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Abstract

We propose MetaNOR, a meta-learnt approach for transfer-learning operators based on the nonlocal operator regression. The overall goal is to effi-
ciently provide surrogate models for new and unknown material-learning tasks with different microstructures. The algorithm consists of two phases:
(1) learning a common nonlocal kernel representation from existing tasks; (2) transferring the learned knowledge and rapidly learning surrogate
operators for unseen tasks with a different material, where only a few test samples are required. We apply MetaNOR to model the wave propagation

within 1D metamaterials, showing substantial improvements on the sampling efficiency for new materials.

Introduction

Metamaterial is a group of artificial heterogeneous materials
exhibiting unusual yet desired frequency dispersive prop-
erties from its composite microstructure. These materials
have been studied theoretically, numerically and experimen-
tally,l'=3 to optimize its microstructure for dispersive proper-
ties and performances in different environments. However,
their design and modeling is often computationally prohibi-
tive, since they contain more than thousands of interfaces in
its microstructures (example interfaces are shown in Fig. 1).
For example, modeling dispersive properties via the stress
wave propagation in metamaterials would require accurate
bottom-up characterization of material interfaces and simu-
lations from each individual layer (the microscopic scale),
which are often of orders smaller than the problem domain
length scale (the macroscopic scale). Therefore, even with
sophisticated optimization techniques, designing such a
material would still require running multiple full wave simu-
lations for each candidate microstructure and consumes sig-
nificant computation time.

To accelerate stress wave simulations, efficient surrogate
models for metamaterials such as homogenized models are
often employed.[**! They are posed as a single equation of
the displacement field and can be readily used in simulations
at the macroscopic scale. Among various choices of homog-
enized models, nonlocal surrogate models have received
lots of attentions,[*~*] where integral operators are employed
which embeds all time and length scales in their definitions.
Comparing with continuum partial differential equation
(PDE) counterparts, the nonlocal surrogate models provide
a more natural affinity with the dispersive waves in a micro-
structure, and successfully reproduce many features of the
decay and spreading of stress waves.[® In nonlocal homog-
enization models the choice of kernel functions contains

information about the small-scale response of the system.
Hence, once equipped with the power of machine learning
to identify the optimal form for the kernel function, effec-
tive nonlocal surrogate models can be obtained from high-
fidelity (HF) simulations and/or experimental measurements,
so as to reproduce the material response with the greatest
fidelity. To this end, the nonlocal operator regression (NOR)
approach,®%1% is proposed to obtain large-scale nonlocal
descriptions and capture small-scale material behavior that
would remain hidden in classical approaches to homogeni-
zation. NOR and the general homogenized surrogate mod-
els have greatly accelerated the simulation of heterogene-
ous materials at macroscale, but the choice of homogenized
models is often selected case by case, which makes rigorous
model calibration for multiple microstructure challenging
and time consuming. Moreover, in metamaterials and the
general heterogeneous material modeling problems, the data
acquisition is often very challenging and expensive, which
makes it critical for any method to learn the material model
with a limited number of measurements.

Motivated by further accelerating the design process for
metamaterials, in this paper we leverage NOR and the general
heterogeneous material homogenization procedure, to answer
the following question: Given knowledge on a number of mate-
rials with different microstructures, how can one efficiently
learn the best surrogate model for a new and possibly unknown
microstructure, with only a small set of training data (such as
several pairs/measurements of displacement and loading fields
from experiments)?

To answer this question, we develop sample-efficient data-
driven homogenized models for new metamaterial with unseen
microstructure, which (1) allow for accurate simulations of
wave propagation at much larger scales than the microstructure;
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Figure 1. Problem of interests and a schematic of the proposed algorithm. (a) One-dimensional metamaterial composed by dissimilar
components 1 and 2. Components 1 and 2 have the densities p1and p» and Young’s modulus E7and Ej. The horizon §, and the wave
length /, are reported for comparison. (b) A demonstration of our experiment setting. (c) A schematic of the main steps in MetaNOR.

(2) provide constitutive laws that can be readily applied in sim-
ulation problems posed on various environments with general
geometries and complex time-dependent loadings; and (3) uti-
lize the knowledge from previously studied materials to rapidly
adapt to new microstructures. Specifically, inspired by a recent
provable meta-learning approach of linear representations,'!]
we propose meta nonlocal operator regression (MetaNOR), a
sample-efficient learning algorithm for metamaterials where
multiple tasks (microstructures) share a common set of low-
dimensional features in their kernel space, for accurate and effi-
cient adaptation to unseen tasks. The algorithm has three com-
ponents. First, in the meta-train stage, we learn a common set
of features in the nonlocal kernel space from multiple related
tasks (i.e., related microstructures), by minimizing the corre-
sponding empirical risk induced by nonlocal surrogate models.
Second, in the meta-test stage, with estimated kernel feature
representation shared across tasks, we transfer this knowledge
to learn the model for a new and unseen microstructure, where
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only a few samples/measurements are required. Third, when
partial physical knowledge is available, such as the effective
wave speed for infinitely long wavelengths and/or the disper-
sion properties of the material for very long waves, we incor-
porate these physics-based constraints into the proposed meta-
learning algorithm to further improve the learning accuracy
and sample efficiency.

Main contributions: we summarize the main contributions
of this paper as follows:

1. We design a novel meta-learning technique for learning
nonlocal operators, by learning a common set of low-
dimensional features on multiple known tasks in their ker-
nel space and then transferring this knowledge to new and
unseen tasks.

2. Our method is the first application of meta-learning
approach on homogenized model for heterogeneous mate-
rials, which efficiently provides an associated model surro-
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gates that are effective on applications with various loading
and time scales.

3. We provide rigorous error analysis for the proposed algo-
rithm, showing that the estimator converges as the data
resolution refines and the number of sample increases. We
verify its efficacy on a synthetic dataset.

4. We illustrate the proposed method on one-dimensional
metamaterials, to confirm the applicability of our technique
and the improved sample efficiency over baseline nonlocal
operator regression estimators.

Nonlocal operator regression (NOR)
We first review related concepts of the general nonlocal operator
regression (NOR) approach, and then demonstrate the equiva-
lence of NOR and a linear regression model in the kernel space,
which provides the foundation for us to formulate MetaNOR as a
linear kernel feature learning problem with theoretical guarantees
in the next section.

Throughout this paper, we use A* to denote its optima for each
vector or matrix or operator A of interests, A™ to denote its
ground-truth, and A° to denote an approximation solution to the

optima. For any vector v=[vi,...,v,] € RY, we use
[Vl == ?:1 v% to denote its /> norm, and similarly

[vlIp = Z?:l |vi| denotes the /' norm. For any matrix
A = [4;] € R, weuse||Al|p := />7_; Y1, 45 to denote
its Frobenius norm, and use ||A|| to denote its spectral norm. =
and < denote greater than and less than, up to a universal con-
stant, respectively. We use O, Q2 and @® as in the standard nota-

tions, and O as an expression that hides polylogarithmic factor in
problem parameters. I, denotes the p x p identity matrix.

Nonlocal models and Kernel learning
Nonlocal Models!'?! describe the state of a system, where any
point depends on the state in a neighborhood of points. In hetero-
geneous materials, it is shown that nonlocality naturally appears
in the homogenized model derived from micromechanical mod-
els,!'31 which makes nonlocal operators good candidates for
obtaining homogenized models for heterogeneous materials.['*]
Formally, on some bounded domain 2 € R?, we model the
HF or ground-truth material response as a mapping between two
function spaces, £ : U — F,where i = {u(x),x € Q}(canbe
seen as the space of displacement fields) and F = {f'(x),x € Q}
(can be seen as the space of loading fields) are Banach spaces.
The goal of nonlocal operator learning is to then find a surrogate
operator Ly : U — F with parameter 0, such that £y ~ L7. In
particular, we assume that the action of the ground-truth material
model may be approximated by an integral operator of the form:

Lo[u](x) Z/Q)/e(x,y)(u(y) — u(x))dy, (1)

where the kernel y takes inputs spatial locations x and y.
Inspired by the application of nonlocal diffusion opera-
tor in metamaterial problems,[®”] we choose to take
vo(x,¥) := yo(ly — x|) as a radial and sign-changing kernel

function, which is compactly supported on the ball of radius §
centered at x, denoted as B;(x). Moreover, we represent g as a
linear combination of basis polynomials:

M
volly —x) = CuPu(ly — xI), @)

m=1

with properly chosen basis polynomials {P,,(]y — x|)}.

Suppose we are given observations of K pairs of functions
{ur (), fx (x)}f:1 where uy, (x) are samples in If and £ ¥ [u] = f;,
potentially with noise. Then, learning the nonlocal kernel y, can
be framed as an optimization problem. Here we consider the
squared loss in the L%(Q) norm:

1 K
TO) =By |I1£alu) =/ 2(q) | ~ 2 X 1Colie] = fil 2
k=1

Therefore, learning the surrogate operator Ly is equivalent to
finding optimal parameters & = {C,,} by minimizing the objec-
tive J(0). Here, we stress that NOR aims to learn a surro-
gate operator for the ground-truth operator £, rather than the
displacement field solution u(x) for a single instance loading
field f{x). Since our goal is to provide a homogenized surro-
gate model which can be readily applied in simulation prob-
lems with time-dependent loadings, the former setting is more
appropriate, which directly approximates the solution opera-
tor and finds the solutions for different loadings at different
time instants. Moreover, approximating the operator also pos-
sesses the notable advantages of resolution independence and
convergence.

NOR for metamaterial homogenization

We now seek nonlocal homogenized models for the stress wave
propagation problem in a one-dimensional metamaterial, i.e.,
p = 1, using NOR as described above. As illustrated in Fig. 1,
each material is a heterogeneous bar formed by two dissimilar
materials, with microstructure either made of periodic layers
or randomly generated layers. The goal of NOR is to learn a
surrogate model which is able to reproduce wave propagation
on distances that are much larger than the size of the micro-
structure, without resolving the microscales.

We assume that there exists a (possibly unknown or nonfea-
sible) HF model that faithfully represents the wave propagation
in detailed microstructures: for (x,7) € Q x [0, T],

3% ton
o2 (60 — L7, 1) = gx, 1). 3

Here £V is the HF operator that considers the detailed micro-
structure, #(x, ¢) is the HF solution which can be provided either
from fine-scale simulations or from experiment measurements
in practice, and g(x, ) represents a time-dependent force load-
ing term. Analogously, we will refer to the homogenized effec-
tive nonlocal operator as Ly, and assume that the surrogate
model has the form
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3% N
W(x, 1) — Lolul(x, 1) = g(x,1), 4)
for (x,7) € Q x [0, T], augmented with Dirichlet-type bound-
ary conditions from the HF solution on a layer of thickness &
that surrounds the domain, and the same initial conditions as
in the HF model. Here i(x, ¢) is the homogenized solution. As
shown in,!"*! the second-order-in-time nonlocal equation (4) is
guaranteed to be well-posed as far as yp is uniformly Lipschitz
continuous. Therefore, when parameterizing the nonlocal ker-
nel yp as a linear combination of basis polynomials following
(2), one can make sure that the learnt model can be readily
applied in simulation problems.

To learn the optimal Lg, suppose we have K observations of
forcing terms g (x, ¢) and the corresponding HF solution/experi-
mental measurements uy (x,¢), k = 1, ..., K, measured at time
instance ¢" € [0, T'] and discretization points x; € . Without
loss of generality, here we assume measurements are provided
on uniformly spacing spatial and time instances, with fixed spa-
tial grid size Ax and time step size Az. Denoting the collection
of discretization points as y = {x,}l 1> then the training dataset
contains Nyain := LK | T /At]measurements in total, specifically,

~ T/A
Dusain = (@ (i, "), g i, ) Y 21

In NOR the squared loss then writes:

K
Z Loltt]

JO) ~ ~K “k]HL2(s2x[0 )
K i 2 ®)
Z Lolin] = - + ge(x. 1) :
K~ L2(Qx[0,T])
To numerically evaluate the above loss, we discretize 36 LS

with the central difference scheme in time and Riemann sum
approximation of the nonlocal operator in space:

3%y,
012

1
= 7(ﬁk(x,t + A1) = 20y (x, 1) + Gy (x, t — At)),

o, 1) ~ i (x, 1) :

(6)

Colin) ) = / yoly — <) i (0, )

Bs (x)

— it (e, ))dy & Lo axliix](x, 1)

M
=AY Y CuPufx —x|)
Xj€Bs(x)Ny m=1
(g (xj, 1) — it (x, 1))
d M

= Ax Z Z Cn P (0 AX) (i (x + 2 Ax, 1)

a=1m=1
- 21"\{k(x5 t) + i\lk(x - OtAxa t)):
(M
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for each x = x; € x, ¢t = ¢" and d := | §/Ax]. Substituting the
above schemes into (5), we then obtain

LT/ At

TS ) 3 1

k=1xi€ex n=1

i~ 6i)TBC)(8)

where the (reformulated) data pair y}, € R and s} ; € R are
defined as

Viii=— 2l (i, ") — fig (i, ") — A G, 1)) — g (xi, 1),

O

1
2l

[87 o = Ax (il Criparr ") + tig (xi—r 1) — 21 (xi,27)),
a=1,...,d.
(10)
The parameter vector C := [Cy,...,Cy] € RM  and the feature
matrix B := (by,...,by) € ROM ig defined as:

Byw = Pp(aAx), m=1,....M, a=1,...,d,
and the dimension of each feature equals to d. Therefore, the
optimal parameters are obtained by solving a (constrained)
optimization problem
rrgn J(@) 4+ R@O), s.t. Ly satisfies physics-based constraints.
)
Here R(0) is a regularization term which aims to prevent
over-fitting in the inverse problem, and ¢ is the regulariza-
tion parameter. A commonly used regularization term is the
Euclidean norm in the classical Tikhonov regularization, i.e.,
RO) :=||C| |122. The physics constraints denote the additional
conditions which enforce partial physical knowledge of the
heterogeneous material, for which we will explain later on.
From (8), we can see that NOR is equivalent to a linear
model with M-dimensional features in the kernel space. When
taking P,, m = 1,...,d = M as the Lagrange basis polyno-
mials, satisfying P, (¢Ax) = 1 for « = m and P,,(¢Ax) =0
for all @ # m, we note that B becomes an identity matrix and
NOR will be equivalent to a linear regression problem. There-
fore, algorithms and analysis on linear regression models can
be immediately applied in NOR. In “Empirical experiments”
section, this linear kernel regression setting will be employed
as the baseline method on a new microstructure (task), which
only uses data generated from that task.

Proposed meta-learning algorithm

We now consider the problem of meta-learning in NOR,
such that multiple tasks share a common set of low-dimen-
sional features in the kernel space. Given Kii, observations
(it (x, 1), g (x, 1)) which belong to H unobserved underlying
tasks, the meta-learning NOR model writes:

82

(x 1) — Lo, [ ]0x, ) = gr(x, 1) + €, (x, 1) (12)
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Here, we assume that each task corresponds to a different
microstructure and the underlying optimal surrogate kernel
Yoyr» where n(k) € {1,...,H} denotes the index of task asso-
ciated with the k-th function pair. €;(x,?) is a smooth func-
tion related with the additive noise, describing the discrepancy
between the ground-truth operator and the optimal surrogate
operator, i.e., € (x,t) := (LT — Lgn(k))[&k](x, ). Our goal is
to recover the underlining low-dimensional representation for
the kernel space, and use this representation to recover a bet-
ter estimate for a new and unseen task. Mathematically, we
assume that there exists an unobserved kernel feature space
span({ P, (ly — xl)}M 1), such that M <« d and

M
Vo, (v —xD) = CypmP(ly — xI), (13)

m=1

where C,, is the parameter for the n—th task. For a new and
unseen microstructure, we assume there also exists a surrogate
model for it:

2A

3—;’@, £) = Lo [01(x, 1) = g(v. ) + e(r, 1), (14)

with its optimal surrogate kernel inside the unobserved ker-

nel feature space span({P,(|y —xl)} —1), l.e., there exists
Ciest € RM such that
M
Vo [V = x1) = CrestnPm(ly — x). (15)
m=1

Then, with only a few measurements given for a new and
unseen microstructure, we aim to efficiently recover this opti-
mal estimator g,

Comparing with NOR and the other classical machine learn-
ing methods, our method aims at five desirable properties: (1)
The learning algorithm is sample-efficient on the new task,
which implies that the optimal estimator yg,., can be learnt even
with very scarce measurements. (2) The estimator is resolution
independent, in the sense that the learnt model can be applied to
different resolution problems. (3) Beyond resolution invariance,
we further aim for a robust consistent estimator, that is, the
estimator converges as data resolution refines. (4) The method
learns the nonlocal surrogate model directly from data, i.e.,
no preliminary knowledge on the governing law is required.
(5) The learnt model is generalizable, meaning that it is appli-
cable to problem settings that are substantially different from
the ones used for training in terms of loading and domain/time
scales. Hence, once the nonlocal surrogate model is learnt, one
can further employ it in further prediction tasks with a longer
simulation time, a larger computational domain, and on a dif-
ferent grid.

Before demonstrating our main algorithm, we first estab-
lish the connection of our meta-learning model with the lin-
ear representation model illustrated in.['!! Following a similar

derivation in “NOR for metamaterial homogenization” section,
we reformulate the training data following (9) and (10), then
denote the collection of all (reformulated) data points as

= {8/},

KsainsLirain, | Torain / A
Dtram — {(yk i sk 1)}k tlra;lll train |_ tram/ J

With a slight abuse of notations, in the meta-learning algorithm
we consider a uniform task sampling model which does not
differentiate the datapoints from different sample £, time step »
and spatial grid 7, then use n(j) € {1, ..., H}to denote the index
of the task associated with the datapoint j. Then, discovering
the kernel basis {P,,(|y — xl)}],‘n”=1 is equivalent to recovering
a linear feature matrix B € R?*™ with orthonormal columns,
such that P, (¢ Ax) = B, and

vy =/ BCyg) + ¢, (16)

where C,,(;) is the parameter for the 1 () —th task, and ¢; is addi-
tive noise. For the new task, with a collection of (reformulated)
datapoints

test testy )N
Dtest—{(yesa es)} <,

recovering the optimal kernel yj,, is equivalent to recovering
an optimal estimate Ciegt, such that:

thCSt (sjest) Bctest+etest (17)

Our meta-learning model has two stages: firstly, the linear fea-
ture matrix B is recovered from Dy, the data from the first
H known tasks, then the learnt feature representation will be
employed to discover an estimate of the task parameter Cp,
from a (scarce) test dataset corresponding to this new task. In
particular, we employ the provable meta-learning algorithm
recently proposed in.!'' In the following we briefly describe
the main steps, with further theoretical results elaborated in
“Prediction error bounds” section and discussions in “Physics-
based constraints” section.

Step |  Data preprocessing for learning tasks We first nor-
malize each pair of solution 2 (x, ¢) and forcing term
gr(x, ) with respect to the L2 norm of #i (x, £), then
generate the reformulated data pairs following (9) and
(10). To further ensure that the dataset satisfies the
sub-Gaussian requirement (see Assumption 3.1), we
normalize the training data pairs such that E[s] = 0
and E[ss’] = 1,.

Meta-train to learn Kernel features As the first stage
of meta-learning, we solve for B € RI*M gand try
to recover W := (Cy,...,Cy)'BT € Rf*4 with
rank(W) =r < d. In particular, we consider the
Burer—Monteiro factorization of W = UV’ with
UeRPM v e RM | and solve the following
optimization problem

Step 2

MRS COMMUNICATIONS - VOLUME XX - ISSUE xx - www.mrs.org/mrc B 5
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H Nirain

UV Nirain /Z

{
2
F
j=1

(18)
where Niain = KirainLirain | Ttrain / At] 1s the total num-
ber of training datapoints and e; is the j—th stand-
ard basis vector in R . The estimated feature matrix
B° can then be extracted, as an orthonormal basis
from the column space of V°. As shown in,!'® all
localminima of this optimization problem, V°, would
be in the neighborhood of the optimal, that means, the
approximated basis B® would provide a good estimate
to the optimal low-dimensional feature space.
Meta-test to transfer features to new tasks As the sec-
ond stage of meta-learning, we substitute the learnt
feature matrix B° from the first stage, and estimate the
new task parameter Cieg as follows:

2
(= e [sfVUT]) "+ Z/[UU=V7v|

Step 3

Ntcsl
Coy = argminz (y}est - (s}eSt)TB"Ctest)z. (19)
test j=l
Since this is an ordinary least-square objective, an
analytical solution can be obtained:

Neest T Stest
Ctocst = Z(BO)TS;CM (S;Cst)TBO (BO)T Z s;cst}}}cst
& j=1 (20)

where T indicates the Moore—Penrose pseudo-inverse.
Postprocessing to obtain a continuous model To con-
struct the continuous model which can be employed
in further prediction tasks with various resolutions,
we employ the B-spline basis functions consisting of
piece-wise polynomials with degree 2. In particular,
we construct the basis polynomials as Pg,(ly — x|) :=
S B, Naa(ly —x|), m=1,...,M, where Ny
are constructed with evenly spaced knots on interval
[0, (d 4+ 1) Ax]. Substituting the chosen polynomials
{Pu(ly — x|)} into (2), we obtain the learnt nonlocal
surrogate model for the new microstructure, which is
defined by a continuous nonlocal kernel

Step 4

M
Vo (v —xD) =D (Cog )Paly —xD. (1)

m=1

Note that this kernel is indeed a twice differentiable function for
|y — x| <4, the resultant nonlocal surrogate model is therefore
well-posed and defined in a continuous way.

Prediction error bounds
We now provide error bounds for MetaNOR based on the results

for linear regression provided in.!'"! Throughout this section, we
use||V]|2(q) =/ Ax > xEx vl2 to denote the domain-associated
12 norm for a vector with values on . This norm can be seemed

as a discretized approximation for the L?(£2) norm. Consider a
solution pair (C°, B®) which corresponds to a local minimizer of
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(18) and (20), we use £, to denote the corresponding nonlocal
operator generated from the learnt nonlocal kernel y, ,and £3
to denote its approximation by Riemann sum following (7).

We now provide the error estimates for the kernel estimator,
] ]ytest — Vo ‘ | 2(05]) and for the prediction error. For the later,
we consider a given time-dependent loading g(x, ¢) with
X € Qpred and ¢ € [0, Tpred], then use the learnt nonlocal model
to predict the material response of our test microstructure, i.e.,
to provide an approximated displacement solution. Here, we
stress that the prediction domain p,eq and time interval [0, Tpyed]
may be different from the training datasets. We then discretize
Qpred and [0, Tpreq] with grid sizes Ax and A¢, respectively, and
denote the spatial grid set as xpred. For simplicity of analysis,
here we take the same discretization sizes as those in the training
dataset. However, since a continuous model is learnt, in practice
one may employ different resolution or even discretization meth-
ods, as will be numerically demonstrated in the empirical experi-
ment of “Verification on synthetic datasets” section . We consider
8 as a physical parameter, i.e., as a fixed value, and hence
d =0(Ax). Denoting i(-, ") as the ground-truth HF solution
subject to loading g(x, 7) and %" (x;) as the numerical solution
satisfying

' (x;) — Lg, " () = gxi, 1) 22)

forx; € preaandn = 1,..., [ Tprea/At], we aim to provide
the error bound in the discretized energy norm for displacement
prediction:

Lprcd ol _en_l 2
|[u" - “("tn)||E(s2) F= Z (lmx>

i=1
d Lpred
+2Ax Y Y BCLa(Elg — ),
a=li=l-«a

where e = a(x;, ") — i (x;).

We first detail three required assumptions for the analysis.

In the following derivations, we always assume that the state-
ments below are true, and therefore will not list them in the
statement of theorems again.
Assumption 3.1 For both the training and test datasets,
the vectors s; are i.i.d. designed with zero mean, covariance
E[ss”] = I, and are I-sub-Gaussian. The additive noise vari-
ablese; =y; — szBC,,(,-) are also i.i.d. sub-Gaussian with vari-
ance parameter 1. Moreover, ¢; are independent of's;.

For the H training tasks, we define the popula-
tion task diversity matrix and condition numbers as
T=(Cy,...,Cx)T e RF>M .= (TTT/H) and
K = Loy (T7T/H).

Assumption 3.2 The H underlying task parameters C; satisfies
|Cj|| . = ©(1), i.e., they are asymptotically bounded below
and above by constants. Moreover, the population task diversity
matrix is well-conditioned, i.e., k < O(1), which indicates that
v > Q(1/M).
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Moreover, we make the following additional assumptions asso-
ciated with the stability and consistency of the numerical scheme:

Assumption 3.3 The high-fidelity solution for our prediction
tasksi € C2(2 x [0, T, pred]) and At is sufficiently small such that
it satisfies A7 < min[(8 Ax|/B°C°|[;1) ™", (2Tpreq) ~'1. Moreo-
ver, the modeling error, €(x, ¢), is bounded by a constant E for
all x € Qpreq and ¢ € [0, Tpreq].

We now proceed to provide error bounds to our linear
kernel representation learning setting.

Theorem 3.4 Suppose we are given Nyain total training
datapoints from H diverse and normalized tasks, and Niest
numbers of test datapoint on a new task with unknown micro-
structure. If the number of meta-train samples Niin satisfies
Nirain 2, polylog(Nirain, d, H) (kM)* max{H,d}, the number of
meta-test samples Niest satisfies Niest =, M 10g(Niest), and the
optimal test microstructure satisfies HCfcst| ‘12 < 0(1), then
any local minimizer of (18) and the learnt kernel converges to
the underlying optimal kernel with the following error bound:
2
?2<[0,51) = O<AxmaX{LfZ Ly )
train test

Hytest - Vec:est

and the corresponding approximated solution u has the follow-
ing excess prediction error bound forn =1,..., | Tpred/At] :

[|@" — a1 }2(9) < O(E2 + A+ AP

max(H, d)M?> . M D,

+ Ax [ —_—
Ntest

N, train

with probability at least1 — O((poly(d))~! + Nfloo).

test

The proof is obtained by applying Theorems 2 and 4 in.['!]

A more detailed proof is provided in Appendix.

Remark 1 This theorem indicates that when a sufficiently
large training dataset is provided, for a new microstructure with
very scarce measurements (Niest << Nirain /(Mmax(H,d)M)), we

. 1/2
have an approximated kernel error bound as O < (%{iﬁ‘ ) )

and the energy error bound for the prediction task as

- 1/2
(0] (E +(AD? + (%ﬁf ) ) Hence, when the nonlocal model

serves as a good surrogate for the material response, i.e., E is
negligible, the estimator from MetaNOR provides a converging
kernel and solution for further prediction tasks.

Physics-based constraints
As illustrated [6], when some physical knowledge is available,
these knowledge can be incorporated into the optimization prob-
lem as physics-based constraints (11). In particular, when the
effective wave speed for infinitely long wavelengths, ¢y, is avail-
able, the corresponding constraint writes:

)
/0 Eys(EDdE = 5, (23)

where p is the effective material density. Discretizing (23) by
Riemann sum, we obtain the first constraint of {Cy, }:

M d r
P =Y _ Cn Y AP, (@Ax) = Cpdinm (24)
m=1 m=1

a=l1

where Ay, = ZZ:I azAx3Pm(ozAx). Furthermore, when
the curvature of the dispersion curve in the low-frequency
limit, R, is also available, the corresponding constraint
writes:

8
| € maenas =zt 25)
Discretizing (25) yields the second constraint of {C), }:
M d M
—4pcgR =Y Cpu Y _a*A’Py(aAx) =Y Cudam (26)
m=1 a=1 m=1

where A, := ZZZI o* Ax3 P, (e Ax). Therefore, these two
physics-based constraints are imposed as linear constraints
for {C,,}. In empirical tests, we will refer to the experiments
with these constraints applied as the “constraint” cases. In
this work, we consider the heterogeneous bar composed by
alternating layers of two dissimilar materials, with (aver-
aged) layer size Ly = (1 — @)L, Ly = (1 + ¢)L for com-
ponents 1 and 2, respectively. Then the effective material
density, Young’s modulus, the wave speed, and the disper-
sion curvature are given by p = ((1 — ¢)p1 + (1 + ¢)p2)/2,
E=2/(1—¢E;" + (1 +¢)Es "), co=E/p,and R = 0.
To apply (24) and (26), we reformulate the constraint optimi-
zation problem such that an unconstraint optimization problem
of the form (8) is obtained. Detailed derivation is provided in
the Appendix.

Empirical experiments

We evaluate MetaNOR on both synthetic and real-world data-
sets. On each dataset, we compare our MetaNOR approach
with baseline NOR in (11). For NOR, we use linear regres-
sion with the L-curve method to select the proper regulariza-
tion parameter ¢. In synthetic datasets, we generate the data
from a known nonlocal diffusion equation and study the con-
vergence of estimators to the true kernel. We also apply our
method to a real-world dataset for stress wave propagation in
1D metamaterials.

In meta-training, we solve the optimization problem (18)
using SciPy’s L-BFGS-B optimization module. The maximum
iteration step is set to 10000. In meta-testing, the solutions are
solved with NumPy’s linalg module.

MRS COMMUNICATIONS - VOLUME XX - ISSUE xx - www.mrs.org/mrc B 7
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Verification on synthetic datasets
We consider a synthetic dataset generated from a nonlocal dif-
fusion equation

Ll ] (x) = /

B (x)

Yy = XD () — wp@)dy = gi ().

Here, n denotes the index of task, withn € {1, ..., 8}. Each task
is associated with a sine-type kernel:

Vo (v = x]) 1= exp(=n(ly — x[)) sin(6]y — xD1jo,101(ly — x]),

with the estimated support of kernel as § = 11. To generate the
training and test function pairs (ux (x), g (x)), for each task the
kernel acts on the same set of function {ur}r=1, with
u1 (x) = sin(x)1[_z »1(x) and uz (x) = cos(x)1[_x »](x), and the
loading function Eﬁ [ux] = g is computed by the adaptive
Gauss—Kronrod quadrature method, both on the computational
domain Q = [—40, 40]. To create discrete datasets with differ-
ent resolutions, we consider Ax € 0.0125 x {1, 2,4, 8}. In meta-
training, we use all samples from 7 “known tasks”
ne€{l1,2,3,4,6,7,8}. Then, the goal is to learn a good estima-
tor for the “unknown” new task withn = 5.

Effect of low-dimensional feature selection. In this experi-
ment we aim to verify the low-dimensional structure of the
kernel space and select a proper value of M, with all test
measurements employed, i.e., Nest = 2 x 80/Ax. In Fig. 2(b)
we demonstrate the learnt kernel for M € {1,2,4,7} and
Ax € {0.0125,0.1}, together with the averaged loss on all
test samples (denoted as “loss”) and the 12([0, 8]) errors for
the kernel (denoted as “’kernel error”). It is observed that the
learnt kernel is visually consistent with the true kernel when
M > 4. Hence in the following investigations we fix M = 4 for
all cases.Figure 2. Problem settings and convergence study results
for the MetaNOR verification on synthetic datasets.

Sampling efficiency on the new task: We now demonstrate
the performance of the estimator in the small test measurement
regime. We randomly select Nt € {10, 20,40, 80, 160,320}
measurements from all available data on the test task, and study
the convergence of the learnt kernel as Nt increases. In this
experiment we fix M = 4 and Ax = 0.0125. To generate a fair
comparison, the means and standard errors are calculated from
10 independent simulations. The errors of learnt kernels and
the averaged loss on all test samples from MetaNOR and NOR
are reported in Fig. 2(c). Averaged convergence rates are calcu-
lated on the relatively small data regime, i.e., for Nest < 160,
as: rate = log;¢ [error(Nst = 10)/error(Niest = 160)]. One can
see that the kernel error from MetaNOR decreases almost linearly
with the increase of Niegt — a half order faster than the bound sug-
gested in Theorem 3.4. This fact indicates a possible improvement
of the analysis in the future work. On the other hand, NOR exhibits
amuch larger error and test loss in the same small test data regime,
highlighting the advantage of our MetaNOR in sample efficiency.

Resolution independence and convergence We now study
the performance of the estimator in terms of its convergence as
the data mesh refines. Two types of experiments are designed,

8 W MRS COMMUNICATIONS - VOLUME XX - ISSUE xx - www.mrs.org/mrc

both with limited measurements ( Nest = 320). First, we keep
the same resolutions (Ax) in all tasks, to study the convergence
of estimators to the true kernel as Ax decreases. Additionally, to
verify the consistency of estimators across different resolutions,
we further investigate their performances when the training
tasks and test tasks have different resolutions. In Fig. 2(d) the
kernel errors and test losses are reported, as functions of Ax
in the test case (denoted as Axiest). For the first study, a 0.88
order convergence is observed, which is consistent with the
error bound from Theorem 3.4. For the second study, one can
see that no matter if we extract the features from a relatively
coarse grid (Axyain = 0.1) or a fine grid (Axyain = 0.0125), the
resultant estimator on the test task pertains a similar accuracy
or even achieves convergence as the test grid size Axieg refines,
when learning from fine measurements. These results highlight
the advantage of our method on learning the kernel and the cor-
responding continuous nonlocal operator instead of learning the
solution: the resultant model is not tied to the input’s resolution.

Application to wave propagation

in metamaterials

We now apply MetaNOR to model the propagation of stress
waves in one-dimensional metamaterials. Two experiments are
considered:

1. [Varying Disorder Parameter, see Fig. 3(a)] We aim
to transfer the knowledge between different disor-
dered microstructures, where the size of each layer is
defined by a random variable. For component 1, the
layer size L; ~U[(1 — D)(1 — )L, (1 +D)(1 — ¢)L],
and for component 2 the layer size
Ly ~U[(1 =D)y(1 + )L, (1 +D)(1 +¢)L] . Here
D € [0.05,0.5] is the disorder parameter for each task, and
the Young’s modulus £; = land £, = 0.25 are fixed. For this
experiment we train with 9 microstructures, then test the meta-
learned parameter on a new microstructure with D = 0.3.

2. [Varying Young's Modulus, see Fig. 3(d)] We aim to trans-
fer the knowledge between varying components. Periodic
layers are considered (D = 0) with fixed Young’s modu-
lus E; = 1in component 1 and varying Young’s modulus
(E> €10.2025,0.7225]) in component 2. For this experi-
ment we train with 8 microstructures, then test the meta-
learned parameter on an new microstructure with £, = 0.25.

The HF dataset we rely on is generated by a classical wave solver,
where all material interfaces are treated explicitly, and therefore
small time and step discretization sizes are required. This solver
and its results will be referred to as Direct Numerical Solution
(DNS). In all training data, weset L = 0.2, 01 = pp = 1,9 = 0,
and the domain Q = [—50, 50]. Following the settings in, two
types of data, including 20 simulations from the oscillating
source dataset and 20 simulations from the plane wave data-
set, are generated for meta-training and meta-test in each task.
Parameters for the training and the optimization algorithm are set
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Figure 2. Problem settings and convergence study results for the MetaNOR verification on synthetic datasets.

to Ax € {0.025,0.05,0.1}, At = 0.02,7 = 2and § = 1.8. Addi-
tionally, we create two validation datasets, denoted as the wave
packet dataset and the projectile impact dataset respectively,
both very different from the meta-training and meta-test data-
sets. They consider a much longer bar (£2,,,, = [—133.3,133.3]
for wave packet and Q;y,pac; = [—267,267] for impact), under
a different loading condition from the training dataset, and with
a much longer simulation time (7, = 100 and Tjypac; = 600).
Full details are provided in Appendix.

Comparison metrics Notice that in this case, the data is not
faithful to the nonlocal model, but generated from an HF model
with microscale details. Therefore, there is no ground-truth kernel
and we demonstrate the performance of estimators by studying
their capability of reproducing the dispersion relation and the
wave motion on the two validation datasets, and compare them
with the results computed with DNS. The dispersion curve pro-
vides the group velocity profile as a function of frequency for each
microstructure, which directly depicts the dispersion properties in
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Figure 3. Problem settings and numerical results for the MetaNOR application to wave propagation modeling problem in 1D metamaterials.
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this microstructure. We further report the relative prediction error
in the discrete energy norm, | | — 4(-, t")] |E(S2)/‘ ‘z)(-, t")‘ ‘E(Q),
on the wave packet dataset. Last, we use the learnt kernel to per-
form long-term prediction tasks on the projectile impact dataset,
to validate the model stability and generalizability.

Model validation To investigate the low-dimensional struc-
ture of kernel space, in Fig. 3(b) we report the estimated ker-
nels in experiment 1, their corresponding group velocities, and
validation errors for Ax = 0.025 and M € {3,5,7}. We can
observe that, while all MetaNOR models have successfully
reproduces the DNS dispersion relation, the “constraint” cases
have achieved a better prediction accuracy comparing with the
ones without physical constraints. Hence, in the following stud-
ies we mainly focus on “constraint” cases. We employ the con-
straint model with M = 3, Ax = 0.05, to predict the short-term
(T = 20) and long-term (7 = 600) velocity profiles subject to
projectile impact, and report the results in Fig. 3(c). The results
are consistent with DNS simulations, verifying that our opti-
mal kernel can accurately predict the short- and long-time wave
propagation. We then perform similar tests in experiment 2, with
the predicted kernel, dispersion relation, and wave propagation
prediction results provided in Fig. 3(e) and (f). All these results
indicate that there exists a common set of low-dimensional fea-
tures for all microstructures, and MetaNOR provides a good
surrogate model based on these features in the low-dimensional
kernel space.

Sample efficiency We now consider both experiment settings
with M = 3and Ax = 0.025, and randomly pick Niest € [10, 104
numbers of datapoints on the new and unseen microstructure. For
each Nist, we repeat the experiment for 10 times, to plot the
mean and standard error of results. Note that under this scarce
sample setting the estimated model from NOR gets unstable and
fails the prediction task. Hence we only report the MetaNOR
results. From Fig. 3(g) we can see that as the number of test sam-
ple increases, for both experiments the validation error decreases.
Notice that because of the unavoidable modeling error due to the
discrepancy between nonlocal surrogates and the HF model, as
shown in Theorem 3.4, one should not expect the prediction error
to converge to zero. This result again verifies the robustness of
MetaNOR in the small data regime.

Resolution independence and convergence Lastly, we con-
sider experiment setting 1 with M = 7, to study the perfor-
mance of the estimator in terms of its convergence as the data
mesh refines. In Fig. 3(h) the validation errors are reported for
different combinations of Axiuin and Axest. The learnt esti-
mator again demonstrates an improved accuracy as the data
resolution refines.

Conclusion

We proposed a meta-learning approach for the nonlocal opera-
tor regression, by taking advantages of a common set of low-
dimensional features in a multi-task setting for accurate and effi-
cient adaption to new unseen tasks. Specifically, we reformulate

the nonlocal operator regression as a linear kernel regression
problem and propose MetaNOR as a linear kernel feature
learning algorithm with provable guarantees. We apply such a
method to metamaterial problems and show the superior transfer
capability, showing meta-learning is a promising direction for
heterogeneous material discovery. Future work could extend our
method to obtain sharper estimates and apply to more general
material types.
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Appendix A: Related works

Material discovery

Using machine learning techniques for material discovery
is gaining more attention in scientific communities.[!72%
They has been applied to materials such as thermoelec-
tric material,*!! metallic glasses,?”) high-entropy ceram-
ics,?*) and so on. Learning models for metamaterials has
also gained popularity with recent approaches such as.[’]
For a comprehensive review on the application of machine
learning techniques to property prediction and materials
development for energy-related fields, we refer interested
readers to.?*],
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Meta-learning

Meta-learning seeks to design algorithms that can utilize previous
experience to rapidly learn new skills or adapt to new environments.
There is a vast literature on papers proposing meta-learning® meth-
ods, and they have been applied to patient survival analysis,”®! few
short image classification,?”! and natural language processing,*® just
to name a few. Recently, provably generalizable algorithms with sharp
guarantees in the linear setting are first provided.!'!

Transfer and meta-learning for material
modeling

Despite its popularity, few work has studied material discovery
under meta or even transfer setting.!*) proposes a transfer-learn-
ing technique to exploit correlation among different material
properties to augment the features with predicted material prop-
erties to improve the regression performance.*”! uses an ensem-
ble of model and a meta-model to help discovering candidate
water splitting photocatalysts. To the best of our knowledge,
our work is the first application of transfer or meta-learning to
heterogeneous material homogenization and discovery.

Appendix B: Detailed proof

for the error bounds

In this section we review two main lemmas from,"'" which pro-
vide a theoretical prediction error bound for the meta-learning of
linear representation model as illustrated in (16) and (17). Then
we employ these two lemmas and detailed the proof of Theo-
rem 3.4, which provides the error bound for the meta-learning of
kernel representations and the resultant prediction tasks.

Lemma B.1 (11, Theorem 2) Assume that we are in a uniform task
sampling model. If the number of meta-train samples Nypain satisfies
Nirain 2, polylog(Nigain, d, H) (k M Y4 max{H,d} and given any
local minimum of the optimization objective (18), the column space
of V¥, spanned by the orthonormal feature matrix B° satisfies

H,d}M 1og Niai
sine(B°,B>50<\/maX{ 1M log t) (B.1)

VNtrain

with probability at least1 — 1/poly(d).

Note that Assumption 3.2 guarantees that v > Q(1/M) and
the above theorem yields

. R - max{H,d}M?
sinf(B°,B) < O —_— |, 2)
Ntrain

with probability at least 1 — 1/poly(d).

Lemma B.2 (11, Theorem 4) Suppose the parameter associated with
thenewtasksatisfies||Ciest || 2 < O(1), thenifan estimateB° of the true
Jfeature matrix B satisfies sin 6 (B°, B) < @ and Niest = M 108 Niest
, then the output parameter C¢. from (20) satisfies

= M
HBOC?est - BCtest| |122 < 0(w’2 + 7)5 (3)
Mest
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with probability at least1 — O( tgs‘too)

Combining Lemma B.2 with Lemma B.1, we obtain the
following result for applying (18) and (20) as a linear feature
meta-learning algorithm:

HBoCo

test

B 2 _ oz max{H,d}M*> M )
BCtest‘ ‘lz = 0<7Nﬁam + Ntest . (4)
with probability at least1 — O((poly(d)) ™" + Ngo ).

We now proceed to provide the proof for Theorem 3.4. In
the following, we use C to denote a generic constant which
is independent of Ax, Az, M, H, Niain and Niegt, but might
depend on é.

Proof With (4), we immediately obtain the 12([0, 8]) error
estimate for the learnt kernel y;o as

d M ’
HVtest _ ye(iesl | |?2([0,6]) = Ax Z (Z(C?cst - Ctest)um((XAXD)
a=1 \m=I

= Ax| ‘Bctest - BOC?est| |122
max{H,d}M? M >

=0 (Axi + Ax
Nirain Neest

with probability at least 1 — O((poly(al))‘1 + thsioo).
For the error bound in the discretized energy norm, we
notice that the ground-truth solution # satisfies:

(i, ") = Loy nlil (i, 1) + g (xiy 27
0%u
o2

+ [ Lo [11(xi, ") = Lo lit] (i, 7))

+ (i ") + |, ") — —5 (iy £")

forall x € Xpred, 7 = 1,..., [ Tprea/At]. Subtracting this equa-
tion with (22) and denoting e := #(x;, ") — i" (x;), we then
obtain

2 4 ! d oo
i Atzz L — Ax Z(B Ctest)a(e:?-i-a )
a=1
+el o, —2e") + (ea)?,
where
d
(€an)) : = €(xix ") + Ax Y (BCiest — BOCP) (0 o, ")
a=1
+ (i, ") — 20(x;, "))

= n 82& n ~ n
+ [u(xz-,t )= o7 (it )} + [ Loy [1](xi, 1)

— Lo il (i, )]
With Assumption 3.3, we have the truncation error for the Rie-

mann sum part as ]C@tcstit(x, 1) — Loy nli(x, t)| < CAx for a
constant C independent of Ax and At but might depends on §.
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Similarly, we have the truncation error for the central difference

i .
5 (x;, )| < C(Ar)? with the constant

C independent of Ax, A¢, and §. Moreover, (4) yields

scheme as |u(x;, 1"") —

Ax Y " (BCiest — B°Ciog)a (Uxintars ") + X 1) — 201(x;, 1))

) ‘
a=I

d 3%
< Ax ;(BCwsl - B°Ciy)o(@Ax)? woee™o0r a2
2 ! o o 321}
< Ax$ ; }(Bctest -B Ctest)a‘ (X.t)EQ:Eff[O»Tpred] ﬁ
< Ax8>Vd||BCrest — B°Ciy| 2 il '2'
(x t)EQper ><[O preal | 0X°

82l

<0 s
- ax2

max{H,d}M? M
max{f, dyM~ + v Ax85 max
Nirain MNest (1) €Qprea X 10, Tpred

with probability at least 1 — 0((p01y(0l))’l + N, tgsltoo

we have the bound for ¢,

> H,diM*> M
[(ea)]| < E+O| Ax+ (AD* + max{fl, diM” Ar
Ntrain Niest

To show the /() error for ef!, we first derive a bound for its

error in the (discretized) energy norm. Multiplying (5) with
n+l_ n

). Hence

e;
;" and summing over Xpred = {xl o ylelds
pred n+l n n—1 n+1 n
Z —2el +e; (e —e)
P A3
A Lpred d
+1
7 2 2 BCalelg + ey — 26D — )
i=1 a=1
Lpred

+ 1 Dt —e).
i=1

With the formulation a(a — b) =
can rewrite the left hand side as

1@ — b+ (a—b)?), we

Lpred . y41 —1y, ntl
(el —2el + e (e —el)

AL

For the first term on the right hand side, with the formulations

L

> aibiya —b) =Y aryibryi

i=l—a i=1

o L
- Zai—abi—a - Z bita(@iva — ai),
i=1 i=l—a

alb—a) = %(b2 —a* = (a— b)), Assumption 3.3, and the
exact Dirichlet-type boundary condition, i.e., e] =0 fori < 1
andi > Lyred, we have

Ax pred d
+1
7 D 2B Cialelg + ey — 26 )
i=1 a=1
d Lpred

Z Z (BOC?est Of(ez+a - ;l)

a=li=l-«
n+1 n+1 n
(ez+a - ez+a —e + e;)

d Lprcd

= ZAI‘ Z Z (Bocsest)a

a=li=l-«a
1 1
[(ea = erty?

n+1 n n+1 ny\2
—(eiiy —Ciha — € T€) }

2
(elJra - eln)

d  Lpred

— 2At Z Z (Bocfest o

a=li=l-«
1 152
[(e:’ra e

d Lpred

Z Z (Bocsest o

a=li=l—«
+1 +1 2
[(e:“w — )+ (€] —e?)}

d Lprcd

RPN

a=li=l-«a

2
~ o =]

n+1 n+l 2 n ny2
|:(el+a € ) - (ei+oz - ei) :|

Lpred

Ax
+250, 2 B Gl [ —ey?
i=1

d  Lpred

— ZAI Z Z (Bocfest 23

a=li=l-«

n+1 n+1 2 2
[(el+a € ) - (e;l+a - e:’) }

Lpred 1 2
I et _er
_,_,E .

41’—1( At

For the second term on the right hand side we have
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bl (S

Lpred

1 1
— > (eani (et — e
At )
n

Lpred | Loed /ot o\ 2
ny2 i i
< Z((Eall)i) + 2 Z (At) .

i=1 i=1

Putting the above three inequalities together, we obtain

Lopre 2 _ 2
= At At

d Lpred
+28x 3 3T BCh)a [(e;’j; —eth? (e, — e,’-')z}

a=li=l-«a

Lpred

<28 (e

i=1

With the discrete Gronwall lemma and the bound of Af in

Assumption 3.3, forn = 1,.. ., | Tpred/At] we have
Lpred o 8’771 2 d Lpred

Z <1Atl> + 2Ax Z Z (Bocgest)a(e;‘a_a _ el(t)2
i=1 a=li=1—«

=< 2Lpred((1 —ADT"-1) max
in

2 2
|(€all)?| = 4eXp(Tpred>Lpred n;lix ‘(Gall)tr’l‘

- max{H,d M2 M
< Lpred O B2 + (Ax)? + (An* + maxti M7 M) A,
Ntrain Nest

with probability at least 1 — O((poly(d)) ™" + Nigo ™), which
provides the error bound in the discrete energy norm. O

Appendix C: Reduction of two physics
constraints

In this section we further expend the discussion on physics-
based constraints in “Prediction error bounds” section. The
overall strategy is to fix the last two polynomial features,

d —1
Py_1(§) = p1 = (Zoﬂmé)
a=1

and

-1

d
Py (€) = ot = (Za3Ax“> £
a=1

into the set of basis polynomials. We note that these two poly-
nomials satisfy

d d
ZazAx3PM,1(an) =1, ZoczAx3PM(an) =1,

a=1 a=1
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and
d d 4 A2
_ a7 Ax
ZoﬁAxSPM,l(ozAx) = 2:‘1_;72,
a=1 Za:l a
d d 5 2
_a’Ax
Za4Ax5PM(an) = 2:‘1_;73.
a=1 Za:l o
Then (24) writes
M-2
pcg = Z Cndim + Cyu—1 + Cu,
m=1
and (26) writes
M-2 ) d  5x.2
_ Z | Ax Z —1¢ Ax
—4pciR =} Cndom + =2 Chr—1 + =2 Cyr-
el oy o? PIARES
Denoting
1 1
A= Zg_l oAAax? Y aSARR |
d d
Za:l o? Za:l o’
and
. Ax2 4AXE - dPAX2
T Axt 16Ax* - dPAXY|
then
_ M=2
|:CM_1:| _ 1 l: pc% - Zm:l Cndim
Cum —453R — M2 Cda
=2
—A-!| PO, | _ AxAT'HBC.
{—4,0ch * C

Substituting this equation into the loss function in (8), for each
x; we obtain

(ylrcl,i - (SZ,,-)TBC) ’

M=2 2
= <y/'c’,l~ - )" (Z Cnbm + Cy—1by—1 + CMbM>>

m=1

M—2 =2
_ T T -1 | PG
= ( o= i Cubw = (57 ) a1, bar1A {—4/36(3)13}

m=1

2
+Ax(sf,) Ty -1, by 1A~ HBC)

pCh
—45c3R

~sppTa— Ax[bM_l,le]A—IHna.c)2

= <y]}z,i - (SZ,i)T[bel,bM]Afl

= (5%, - &0"BE)

where
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=2
~n . T -1 peC
ylrgl,i = y;’z,,- - (Sz,i) [bar—1, by 1A {_4153314 s

§ . i= (I — Ax[by—1, by IAT'H)Ts] , C :=[C1,...,Cu—2l,
and I is an d x d identity matrix. Therefore, the analysis and
algorithm can also be extended to the “constraints” cases.

Appendix D: detailed parameter

and experiment settings

Meta-train and meta-test datasets

To demonstrate the performance of MetaNOR on both periodic
and disordered materials, in empirical experiments we generate
four types of data from the DNS solver for each microstruc-
ture. For each sample, the total training domain Q = [—50, 50]
and the training data is generated up to 7 = 2. The spatial and
temporal discretization parameters in the DNS solver are set
to At = 0.01, and max |Ax| = 0.01. The other physical param-
etersaresetas L =02, FE1=1,p1=pp=1,and ¢ = 0. In
experiment 1, we fix £> = 0.25 and set the disorder parameter
D € [0.05,0.50]. In experiment 2, we set E> € [0.2025,0.7225]
and the disorder parameter D = 0. The training and testing data
are obtained from the DNS data via linear interpolation with
At = 0.02 and Ax = 0.05. The two types of data are chosen to
follow a similar setting as in:°!

1. Oscillating source. We let u(x,0) = ?—’}(x, 0)=0,
(P (508 9 2y
glx, 1) = exp ') exp”' 08 ) cos (57), where
k=1,2,...,20.

2. P]ane wave. We set g(x,t) =0, u(x,—200) =0, and
Z—‘;(—SO, t) = cos(wt). In experiment 1 (random micro-
structures), we set w = 0.20,0.40, . .., 4.0. In experiment 2
(periodic microstructures), we set w = 0.30,0.60, .. .,6.0.

In these two types of loading scenarios, the displacement i (x, ¢)
is mostly zero when x > 10, which makes the corresponding
datapoints carry very little information. To utilize the sample
datapoints more efficiently, for the type 1 data, we only use
datapoints from the x € [—10, 10] region, and for the type 2
data we only use datapoints from the x € [—38, —18] region.

Validation dataset: wave packet

We create a validation dataset, denoted as the wave packet dataset,
which considers a much longer bar (€2,,, = [—133.3, 133.3]), and
with a 50 times longer simulation time (¢ € [0, 100]). The mate-
rial is under a different loading condition from the training data-
set, g(x, 1) = 0and§—§’(—133.3,z) = sin(wt) exp (— (/5 — 3)?),
for w = 1, 2, 3. To provide a metric for the estimator accuracy,
we calculate the averaged displacement error in the discretized
energy norm at the last time step. This error metric is referred to
as the “validation error”, which checks the stability and generaliz-
ability of the estimators.

Application D: Projectile impact
simulations

To demonstrate the performance of learnt model in long-term
simulation, we simulate the long-term propagation of waves
in this material due to the impact of a projectile. In particu-
lar, in this problem a projectile hits the left end of the bar at
time zero, which generates a velocity wave that travels into the
microstructures.

To demonstrate the generalization capability of our approach
on different domains, boundary conditions, and longer sim-
ulation time, we consider a drastically different setting in
this simulation task. In particular, a much larger domain,
Qimpact = (—=267,267), and a much longer simulation time
t € [0,600] are considered. Notice that our training dataset
are only generated up to 7' = 2, this long-term simulation task
is particularly challenging not only because it has a different
boundary condition setting from all training samples, but also
due to the large aspect ratio between training time scale and
simulation time scale. On the left end of the domain, we pre-
scribe the velocity as %(—267, 0) = 1, and zero velocity on
elsewhere.
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