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Abstract—Connected Vehicle (CV) technologies are under
rapid deployment across the globe and will soon reshape our
transportation systems, bringing benefits to mobility, safety,
environment, etc. Meanwhile, such technologies also attract
attention from cyberattacks. Recent work shows that CV-based
Intelligent Traffic Signal Control Systems are vulnerable to
data spoofing attacks, which can cause severe congestion effects
in intersections. In this work, we explore a general detection
strategy for infrastructure-side CV applications by estimating the
trustworthiness of CVs based on readily-available infrastructure-
side sensors. We implement our detector for the CV-based
traffic signal control and evaluate it against two representative
congestion attacks. Our evaluation in the industrial-grade traffic
simulator shows that the detector can detect attacks with at least
95% true positive rates while keeping false positive rate below
7% and is robust to sensor noises.

I. INTRODUCTION

The Connected Vehicle (CV) technologies enable Vehicle-
to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) commu-
nications and can help the vehicles and infrastructure make
more informed driving/control decisions. They can benefit
our transportation system by improving mobility, reducing
safety risks and greenhouse gas emissions, etc. As a result,
government agencies across the globe are competing to push
for CV deployments [1]-[3]. Particularly, the US is one of a
few early adopters that has been testing the CV applications in
US cities since 2016 [!]. In general, CV applications can be
categorized into vehicle- and infrastructure-side. The vehicle-
side applications aim to maximize fuel efficiency, enable better
perception, etc. The infrastructure-side applications focus on
improving the control decisions that will be executed in
the infrastructure. The most representative infrastructure-side
application is CV-based traffic signal control, which designs to
improve traffic mobility by assigning signal timing plans that
prioritize lanes with longer queues to reduce the total vehicle
delays. Due to the enormous efforts for CV deployment, CV
applications need to consider an inevitable transition period
where CVs and Regular Vehicles (RVs) coexist on the road [4].
It is projected to take over 20 years to reach 95% market
penetration rate (i.e., 95% vehicles are CVs) [4].

The widespread deployment of CV applications has a signif-
icant impact on the traffic safety and operations, thus making
them to be valuable targets of cyberattacks. Among them, the
most representative attack targets real-world infrastructure-
side CV application [5], where they discover that CV-based
traffic signal control is vulnerable to data spoofing attacks.
The authors assume that the attacker can compromise the On-
Board Unit on a CV to send malicious vehicle states to the
signal controller to cause traffic congestions in the intersection.

To exploit the vulnerabilities, they design two congestion
attacks that target the full deployment and transition periods
respectively. The two attacks are demonstrated to be very
effective on the USDOT Intelligent Traffic Signal System
(I-SIG) [6], a system already under testing in real-world
intersections in US cities.

To defeat such data spoofing attacks, we explore a general
spoofing detection strategy that cross validates the cyber-
layer vehicle states using the physical-layer ones to identify
the spoofers. In our design, we use the readily available
infrastructure-side sensors [7]-[9] to obtain the physical states
of CVs. However, the infrastructure-side sensors suffer from
a fundamental limitation in the detection range compared to
the CV communication range. This leads to challenges when
dealing with vehicles out of the sensor range. To address it,
we leverage well-established fraffic models in transportation
systems, which empirically describe the normal vehicle driving
behaviors. We take the traffic models as the traffic invariants to
estimate the physical states of the vehicles out of sensor range
and assign trust scores based on the difference between re-
ported and estimated states. Finally, a threshold-based anomaly
detector is applied to identify suspicious CVs that have large
negative impacts on the signal plan.

We evaluate the detector in an industrial-grade traffic sim-
ulator, PTV Vissim [10]. In the offline detection setting, our
detector can strike a good balance between True Positive Rate
(TPR) and False Positive Rate (FPR)—it can achieve at least
95% TPRs under all penetration rates while maintaining a
low FPR of 7%. Specifically, when CVs are fully deployed,
our detector shows a perfect detection with 100% TPR and
0% FPR. We also evaluate the robustness of our detector
to the infrastructure-side sensor detection noises. The results
indicate that our detector can tolerate even 3x normal sensor
detection noises. We then systematically explore the online
detection capability of our detector. Results show that our
detector remains effective even in online setting, where in the
worst case, the FPR is only increased by 5% when the TPR
maintains at 98.1% compared to offline detection. In summary,
this work makes the following contributions:

e We explore a general spoofing defense for infrastructure-
side CV applications based on the discrepancy between
the cyber- and physical-layer vehicle states leveraging
infrastructure-side sensors and traffic models.

e We implement the detector for CV-based intelligent traffic
signal systems and evaluate the detection effectiveness
against two congestion attacks. Results show that the de-
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tector can achieve >95% true positive rate when the false
positive rate is <=7% and is robust to sensor noises.

e We explore detection timeliness and effectiveness when it
is deployed as an online detector. Results show that online
detection increases the false positive rate by only 5% when
maintaining a high true positive rate in the worst case.

II. BACKGROUND AND THREAT MODEL

A. CV-based Traffic Signal Control

Traffic signal control is one of the important applications of
CV technologies designed to improve transportation mobility
by reducing vehicle delays in the intersection. It determines
the signal timing plan based on the real-time vehicle states
(including vehicle ID, location, speed, heading, etc.) periodi-
cally broadcast from the CVs in the intersection. Specifically,
CVs send their vehicle states in a standard Basic Safety
Message format, which is transmitted over the CV communi-
cation network, i.e., Dedicated Short-Range Communication
(DSRC) [11] or Cellular Vehicle-to-Everything (C-V2X) [12].
Among the open efforts in CV deployment in the US [1],
the Intelligent Traffic Signal System (I-SIG) [6] is the only
traffic signal system designed for the mobility of general urban
intersections [13]. It has been tested in US cities and shown
high effectiveness at reducing vehicle delays [14].

Fig. 1 shows the configuration of a common major arterial
intersection. As shown in the figure, the traffic lanes are
grouped by different phases, each with a dedicated traffic
signal. As a major arterial intersection, it has two concurrent
phase sequences (or rings) that do not interfere with each
other and can be planned simultaneously. However, the phases
in the same ring need to be planned sequentially due to the
confliction. The 8 phases are separated into two stages, which
are also conflicting with each other. The CV-based traffic
signal controller is invoked at the end of each stage to calculate
an allocation of green lights to the phases, which is called a
signal timing plan. Fig. 2 shows a typical timing plan for 8-
phase intersections. The green blocks indicate the allocated
green light durations. The yellow and red blocks are two
predefined durations for the yellow light and red clearance
light (to accommodate for potential red light runners). The
inputs to the signal controller are the latest CV states received
at the end of each stage, which we refer them as a CV or
traffic snapshot in this work.

B. Congestion Attacks on I-SIG

Recent work [5] discovered two vulnerabilities in the I-
SIG system that can be exploited using data spoofing attacks.
The first one is in queue length estimation, where the I-SIG
system estimates the number of vehicles stopping in a queue
based on the farthest stopped CV in the transition periods, i.e.,
when the Penetration Rate (PR) is smaller than 95%. They
find that such a design can be exploited by the attacker to
inject a fake long queue in the estimation, which we term
queue length attack. The second vulnerability targets the
arrival time estimation, where I-SIG estimates when will a
vehicle arrive at the stop line or stop behind a queue. An
attacker can exploit this by setting the CV with a slow speed
to cause a late arrival time estimation, which we term arrival
time attack. In both attacks, the I-SIG system allocates an
unnecessary long green time for traffic lanes that are not busy
and thus starve the other lanes that need prioritization. The
attacks are evaluated in an industrial-grade traffic simulator
PTV Vissim [10]. Results show that the two attacks can
effectively cause severe congestion effects in full deployment
and transition periods of CVs, respectively.

C. Traffic Modeling

Traffic models as the traffic invariants. Traffic modeling
is a well-established topic in transportation engineering, which
aims to precisely describe the relationships between vehicles
and infrastructure with mathematical equations [15]. Due to
the attractive property of describing normal traffic behaviors,
we repurpose traffic models as the traffic invariants for secu-
rity enforcement, e.g., benign vehicles will generally behave
according to the traffic models. Specifically, we leverage
microscopic traffic models as they describe individual vehicle
behaviors when reacting to the actions of other vehicles.

Newell’s car-following model. Car-following models [16]—
[18] are the most typical microscopic model type that describes
how should a vehicle follow its leading vehicle. The Newell’s
car-following model [!7] is a simple but effective model,
which is built upon the assumption that the follower vehicle’s
trajectory looks similar to its leading vehicle’s trajectory, ex-
cept with a time delay and a space translation. More formally,
the model describes the following relationships:

s=vf-T+d
Ztoltow (t + T) = Ziead (t) — d,

where s is the spacing the following vehicle keeps to the
leading vehicle; xgoow and xje,q are the longitudinal position
offsets of the following and leading vehicles; 7 and d are
two empirically determined parameters describing the reaction
time and stopping distance of a normal driver, which are
typically between 1.0-1.7 and 6.0-9.6, respectively [19], [20];
vy is the free-flow speed, which is the speed limit of the road.

D. Threat Model

We assume same threat model as the congestion attacks
proposed by Chen et al. [5], where the attacker is able to
compromise the in-vehicle CV communication device, i.e., the
On-Board Unit, in their own vehicle to send malicious BSM
messages. We do not assume the attacker can spoof the vehicle
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identifier in the BSM messages, which are protected by the
Security Credential Management System. Thus, the attacker
needs to use the original certificate associated with the physical
vehicle in order to get the messages correctly authenticated.

III. RELATED WORK

Security analyses of CV applications. Previous
works [21]-[23] have studied the security threats on the
CV communication networks, such as DoS, spamming,
masquerading, replay attacks, which greatly damage the
availability, authenticity, and confidentiality of the network.
On the other side, domain-specific attacks have been
demonstrated in different CV application scenarios. Chen
et al. [5] show that CV-based Intelligent Traffic Signal
Systems are highly vulnerable to congestion attacks if the
attacker can compromise the OBU device. Amoozadeh et
al. [24] demonstrate that message falsification attack cause
significant instability in the Cooperative Adaptive Cruise
Control (CACC) vehicle stream. Abdo et al. [25] perform
a detailed analysis on CACC and present 4 different attack
scenarios. Furthermore, Huang et al. [26] analyze the impact
of falsified CV data and propose a black-box attack on the
CV-based traffic signal control system.

Defenses against data spoofing. Sun et al. [27] propose a
verification scheme approach that utilizes the angle-of-arrival
and frequency-of-arrival to detect spoofing attacks. Such a
defense requires extra hardware and the presence of enough
number of reflectors in the driving environment. Guo et al. [28]
propose a collaborative intrusion detection system, which
leverages the sensor data from onboard sensors of neighboring
CVs. Liu et al. [29] propose a blockchain-based framework
to build trust and defeat spoofing attacks in CV applications.
Both works assume specific hardware or software updates
in the CVs, which may require enormous efforts due to a
large number of CVs. In comparison, our detector does not
impose such requirements on the CVs. Instead, we reuse the
readily-available infrastructure-side sensors to establish the
physical root-of-trust for the detection (§V-A). In this work, we
approach from a novel angle by constructing and propagating
trust based on infrastructure-side sensors and traffic invariants,
which are complementary to existing defenses.

IV. CHALLENGES OF APPLYING INFRASTRUCTURE-SIDE
SENSORS FOR DATA SPOOFING DETECTION

Data spoofing attacks are cyber-layer attacks, where at-
tackers send dishonest information of their physical states
over the communication channels. Thus, a natural strategy
to detect such attacks is to cross validate with physical-layer
information. One readily available physical-layer information
source is the infrastructure-side sensors, e.g., cameras [7],
[30] and LiDARs [9], which perceive vehicle positions and
speeds in the physical world and can serve as the physical
root-of-trust. Currently, the infrastructure-side sensors are
already performing vehicle detection and tracking in red-light
enforcement [31] and traffic monitoring [32]. Thus, we reuse
them as a cost-effective solution for data spoofing detection.

A. Defense Challenges

Fundamental limitation of infrastructure-side sensors:
detection range. Although infrastructure-side sensors can
provide accurate detection of the CVs to validate their reported
states, their detection ranges are often much more constrained
than the CV communication ranges. As illustrated in Fig. 3,
the effective detection ranges of traffic cameras are usually at
~100 meters [8], [33], [34], while CV communication chan-
nels (e.g., DSRC and C-V2X) can cover much larger ranges
(typically >300 meters [35]). This thus leaves opportunities
for the attackers since they can simply spoof CV locations
beyond the sensor detection range to evade direct detection.
For example, the spoofed CVs are usually located at the end of
each intersection approaches with a distance of ~300 meters
to the center of the intersection in the congestion attacks [5].
In fact, this is a fundamental limitation of sensors compared
to cyber-layer communication—extending the sensing range
(e.g., installing and synchronizing with additional sensors) is
often much more costly and difficult than extending cyber-
layer communication ranges (e.g., using signal relay devices
or opting to longer range communication protocols such as C-
V2X). Because of this fundamental limitation, two defense
challenges need to be addressed in order to leverage the
infrastructure-side sensors for effective data spoofing detection
in the CV context.

Challenge 1: How to systematically propagate the trust
from the sensor range to the CV communication range?
With the help of infrastructure-side sensors, it is straightfor-
ward to verify the reported states of the CVs within the sensor
range and establish trust for the ones that match the detection
results. But for the CVs outside the sensor range, there is
no direct way to measure their states. Despite that, the trusted
CVs within the sensor range can provide useful information to
verify the positions of the farther CVs, and hence a systematic
solution is required to facilitate such trust propagation.

Challenge 2: How to infer the RV states outside the
sensor range? Since it is estimated that the deployment of
CV technology needs more than 20 years to reach at least
95% market penetration rate [4], there will be an inevitable
transition period where CVs and RVs co-exist on the road.
During such period, the RVs that are outside of sensor range
may disrupt the trust propagation and cause mis- or false
detections since the detector is not aware of these RVs. Thus,
gaining the knowledge of these RV states is important for
accurate spoofing detection.

V. DEFENSE DESIGN

A. Design Overview

In our design, we define the frust of a CV based on
its integrity, i.e., CVs that report a state far away from its
ground truth state will be assigned with lower trust (or higher
suspicion). Our detector measures the trust of each CV in
a traffic snapshot (i.e., the received CV states that a CV
application is used for decision-making) and pinpoint the ones
that have the lowest trust and the largest impact on the CV
application performance. As shown in Fig. 4, the detector takes
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Fig. 3: CV communication range is often much
larger than infrastructure-side sensor range.

the CV snapshot and the corresponding sensor detection results
as input and outputs the suspicious CVs that are likely to be
spoofers for further handling. The detection process involves
two major steps: Trust Assignment and Remove-and-Rerun.

Trust Assignment (TA). In this step, we start from our
physical root-of-trust, i.e., sensor detection results, to assign
suspicious scores to the CVs in the sensor range by comparing
their reported states with the detection results. Next, we
propagate the trust out to the CV range in the order of
CVs’ reported distances to the sensor range. Since there is
no direct way to measure the physical states of CVs out of
the sensor range (Challenge 1), we estimate the CV states
based on our traffic invariants, i.e., the traffic models, which
are empirically derived mathematical equations describing
the vehicle driving behaviors under various traffic conditions
($II-C). For example, the car-following models can be used to
estimate a vehicle’s spacing and velocity based on its leading
vehicle. We then use the estimated state as a proxy to the CV’s
ground truth state to calculate the suspicious score.

Since traffic model’s accuracy depends on the availability
of surrounding vehicle information, it is thus imperative to
address Challenge 2 to infer their states in the current CV
snapshot. To achieve that, we look into the “future” sensor
frames when an RV first enters the sensor range to learn
which vehicles are its neighbors. Based on the neighboring
vehicles in a future time window, we can thus apply traffic
models to infer an RV’s state in the current CV snapshot.
When the detection process is deployed as an offline analysis,
such “future” sensor frames are always available. However,
when deployed as an online detection, we have to delay the
detection for a certain duration to wait for more sensor frames
to come. In this case, since the future time window is limited,
the number of recoverable RVs will also be reduced. However,
in practice, even a relatively short future time window (e.g.,
6 seconds as shown in §VIII-A) is sufficient to cover the
majority of RVs. Although the detection is delayed in the
online analysis, this is not much a problem for traffic signal
control since the attack effect often takes time to build up,
e.g., the I-SIG congestion attacks take ~18 minutes to build
up the congestion effects [5].

After the trust assignment, we rank the CVs based on their
suspicious scores. As will be shown in §VI-B, the spoofing
CVs are always ranked with top suspicious scores. In practice,
we can aggregate the suspicious score rankings from multiple
CV snapshots to more accurately pinpoint the spoofing CVs.
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Fig. 4: Defense design overview.

Nevertheless, in our design, we apply a Remove-and-Rerun
step to further improve the detection accuracy.

Remove-and-Rerun (RnR). In RnR, we re-execute the CV
application with and without a suspicious CV to confirm its
impact on the attack objective. The intuition behind this is
that the attacker’s goal is to disrupt the CV application to
cause adverse effects on some CV application metrics, which
can often be quantified in the application itself. For example,
the congestion attacks on I-SIG are designed to increase the
total delay of the vehicles in the intersection, which is exactly
what I-SIG is optimized for. Such an attack objective driven
approach can effectively distinguish attack CVs from benign
ones among the most suspicious CVs.

B. Trust Assignment
The TA step essentially checks the cyber-layer CV states
against their physical-layer states to locate dishonest CVs. It
calculates a suspicious score s; for each CV in the current
snapshot as follows:
si =i — 27|
x; €X 2l € XP i e {1,...,n},
where z¢ and 2? represent CV’s reported and physical states
(detailed later); n is the total number of CVs in the current
snapshot; ||-|| denotes the absolute difference between two
states, e.g., Euclidean distance. Based on the suspicious scores,

we then rank the CVs to obtain the top-K suspicious ones X':

{Si | 1= 1,...,71}‘

(@)

X' =

arg max
X'CXe,|X!|=K ©)
We define the vehicle state as a vector z = [t,1,r,v,h],

where ¢ is the timestamp; [ is the traffic lane ID (e.g., as in
Fig. 1); r is the distance to the intersection center; v is the
vehicle speed; h is the vehicle heading. Since traffic signal
controllers need to know the intersection geometry in order to
plan for dynamic traffic situations, they often have a pre-built
map that supports querying these state elements from vehicle
BSMs. For example, I-SIG by default will convert the BSMs
into such information before optimizing for the signal plan.
Among cyber- and physical-layer states, x§ is readily avail-
able from CVs’ continuous broadcasting. For z¥, we rely on
the physical root-of-trust (i.e., sensor detection) and traffic
invariants (i.e., traffic models) to obtain and infer the physical
states of CVs in and out of the sensor range. The former is
out of scope of this work since vehicle detection and tracking
is a well-studied topic in computer vision [33], [34] and
already has many commercial products on the market that



can provide real-time detection [7], [30], [32], [36]. For the
latter, it involves two sub-steps: RV state inference and trust
propagation, and we will detail them in §V-B1 and §V-B2.
Car-following model as the traffic invariant. Since car-
following models describe the inter-vehicle spacing that a
vehicle will maintain given the leading vehicle’s speed, we
use them as the traffic invariant to infer the ideal position
that a vehicle will be located in the current lane based on
its leading vehicle. Specifically, we apply the widely-used
Newell’s car-following model (Eq. 1 in §II-C) in our design
for its simplicity. Given a leading vehicle state [t,[, 7, v, h], we
can estimate the following vehicle state at time ¢ as follows:

M [t v b = [t Lr+ (v T+ d),v, k. 4

This conforms to the Newell’s model that (1) the follower
drives at the same speed as the leader, and (2) the follower’s
spacing is adjusted based on the speed.

1) RV State Inference: For RVs out of sensor range, we
infer their states based on their future leading vehicles in the
sensor range. More concretely, if an RV appears in the sensor
detection in any of the future frames between ty and ¢y + 7,
we can thus infer the RV’s physical state at time £ as follows:

o — M(z0y), if 3t € {to,...to+T} |z —C||<R
J z, otherwise 5)

je{1,...,m},

where z; is the RV state at time; Tie,q is the leading vehicle
in the sensor frame; m is the total number of RVs; ¢y is
the time of the CV snapshot to check for spoofing activity;
M(-) denotes the state estimation function based on the car-
following model; C' and R are the geographic center and
radius of the sensor range, respectively. Depending on the time
window (or the delay) allowed in the detector, it is possible
that an RV will not appear in the sensor range. In such case,
our detector will simply not be aware of this RV.

Identifying leading vehicle. To find the leading vehicle for
a target vehicle, we iterate over all available vehicle states at ¢
and look for the one that 1) belongs to the same lane and 2) is
in front of and closest to the target vehicle. In cases when the
distance to the closest leading vehicle is greater than vy -7+d,
we regard the target vehicle as in free-flow traffic and exclude
the leading vehicle since it should have negligible impact on
target vehicle’s driving behavior.

Handling RVs without leading vehicles. When there is no
leading vehicle or the leading vehicle is too far away, we then
estimate the RV state at ¢y based on its kinematics, assuming
that the RV maintains the same speed between % and t.

2) Trust Propagation: With more RV states made available
out of sensor range, we can now more accurately estimate
the physical state of the CVs and propagate the trust from
our physical root-of-trust. Similar to the RV state inference,
we apply the traffic invariant, i.e., the Newell’s car-following
model, to estimate the physical state of the CV ¢ based on its
leading vehicle as follows:

P = {M(l’]ead), if 3 Zieaa 6)

‘ [t7,17,d5,vp, hi], otherwise.

Different from RV state inference, even when there is no
leading vehicle, we are still aware of the existence of CV
1. Thus, instead of ignoring it, we set its state the same as
its reported cyber-layer state except its speed as the free-flow
speed of the lane since we know for sure there is no leading
vehicle and hence the CV should be driving at the free-flow
speed in the normal case.

Suspicious score calculation. After obtaining the physical
states from the sensor detection or inference, we then calculate
a suspicious score for each CV, which is defined as the
distance between the cyber- and physical-layer states (Eq. 7).
More concretely, the suspicious score calculation depends on
the availability of physical state elements as below:

i ([ S

When the CV’s physical distance to the intersection is avail-
able, we calculate the suspicious score directly based on the
difference to the one in the cyber-layer state. When only the
speed element is available in the inferred physical speed, we
plug the speed difference into Newell’s model to obtain a
spacing penalty such that the suspicious score is a distance
measurement and hence comparable to the above case.

if 3 d?
otherwise.

@)

C. Remove and Rerun

We perform RnR on all top-K suspicious CVs (Eq. 3). For
each CV k in X', we exclude it from the current CV snapshot
and re-execute the I-SIG application to obtain the new total
delay. Since the attacker aims to increase the total delay and
ultimately cause congestion in the intersection, removing a
spoofing CV from the snapshot would likely to reduce the
total delay. Formally, we perform the RnR as follows:

FXO)—F(X\{=})
F(X¢) > (8)
otherwise,

c spoofer, if
T =
benign,

where F(-) denotes the I-SIG application that calculates the
total delay; xf, is one of the top-K CVs; € is an empirically
determined anomaly threshold for spoofing detection. Since
total delay varies under different traffic demands, we calculate
a total delay reduction percentage based on the one with all
CVs rather than an absolute value.

VI. DEFENSE EFFECTIVENESS EVALUATION
In this section, we evaluate our detector against the two con-
gestion attacks [5] in an offline setting, where it is performed
as a post-processing step on the saved traffic snapshots.

A. Evaluation Methodology

Real-world intersection configuration. In our evaluation,
we use PTV Vissim to generate the traffic snapshots for the
I-SIG system and execute the produced signal plans. To faith-
fully reproduce the simulation setup, we obtained the detailed
Vissim configurations they used when evaluating the attack.
Specifically, we simulate a real-world intersection as shown
in Fig. 1. In addition, we also use the same traffic demand
(i.e., vehicle arrival rate) and turning ratio (i.e., vehicle lane
changing probability) in each lane that the authors collected
from real-world intersection [5].



TABLE I: Suspicious score rankings of the attack CVs in
Trust Assignment. The numbers in the parentheses are the CV
snapshots that we rank the attack CV in Top-K and the total
number of CV snapshots in the simulation, respectively.

PR Attack Top-1 Rate Top 3 Rate Top-5 Rate
Arrival

100%  time  91.2% (93/102) 99.0% (101/102) 100.0% (102/102)
attack

75% Queue 89.3% (200/224) 99.1% (222/224) 100.0% (224/224)

50% length 90.7% (194/214) 99.5% (213/214) 100.0% (214/214)

25%  attack 92.8% (180/194) 99.5% (193/194) 100.0% (194/194)

Infrastructure-side sensor detection assumption. In this
section, we assume perfect camera detections, i.e., the vehicle
positions and speeds can be accurately detected in the sensor
range. We will relax this assumption later in §VII to evaluate
the robustness against sensor noises. We set the sensor range
to 91 meters (300 ft) in the evaluation since this is a common
specification for traffic cameras [8], [36] and prior works also
report similar capabilities [33], [34].

Evaluation metrics. To quantify the detection performance,
we show the True Positive Rates (TPRs) and False Positive
Rates (FPRs) under the attacked and benign CV snapshots,
respectively. To generate such CV snapshots, we simulate
each Vissim seed twice—with and without attack. Each simu-
lation lasts for 4000 seconds, which consists of about 70-140
snapshots depending on the congestion level. In the attacked
simulations, the attacker may choose not to spoof a snapshot
if she cannot find any spoofing location to increase the total
delay. We also plot the Receiver Operating Characteristic
(ROC) curves to systematically show the TPR and FPR
under different anomaly thresholds € (§V-C). To validate the
effectiveness of trust assignment, we report the Top-K rate to
show the percentage of CV snapshots that rank the spoofing
CV among the top-K most suspicious CVs.

B. Results

Accuracy of trust assignment. Table I shows the Top-K
rates in the attacked snapshots. As shown, the TA step is quite
effective at finding the attack CVs, where it always ranks the
attack CV among the top-5 most suspicious CVs across all PR
settings. Therefore, we set K = 5 in the following RnR step
(thus denoted as RnR-5) as this empirically ensures that the
attack CV, if any, is among the ones that will be validated.
Moreover, over 89% of the total CV snapshots rank the attack
CVs at Top-1. The reason that some attacked CVs are not
ranked at the top is mainly that in these snapshots some benign
CVs exhibit driving behaviors that are not considered in the
car-following model (e.g., lane changing) such that the TA
mistakenly assigns high suspicious scores to these benign CVs.
This indicates that a simpler detector that purely relies on TA
is unlikely to be effective. Yet, the TA is a crucial part of the
detection process as it helps narrow down the detection scope
for RnR to accurately pinpoint the attack CVs.

Effectiveness of the complete detector pipeline. We now
evaluate the performance of our complete detection pipeline
(TA and RnR). Since the benign CV snapshots are also
involved in the evaluation, we need to select the anomaly

TABLE II: Attack detection effectiveness (TA + RnR-5).

Detection effectiveness

PR  Attack ‘

TPR TPR TPR TPR TPR
(FPR=7%) (FPR=5%) (FPR=3%) (FPR=1%) (FPR=0%)
Arrival
100% time 100% 100% 100% 100% 100%
attack
75% Queue 100% 99.1% 96.0% 70.1% 61.6%
50% length 99.5% 99.1% 98.1% 78.5% 0.5%
25%  attack 95.4% 85.6% 82.0% 69.6% 0%
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Fig. 5: Attack detection ROC curves of our detector with and
without the RnR-5.

threshold in RnR (§V-C) such that it would not incur many
false positives while still maintaining a good detection accu-
racy. Table II shows the best TPRs that can be achieved under
different FPR levels by varying the anomaly threshold. Our
detector can achieve a perfect detection with 100% TPR and
0% FPR when the CVs are fully deployed (i.e., PR = 100%).
Also, when the FPR is 7%, the detector can achieve at least
95% TPRs in all PR settings. Benefitting from the RnR-5,
the complete detector pipeline further improves the detection
accuracy on top of TA.

Nevertheless, the detection performance in the lower PR
settings is generally worse, where the TPR drops to 85.6%
when FPR is 5%. This is mostly caused by the congestion
effects in the attacked snapshots, where a benign CV stops
in the middle of an empty lane waiting to cut into a queue
in the adjacent lane. This makes the I-SIG queue estimation
mistakenly considers many RVs in the empty lane and thus
allocates an unnecessary long green time for it. In such cases,
removing this benign CV from the snapshot will actually
reduce the total delay. In practice, such cases might not be
much of a concern since one can use attack detection from
multiple snapshots to reduce the false positives.

Detection effectiveness under different anomaly thresh-
olds. To systematically evaluate the detection performance,
we plot the detection ROC curves by varying the anomaly
thresholds. To highlight the importance of RnR-5, we also



plot the ROC curves of a simpler detector design without
RnR-5. We use a threshold-based anomaly detection design to
classify CVs as attackers if their suspicious scores are above
the threshold. Fig. 5 shows the ROC curves of the detector
with and without the RnR-5. As shown, incorporating the
RnR-5 greatly improves the detection performance in all PR
settings. Moreover, the ROC curves indicate that our detector
can generally well-distinguish the attack and benign CVs.

VII. ROBUSTNESS TO SENSOR NOISES

Experimental setup. In our TA design (§V-B), sensor
detection noises in the position and velocity will directly affect
the suspicious score calculation. Lu et al. [33] quantifies that
the average position errors are only 0.8m and 1.7m within 50m
and 120m distances from the camera, respectively. And the po-
sition errors are mostly longitudinal, i.e., in the direction of the
lane. For the velocity error, they find that the estimated speed
has an average error of 1.47 m/s to the actual speed. We model
the camera detection noises based on their findings. More
concretely, we inject random errors sampled from Gaussian
distributions epos ~ N(0,02,) and ey ~ N(0,02,) to the
detected position and velocity for all vehicles (CVs and RVs)
in the sensor range. We select opos = 1.7 m and oy = 1.47
m/s in the evaluation. In addition, we also evaluate larger noise
levels by scaling the error amounts to 2 X {0pos, Ovel} and
3 X {Opos; Ovel }, Tespectively.

Results. Fig. 6 shows the ROC curves with/without camera
detection noises. As shown, the detection performance is
barely affected when PR is 100% or 75%, and is only slightly
worse in the lower PR settings. This is mainly because the
camera detection errors are relatively much smaller than the
distance between the spoofed CV location and the location
estimated from the traffic invariant. For example, even with 3x
position errors, the error standard deviation merely equals to
a common vehicle length (4-5m). In comparison, to induce a
large total delay increment, the spoofed CV location is usually
>18m away from the estimated location.

VIII. ONLINE DETECTION EXPLORATION

Timing overhead. Our detector is assumed to run on the
Road-Side Unit that hosts the CV applications. To ensure that
we do not assume any unreasonable computation capability,
we measure the timing overhead on a Raspberry Pi. The TA
and RnR-5 steps take at maximum 9.05 sec and 6.13 sec,
respectively. Therefore, we estimate the maximum required
duration of the detection process as 15.58 sec.

Detection timeliness requirements. The I-SIG system runs
at the end of each signal stage (§II-A) to plan for the next
signal timing plan. Thus, the online attack detection needs to
be finished within one stage in order to keep up with the pace
of I-SIG. Specifically, we assume a minimum green light as
7 sec [37] for each phase. Each phase will also go through
a yellow light (typically 3 sec) and red clearance period (to
account for red light runners, typically 1 sec). Hence, one
signal stage (i.e., two sequential phases) will take at least 22
sec. Excluding the computation delay, it leaves 6 sec for the
future time window. Therefore, we set the future time window
as 6 sec in the online detection evaluation.
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Fig. 6: Attack detection ROC curves (zoom-in view) under
different levels of camera detection noises (0 = {Gpos, Ovel })-

A. Online Detection Effectiveness

Fig. 7 shows the comparison of the offline and online
detection ROC curves. Since the future time window only
affects the RV state inference (§V-B1), online detection has
no impact in the full deployment period (PR = 100%) and
has little impact when PR is 75% where the number of RVs
are limited. Interestingly, limiting the future time window
has a larger impact on PR = 50% compared to PR = 25%.
This is because when PR = 25%, although the number of
RVs increases, the number of CVs decreases correspondingly.
Therefore, the detector is less affected due to the smaller
number of CVs that need to be validated. Nevertheless, even
when PR = 50%, the FPR only increases by 5% if we aim to
keep the same TPR at 98.1%. Such a good online detection
performance is likely because a future time window of 6 sec
can already cover many RVs to enter the sensor range.

IX. CONCLUSION

In this work, we explore a general defense solution against
data spoofing attacks on infrastructure-side CV applications.
Building upon the general principle that using physical-
layer information to cross validate cyber-layer information,
we leverage the readily-available infrastructure-side sensors,
such as traffic cameras, to estimate the physical-layer CV
states. However, such infrastructure-side sensors suffer from
a fundamental limitation that the sensor range is generally
much smaller than the CV communication range. To address
this, we take traffic models as traffic invariants to infer the
vehicle states that are out of sensor range. We implement and
evaluate our detector against two representative data spoofing
attacks that aim to cause congestion in the intersections by
exploiting the CV-based traffic signal control. Our results show
that the detector can effectively identify the spoofer with
high detection accuracy and is robust to sensor noises. We
also demonstrate that an online detection setting only slightly
degrades the detection performance.
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Fig. 7: Attack detection ROC curves (zoom-in view) of the
offline and online detection setups.
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