thrown by CSI operations (Figure ??).

Interaction Fix cross-system interaction code 69

Ex. FLINK-12342: Change the interaction from

sync to async (Figure 5, Resolution#3)

Others No merged fixes or document-only fixes 5

Total 120

Table 9. Fix patterns of the evaluated CSI failures.

to design simple and consistent control-plane APIs. Kuber-
netes presents one good example of such a design, where a
unified API and object-metadata structure ensures semantic
consistency and transparency [47].

7 Fixes

We discuss code fixes for the studied CSI failures. All but five
CSI failures have merged fixes (Table 9). Amongst these five
cases, three do not have merged fixes and two only enhance
documentation. We focus on the 115 issues with fixes.

Finding 12: In 40% (46/115) CSI failures, the merged fixes
improve condition checking and error handling instead of re-
pairing the failed interactions.

Table 9 details the fix patterns. A check or error handling
fix could prevent a particular CSI failure by avoiding the
failure condition or by gracefully reacting, but cannot funda-
mentally prevent CSI failures of similar kinds, and especially
over other systems. Figure 4 shows the fix for the CSI failure
in Figure 2 by including -1 as a valid value in the checking
code. However, given the undefined value and the overloaded
file length, other upstream systems may be vulnerable to the
same CSI failure.
In fact, in all but one CSI failure, the fixes were imple-

mented by the upstream system, because (1) the upstream
has more incentives to fix the problem and (2) it is easier to
fix it in the upstream than the downstream where changes
need to accommodate for backward compatibility. In the only
exception (YARN-9724 in Table 8), the downstream fixed an
API contract violation, which was considered a bug.

In the remaining 58% of the CSI failures, the fixes focus on
improving the failure-inducing interactions. However, not
every fix aimed at improving the interaction fundamentally
resolves the CSI issue. For example, the fix for YARN-2790
moves token renewal in YARN close to the operation on
HDFS where it is consumed, to reduce the likelihood of
token expiration. Nonetheless, expiration can still happen
due to a small timeout value or delays in early operations.

1 - require(length >= 0, s"length ($length)

cannot be negative ")

2 + require(length >= -1, s"length ($length)

cannot be smaller than -1")

3 /* spark /.../ rdd/InputFileBlockHolder.scala */

Figure 4. The fix for SPARK-27239 (Figure 2), which includes -1

as a valid file size in the checking code.

1. Add a new configuration parameter in YARN for jobs
with large number of containers (5/7/2019)

2. Remove the container requests as fast as possible
to avoid allocating excess containers (11/6/2019)

3. Use NMClientAsync instead of NMClient to avoid
blocking call. The container requests will be executed

in a thread pool of NMClientAsync. (11/18/2019)

Workaround #1

Workaround #2

Resolution #3

Figure 5. The fix process for FLINK-12342 (Figure 1) which

patched workarounds before a more fundamental resolution.

Note that fixing the interaction typically takes more effort
than adding checks and error handling. In a few cases, we
observe that developers first added checks or handling as
workarounds for the CSI failure and later fixed the inter-
action. Figure 5 shows the fix process for the CSI failure
described in Figure 1. The immediate workarounds are to
make the 500ms interval configurable and to decrement the
pending container count immediately, which can reduce the
occurrence of asynchronous interactions. Eventually, the de-
velopers rewrote the container startup logic in Flink to make
it asynchronous as a more fundamental fix.

Implication. The common fix patterns of checking and
error handling by one upstream indicate error-proneness
of similar CSI failures in other upstreams. One potential
technique is to extend existing precondition analysis and
error propagation analysis to be able to cross the system
boundaries and apply them to enhance existing checking
and error handling code.

Finding 13: In 69% (79/115) CSI failures, fixes were applied
to code in the upstream system specific to interaction with a
downstream system. Furthermore, among these 79 cases, fixes
for 68 (86%) cases resided in dedicated łconnectorž modules.

Many systemsmaintain code for cross-system interactions
in modularized connectors (also named handlers and clients).
Take Flink as an example. Its connectors to Hive and Kafka
are maintained in flink-connectors with 32 other connectors;
the connector to HDFS resides in flink-filesystems along with
connectors for other downstream file systems; the connector
to YARN is in flink-yarn. Connector code contributes to less
than 5% of the entire codebase, but is the target of fixing
more than half of the studied CSI issues. In the other 11 (out

Cross-System Interaction Failures in Modern Cloud Systems EuroSys ’23, May 8ś12, 2023, Rome, Italy

of 79) cases, the fixes were applied to code specific to the
downstream system but not in any connector modules. In
those cases, the CSI code lacks modularity.
In the remaining 36 cases, the fixes were applied to code

not specific to the downstream system being interacted with,
but to generic code that is used to interact with multiple
downstream systems. For example, in SPARK-10122, the fix
corrected an issue in PySpark’s core streaming module that
lost a data attribute during compaction. Such issues could
potentially affect multiple downstream systems.

Implication. With current fix practices, we expect CSI fail-
ures to continue being prevalent. A significant number of
CSI failures were fixed as afterthoughts to the failures; the
fixes were not sufficiently general (Finding 13) and therefore,
the same CSI issues could be experienced in a different up-
stream system (Finding 12). We show that the connectors
could be an effective starting point for CSI testing and verifi-
cation. The connectors consist of relatively little code, but
are associated with many CSI failures.

8 Cross-System Testing: A Case Study

We present a case study on cross-system-testing of the Spark-
Hive data plane.We have two goals. First, we evaluatewhether
CSI issues, especially those on data planes, are still common
and recurring, given the fixes of the studied CSI failures. We
choose to test the Spark-Hive data plane because it had the
most issues in our dataset (Table 1), as well as the most fixes.

Second, we assess whether cross-system testing is a feasi-
ble solution to detect pre-deployment CSI issues and prevent
failures. We apply the simplest form of cross-system data-
plane testingÐcheck whether the two systems, Spark and
Hive, each process data consistently by writing the data and
then reading it through various interfaces of the two systems.

Our results are specific to the Spark-Hive data plane. De-
veloping a more general tool is our future work.

8.1 Methodology

Setup. Figure 6 illustrates the setup, which writes and reads
data across three different interfaces (SparkSQL, DataFrame,
and HiveQL). Spark (upstream) uses Hive (downstream) as
a backend datastore. Spark uses a series of connectors to
transform the data into a form compatible with Hive. Hive
further transforms data based on the requested data format,
including ORC [8], Parquet [9], or Avro [2]. We use Spark
v3.2.1 (the latest version at the time of writing) for Spark-
to-Spark tests. We use Hive v3.1.2 (the latest version at the
time of writing) and Spark v2.3.0 for both Spark-to-Hive
and Hive-to-Spark tests, because Spark does not support an
external Hive instance beyond v2.3.0.

Test inputs. We generate input data based on the publicly
documented specifications of each interface [15, 30]. The
generated inputs cover all the data types that are supported
by each interface. These inputs include both valid and invalid

Spark

P
ar

se
r

Q
u
er

y
 E

x
ec

u
to

r

S
p
ar

k
-H

iv
e

co
n
n
ec

to
r

Hive

S
er

ia
li

ze
r

S
p

a
rk

S
Q

L
D

a
ta

F
ra

m
e

…

T
ab

le
 O

p
er

at
o
r

…

HiveSQL

H
iv

e
 A

P
Is

(O
R

C
,

P
a

rq
u

et
, A

v
ro

)

Test Plans

SparkSQL

SparkSQL

Dataframe

Dataframe

SparkSQL

Dataframe

SparkSQL

Dataframe

SparkSQL

Dataframe

HiveSQL

HiveSQL

> Spark to Spark

> Spark to Hive

à

à

à

à

à

à

HiveSQL

HiveSQL

SparkSQL

Dataframe

> Hive to Spark

à

à

Figure 6. Setup of cross-system testing for the Spark-Hive data-

plane, which checks whether data is processed consistently.

dataÐthe former are used to test expected behavior, while
the latter are used to test error handling behavior. In total,
we generated 422 and 116 values that cover the data types;
210 are valid and 212 are invalid.

Test oracles. We apply three basic oracles to capture po-
tential discrepancies: (1)Write-Read (WR): For valid data, the
data read from the query should be the data written earlier.
The read following the write can be performed by a different
interface. (2) Error handling (EH): For invalid data, the data
should be either rejected or corrected with feedback (e.g., log
messages) during the writes. (3) Differential (Diff): For valid
and/or invalid data, results/behavior should be consistent
across interfaces and backend formats (ORC/Avro/Parquet).
The read values between different write-read interface pairs
are compared.

Artifact. The testing scripts and data are available at https:
//github.com/xlab-uiuc/csi-test-ae.

8.2 Results and Findings

The simple testing described in ğ8.1 exposed 15 distinct dis-
crepancies on the Spark-Hive data plane, caused by incon-
sistent data processing across Spark and Hive. We reported
13 of them. So far, nine have been acknowledged, among
which two are confirmed as bugs. For the rest, developers
pointed out that the discrepancies can be resolved by custom
configurations including the two unreported discrepancies.
The discrepancies caused the following problems:

Cannot readwhatwaswritten (2/15). In one case (SPARK-
39075), if DataFrame is used to write and then read data
through Avro, data with the BYTE or SHORT type cannot
be read after writing. The root cause is that Avro converts
BYTE/SHORT into INT upon serialization; however, upon
deserialization, it misses the case to convert INT back to
BYTE/SHORT, but throws IncompatibleSchemaException. In
another case (SPARK-39158), valid decimal values written
from DataFrame cannot be read from HiveQL.

Type violations (2/15). When writing and then reading
from SparkSQL, BYTE/SHORT values will be converted into

EuroSys ’23, May 8ś12, 2023, Rome, Italy L. Tang, C. Bhandari, Y. Zhang, A. Karanika, S. Ji, I. Gupta, and T. Xu

INT, which violates its original type (HIVE-26533, SPARK-
40409). Moreover, the conversion also creates a side effect of
violating case sensitivity of the column name, with a warn-
ing message of łnot case preserving.ž This is because when
reading data from Hive, Spark falls back to Hive schema
(which is case-insensitive) if it fails to use Spark’s native
format (which is case-sensitive).

Exposing internal configurations of the downstream

to the upstream (5/15). The serializers (Avro/ORC/Par-
quet) are not fully compatible. For example, Avro does not
support non-string keys in maps; ORC and Parquet support it
(HIVE-26531); spark.sql.hive.caseSensitiveInferenceMode
(a Spark configuration) only works with ORC and Parquet,
but not Avro. As a result, the serializer has to be specified
when a table is created and cannot be easily changed. This
means (1) internal configuration of downstream systems can-
not be transparent to the upstream, and (2) if the downstream
changes the serializer, it will break the upstream jobs.

Inconsistent error behavior across interfaces (7/15). For
example, decimal values with too much precision throw an
exception by SparkSQL but evaluate to NULL by DataFrame
(SPARK-40439).

Relying on custom (non-default) configurations (8/15).

For example, SPARK-40439 mentioned that the above can
be resolved by setting spark.sql.storeAssignmentPolicy to
legacy. However, it is a daunting task to achieve consistent
system behavior by fine-tuning configurations (e.g., Spark-
SQL alone has 350+ configuration parameters). Testing sys-
tems under the deployment configuration (not the default
configuration) could potentially expose such discrepancies.

Finding 15: Data-plane CSI issues are still common and re-
curring across the latest versions of Spark and Hive, despite
many being reported and fixed.

Implication. It is critical to understand and resolve in-
consistencies at deployment time to prevent potential CSI
failures. Cross-testing co-deployed, interacting systems under
deployment configuration could be an effective approach to
prevent CSI failures, especially data-plane ones.

9 Threats to Validity

The open-source CSI dataset may not reflect all CSI failures in
deployed systems. Specifically, CSI failures caused by misop-
eration, such as with capacity planning and load manage-
ment, are unlikely to be reported to developers. For example,
we did not observe metastable failures in our dataset, despite
the fact that CSI failures by definition include metastable
failures that occur across systems. Closed-source distributed
systems may have different characteristics.
Also, CSI failures with explicit symptoms (e.g., crashing

behavior) are more likely to be observed and reported than
the silent ones. This could be a source of bias in our dataset.

For the open-source CSI dataset, we selected systems based
on their occurrence in our heuristic sample from the aggre-
gated JIRA database (ğ4). Many such issues had data process-
ing systems as upstream systems. Other systems could have
different characteristics, especially those with simpler inter-
faces and fewer subsystems. We also excluded issues with
łminorž severity, which could have different characteristics.

Our sampling is imperfect due to the lack of a labeled
dataset (ğ4). We used heuristics to identify multi-system is-
sues, from which we selected systems and identified failures.

10 Discussion

There is no silver bullet for CSI failures. As evidence, despite
decades of research, data/type inconsistencies and API mis-
uses remain largely unsolved problems in practice and have
been causing many CSI failures. The emerging cross-system
interactions magnify the integration challenges. We now
discuss promising directions on CSI issues.

Cross-system testing, verification, and model check-

ing. One intuitive way of addressing CSI issues is to treat
different (sub-)systems as traditional software modules and
to apply existing testing, verification, or model checking
techniques. As demonstrated in ğ8, we believe such efforts
can potentially detect many CSI issues and can be performed
in a continuous manner (e.g., before changing related code
and configurations in production). Today’s DevOps practices
make it possible to perform white-box techniques.
One challenge is to scale traditional techniques for unit

and module levels (e.g., symbolic execution, concolic testing)
to the (sub-)system level. Finding 14 points to analyzing
connectors for the interaction as a good starting point, as
they constitute a small subset of the entire codebase.

Another promising direction is cross-system testing with
feedback-based fuzzing. Recently, Schumilo et al. [101] scaled
feedback-based fuzz testing to network-based systems with
fast virtualmachine snapshot and restore techniques. Though
applied to single-node network systems, their hypervisor-
based snapshot fuzzing is a promising technique to scale
feedback-based fuzzing to cross-system testing.

Unification and standardization. One direction to ad-
dress heterogeneity is unificationÐbuilding a standardized
layer that abstracts away system-specific details. For exam-
ple, a unified serialization library that can handle conver-
sion between the system’s data and all desired data formats
could simplify the data translation process between systems.
However, market motivation remains a challenge [102]. Fur-
thermore, standardization may not be a panacea to all CSI
issues, as reflected by the POSIX and SQL standards.

Rethinking data/API specifications. Many studied CSI
failures can potentially be addressed with comprehensive,
machine-checkable data/API specifications. Yet, specifica-
tion engineering is costly, and specification mining remains

Cross-System Interaction Failures in Modern Cloud Systems EuroSys ’23, May 8ś12, 2023, Rome, Italy

immature [77]. CSI failures can serve as another motiva-
tion to rethink data/API specifications, with more targeted,
specialized techniques.

Serialization library for complicated data abstraction.

Many CSI failures reside in ad-hoc (de)serialization for com-
plex data abstractions (e.g., tables) with custom performance
optimizations. For example, Spark’s deserializer implements
certain read optimizations for ORC tables that Hive’s dese-
rializer does not. One could develop and promote unified
serialization libraries that support complex data abstractions
with workload-specific read and write optimizations.

Change analysis for cross-system interactions. Many
CSI issues are introduced during software evolution. We ob-
serve that system interfaces constantly need changes when
new features/configurations are added. Traditional regres-
sion testing [119] does not address the interface problem.
New techniques are needed for reasoning about impacts of
changes regarding cross-system interactions.

CSI fault tolerance. We find that existing system imple-
mentations do not have effective mechanisms to tolerate
CSI issues (see ğ5.2). Mostly, upstream systems treat CSI
failures in the same way as dependency failures. However,
such practices miss the opportunities of tolerating CSI fail-
ures, because the downstream systems are well available. A
potential direction is to leverage the diversity of existing
interfaces to build interaction redundancy across systems.

11 Related Work

Cloud system failure analysis. Many studies [34, 37, 45,
51, 55, 62ś64, 70, 76, 79, 81, 87, 92, 96, 120, 126] analyzed
cloud and distributed system failures, with different focus-
es/perspectives, including fail-slow behavior [64, 118], gray
and partial failures [70, 81], network partitions [34, 37], up-
grade failures [124, 126], and metastable failures [45, 69].
However, few of them discussed CSI failures comprehen-
sively.
Liu et al., [79] reported data-format issues as the major

root causes of cloud incidents in Azure. The reported preva-
lence corroborates our results. We provide a deep analysis on
data-plane CSI failures including the reported data-format
issues. We show that CSI failures are much broader.
Gunawi et al., [62] observed cross-system failures in the

CBS dataset (see ğ4). Unfortunately, they left the analysis
of cross-system failures as future work. Note that only 37%
(39/105) of their cross-system failures are CSI failures.

Studies on software bugs andmisconfigurations. There
has been rich literature that studies software bugs and mis-
configurations, including those in cloud systems [48, 56, 62,
76, 88, 103] and other software systems such as OS kernels,
file systems, server systems, etc. [50, 83, 84, 90, 117].
As we have shown in the paper, CSI issues are not tradi-

tional bugs. Often, there is no strictly defined bug in either

the upstream or the downstream system. Regarding configu-
ration, as discussed in ğ6.2.1, most of configuration-related
CSI failures are not caused by erroneous values, but by in-
consistently configuring involving systems.

Integration testing. Recent work, e.g., DUPTester [126]
and ZebraConf [86] leverages existing integration tests to
detect software upgrade bugs and misconfigurations. The
key idea is to test a system with components under different
versions, a common state under continuous, rolling upgrades.
Such integration testing cannot directly address CSI issues,
as CSI issues may not be caused by version incompatibility
during software upgrades. However, systematic cross-system
integration testing can be extended to combat CSI failures.

Cross-checkingmultiple implementations that follow same
specifications is a powerful principle to detect semantic
bugs [53, 65, 89, 121]. Juxta [89] cross-checks multiple Linux
file system implementations that obey same API semantics.
The idea can be extended and applied to the cross-system
interactions, if multiple implementations are available.

API specifications and invariant mining. Techniques
for inferring API specifications and invariants have been
studied [61, 85, 99, 115]. Existing API specification mining
techniques are not mature enough to be used for bug finding
due to false information [77]. I4 [85] infers inductive invari-
ants to verify distributed protocols, which can potentially
address CSI failures due to discrepancies in protocol imple-
mentations. Akita infers API models by monitoring the API
traffic to find regressions [115].

Type safety andunit correctness. Type systems are devel-
oped to ensure type safety, including specialized solutions for
unit correctness [73, 93, 100]. CSI discrepancies are broader
and more diverse than type/unit inconsistencies.

12 Concluding Remarks

This paper presents the first in-depth analysis of cross-system
interaction (CSI) failures from proprietary and open-source
distributed systems. We found that CSI failures account for
a significant portion (20%) of the most catastrophic cloud
incidents, indicating a demand for research efforts on un-
derstanding and addressing CSI failures. Our study revealed
over a dozen findings with concrete implications. In particu-
lar, we discussed approaches to investigate for cross-system
testing and analysis, standardization and specification of
cross-system interaction, and CSI-specific fault tolerance. As
a feasibility study, we developed a data-plane cross-system
testing tool for Spark and Hive, and it exposed previously
unknown CSI issues. We expect CSI failures to become more
common, given the growing complexity of cloud systems
today and practice of composing them into versatile com-
puting stacks. We believe future research can leverage the
guidance provided by our study to combat CSI failures.

EuroSys ’23, May 8ś12, 2023, Rome, Italy L. Tang, C. Bhandari, Y. Zhang, A. Karanika, S. Ji, I. Gupta, and T. Xu

Acknowledgement

We thank anonymous reviewers and our shepherd, Roberto
Natella, for their insightful comments. We thank Darko Mari-
nov, Justin Meza, Xudong Sun, and Lalith Suresh for valu-
able feedback and discussions that helped improve our work.
We thank Jack Chen, Xudong Sun, Jinghao Jia, and Le Xu
who helped with a pivot study of CSI failures. This work
was funded in part by NSF CNS-2130560, CNS-2145295, IIS-
1909577, CNS-1908888, a Facebook Core Systems Faculty
Research gift, a Capital One gift, and a Microsoft gift.

References
[1] ANSI Compliance. https://spark.apache.org/docs/latest/sql-ref-ansi-

compliance.html.

[2] Apache Avro. https://avro.apache.org/.

[3] Apache Flink. https://flink.apache.org/.

[4] Apache Hadoop YARN. https://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html.

[5] Apache HBase. https://hbase.apache.org/book.html.

[6] Apache Hive. https://cwiki.apache.org/confluence/display/Hive/

Tutorial.

[7] Apache Kafka. https://kafka.apache.org/documentation/.

[8] Apache ORC: The smallest, fastest columnar storage for Hadoop

workloads. https://orc.apache.org/.

[9] Apache Parquet. https://parquet.apache.org/.

[10] Apache Spark Codebase. https://github.com/apache/spark.

[11] Apache Spark Website. https://spark.apache.org/.

[12] ASF JIRA. https://issues.apache.org/jira/secure/Dashboard.jspa.

[13] AWS Post-Event Summaries. https://aws.amazon.com/

premiumsupport/technology/pes/.

[14] Azure status history. https://status.azure.com/en-us/status/history/.

[15] Data types (Databricks SQL). https://docs.databricks.com/sql/

language-manual/sql-ref-datatypes.html#data-types-databricks-

sql.

[16] Dynamic Tables. https://nightlies.apache.org/flink/flink-docs-

release-1.14/docs/dev/table/concepts/dynamic_tables/.

[17] Google Cloud Service Health. https://status.cloud.google.com/

summary.

[18] Google was hit with massive outage, including youtube, gmail and

google classroom | cnn business. https://www.cnn.com/2020/12/14/

tech/google-youtube-gmail-down/index.html.

[19] Google’s apps crash in a worldwide outage. - the new york

times. https://www.nytimes.com/2020/12/14/business/google-down-

worldwide.html.

[20] Hadoop Common. https://github.com/apache/hadoop/tree/trunk/

hadoop-common-project.

[21] Hadoop Distributed File System. http://hadoop.apache.org/docs/

current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html.

[22] Implicit assumptions of the Hadoop FileSystem APIs.

https://hadoop.apache.org/docs/stable/hadoop-project-

dist/hadoop-common/filesystem/introduction.html#Implicit_

assumptions_of_the_Hadoop_FileSystem_APIs.

[23] Incident affecting Google App Engine. https://status.cloud.google.

com/incidents/NuaWbbv8n8V8PMHNR7kT.

[24] Incident affecting Google BigQuery. https://status.cloud.google.com/

incidents/qq7VS3aLtp6Nmgs5Nux4.

[25] Incident affecting Google Cloud Infrastructure Components, Google

Cloud Support, Google Cloud Console, Google BigQuery, Google

Cloud Storage, Google Cloud Networking, Google Kubernetes En-

gine, Virtual Private Cloud (VPC). https://status.cloud.google.com/

incidents/cFXPsFUnUELR8U2bQeGz.

[26] Incident affecting Google Compute Engine, Google Cloud Network-

ing, Access Approval, Google App Engine. https://status.cloud.google.

com/incidents/1tX748pbxW2JjTUuTJsx.

[27] Integration with Cloud Infrastructures. https://spark.apache.org/

docs/latest/cloud-integration.html.

[28] Massive google outage takes millions offline. https:

//www.forbes.com/sites/paulmonckton/2020/12/14/massive-

google-outage-takes-millions-offline/?sh=40f33d060ad1.

[29] Protocol buffers guide. https://developers.google.com/protocol-

buffers/docs/proto.

[30] Spark SQL Guide. https://spark.apache.org/docs/latest/sql-

programming-guide.html.

[31] Mars Climate Orbiter Mishap Investigation Board Phase I Re-

port. https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf,

Nov. 1999.

[32] CBS: Cloud Bug Study Database. https://ucare.cs.uchicago.edu/

projects/cbs/, 2014.

[33] Apache Hive SQL Conformance. https://cwiki.apache.org/

confluence/display/Hive/Apache+Hive+SQL+Conformance, Nov.

2018.

[34] Alfatafta, M., Alkhatib, B., Alqraan, A., and Al-Kiswany, S.

Toward a Generic Fault Tolerance Technique for Partial Network Par-

titioning. In Proceedings of the 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’20) (Nov. 2020).

[35] Allspaw, J. Fault injection in production: Making the case for re-

silience testing. Communications of the ACM (CACM) 55, 10 (Oct

2012), 48ś52.

[36] Alluxio Docs. The Need for a New Data Orchestration Platform.

https://www.alluxio.io/data-orchestration/.

[37] Alqraan, A., Takruri, H., Alfatafta, M., and Al-Kiswany, S.

An Analysis of Network-Partitioning Failures in Cloud Systems. In

Proceedings of the 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’18) (Oct. 2018).

[38] Altekar, G., and Stoica, I. Focus Replay Debugging Effort on the

Control Plane. In Proceedings of the 6th Workshop on Hot Topics in

System Dependability (HotDep’10) (Oct. 2010).

[39] Amann, S., Nguyen, H. A., Nadi, S., Nguyen, T. N., and Mezini,

M. A Systematic Evaluation of Static API-Misuse Detectors. IEEE

Transactions on Software Engineering 45, 12 (Dec. 2019), 1170ś1188.

[40] Attariyan, M., Chow, M., and Flinn, J. X-ray: Automating Root-

Cause Diagnosis of Performance Anomalies in Production Software.

In Proceedings of the 10th USENIX Conference on Operating Systems

Design and Implementation (OSDI’12) (Oct. 2012).

[41] Attariyan, M., and Flinn, J. Automating Configuration Trou-

bleshooting with Dynamic Information Flow Analysis. In Proceedings

of the 9th USENIX Conference on Operating Systems Design and Imple-

mentation (OSDI’10) (Oct. 2010).

[42] Basiri, A., Behnam, N., de Rooij, R., Hochstein, L., Kosewski, L.,

Reynolds, J., and Rosenthal, C. Chaos engineering. IEEE Software

33, 3 (May 2016), 35ś41.

[43] Behrang, F., Cohen, M. B., and Orso, A. Users Beware: Preference

Inconsistencies Ahead. In Proceedings of the 10th Joint Meeting of

the European Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering (ESEC/FSE’15)

(Aug. 2015).

[44] Bogart, C., Kästner, C., Herbsleb, J., and Thung, F. How to Break

an API: Cost Negotiation and Community Values in Three Software

Ecosystems. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE’16) (Nov.

2016).

[45] Bronson, N., Aghayev, A., Charapko, A., and Zhu, T. Metastable

Failures in Distributed Systems. In Proceedings of the 18th Workshop

on Hot Topics in Operating Systems (HotOS’21) (May 2021).

Cross-System Interaction Failures in Modern Cloud Systems EuroSys ’23, May 8ś12, 2023, Rome, Italy

[46] Brooker, M. The Fundamental Mechanism of Scaling. http://brooker.

co.za/blog/2021/01/22/cloud-scale.html, 2020.

[47] Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and Wilkes,

J. Borg, Omega, and Kubernetes. Communications of the ACM 59, 5

(May 2016), 50ś57.

[48] Chen, H., Dou, W., Jiang, Y., and Qin, F. Understanding Exception-

Related Bugs in Large-Scale Cloud Systems. In Proceedings of the 34th

IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE’19) (Nov. 2019).

[49] Chen, Q., Wang, T., Legunsen, O., Li, S., and Xu, T. Understanding

and Discovering Software Configuration Dependencies in Cloud and

Datacenter Systems. In Proceedings of the 2020 ACM Joint European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE’20) (November 2020).

[50] Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. An Empir-

ical Study of Operating Systems Errors. In Proceedings of the Eigh-

teenth ACM Symposium on Operating Systems Principles (SOSP’01)

(Oct. 2001).

[51] Cotroneo, D., De Simone, L., Liguori, P., Natella, R., and

Bidokhti, N. How Bad Can a Bug Get? An Empirical Analysis

of Software Failures in the OpenStack Cloud Computing Platform.

In Proceedings of the 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE’19) (Aug. 2019).

[52] Databricks Docs. Databricks architecture overview. https://docs.

databricks.com/getting-started/overview.html.

[53] Engler, D., Chen, D. Y., Hallem, S., Chou, A., and Chelf, B. Bugs as

Deviant Behavior: A General Approach to Inferring Errors in Systems

Code. In Proceedings of the Eighteenth ACM Symposium on Operating

Systems Principles (SOSP’01) (Oct. 2001).

[54] Flink Docs. Checkpointing. https://nightlies.apache.

org/flink/flink-docs-release-1.14/docs/dev/datastream/fault-

tolerance/checkpointing/.

[55] Ford, D., Labelle, F., Popovici, F. I., Stokely, M., Truong, V.-A.,

Barroso, L., Grimes, C., andQuinlan, S. Availability in Globally

Distributed Storage Systems. In Proceedings of the 9th USENIX Con-

ference on Operating Systems Design and Implementation (OSDI’10)

(Oct. 2010).

[56] Gao, Y., Dou, W., Qin, F., Gao, C., Wang, D., Wei, J., Huang, R.,

Zhou, L., and Wu, Y. An Empirical Study on Crash Recovery Bugs

in Large-Scale Distributed Systems. In Proceedings of the 26th ACM

Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/FSE’18) (Nov. 2018).

[57] Gember-Jacobson, A., Wu, W., Li, X., Akella, A., and Mahajan,

R. Management Plane Analytics. In Proceedings of the 2015 Internet

Measurement Conference (IMC’15) (Oct. 2015).

[58] Ghemawat, S., Gobioff, H., and Leung, S.-T. The Google File System.

In Proceedings of the 19th ACM Symposium on Operating Systems

Principles (SOSP’03) (Oct. 2003).

[59] Google Cloud. What is a hybrid cloud? https://cloud.google.com/

learn/what-is-hybrid-cloud.

[60] Govindan, R., Minei, I., Kallahalla, M., Koley, B., and Vahdat,

A. Evolve or Die: High-Availability Design Principles Drawn from

Google’s Network Infrastructure. In Proceedings of the 2011 ACM

SIGCOMM Conference (SIGCOMM’11) (Aug. 2016).

[61] Grant, S., Cech, H., and Beschastnikh, I. Inferring and Asserting

Distributed System Invariants. In Proceedings of the 40th International

Conference on Software Engineering (ICSE’18) (May 2018).

[62] Gunawi, H. S., Hao, M., Leesatapornwongsa, T., Patana-anake,

T., Do, T., Adityatama, J., Eliazar, K. J., Laksono, A., Lukman, J. F.,

Martin, V., and Satria, A. D. What Bugs Live in the Cloud? A

Study of 3000+ Issues in Cloud Systems. In Proceedings of the 5th

ACM Symposium on Cloud Computing (SoCC’14) (Nov. 2014).

[63] Gunawi, H. S., Hao, M., Suminto, R. O., Laksono, A., Satria, A. D.,

Adityatama, J., and Eliazar, K. J. Why Does the Cloud Stop Com-

puting? Lessons from Hundreds of Service Outages. In Proceedings of

the 7th ACM Symposium on Cloud Computing (SoCC’16) (Oct. 2016).

[64] Gunawi, H. S., Suminto, R. O., Sears, R., Golliher, C., Sundarara-

man, S., Lin, X., Emami, T., Sheng, W., Bidokhti, N., McCaffrey,

C., Grider, G., Fields, P. M., Harms, K., Ross, R. B., Jacobson, A.,

Ricci, R., Webb, K., Alvaro, P., Runesha, H. B., Hao, M., and Li, H.

Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large

Production Systems. In Proceedings of the 16th USENIX Conference on

File and Storage Technologies (FAST’18) (Feb. 2018).

[65] Gyori, A., Lambeth, B., Shi, A., Legunsen, O., andMarinov, D. Non-

Dex: A Tool for Detecting and Debugging Wrong Assumptions on

Java API Specifications. In Proceedings of the 24th ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering (FSE’16)

(Nov. 2016).

[66] HBase Docs. HBase Cluster Replication. https://hbase.apache.org/

book.html#_cluster_replication.

[67] HBase Docs. HBase Write Ahead Log. https://hbase.apache.org/

book.html#wal.

[68] HDFS Docs. Data Replication. https://hadoop.apache.org/docs/

stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Data_

Replication.

[69] Huang, L., Magnusson, M., Muralikrishna, A. B., Estyak, S.,

Isaacs, R., Aghayev, A., Zhu, T., and Charapko, A. Metastable

Failures in the Wild. In Proceedings of the 16th USENIX Symposium on

Operating Systems Design and Implementation (OSDI’22) (July 2022).

[70] Huang, P., Guo, C., Zhou, L., Lorch, J. R., Dang, Y., Chintalapati,

M., and Yao, R. Gray Failure: The Achilles’ Heel of Cloud-Scale Sys-

tems. In Proceedings of the 16th Workshop on Hot Topics in Operating

Systems (HotOS-XVI) (May 2017).

[71] Istio Docs. Architecture. https://istio.io/latest/docs/ops/

deployment/architecture/.

[72] Jia, Z., Li, S., Yu, T., Zeng, C., Xu, E., Liu, X., Wang, J., and Liao, X.

DepOwl: Detecting Dependency Bugs to Prevent Compatibility Fail-

ures. In Proceedings of the 43rd International Conference on Software

Engineering (ICSE’21) (May 2021).

[73] Jiang, L., and Su, Z. Osprey: A Practical Type System for Validating

Dimensional Unit Correctness of C Programs. In Proceedings of the

28th International Conference on Software Engineering (ICSE’06) (May

2006).

[74] Kafka Docs. Auto Restart. https://kafka.apache.org/documentation/

streams/architecture#streams_architecture_recovery.

[75] Kubernetes Docs. Control Plane Components. https://kubernetes.

io/docs/concepts/overview/components/.

[76] Leesatapornwongsa, T., Lukman, J. F., Lu, S., and Gunawi, H. S.

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Dat-

acenter Distributed Systems. In Proceedings of the 21st International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS’16) (Mar. 2016).

[77] Legunsen, O., Hassan, W. U., Xu, X., Rosu, G., and Marinov, D.

HowGood are the Specs? A Study of the Bug-Finding Effectiveness of

Existing Java API Specifications. In Proceedings of the 31th IEEE/ACM

International Conference on Automated Software Engineering (ASE’16)

(2016).

[78] Li, G., Lu, S., Musuvathi, M., Nath, S., and Padhye, R. Efficient

Scalable Thread-Safety-Violation Detection. In Proceedings of the 27th

ACM Symposium on Operating Systems Principles (SOSP’19) (2019).

[79] Liu, H., Lu, S., Musuvathi, M., and Nath, S. What Bugs Cause

Production Cloud Incidents? In Proceedings of the 17th Workshop on

Hot Topics in Operating Systems (HotOS’19) (Nov. 2019).

[80] Lou, C., Chen, C., Huang, P., Dang, Y., Qin, S., Yang, X., Li, X., Lin,

Q., and Chintalapati, M. RESIN: A Holistic Service for Dealing with

Memory Leaks in Production Cloud Infrastructure. In Proceedings

EuroSys ’23, May 8ś12, 2023, Rome, Italy L. Tang, C. Bhandari, Y. Zhang, A. Karanika, S. Ji, I. Gupta, and T. Xu

of the 16th USENIX Symposium on Operating Systems Design and

Implementation (OSDI’22) (July 2022).

[81] Lou, C., Huang, P., and Smith, S. Understanding, Detecting and

Localizing Partial Failures in Large System Software. In Proceedings

of the 17th USENIX Symposium on Networked Systems Design and

Implementation (NSDI’20) (Feb. 2020).

[82] Lou, C., Jing, Y., and Huang, P. Demystifying and Checking Silent

Semantic Violations in Large Distributed Systems. In Proceedings

of the 16th USENIX Symposium on Operating Systems Design and

Implementation (OSDI’22) (July 2022).

[83] Lu, L., Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H., and Lu, S. A

Study of Linux File System Evolution. ACM Trans. Storage 10, 1 (Jan.

2014).

[84] Lu, S., Park, S., Seo, E., and Zhou, Y. Learning fromMistakes: A Com-

prehensive Study on Real World Concurrency Bug Characteristics.

SIGARCH Comput. Archit. News 36, 1 (Mar. 2008), 329ś339.

[85] Ma, H., Goel, A., Jeannin, J.-B., Kapritsos, M., Kasikci, B., and

Sakallah, K. A. I4: Incremental Inference of Inductive Invariants for

Verification of Distributed Protocols. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles (SOSP’19) (2019).

[86] Ma, S., Zhou, F., Bond, M. D., and Wang, Y. Finding Heterogeneous-

Unsafe Configuration Parameters in Cloud Systems. In Proceedings of

the 16th ACM European Conference on Computer Systems (EuroSys’21)

(Apr. 2021).

[87] Maurer, B. Fail at Scale: Reliability in the Face of Rapid Change.

Communications of the ACM 58, 11 (Nov. 2015), 44ś49.

[88] Mehta, S., Bhagwan, R., Kumar, R., Ashok, B., Bansal, C., Maddila,

C., Bird, C., Asthana, S., and Kumar, A. Rex: Preventing Bugs and

Misconfiguration in Large Services using Correlated Change Analysis.

In Proceedings of the 17th USENIX Symposium on Networked Systems

Design and Implementation (NSDI’20) (Feb. 2020).

[89] Min, C., Kashyap, S., Lee, B., Song, C., and Kim, T. Cross-checking

Semantic Correctness: The Case of Finding File System Bugs. In Pro-

ceedings of the 25th ACM Symposium on Operating Systems Principles

(SOSP’15) (Oct. 2015).

[90] Nagaraja, K., Oliveira, F., Bianchini, R., Martin, R. P., and

Nguyen, T. D. Understanding and Dealing with Operator Mistakes

in Internet Services. In Proceedings of the 6th USENIX Conference on

Operating Systems Design and Implementation (OSDI’04) (Dec. 2004).

[91] OpenStack Docs. Logical architecture. https://docs.openstack.org/

install-guide/get-started-logical-architecture.html.

[92] Oppenheimer, D., Ganapathi, A., and Patterson, D. A. Why Do

Internet Services Fail, andWhat Can Be Done About It? In Proceedings

of the 4th USENIX Symposium on Internet Technologies and Systems

(USITS’03) (Mar. 2003).

[93] Ore, J.-P., Detweiler, C., and Elbaum, S. Phriky-Units: A Light-

weight, Annotation-Free Physical Unit Inconsistency Detection Tool.

In Proceedings of the 26th ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA’17) (2017).

[94] Pillai, T. S., Chidambaram, V., Alagappan, R., Al-Kiswany, S.,

Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. All File Sys-

tems Are Not Created Equal: On the Complexity of Crafting Crash-

Consistent Applications. In Proceedings of the 11th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI’14) (Oct.

2014).

[95] Rabkin, A., and Katz, R. Static Extraction of Program Configura-

tion Options. In Proceedings of the 33rd International Conference on

Software Engineering (ICSE’11) (May 2011).

[96] Rabkin, A., and Katz, R. How Hadoop Clusters Break. IEEE Software

Magazine 30, 4 (July 2013), 88ś94.

[97] Ramachandran, V., Gupta, M., Sethi, M., and Chowdhury, S. R.

Determining Configuration Parameter Dependencies via Analysis of

Configuration Data fromMulti-tiered Enterprise Applications. In Pro-

ceedings of the 6th International Conference on Autonomic Computing

and Communications (ICAC’09) (June 2009).

[98] Rigger, M., and Su, Z. Testing Database Engines via Pivoted Query

Synthesis. In Proceedings of the 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’20) (Nov. 2020).

[99] Robillard, M. P., Bodden, E., Kawrykow, D., Mezini, M., and

Ratchford, T. Automated API Property Inference Techniques. IEEE

Transactions on Software Engineering 39, 5 (May 2013), 613ś637.

[100] Rosu, G., and Chen, F. Certifying Measurement Unit Safety Policy.

In Proceedings of the 18th IEEE International Conference on Automated

Software Engineering (ASE’03) (Oct. 2003).

[101] Schumilo, S., Aschermann, C., Jemmett, A., Abbasi, A., and Holz,

T. Nyx-Net: Network Fuzzing with Incremental Snapshots. In Pro-

ceedings of the Seventeenth European Conference on Computer Systems

(EuroSys’22) (Apr. 2022).

[102] Stoica, I., and Shenker, S. From Cloud Computing to Sky Comput-

ing. In Proceedings of the 18th Workshop on Hot Topics in Operating

Systems (HotOS’21) (May 2021).

[103] Sun, X., Cheng, R., Chen, J., Ang, E., Legunsen, O., and Xu, T.

Testing Configuration Changes in Context to Prevent Production

Failures. In Proceedings of the 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’20) (Nov. 2020).

[104] Sun, X., Suresh, L., Ganesan, A., Alagappan, R., Gasch, M., Tang,

L., and Xu, T. Reasoning about modern datacenter infrastructures

using partial histories. In Proceedings of the 18th Workshop on Hot

Topics in Operating Systems (HotOS-XVIII) (May 2021).

[105] Treynor, B., Dahlin, M., Rau, V., and Beyer, B. The Calculus of

Service Availability. Communications of the ACM (CACM) 60, 9 (Sept.

2017), 42ś47.

[106] van Renesse, R., Weatherspoon, H., Shen, Z., and Song, W. The

Supercloud: Applying Internet Design Principles to Interconnecting

Clouds. In IEEE Internet Computing (IEEE Internet Computing’18)

(Mar. 2018).

[107] Veeraraghavan, K., Meza, J., Michelson, S., Panneerselvam, S.,

Gyori, A., Chou, D., Margulis, S., Obenshain, D., Padmanabha, S.,

Shah, A., Song, Y. J., and Xu, T. Maelstrom: Mitigating Datacenter-

level Disasters by Draining Interdependent Traffic Safely and Effi-

ciently. In Proceedings of the 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’18) (Oct. 2018).

[108] Wang, Y.,Wen,M., Liu, Y.,Wang, Y., Li, Z.,Wang, C., Yu, H., Cheung,

S.-C., Xu, C., and Zhu, Z. Watchman: Monitoring Dependency Con-

flicts for Python Library Ecosystem. In Proceedings of the ACM/IEEE

42nd International Conference on Software Engineering (ICSE’20) (July

2020).

[109] Wen, M., Liu, Y., Wu, R., Xie, X., Cheung, S.-C., and Su, Z. Exposing

Library API Misuses via Mutation Analysis. In Proceedings of the

41st International Conference on Software Engineering (ICSE’19) (May

2019).

[110] Xia, H., Zhang, Y., Zhou, Y., Chen, X., Wang, Y., Zhang, X., Cui,

S., Hong, G., Zhang, X., Yang, M., and Yang, Z. How Android

Developers Handle Evolution-Induced API Compatibility Issues: A

Large-Scale Study. In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering (ICSE’20) (July 2020).

[111] Xia, W., Wen, Y., Foh, C. H., Niyato, D., and Xie, H. A Survey

on Software-Defined Networking. IEEE Communications Surveys &

Tutorials 17, 1 (June 2014), 27ś51.

[112] Xu, T., Jin, X., Huang, P., Zhou, Y., Lu, S., Jin, L., and Pasupathy, S.

Early Detection of Configuration Errors to Reduce Failure Damage.

In Proceedings of the 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’16) (Nov. 2016).

[113] Xu, T., Zhang, J., Huang, P., Zheng, J., Sheng, T., Yuan, D., Zhou,

Y., and Pasupathy, S. Do Not Blame Users for Misconfigurations.

In Proceedings of the 24th Symposium on Operating System Principles

(SOSP’13) (Nov. 2013).

Cross-System Interaction Failures in Modern Cloud Systems EuroSys ’23, May 8ś12, 2023, Rome, Italy

[114] Xu, T., and Zhou, Y. Systems Approaches to Tackling Configuration

Errors: A Survey. ACM Computing Surveys (CSUR) 47, 4 (July 2015).

[115] Yang, J. Modeling API Traffic to Catch Breaking Changes.

https://www.akitasoftware.com/blog-posts/modeling-api-traffic-

to-catch-breaking-changes, 2021.

[116] YARN Docs. YARN ResourceManager HA. https:

//hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-

site/ResourceManagerHA.html.

[117] Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L. N., and

Pasupathy, S. An Empirical Study on Configuration Errors in Com-

mercial and Open Source Systems. In Proceedings of the 23rd ACM

Symposium on Operating Systems Principles (SOSP’11) (Oct. 2011).

[118] Yoo, A., Wang, Y., Sinha, R., Mu, S., and Xu, T. Fail-slow fault

tolerance needs programming support. In Proceedings of the 18th

Workshop on Hot Topics in Operating Systems (HotOS-XVIII) (May

2021).

[119] Yoo, S., and Harman, M. Regression Testing Minimisation, Selec-

tion and Prioritization: A Survey. Software Testing, Verification, and

Reliability 22, 2 (Mar. 2012), 67ś120.

[120] Yuan, D., Luo, Y., Zhuang, X., Rodrigues, G., Zhao, X., Zhang, Y.,

Jain, P. U., and Stumm, M. Simple Testing Can Prevent Most Critical

Failures: An Analysis of Production Failures in Distributed Data-

intensive Systems. In Proceedings of the 11th USENIX Conference on

Operating Systems Design and Implementation (OSDI’14) (Oct. 2014).

[121] Yun, I., Min, C., Si, X., Jang, Y., Kim, T., and Naik, M. APISan: Sani-

tizing API Usages through Semantic Cross-Checking. In Proceedings

of the 25th USENIX Security Symposium (USENIX Security ’16) (Aug.

2016).

[122] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,

M., Franklin, M. J., Shenker, S., and Stoica, I. Resilient Distributed

Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Com-

puting. In Proceedings of the 9th USENIX Symposium on Networked

Systems Design and Implementation (NSDI’12) (Apr. 2012).

[123] Zamfir, C., Altekar, G., and Stoica:, I. Automating the Debugging

of Datacenter Applications with ADDA. In Proceedings of the 43rd

Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN’13) (June 2013).

[124] Zhai, E., Chen, A., Piskac, R., Balakrishnan, M., Tian, B., Song,

B., and Zhang, H. Check before You Change: Preventing Correlated

Failures in Service Updates. In Proceedings of the 17th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI’20)

(Feb. 2020).

[125] Zhang, J., Renganarayana, L., Zhang, X., Ge, N., Bala, V., Xu, T.,

and Zhou, Y. EnCore: Exploiting System Environment and Correla-

tion Information for Misconfiguration Detection. In Proceedings of the

19th International Conference on Architecture Support for Programming

Languages and Operating Systems (ASPLOS’14) (Mar. 2014).

[126] Zhang, Y., Yang, J., Jin, Z., Sethi, U., Rodrigues, K., Lu, S., and

Yuan, D. Understanding and Detecting Software Upgrade Failures in

Distributed Systems. In Proceedings of the 28th ACM Symposium on

Operating Systems Principles (SOSP’21) (2021).

A Artifact Appendix

A.1 Abstract

The artifact can be found at https://github.com/xlab-uiuc/csi-

ae and https://github.com/xlab-uiuc/csi-test-ae. The first
repository contains the main dataset and the Jupyter note-
book required to reproduce the key finding statistics and
table data in Sections 1-7. The second repository contains
the scripts required to reproduce the results in Section 8.

A.2 Description & Requirements

A.2.1 How to access. The artifact can be found at https:
//github.com/xlab-uiuc/csi-ae.

A.2.2 Hardware dependencies. None.

A.2.3 Software dependencies. The study artifact can be
accessed on a browser through the provided Binder setup or
run through an online or local Jupyter client.
The case study artifact runs on a Docker container, and

has been tested on Ubuntu 18/20 and OS X. Installation in-
structions for Docker Engine are here: https://docs.docker.
com/engine/install/. All other dependencies are installed in
the Docker container.

A.2.4 Benchmarks. None.

A.3 Set-up

Clone the repository and submodules:

git clone --recursive

https://github.com/xlab-uiuc/csi-ae.git

A.3.1 Study Evaluation (C1, E1 below). The tables and
reproduced findings can be viewed with this Jupyter note-
book: https://github.com/xlab-uiuc/csi-ae/blob/main/reproduce_

study.ipynb. Additionally, you can run the Jupyter notebooks
here: https://mybinder.org/v2/gh/xlab-uiuc/csi-ae/HEAD. Nav-
igating to this link would bring up an ephemeral Jupyter
environment. Once the Jupyter environment is initialized,
browse to reproduce_study.ipynb and execute it to repro-
duce all the tables and findings in the paper.

A.3.2 Case Study Experiment (C2, E2 below). The eas-
iest way to run the experiments is to pull the Docker image
from Docker Hub:

docker pull chaitanyabhandari/\

csi-eurosys23-ae:linux-amd64

or

docker pull chaitanyabhandari/\

csi-eurosys23-ae:linux-arm64-v8

depending on your architecture (dpkg --print-architecture).
You can also build the Docker image with the provided

Dockerfile:

cd csi-test-ae

docker build -t csi-test-ae .

A.4 Evaluation workflow

A.4.1 Major Claims.

• (C1): The study dataset corroborates the 13 findings dis-
cussed in Sections 1-7. This is shown through the dataset
and scripts in (E1).
1. Among 55 cloud incidents, 11 (20%) were caused by

CSI failures, showing their catastrophic consequences.
2. Data- and management-plane interactions contribute

to significant percentages of CSI failures: 51% of CSI
failures in our dataset manifest at the data plane, and

EuroSys ’23, May 8ś12, 2023, Rome, Italy L. Tang, C. Bhandari, Y. Zhang, A. Karanika, S. Ji, I. Gupta, and T. Xu

32% of CSI failures manifest at the management plane.
Control-plane interactions contribute to 17%.

3. Existing fault tolerance or recovery mechanisms are
insufficient or ineffective in handling CSI failures, re-
sulting in diverse failure impacts. Most (89/120) CSI
failures are manifested through crashing behavior.

4. Discrepancies of data-plane CSI failures lie in many
different data properties. The majority (50/61) of data-
plane CSI failures are caused by metadata, namely
typical metadata (42/61) such as addresses/names and
data schemas, and custom metadata (8/61). The oth-
ers (11/61) are caused by custom properties and API
semantics.

5. Complicated data abstractions (e.g., tables) are more
error-prone to CSI failures, compared with simple data
abstractions. 57% (35/61) of data-plane CSI failures are
induced by table-related operations. None are induced
by key-value tuple operations.

6. 25% (15/61) data-plane CSI failures are root-caused by
data serialization.

7. CSI-failure-inducing configuration issues are very dif-
ferent from traditional configuration issues of indi-
vidual systems. The former is mostly about failures
of coherently configuring multiple involved systems,
while the latter is mainly on correctness checking of
erroneous configuration values.

8. Parameter-related configuration issues are the ma-
jority (21/30) of configuration-induced CSI failures.
The rest (9/30) are in configuration components of the
involved systems.

9. Monitoring-related CSIs are critical to reliability, espe-
cially when monitoring data is used for critical actions.

10. Most control-plane CSI failures are rooted in discrep-
ancies of implicit properties, including implicit API
semantics and state/resource inconsistencies.

11. API misuses, despite being a classic problem, are still
common defects and contribute to the majority (13/20)
of control-plane CSI failures. The main patterns are
implicit semantic violation (8/13) and incorrect invo-
cation context (5/13).

12. In 40% (46/115) CSI failures, the merged fixes improve
condition checking and error handling instead of re-
pairing the failed interactions.

13. In 69% (79/115) CSI failures, fixes were applied to code
in the upstream system specific to interaction with
a downstream system. Furthermore, among these 79
cases, fixes for 68 (86%) cases resided in dedicated łcon-
nectorž modules.

• (C2): The case study uncovers discrepancies between the
Spark and Hive data plane exposing the following prob-
lems. This is proven by the experiment in (E2).
ś Cannot read what was written
ś Type violations

ś Exposing internal configurations of the downstream
to the upstream

ś Inconsistent error behavior across interfaces
ś Relying on custom (non-default) configurations

A.4.2 Experiments.

Experiment (E1): Dataset (C1) [15-30 human-minutes]: Ver-
ify the data used to produce statistics for the paper.

[Preparation] The Jupyter notebook for the study data can
be directly accessed here: https://mybinder.org/v2/gh/xlab-

uiuc/csi-ae/HEAD

[Execution] The cells on reproduce_study.ipynb should
already be executed in the provided binder, but can be re-
executed using the run buttons on the top bar.
[Results] Note that any issue mentioned in the paper can

be accessed through appending the issue id to https://issues.

apache.org/jira/browse/, e.g. https://issues.apache.org/jira/
browse/FLINK-12342.

For each finding and table in the paper, you can compare
the data from the corresponding cells in the notebook to the
statistics and tables in the paper. Note that Finding 9 does
not appear in the notebook but can be validated qualitatively
from Section 6.2.2 or from FLINK-887 which is discussed in
that section and is represented in the study.

Experiment (E2): Case study (C2) [2-3 human hours + 2-3
compute-hours]: Performs the Spark-Hive data plane testing
experiments.
[Preparation] Run the docker container.

docker run -it chaitanyabhandari/\

csi-eurosys23-ae:linux-amd64

or

docker run -it chaitanyabhandari/\

csi-eurosys23-ae:linux-arm64-v8

[Execution] In the prepared Docker container, run the
following scripts. Each takes around 30-60 mins.

./spark_e2e.sh

./spark_hive_oneway.sh

./hive_spark_oneway.sh

[Results] The scripts should output results in
logs/<script_name>/<timestamp>. The relevant files to
inspect are the 2-3 *failed.json files in each experiment’s
directory which correspond to the test failures produced by
each test oracle for each experiment. Each log specifies the
input, read/write interface and data format combinations
which failed the test.

• difft: Failed tests will have differing outputs between
combinations of interface and data format.

• wr: Failed tests will have differing values betweenwhat
is written and what is read. Inputs should be on valid
data.

Cross-System Interaction Failures in Modern Cloud Systems EuroSys ’23, May 8ś12, 2023, Rome, Italy

• eh: Failed tests show that the value was successfully
inserted and read back. Inputs should be on invalid
data.

The test failures indicated in the below list can be found
in these files. The reported issues which are associated with
the test failure are also listed. There will be many more test
failures produced than the ones listed, but they correspond
to the same discrepancies as those shown. For many inputs,
multiple oracles will have failed tests.

1. ss_difft 0: SPARK-39075
2. sh_difft 68: SPARK-39158
3. ss_difft 6 (see spark_e2e/log_w_sql_r_sql_avro

for matching warning): HIVE-26533, SPARK-40409
4. ss_difft 420: HIVE-26531
5. ss_difft 70: SPARK-40439
6. sh_difft 131: HIVE-26528
7. sh_difft 163: Same root cause as #6 but exhibits dif-

ferent behavior
8. ss_difft 69: SPARK-40616
9. ss_difft 8: SPARK-40525

10. ss_difft 71: SPARK-40624
11. ss_difft 14: Addressed with the same config as #10
12. ss_difft 48: SPARK-40629
13. ss_difft 86: Addressed with config

spark.sql.legacy.charVarcharAsString

14. ss_difft 116: SPARK-40637
15. ss_eh 198 (see ss_difft_all.json 198 for input de-

tails): SPARK-40630

The following list maps the characteristics discussed in
Section 8.2 of the submission to the aforementioned test
failures.

• Cannot read what was written (2/15): 1, 2
• Type violations (2/15): 3, 8
• Exposing internal configurations of the downstream
to the upstream (5/15): 1, 2, 3, 4, 6

• Inconsistent error behavior across interfaces (7/15): 1,
5, 9, 10, 11, 12, 13

• Relying on custom (non-default) configurations (8/15):
5, 8, 9, 10, 11, 12, 13, 15

	Abstract
	1 Introduction
	2 Definition
	2.1 CSI Failure Mode
	2.2 Failure Planes
	2.3 Examples

	3 Cloud Incidents Induced by CSI Failures
	4 Open-Source CSI Failure Dataset
	5 General Characteristics
	5.1 Failure Plane
	5.2 Failure Symptoms
	5.3 Why existing tests are not enough?

	6 Discrepancies: The Root Causes
	6.1 Data-Plane Discrepancies
	6.2 Management-Plane Discrepancies
	6.3 Control-Plane Discrepancies

	7 Fixes
	8 Cross-System Testing: A Case Study
	8.1 Methodology
	8.2 Results and Findings

	9 Threats to Validity
	10 Discussion
	11 Related Work
	12 Concluding Remarks
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

