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Robust automatic hexahedral
cartilage meshing framework
enables population-based
computational studies of the
knee

Kalin D. Gibbons, Vahid Malbouby, Oliver Alvarez and
Clare K. Fitzpatrick*

Computational Biosciences Laboratory, Mechanical and Biomedical Engineering, Boise State
University, Boise, ID, United States

Osteoarthritis of the knee is increasingly prevalent as our population ages,
representing an increasing financial burden, and severely impacting quality of
life. The invasiveness of in vivo procedures and the high cost of cadaveric
studies has left computational tools uniquely suited to study knee
biomechanics. Developments in deep learning have great potential for
efficiently generating large-scale datasets to enable researchers to perform
population-sized investigations, but the time and effort associated with
producing robust hexahedral meshes has been a limiting factor in expanding
finite element studies to encompass a population. Here we developed a fully
automated pipeline capable of taking magnetic resonance knee images and
producing a working finite element simulation. We trained an encoder-decoder
convolutional neural network to perform semantic image segmentation on the
Imorphics dataset provided through the Osteoarthritis Initiative. The Imorphics
dataset contained 176 image sequences with varying levels of cartilage
degradation. Starting from an open-source swept-extrusion meshing
algorithm, we further developed this algorithm until it could produce high
quality meshes for every sequence and we applied a template-mapping
procedure to automatically place soft-tissue attachment points. The
meshing  algorithm  produced  simulation-ready meshes for all
176 sequences, regardless of the use of provided (manually reconstructed)
or predicted (automatically generated) segmentation labels. The average time
to mesh all bones and cartilage tissues was less than 2 min per knee on an AMD
Ryzen 5600X processor, using a parallel pool of three workers for bone
meshing, followed by a pool of four workers meshing the four cartilage
tissues. Of the 176 sequences with provided segmentation labels, 86% of the
resulting meshes completed a simulated flexion-extension activity. We used a
reserved testing dataset of 28 sequences unseen during network training to
produce simulations derived from predicted labels. We compared tibiofemoral
contact mechanics between manual and automated reconstructions for the
24 pairs of successful finite element simulations from this set, resulting in mean
root-mean-squared differences under 20% of their respective min-max norms.
In combination with further advancements in deep learning, this framework
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represents a feasible pipeline to produce population sized finite element studies
of the natural knee from subject-specific models.
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1 Introduction

Osteoarthritis (OA) of the knee is increasingly prevalent as
our population ages, affecting an estimated 654.1 million
individuals aged 40 and over in 2020 worldwide, including
15.8% of the North American population (Cui et al., 2020).
Patients suffering from OA report joint pain and stiffness,
cracking or grinding noises with joint movement, and
decreased function and mobility. These symptoms and
prevalence has made OA a leading cause of pain and
disability worldwide, representing a significant economic
burden of approximately 2% of a given country’s global
domestic product (O'Neill et al, 2018). The disease is
characterized by a deterioration of the cartilage, tendons and
ligaments, and the development of osteophytic bone spurs within
the joint (Lane et al, 2011). The study of knee OA presents
several challenges to researchers, it is a multifactorial joint
disease—confounding  subject-specific ~ factors  include
geometry, biomechanics, biology, and mechanobiological
adaptations (Dell'Isola et al., 2016; Paz et al., 2021) — making
it difficult to isolate features driving disease progression.

Researchers are limited in their ability to collect in vivo
biomechanical data relating to the knee, with some researchers
relying on externally attached pressure transducers, motion
capture, electromyography (Paz et al, 2021), or using implants
with telemetric sensors following joint replacement to estimate
joint forces (Wang et al,, 2015; Almouahed et al,, 2017). In vitro
studies relying on cadaveric tissue and joint specimens using
mechanical joint simulators have been conducted in the past
(DesJardins et al., 2000; Maletsky and Hillberry, 2005; Varadarajan
et al,, 2009; Colwell et al., 2011). Financial barriers associated with
sourcing cadaveric specimens and employing surgeons to perform
surgeries or joint assessments can be prohibitively high, limiting the
scope of most cadaveric studies to a small number of subjects or
activities. With their relative cost-effectiveness and inherent non-
invasiveness, computational studies aim to complement in vivo and
in vitro studies, using material properties and joint mechanics data
from these studies to validate computational analyses.

Researchers can use validated models to simulate activities of
daily living (Torry et al., 2011; Ivester et al., 2015) and, with large-
volume simulations, they can use these data to link geometric and
kinematic features to force and contact mechanics outputs using
classic methods of inferential statistics (Bryan et al., 2010; Fitzpatrick
and Rullkoetter, 2012; Gibbons et al., 2019). These statistical models
are simple to use and require orders of magnitude less computing
time when compared to the simulations they are derived from,
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making them more suitable for clinical applications. However, given
the varijability inherently present across the population, studies
require hundreds or even thousands of subjects to adequately
capture the spectrum of variability present across the population
and develop reliable statistical models based on these data.
Unfortunately, several bottlenecks have limited researchers to
using simple parameterized or synthetically generated joint
geometries in the past.

Developing a working FE simulation of a single knee typically
begins with medical images, which then undergo segmentation,
reconstruction, meshing, and mesh registration. Traditionally, the
primary bottlenecks preventing clinical adoption are segmentation
and meshing, which may take several days work per knee (Bolcos
etal,, 2018; Cooper et al,, 2019). Recent advances in deep learning are
reducing the segmentation process from hours or days of person-
hours to only minutes of computing time, but are limited by the
availability of training data (Ambellan et al., 2019; Burton et al., 2020;
Ebrahimkhani et al., 2020). In FE simulations, hexahedral meshes are
optimal for contact regions (e.g., articular contact of cartilage
surfaces),
requiring a larger number of elements (Ramos and Simdes, 2006;
Tadepalli et al, 2011). While automatic triangular surface and
tetrahedral volume meshing algorithms have existed for decades,

as tetrahedral meshes overestimate stiffness while

robust hexahedral meshing algorithms are still being actively
researched (Ito et al, 2009; Gregson et al, 2011; Livesu et al,
2020, 2013; Guan et al, 2020). Past researchers have used
templated hexahedral meshes with control nodes to create fitted
approximations of subject geometries (Baldwin et al., 2010; Rao et al,,
2013), or custom swept-extrusion meshing algorithms validated on a
small number of subject geometries (Rodriguez-Vila et al, 2017).
However, to the authors’ knowledge, no researchers have successfully
generated subject-specific hexahedral knee cartilage meshes for
hundreds of subjects in a fully automated fashion. The present
study aims to answer the questions: 1) can automatic
segmentation and meshing algorithms allow us to generate
hundreds of patient-specific simulations in a fully automated
fashion; 2) how closely do finite element meshes derived from
labels

segmented counterparts; and 3) how sensitive are the final

deep learning segmentation match their manually

simulation results to the predicted tissue labels?

2 Methods

To answer these questions, we have implemented a completely
automated imaging-to-simulation pipeline (Figure 1). We used a

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1059003

Gibbons et al.

Reconstruction
(1 min)

Predicted
Segmentation
Labels (30 sec)

FIGURE 1

10.3389/fbioe.2022.1059003

Soft-tissue
Attachments
(30 sec)

Pipeline from magnetic resonance images to simulation-ready finite element meshes. Segmentation labels produced by a neural network are
used to produce reconstruction geometries. Bone geometries are then meshed using first-order triangular surface elements, and cartilage tissues
are meshed using a customized swept-extrusion hexahedral meshing software. Soft-tissue attachment sites are placed using a nearest-neighbor
search with a registered template mesh, resulting in a turn-key mesh ready to drop into existing finite element simulations.

simple convolutional neural network (CNN) to automate
segmentation and we applied established visualization toolkits for
geometric reconstruction and registration (Schroeder et al., 2006;
Zhou et al., 2018; Sullivan and Kaszynski, 2019). We used standard
triangular mesh generation tools to perform rigid body bone
meshing (Hoppe et al, 1993; Valette et al, 2008). For the
hexahedral cartilage meshes, we ported a publicly available
Matlab-based hexahedral swept-extrusion algorithm (Rodriguez-
Vila et al., 2017) to Python, and then customized and expanded
upon this algorithm until it was sufficiently robust to produce
hundreds of meshes. We subsequently enhanced the algorithm
with a custom cartilage-to-bone interface blending algorithm and
soft-tissue attachment site locator using a templated mesh with
nearest neighbor search. This resulted in an efficient pipeline from
image sequence to FE-ready mesh. We ran the output meshes in a
simulated 90° knee flexion activity in three batches: our entire
manual data set (train, validation, and test) excluding the added
blending algorithm, again with blending, and the reserved test
dataset utilizing predicted segmentation labels.

To quantify the effect of predicted segmentation labels on
resulting meshes, we compared articular surface deviations
between manual and predicted segmentations. We traced
rays from the nodes of the predicted mesh to the nearest
surface of the manual mesh and used these data to compute
distributions of distances. To account for mismatches in
overlapping edges, we only included rays within 20° of the
surface normal which we reported as percent nodal coverage
(Figure 2). Further down the pipeline, we ran FE simulations
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to predict contact pressure and area joint mechanics for the
medial and lateral sides of the tibial cartilage tissues, and
then compared these metrics between manually and
automatically generated datasets using root-mean-square
(RMS) differences.

2.1 Data source

We their
segmentation labels for the knees of 88 subjects from the

sourced image sequences and respective
Imorphics dataset (Paproki et al., 2014), which is part of the
publicly available Osteoarthritis Initiative database (National
Institute of Arthritis and Musculoskeletal and Skin Diseases
(NIAMS, 2004). Each subject attended baseline and 12-month
follow up appointments, resulting in 176 image sequences,
containing 3D double echo steady-state images consisting of
(384 x 384 x 160) voxels with a spatial resolution of (0.37 x 0.37 x
0.70) mm in the sagittal plane. Segmented tissues included the
menisci, femoral, patellar, and tibia cartilage with independent
medio-lateral labels for the menisci and tibial cartilage. As stated
in Paproki et al. (2014), one person, who trained under both an
expert in segmentation and a musculoskeletal radiologist,
performed the manual segmentations. Additionally, this user
achieved an intra-observer coefficient of variation less than 3%
on paired test images within the Imorphics cartilage
segmentation training protocol, with the expert reviewing

their final segmentation maps.
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FIGURE 2

Exclusion criteria for nodal coverage. If the rays directed from the predicted surface to the nearest point on the manual surface deviated from
the predicted surface normal by more than 20°, that ray was excluded from nodal normal calculations.

2.2 Image segmentation

We used a textbook 2D encoder-decoder CNN based on the
popular U-Net architecture (Ronneberger et al., 2015) to perform
automatic image segmentation. Each contractive block made use
of batch normalization and rectified linear unit activations, while
using strided convolution layers to downsample the image
feature maps. We implemented residual connections around
each contractive block. The network was four contractive-
expansive blocks deep, with a final softmax activation. We
augmented input images with up to a 30° rotation 50% of the
time, as well as randomized brightness and contrast, elastic
transformations, and grid distortions a maximum of 30% of
the time. We trained this network on the image-label
observations while reserving 14 subjects (each subject at
baseline and 12-month timepoints, totaling 28 sequences) for
a validation dataset used to detect overfitting, and reserved an
additional 14 subjects (again, at both timepoints) for a final test
set, unseen during training. We trained the model until the mean
Dice similarity coefficient (DSC) of the validation set reached
89% (Taha and Hanbury, 2015). Resulting labels were based on
probability scores for the four articular cartilage tissues present in
the Imorphics segmentations, with our three additional bone
tissues.

2.3 Reconstruction of tissue geometry

Segmentation labels for each tissue, whether processed
manually or predicted, then underwent morphological closing
with a five-voxel (cartilage) or three-voxel (bone) uniform kernel
to remove segmentation artifacts before we reconstructed the
surface using marching cubes (Lorensen and Cline, 1987). After
viewing a subset of these raw surface reconstructions, we
assumed all cartilage tissues consisted of singular connected
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volumes. We treated all but the largest enclosed volumes as
segmentation artifacts, which we discarded. We then applied a
decimation filter resulting in an 80% reduction in surface triangle
density. The final step included nine iterations of Laplacian
smoothing for all tissues. For every bone geometry, we applied
the MeshFix algorithm to correct triangle intersections,
singularities, or degenerate elements (Attene, 2010). To
preserve physiological holes within cartilage tissues, we limited
MeshFix to reversing inward-facing normals.

2.4 Meshing

For the tibia, femur, and patella bones, we created uniform
triangular rigid body surface meshes using Voronoi clustering
(Valette et al., 2008), with a target element size of 3 mm. For the
remaining tissues, we ported an existing open-source cartilage
meshing algorithm (Rodriguez-Vila et al., 2017) to the python
programming language. The algorithm used a swept set of point
origins and raytracing to place two matching rectangular grids
along the bone-side and joint-side surfaces of cartilage
reconstructions. We then connected these matching grids to
form an initial set of ill-conditioned hexahedral elements, with
a portion of the elements on the cartilage edges containing six
nodes. We repaired these degenerate elements through the
creation, deletion, or merging of nodes and edges. Once fully
connected, the mesh underwent optimization to ensure every
element had a non-negative scaled Jacobian (S]). Individual
then depth
wise—subdivision to become four elements before undergoing

elements underwent an  in-plane—not
an iterative optimization and smoothing process until every
element’s S] was above 0.5. Finally, we subdivided the
cartilage depth into multiple elements. Our parameter choices
resulted in average element edge-length of approximately 1 mm,

with cartilage depths divided into four linearly spaced elements.
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FIGURE 3

A comparison of unblended (top) and blended (bottom) cartilage profiles. Dynamic activities involving tangential motion of cartilage interfaces
can result in the edges of articulating meshes catching on each other, causing simulation failures. This occurs most frequently near the trochlear
groove of the patellofemoral joint, and in knees with significant cartilage loss in the tibiofemoral joint.

2.4.1 Hexahedral meshing algorithm
modifications

Excluding a cartilage mesh blending step (detailed in Section
2.4.2 below), the bulk of our changes consisted of replacing low-
level mathematical calculations with functionality built into 3D
Python libraries, encapsulating novel logic into functions, and
developing an object-oriented application point interface with
unified helper methods allowing for simplified plotting and cell
quality calculations during any step following creation of the ill-
conditioned mesh. Making these changes allowed us to improve
vectorization, locate and fix typographical errors resulting from
repeated logic, and will facilitate future algorithm adaptation for
other joints. We added patellar cartilage meshing by adapting the
femoral cartilage algorithm. The initial tibial cartilage meshing
algorithm based on raytracing an interior grid with radial sectors
was prone to failure. Discarding back faces during a planar
projection and basing placement of the interior grid on a
scaled bounding box improved robustness. Meshing can still
fail if a cartilage hole lies on the edge of the interior grid, so we
added a fallback method using a rectilinear grid of rays bounded
by the unscaled bounding box.

A primary failure mode of the original package was looping
infinitely during the final mesh optimization, which we traced
back to the misclassification of degenerate elements. We included
additional controls to more accurately classify the configuration
of six-node elements (peaks, mirrors, three element stairs, steps
consisting of two elements, and single element internal corners),

Frontiers in Bioengineering and Biotechnology

05

with each configuration treated separately to eliminate negative
volumes or extreme skewed elements that resulted in an
oscillating  optimization  solution. ~For example, we
implemented logic confirming degenerate nodes were at the
same topological indices when detecting step degenerates,
which previously only checked if neighboring elements shared

a single edge.

2.4.2 Cartilage mesh blending

Modeling cartilage as linearly subdivided brick elements
results in a step interface with bones (Figure 3). These sharp
corners can cause unresolvable impingement issues and
unrealistic edge loading when modeling joint contact. As
articulating  surfaces transition from cartilage-bone to
cartilage-cartilage contact, there is risk of simulation failure
due to protruding nodes on the cartilage edge unable to
resolve the excessive nodal forces and geometric constraints
generated through contact between the corners of articulating
meshes. Issues intensify when modeling subjects with significant
cartilage degradation, as they frequently exhibit total cartilage
loss near the trochlear groove of the patellofemoral joint, or holes
within the tibiofemoral joint. To rectify this, we developed and
incorporated a mesh blending step before the final depth-
subdivision.

The blending algorithm operated on quadrilateral elements
extracted from the single-layer hexahedral mesh surface.

Smoothing the cartilage-bone transition required stretching
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FIGURE 4

Initialized displacements for cartilage mesh blending. Vector
lengths are based on cartilage depth at the edge, with 80% of the
depth assigned to the bone-side nodes and the remaining 20%
assigned to joint-side nodes (A). Feature angles of the

blended edge are required to be greater than 35°. The nodes
attached to the red lines will have their displacement relaxed in
10% increments (B). Element intersections caused by blending
displacement, which occur frequently within cartilage holes and
internal corners of the femoral cartilage. Savitsky-Golay filtering of
the edge nodal location components can solve a case such as
this (C).

the edge nodes of the bone-side cartilage surface towards the
exterior while compressing the corresponding nodes of the joint-
side surface. We calculated the direction of these displacements
using point normals of the mesh faces of the cartilage edges, then
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displaced the nodes until they created a 45° slope (Figure 4A). We
weighted the bone-side nodes to perform 80% of the
displacement. If possible, we attempted to translate the bone-
side nodes to a paired bone mesh using a nearest element surface
search between the bone elements and bone-side nodes of the
cartilage mesh.

Some elements became skewed after displacement, which we
corrected by the
displacements until all joint-side edges attained a minimum

iteratively ~ reducing bone-side nodal
feature angle of 35° (Figure 4B). We selected this feature angle
through assessing a range of angles, and determining that this
value resulted in a reasonable trade-off between sufficiently
smooth interfaces, correcting for element skewness, and
minimizing changes in cartilage surface area and computing
time. Element intersections may appear along the edges of
interior curves and small holes within the cartilage interior
(Figure 4C), which we attempted to correct by smoothing the
nodal locations of the edges with a 3rd degree Savitzky-Golay
filter (Savitzky and Golay, 1964). If element intersections
remained, we iteratively reduced the magnitude of our nodal
displacements by 10%.

We applied independent Laplacian smoothing operations to
the bone- and joint-side surfaces. We performed each smoothing
operation iteratively, using an advancing front of quadrilateral
faces beginning at the bone-side edge (Figure 5A). For each
advance in the selection front, we decreased the number of
smoothing iterations, resulting in a decrease of nodal
displacements within the interior of the cartilage mesh. For
the joint-side surface we stopped before elements skew, or
when the blended feature angles reached a minimum of 30°
(Figure 5C). For the bone-side surface, the front progressed from
an element depth of two until five (Figure 5B), with the number
of smoothing iterations halved for each advance. We empirically

selected the initial number of smoothing iterations to be
550

Tsur face

of quadrilateral faces present in the cartilage, and 7., was the

(Psur face = M front)» Where Mg, rac. Tepresented the number

selection subset. We required that interior elements had SJs
exceeding 0.5 and blended element SJs remained positive.

2.4.3 Soft-tissue attachment locator

We mapped soft-tissue attachment sites from a manually
segmented knee geometry based on MRI imaging with
160 manually segmented soft tissue attachment sites. We
used this template mesh for the automatic selection of
attachment sites for the Imorphics meshes. We registered
input femoral meshes to the template using an iterative
closest points algorithm (Chen and Medioni, 1992), with the
resulting transformation applied to the remaining tissues. We
applied a nearest neighbor search for each soft-tissue
attachment site and nodal coordinates defining joint axes,
before applying an inverse-transformation back to the
original scaling and position (Ta, 2019; Malbouby et al., 2022).

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1059003

Gibbons et al.

10.3389/fbioe.2022.1059003

front selection

Advancing

FIGURE 5

A graduated smoothing is performed using an advancing front of surface face selections (A), independently for the joint- and bone- -side
surface faces. The nodes on the cartilage edges are constrained while Laplacian smoothing iterations are reduced each time the front advances. The
bone-side surface feature angles are now reduced to 30° (B), while the joint side smoothing front advances once, but with a higher number of initial

smoothing iterations (C).

2.5 Knee flexion simulation

We adapted the knee flexion simulation from a previously
published model of the implanted knee (Fitzpatrick and
Rullkoetter, 2014, 2012; Gibbons et al, 2019), using the
commercial FE solver, Abaqus/Explicit (Dassault Systemes).
Briefly, we applied knee loads and muscle forces through
mechanical actuators, which we implemented using force- or
moment-driven connector elements. We adopted ligament soft-
tissue properties from a previously published study where passive
laxity tests performed on a series of four cadaveric knees were
used to calibrate reference strain and linear stiffness values of the
major tibiofemoral ligaments (Harris et al., 2016). To create a 6-
degree-of-freedom joint, we applied anterior-posterior force and
internal-external torque to the femur, with medial-lateral
translation free. We simulated knee flexion by balancing a
vertical load applied at the hip with quadriceps and hamstring
loads controlled by a proportional-integral controller
implemented through a user subroutine. We derived flexion
and joint loading profiles from data reported from five
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patients with telemetric knee implants (Heinlein et al., 2007;
Kutzner et al,, 2010). Due to the large number of simulations
required, we excluded material deformation from cartilage
representations—instead using linear pressure-overclosure
contact definitions to compensate for rigid cartilage elements
within the patellofemoral and tibiofemoral joint complexes

(Halloran et al., 2005; Fitzpatrick et al., 2010; Hume et al., 2020).

3 Results

We used the original algorithm to analyze a subset of 23 knee
reconstructions from the Imorphics dataset, with only six
successfully meshing. After porting, implementing bugfixes,
and adding additional degenerate element detection cases, our
meshing algorithms successfully produced “watertight” bone and
cartilage meshes with high-quality elements for all 176 image
sequences, for both the manual and predicted segmentation
maps (Figure 6). The average time to mesh eight tissues with
cartilage blending was one min and 22 sec, with a maximum time
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FIGURE 6

A comparison of the reconstructed geometry with triangular
surface bone and hexahedral volume cartilage meshes. Blending
the edges of the cartilage mesh will constrict holes and increase
the planar surface, but the authors believe these negatives are
offset by the reduction in joint dislocations during simulated
activities.

of four min and nine sec. We performed these computations on
an AMD Ryzen 5600X processor, using a parallel pool of three
workers for bone meshing, followed by a pool of four workers
meshing the four cartilage tissues.

Of the 704 total cartilage tissues that we meshed using
manual segmentations, 87.4% resulted in blended meshes with
every bone-side node fused to the bone surface. Of the 86 tissue
meshes that failed to fuse the entire bone-side surface, 10 more
were able to fuse using only the perimeter edge. The remaining
10.8% of all attempted geometries were blended without
reference to the underlying bones. For the blended tissues, the
five edge layers of elements altered by the algorithm saw average
reductions in SJ qualities between 5.23% and 46.1%. The edge
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most layer saw the biggest decrease, from a mean SJ of 0.86 to
0.46. The remaining layers saw less than 25% reduction. Of the
352 tibial cartilage geometries, we needed to mesh 17 using a
simplified grid (Table 1). Running each manually segmented
simulation without cartilage blending resulted in 76.9%
completing the flexion activity. Adding blending increased our
success rate to 89%.

Test dataset DSC scores for the bones were each above 97%.
Cartilage DSC scores for the patellar and lateral tibial cartilage
were 79% and 77%, while the femoral and medial tibial cartilage
resulted in scores of 84% each. Articular surface overlap and
conformity between the predicted and manually derived cartilage
meshes are shown in Figure 7; Figure 8. Nodal coverage of the
predicted meshes was between 90% and 92% except for the lateral
tibial cartilage, which had coverage of 85%. Kernel density
estimates resulted in right-skewed distributions, with the
patellar cartilage resulting in the highest median deviation of
0.39 mm and 75% of patellar deviations below 0.46 mm. The
remaining cartilage meshes had median surface deviations of
0.23 mm or less, and 75% of their deviations were less than
0.27 mm. Maximum outlier deviations fell between 1.39 mm and
2.54 mm.

Simulations for the manual and predicted test datasets both
succeeded 92% of the time, with independent failures leaving
24 matched comparisons between manual and predicted FE
simulations. Simulated contact mechanics for those remaining
resulted in mean normalized RMS differences were below 20%
for both medial and lateral sides, and remained under 22% for the
75th percentile (Table 2). The worst case resulted in a medial
contact pressure error of nearly half the min-max range, more
than doubling the 75th percentile value. For the initial and final
15% of the flexion activity, predicted meshes tended to
underestimate compressive pressure while overestimating
contact area (Figure 9). Agreement throughout the middle
60% of the flexion cycle was excellent except for an
overestimated medial contact pressure.

4 Discussion

Our first study objective was to develop automatic
segmentation and meshing algorithms that would allow us to
generate hundreds of working simulations in a fully automated
fashion. We were able to create “watertight” triangular surface
bone and high-quality hexahedral volume cartilage meshes for all
176 image sequences, both manual and predicted, in the
Imorphics dataset. While 11% of our image sequences did not
result in successful FE simulations, each of the failures exhibited
excessive cartilage degradation resulting in bone contact which
was not sufficiently captured in our current model definitions.
This is a unique challenge when modeling osteoarthritic patients,
as osteophytic bone spurs may increase the probability of
deleterious bone-cartilage contact. However, a common mode
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TABLE 1 Distribution of cartilage meshing fallback algorithms. If issues occur during the meshing process, features are turned off beginning with
fusing bone-side cartilage nodes to the nearest bone surface, followed by a reduction in the nodal displacements during cartilage-to-bone

blending. For the tibial cartilage, a simplified rectilinear grid can be used during raytracing, instead of a more complicated distribution based on
sectors. Finally, a planar subdivision step may be performed earlier in the algorithm to better capture complicated cartilage edges, at the expense of

speed.
Count Total Percent (%)
Cartilage meshed successfully without fallbacks 615 704 87.4
Tibia cartilage meshed with simplified grid 17 352 5.40
Grid-based meshing required in-plane subdivision before raytracing 15 371 4.04
Interior bone-side surface nodes failed to fuse to bone surface 86 704 12.2
All bone-side nodes failed to fuse to bone surface 76 704 10.8
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FIGURE 7

Kernel density estimated distributions of distance between predicted and manually segmented mesh surfaces, with box plots superimposed.
Distances were traced from the nodes of the predicted mesh until intersection with element faces of the manual mesh. Nodal coverage denotes
sample size determined by traced rays deviating no more than 20° from node normals at the base of each ray.

of failure is a sharp cartilage edge contacting the bone, causing
excessive deformation and stress concentrations at the cartilage
edge elements—exactly what our blending algorithm aims to
correct. Adding the blending algorithm allowed an additional
21 simulations to run successfully, while only affecting five
edgewise layers of elements. For our simulation parameters,
we saw a 46% reduction in SJs for the first 0.5mm of
cartilage edge, which decayed to between 5% and 25% for the
next 4 mm from the edge. However, in order to achieve a success
rate closer to 100%, we must perform additional analysis and
iteration of bone-cartilage contact definitions to determine a set
of contact and meshing parameters that are optimally compatible
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with prominent osteophytes commonly present in the OA
population.

Our next objective was to quantify the effect of
segmentation labels generated by a CNN on downstream
FE meshes. with

millimeter median deviations and a minimum of 85% and

Articular surface conformities sub-
92% surface overlap for the tibiofemoral and patellofemoral
joints, respectively, are likely improvements over statistical
shape modeling or mesh templating for aggregate population
studies, which lack the subject-specificity of models developed
from patient-specific imaging. However, we may require

further improvement in algorithm accuracy before these
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Imorphics Articular Surface Deviations (mm) Predicted
Included in . c/
Manual Mesh
|
FIGURE 8

Articular surface deviations comparing representative meshes derived from the neural-network predicted segmentation labels, and the
provided Imorphics labels from a reserved test dataset. Nodal coverage is represented by the scalar bar, while nodes within the solid tan region were
excluded from distance calculations. This network tended to constrict cartilage holes, and would need fine-tuning before being used to study
osteoarthritis. However, this also showcases the robustness of our automatic hexahedral meshing program, as each knee contained holes, of

varying sizes, in one or more tissues.

data become clinically useful. While there are more

sophisticated available, implemented a

relatively simple CNN, but that same simplicity makes it an

algorithms we
accessible choice for applied researchers outside of computer
science, using consumer hardware. Our test dataset cartilage
DSC scores ranging from 77% to 84% leaves room for
improvement, but our meshing and soft-tissue attachment
algorithms handled resulting geometric differences without
issue. However, surface deviations were found to be driven by
nodal overlap; our CNN tended to shrink or fill cartilage holes
when compared to the manual reconstructions, which resulted
in surfaces around mismatched holes pulling away from each
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other following the optimization and blending steps.
Mitigating this effect using more sophisticated models, such
as those proposed by Ambellan et al. (2019), Gatti and Maly
(2021), and Tack et al. (2018), will be critical for studying
damaged tissue. Some researchers have shown that CNNs
trained on osteoarthritic datasets improve when tested on
healthy tissue (Gatti and Maly, 2021), so the effect
may be less pronounced if our model was applied to
healthy knees.

Our final objective was to quantify how predicted
segmentation labels affect FE simulation joint mechanics
Our data shows that 75%

results. of simulation contact

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1059003

Gibbons et al.

10.3389/fbioe.2022.1059003

TABLE 2 Contact area and pressure root-mean-squared error for tibial cartilage of the test dataset. Min-max normalized error terms are reported as
percentages. Two of the predicted and an independent two from the manual sequences failed to finish the flexion activity, leaving 24 sequences

for comparison.

Contact area mean RMS error (mm?)

Contact pressure RMS error (MPa)

Medial Lateral Medial Lateral
Mean 43.9 (15.7%) 25.1 (9.94%) 4.71 (19.50%) 3.21 (13.7%)
Std. Dev 23.3 (7.75%) 13.6 (4.33%) 2.15 (9.52%) 1.35 (4.38%)
Minimum 15.0 (5.04%) 8.16 (5.59%) 1.79 (8.55%) 1.67 (8.55%)
25% 25.4 (9.74%) 13.5 (6.92%) 3.40 (12.7%) 2.27 (11.3%)
50% 36.0 (13.6%) 25.6 (8.12%) 4.29 (18.2%) 2.70 (12.4%)
75% 63.1 (20.7%) 292 (11.9%) 5.65 (21.6%) 3.98 (15.0%)
Max 88.3 (29.5%) 62.9 (21.1%) 11.1 (48.3%) 7.07 (23.5%)
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FIGURE 9
Contact mechanics data generated by 24 sets of segmentation labels provided with the Imorphics dataset and those predicted by a neural
network. The predicted meshes tendsed to underestimate compressive pressure—and overestimate contact area—while the knee was nearly
extended. Agreement throughout the middle 60% of the flexion cycle was excellent except for an overestimated medial contact pressure. Manual
and predicted results for four representative simulations are shown for comparison.

pressure and area results deviate by less than 22%, and that most
of the error occurs while the knee is extended. Our current CNN
may not be suitable for studying contact mechanics during
activities at lower flexion angles. Researchers should be
mindful that errors introduced at the segmentation stage
compound while traveling through the pipeline, altering soft-
tissue attachments, for example.
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While the primary focus of the current study was the
development of an algorithm that could be used to generate
robust finite element meshes for large-cohort populations,
the

demonstrate the implementation of our algorithm is

finite element simulation that we have used to

relatively simple, and as such, has a series of limitations
and assumptions that should be noted. In order to run the
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hundreds of simulations required for this analysis in a
computationally efficient manner, we did not allow for
material deformation of the cartilage tissues, instead
using  linear  pressure-overclosure  definitions to
compensate for rigid cartilage representations (Halloran
et al., 2005; Fitzpatrick et al., 2010; Hume et al., 2020).
The computational cost of these rigid body simulations was
an order of magnitude faster than their deformable
counterparts. If cartilage stresses or strains are of interest
to the user, a deformable cartilage representation would be
necessary. However, this change to the finite element
simulation is compatible with the segmentation and
meshing workflow we have implemented. Similarly, our
models did not include meniscal structures. Instead, we
used the soft-tissue constraints of the tibiofemoral joint
calibrated to match overall joint laxity measured in a
cadaveric study—that is, researchers calibrated these
ligament properties to compensate for the lack of a
meniscus (Harris et al., 2016). Finally, we only examined
contact mechanics of the tibiofemoral joint, which have
historically been sensitive to geometry (Fitzpatrick et al,,
2012, 2011; Navacchia et al., 2016; Gibbons et al., 2019).
While this model provided us with numerical comparisons
the

additional experimental data is necessary to validate the

between manual and automatic segmentations,
resulting joint mechanics predictions. Additionally, further
analysis is required to assess the sensitivity of joint
kinematics, ligament mechanics, and joint loads to
predicted labels and to quantify the effects of more
sophisticated deep learning algorithms on FE simulation
accuracy.

In combination with further advancements in deep
learning, this framework represents a major advance in
the study of natural knee biomechanics, and presents a
feasible way to produce population sized finite element
studies of the natural knee. The time required to produce
quality hexahedral meshes has been reduced from a full
workday of person-hours to 2 min. Additionally, we found
that even the segmentation labels from our intermediate
CNN models were useful during our bone segmentation
process; manually correcting a percentage of suboptimal
(DSC ~65%) segmentation labels proved much faster than
starting from scratch. Future researchers should not
underestimate the time savings made possible by even a
simple predictive model, and semi-supervised methods
make it possible to train such models with limited data
(Burton et al., 2020).

We've designed our alpha-build framework such that it
may be adapted to any laminar structure approximated by a
planar or cylindrical surface. Few modifications are
necessary for other “hinge” joints, and the hip joint
would only require the addition of a spherical coordinate
raytracing function. The pipeline presented here has
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potential to improve our statistical shape and function
models of the knee joint by better capturing population-
based variation through inclusion of large-volume patient
datasets. Integrating this pipeline with longitudinal patient
datasets like the Osteoarthritis Initiative allows us to
libraries  of models  to

develop patient-specific

quantitatively investigate relationships
between anatomy, joint loading and longitudinal joint

degeneration.

Data availability statement

The raw data supporting the conclusions of this article
will be made available by the authors, without undue
reservation.

Ethics statement

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent for
participation was not required for this study in accordance
with  the the
requirements.

national legislation and institutional

Author contributions

KG contributed to the design of the study, improved
robustness of the CNN algorithm and ported to a single
platform, developed the meshing algorithm, interpreted
results and wrote the initial manuscript draft. VM
developed the ligament attachment code, performed all
finite element simulations and postprocessing of results,
and contributed to writing of the manuscript. OA developed
the initial version of the CNN. CF contributed to conception
and design of the study, interpretation of results and editing
of the manuscript.

Funding

This material is based upon work supported by the
National Science Foundation under Grant No. 1944180
and National Science Foundation Graduate Research
Fellowship under Grant No. 1946726, and the Center of
Excellence in Biomedical Research through the Institutional
Development Award (IDeA) from the National Institute of
General Medical Sciences of the National Institutes of
Health under Grant Nos. P20GM109095
P20GM103408.

and

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1059003

Gibbons et al.

Acknowledgments

The authors would like to acknowledge the foundational work
of Rodriguez-Vila et al. (2017), who graciously host an open source
version of their software for download at https://im.engr.uconn.edu/
downloads.php. Data and/or research tools used in the preparation
of this manuscript were obtained and analyzed from the controlled
access datasets distributed from the Osteoarthritis Initiative (OAI), a
data repository housed within the NIMH Data Archive (NDA).
OALI is a collaborative informatics system created by the National
Institute of Mental Health and the National Institute of Arthritis,
Musculoskeletal and Skin Diseases (NIAMS) to provide a
worldwide resource to quicken the pace of biomarker
identification, scientific investigation and OA drug development.
Dataset identifier(s): 1200285; 1200816.

References

Almouahed, S., Hamitouche, C., Poignet, P., and Stindel, E. (2017). “Battery-free
force sensor for instrumented knee implant,” in Proceedings of the 2022 IEEE
Healthcare Innovations and Point of Care Technologies (HI-POCT), Houston, TX,
USA, 10-11 March 2022 (IEEE), 1-4. do0i:10.1109/HIC.2017.8227570

Ambellan, F., Tack, A., Ehlke, M., and Zachow, S. (2019). Automated
segmentation of knee bone and cartilage combining statistical shape knowledge
and convolutional neural networks: Data from the Osteoarthritis Initiative. Med.
Image Anal. 52, 109-118. doi:10.1016/j.media.2018.11.009

Attene, M. (2010). A lightweight approach to repairing digitized polygon meshes.
Vis. Comput. 26, 1393-1406. doi:10.1007/s00371-010-0416-3

Baldwin, M. A., Langenderfer, J. E., Rullkoetter, P. J., and Laz, P. J. (2010).
Development of subject-specific and statistical shape models of the knee using an
efficient segmentation and mesh-morphing approach. Comput. Methods Programs
Biomed. 97, 232-240. doi:10.1016/j.cmpb.2009.07.005

Bolcos, P. O., Mononen, M. E., Mohammadi, A., Ebrahimi, M., Tanaka, M. S.,
Samaan, M. A,, et al. (2018). Comparison between kinetic and kinetic-kinematic
driven knee joint finite element models. Sci. Rep. 8, 17351. doi:10.1038/s41598-018-
35628-5

Bryan, R., Surya Mohan, P., Hopkins, A., Galloway, F., Taylor, M., and Nair, P. B.
(2010). Statistical modelling of the whole human femur incorporating geometric
and material properties. Med. Eng. Phys. 32, 57-65. doi:10.1016/j.medengphy.2009.
10.008

Burton, W., Myers, C., and Rullkoetter, P. (2020). Semi-supervised learning for
automatic segmentation of the knee from MRI with convolutional neural networks.
Comput. Methods Programs Biomed. 189, 105328. doi:10.1016/j.cmpb.2020.105328

Chen, Y., and Medioni, G. (1992). Object modelling by registration of multiple
range images. Image Vis. comput. 10, 145-155. doi:10.1016/0262-8856(92)90066-C

Colwell, C. W., Chen, P. C, and D’Lima, D. (2011). Extensor malalignment
arising from femoral component malrotation in knee arthroplasty: Effect of
rotating-bearing. Clin. Biomech. (Bristol, Avon). 26, 52-57. doi:10.1016/j.
clinbiomech.2010.08.009

Cooper, R. J., Wilcox, R. K., and Jones, A. C. (2019). Finite element models of the
tibiofemoral joint: A review of validation approaches and modelling challenges.
Med. Eng. Phys. 74, 1-12. doi:10.1016/j.medengphy.2019.08.002

Cui, A, Li, H,, Wang, D., Zhong, J., Chen, Y., and Lu, H. (2020). Global, regional
prevalence, incidence and risk factors of knee osteoarthritis in population-based
studies. eClinicalMedicine 29, 100587. doi:10.1016/j.eclinm.2020.100587

Dell'Tsola, A., Allan, R, Smith, S. L., Marreiros, S. S. P., and Steultjens, M. (2016).
Identification of clinical phenotypes in knee osteoarthritis: A systematic review of
the literature. BMC Musculoskelet. Disord. 17, 425. doi:10.1186/s12891-016-1286-2

DesJardins, J. D., Walker, P. S., Haider, H., and Perry, J. (2000). The use of a force-
controlled dynamic knee simulator to quantify the mechanical performance of total
knee replacement designs during functional activity. J. Biomechanics 33, 1231-1242.
doi:10.1016/S0021-9290(00)00094-4

Ebrahimkhani, S., Jaward, M. H., Cicuttini, F. M., Dharmaratne, A., Wang, Y.,
and de Herrera, A. G. S. (2020). A review on segmentation of knee articular

Frontiers in Bioengineering and Biotechnology

10.3389/fbioe.2022.1059003

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

cartilage: From conventional methods towards deep learning. Artif. Intell. Med.
(2017). 106, 101851. doi:10.1016/j.artmed.2020.101851

Fitzpatrick, C. K., Baldwin, M. A., and Rullkoetter, P. J. (2010). Computationally
efficient finite element evaluation of natural patellofemoral mechanics. J. Biomech.
Eng. 132, 121013. doi:10.1115/1.4002854

Fitzpatrick, C. K., Baldwin, M. A., Rullkoetter, P. J., and Laz, P. J. (2011).
Combined probabilistic and principal component analysis approach for
multivariate sensitivity ~evaluation and application to implanted
patellofemoral mechanics. J. Biomech. 44, 13-21. doi:10.1016/j.jbiomech.
2010.08.016

Fitzpatrick, C. K., Clary, C. W., and Rullkoetter, P. J. (2012). The role of patient,
surgical, and implant design variation in total knee replacement performance.
J. Biomech. 45, 2092-2102. doi:10.1016/j.jbiomech.2012.05.035

Fitzpatrick, C. K., and Rullkoetter, P. J. (2014). Estimating total knee replacement
joint load ratios from kinematics. J. Biomech. 47, 3003-3011. doi:10.1016/j.
jbiomech.2014.07.002

Fitzpatrick, C. K., and Rullkoetter, P. J. (2012). Influence of patellofemoral
articular geometry and material on mechanics of the unresurfaced patella.
J. Biomech. 45, 1909-1915. doi:10.1016/j.jbiomech.2012.05.028

Gatti, A. A, and Maly, M. R. (2021). Automatic knee cartilage and bone
segmentation using multi-stage convolutional neural networks: Data from the
osteoarthritis initiative. Magn. Reson. Mat. Phy. 34, 859-875. doi:10.1007/
510334-021-00934-z

Gibbons, K. D., Clary, C. W., Rullkoetter, P. J., and Fitzpatrick, C. K. (2019).
Development of a statistical shape-function model of the implanted knee for real-
time prediction of joint mechanics. J. Biomech. 88, 55-63. doi:10.1016/j.jbiomech.
2019.03.010

Gregson, J., Sheffer, A., and Zhang, E. (2011). All-Hex mesh generation via
volumetric PolyCube deformation. Comput. Graph. Forum 30, 1407-1416. doi:10.
1111/j.1467-8659.2011.02015.x

Guan, B,, Lin, S., Wang, R,, Zhou, F., Luo, X,, and Zheng, Y. (2020). Voxel-based

quadrilateral mesh generation from point cloud. Multimed. Tools Appl. 79,
20561-20578. doi:10.1007/s11042-020-08923-5

Halloran, J. P, Easley, S. K., Petrella, A. J., and Rullkoetter, P. J. (2005).
Comparison of deformable and elastic foundation finite element simulations for
predicting knee replacement mechanics. J. Biomech. Eng. 127 (5), 813-818. doi:10.
1115/1.1992522

Harris, M. D,, Cyr, A. ], Ali, A. A, Fitzpatrick, C. K., Rullkoetter, P. J., Maletsky,
L. P, et al. (2016). A combined experimental and computational approach to
subject-specific analysis of knee joint laxity. J. Biomech. Eng. 138 (8),
0810041-0810048. doi:10.1115/1.4033882

Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., and Bergmann, G. (2007).
Design, calibration and pre-clinical testing of an instrumented tibial tray.
J. Biomech. 40, $4-S10. doi:10.1016/j.jbiomech.2007.02.014

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. (1993).
“Mesh optimization,” in Proceedings of the 20th Annual Conference on Computer

frontiersin.org


https://im.engr.uconn.edu/downloads.php
https://im.engr.uconn.edu/downloads.php
https://doi.org/10.1109/HIC.2017.8227570
https://doi.org/10.1016/j.media.2018.11.009
https://doi.org/10.1007/s00371-010-0416-3
https://doi.org/10.1016/j.cmpb.2009.07.005
https://doi.org/10.1038/s41598-018-35628-5
https://doi.org/10.1038/s41598-018-35628-5
https://doi.org/10.1016/j.medengphy.2009.10.008
https://doi.org/10.1016/j.medengphy.2009.10.008
https://doi.org/10.1016/j.cmpb.2020.105328
https://doi.org/10.1016/0262-8856(92)90066-C
https://doi.org/10.1016/j.clinbiomech.2010.08.009
https://doi.org/10.1016/j.clinbiomech.2010.08.009
https://doi.org/10.1016/j.medengphy.2019.08.002
https://doi.org/10.1016/j.eclinm.2020.100587
https://doi.org/10.1186/s12891-016-1286-2
https://doi.org/10.1016/S0021-9290(00)00094-4
https://doi.org/10.1016/j.artmed.2020.101851
https://doi.org/10.1115/1.4002854
https://doi.org/10.1016/j.jbiomech.2010.08.016
https://doi.org/10.1016/j.jbiomech.2010.08.016
https://doi.org/10.1016/j.jbiomech.2012.05.035
https://doi.org/10.1016/j.jbiomech.2014.07.002
https://doi.org/10.1016/j.jbiomech.2014.07.002
https://doi.org/10.1016/j.jbiomech.2012.05.028
https://doi.org/10.1007/s10334-021-00934-z
https://doi.org/10.1007/s10334-021-00934-z
https://doi.org/10.1016/j.jbiomech.2019.03.010
https://doi.org/10.1016/j.jbiomech.2019.03.010
https://doi.org/10.1111/j.1467-8659.2011.02015.x
https://doi.org/10.1111/j.1467-8659.2011.02015.x
https://doi.org/10.1007/s11042-020-08923-5
https://doi.org/10.1115/1.1992522
https://doi.org/10.1115/1.1992522
https://doi.org/10.1115/1.4033882
https://doi.org/10.1016/j.jbiomech.2007.02.014
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1059003

Gibbons et al.

Graphics and Interactive Techniques, Anaheim ca, August 2 - 6, 1993 (Association
for Computing Machinery), 19-26. doi:10.1145/166117.166119

Hume, D. R, Rullkoetter, P. J., and Shelburne, K. B. (2020). ReadySim : A
computational framework for building explicit finite element musculoskeletal
simulations directly from motion laboratory data. Int. J. Numer. Method.
Biomed. Eng. 36, €3396. doi:10.1002/cnm.3396

Ito, Y., Shih, A. M., and Soni, B. K. (2009). Octree-based reasonable-quality
hexahedral mesh generation using a new set of refinement templates. Int. J. Numer.
Methods Eng. 77, 1809-1833. d0i:10.1002/nme.2470

Ivester, J. C., Cyr, A. J., Harris, M. D., Kulis, M. J., Rullkoetter, P. J., and Shelburne,
K. B. (2015). A reconfigurable high-speed stereo-radiography system for sub-
millimeter measurement of in vivo joint kinematics. J. Med. Device. 9, 041009.
doi:10.1115/1.4030778

Kutzner, I, Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., Halder, A., et al.
(2010). Loading of the knee joint during activities of daily living measured in vivo in
five subjects. J. Biomech. 43, 2164-2173. doi:10.1016/j.jbiomech.2010.03.046

Lane, N. E,, Brandt, K., Hawker, G., Peeva, E., Schreyer, E., Tsuji, W, et al. (2011).
OARSI-FDA initiative: Defining the disease state of osteoarthritis. Osteoarthr.
Cartil. 19, 478-482. doi:10.1016/j.joca.2010.09.013

Livesu, M., Pietroni, N., Puppo, E., Sheffer, A., and Cignoni, P. (2020). LoopyCuts:
Practical feature-preserving block decomposition for strongly hex-dominant
meshing. ACM Trans. Graph. 39 (4), 121:1-121:17. doi:10.1145/3386569.3392472

Livesu, M., Vining, N., Sheffer, A., Gregson, J., and Scateni, R. (2013). PolyCut:
Monotone graph-cuts for PolyCube base-complex construction. ACM Trans.
Graph. 32, 1-12. doi:10.1145/2508363.2508388

Lorensen, W. E., and Cline, H. E. (1987). Marching cubes: A high resolution 3D
surface construction algorithm. SIGGRAPH Comput. Graph. 21, 163-169. doi:10.
1145/37402.37422

Malbouby, V., Gibbons, K. D., and Fitzpatrick, C. K. (2022). “An automated
pipeline to generate soft-tissue attachments of the knee for finite element
simulations,” in ORS 2022 annual meeting paper No. 2250. Presented at the
orthopaedic research society annual meetup (Rosemont, Illinois: Orthopaedic
Research Society), 1.

Maletsky, L.P.,and Hillberry, B. M. (2005). Simulating dynamic activities using a
five-Axis knee simulator. J. Biomech. Eng. 127, 123-133. doi:10.1115/1.1846070

National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
(2004). Osteoarthritis initiative (OAI): A knee Health study (clinical trial registration
No. NCT00080171). Bethesda, Maryland: U. S national library of medicine.

Navacchia, A., Rullkoetter, P. J., Schiitz, P., List, R. B., Fitzpatrick, C. K., and
Shelburne, K. B. (2016). Subject-specific modeling of muscle force and knee contact
in total knee arthroplasty: Modeling of knee contact in total knee arthroplasty.
J. Orthop. Res. 34, 1576-1587. doi:10.1002/jor.23171

O’Neill, T. W., McCabe, P. S., and McBeth, J. (2018). Update on the epidemiology,
risk factors and disease outcomes of osteoarthritis. Best Pract. Res. Clin.
Rheumatology 32, 312-326. doi:10.1016/j.berh.2018.10.007

Paproki, A., Engstrom, C., Chandra, S. S., Neubert, A., Fripp, J., and Crozier, S.
(2014). Automated segmentation and analysis of normal and osteoarthritic knee
menisci from magnetic resonance images — data from the Osteoarthritis Initiative.
Osteoarthr. Cartil. 22, 1259-1270. doi:10.1016/j.joca.2014.06.029

Paz, A., Orozco, G. A., Korhonen, R. K., Garcia, J. J., and Mononen, M. E. (2021).
Expediting finite element analyses for subject-specific studies of knee osteoarthritis:
A literature review. Appl. Sci. (Basel). 11, 11440. doi:10.3390/app112311440

Frontiers in Bioengineering and Biotechnology

14

10.3389/fbioe.2022.1059003

Ramos, A., and Simdes, J. A. (2006). Tetrahedral versus hexahedral finite elements
in numerical modelling of the proximal femur. Med. Eng. Phys. 28, 916-924. doi:10.
1016/j.medengphy.2005.12.006

Rao, C,, Fitzpatrick, C. K., Rullkoetter, P. J., Maletsky, L. P., Kim, R. H., and Laz, P.
J. (2013). A statistical finite element model of the knee accounting for shape and
alignment variability. Med. Eng. Phys. 35, 1450-1456. doi:10.1016/j.medengphy.
2013.03.021

Rodriguez-Vila, B., Sdnchez-Gonzélez, P., Oropesa, I., Gomez, E. J., and Pierce, D.
M. (2017). Automated hexahedral —meshing of knee cartilage
structures — application to data from the osteoarthritis initiative. Comput.
Methods Biomech. Biomed. Engin. 20, 1543-1553. doi:10.1080/10255842.2017.
1383984

Ronneberger, O., Fischer, P., and Brox, T., 2015. U-Net: Convolutional networks
for biomedical image segmentation. ArXiv150504597 Cs.

Savitzky, A., and Golay, M. J. E. (1964). Smoothing and differentiation of data by
simplified least squares procedures. Anal. Chem. 36, 1627-1639. doi:10.1021/
ac60214a047

Schroeder, W., Martin, K., and Lorensen, B. (2006). The visualization toolkit: An
object-oriented approach to 3D graphics. Clifton Park, NY: Kitware.

Sullivan, C. B., and Kaszynski, A. A. (2019). PyVista: 3D plotting and mesh
analysis through a streamlined interface for the visualization toolkit (VTK). J. Open
Source Softw. 4, 1450. doi:10.21105/joss.01450

Ta, M. (2019). Development and implementation of a computational surgical
planning model for pre-operative planning and post-operative assessment and
analysis of total hip arthroplasty. United States: The university of tennessee.

Tack, A., Mukhopadhyay, A., and Zachow, S. (2018). Knee menisci segmentation
using convolutional neural networks: Data from the osteoarthritis initiative.
Osteoarthr. Cartil. 26, 680-688. doi:10.1016/j.joca.2018.02.907

Tadepalli, S. C., Erdemir, A., and Cavanagh, P. R. (2011). Comparison of
hexahedral and tetrahedral elements in finite element analysis of the foot
and footwear. J. Biomech. 44, 2337-2343. doi:10.1016/j.jbiomech.2011.
05.006

Taha, A. A, and Hanbury, A. (2015). Metrics for evaluating 3D medical image
segmentation: Analysis, selection, and tool. BMC Med. Imaging 15, 29. doi:10.1186/
$12880-015-0068-x

Torry, M. R,, Shelburne, K. B., Peterson, D. S., Giphart, J. E., Krong, J. P., Myers,
C., et al. (2011). Knee kinematic profiles during drop landings: A biplane
fluoroscopy study. Med. Sci. Sports Exerc. 43, 533-541. doi:10.1249/MSS.
0b013e3181f1e491

Valette, S., Chassery, J. M., and Prost, R. (2008). Generic remeshing of 3D
triangular meshes with metric-dependent discrete voronoi diagrams. IEEE Trans.
Vis. Comput. Graph. 14, 369-381. doi:10.1109/TVCG.2007.70430

Varadarajan, K. M., Harry, R. E,, Johnson, T., and Li, G. (2009). Can in vitro
systems capture the characteristic differences between the flexion-extension
kinematics of the healthy and TKA knee? Med. Eng. Phys. 31, 899-906. doi:10.
1016/j. medengphy.2009.06.005

Wang, H., Koff, M. F,, Potter, H. G., Warren, R. F., Rodeo, S. A., and Maher, S. A.
(2015). An MRI-compatible loading device to assess knee joint cartilage
deformation: Effect of preloading and inter-test repeatability. J. Biomech. 48,
2934-2940. doi:10.1016/j.jbiomech.2015.08.006

Zhou, Q.-Y., Park, J., and Koltun, V., 2018. Open3D: A modern library for 3D
data processing, ArXiv 1801.09847.

frontiersin.org


https://doi.org/10.1145/166117.166119
https://doi.org/10.1002/cnm.3396
https://doi.org/10.1002/nme.2470
https://doi.org/10.1115/1.4030778
https://doi.org/10.1016/j.jbiomech.2010.03.046
https://doi.org/10.1016/j.joca.2010.09.013
https://doi.org/10.1145/3386569.3392472
https://doi.org/10.1145/2508363.2508388
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/37402.37422
https://doi.org/10.1115/1.1846070
https://doi.org/10.1002/jor.23171
https://doi.org/10.1016/j.berh.2018.10.007
https://doi.org/10.1016/j.joca.2014.06.029
https://doi.org/10.3390/app112311440
https://doi.org/10.1016/j.medengphy.2005.12.006
https://doi.org/10.1016/j.medengphy.2005.12.006
https://doi.org/10.1016/j.medengphy.2013.03.021
https://doi.org/10.1016/j.medengphy.2013.03.021
https://doi.org/10.1080/10255842.2017.1383984
https://doi.org/10.1080/10255842.2017.1383984
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.21105/joss.01450
https://doi.org/10.1016/j.joca.2018.02.907
https://doi.org/10.1016/j.jbiomech.2011.05.006
https://doi.org/10.1016/j.jbiomech.2011.05.006
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1249/MSS.0b013e3181f1e491
https://doi.org/10.1249/MSS.0b013e3181f1e491
https://doi.org/10.1109/TVCG.2007.70430
https://doi.org/10.1016/j.medengphy.2009.06.005
https://doi.org/10.1016/j.medengphy.2009.06.005
https://doi.org/10.1016/j.jbiomech.2015.08.006
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1059003

	Robust automatic hexahedral cartilage meshing framework enables population-based computational studies of the knee
	1 Introduction
	2 Methods
	2.1 Data source
	2.2 Image segmentation
	2.3 Reconstruction of tissue geometry
	2.4 Meshing
	2.4.1 Hexahedral meshing algorithm modifications
	2.4.2 Cartilage mesh blending
	2.4.3 Soft-tissue attachment locator

	2.5 Knee flexion simulation

	3 Results
	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


