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Abstract
We propose MetaNOR, a meta-learnt approach for transfer-learning operators based on the nonlocal operator regression. The overall goal is to effi-

ciently provide surrogate models for new and unknown material-learning tasks with different microstructures. The algorithm consists of two phases: 

(1) learning a common nonlocal kernel representation from existing tasks; (2) transferring the learned knowledge and rapidly learning surrogate 

operators for unseen tasks with a different material, where only a few test samples are required. We apply MetaNOR to model the wave propagation 

within 1D metamaterials, showing substantial improvements on the sampling efficiency for new materials.

Introduction
Metamaterial is a group of artificial heterogeneous materials 
exhibiting unusual yet desired frequency dispersive prop-

erties from its composite microstructure. These materials 
have been studied theoretically, numerically and experimen-

tally,[1–3] to optimize its microstructure for dispersive proper-
ties and performances in different environments. However, 
their design and modeling is often computationally prohibi-
tive, since they contain more than thousands of interfaces in 
its microstructures (example interfaces are shown in Fig. 1). 

For example, modeling dispersive properties via the stress 
wave propagation in metamaterials would require accurate 
bottom-up characterization of material interfaces and simu-

lations from each individual layer (the microscopic scale), 
which are often of orders smaller than the problem domain 
length scale (the macroscopic scale). Therefore, even with 
sophisticated optimization techniques, designing such a 
material would still require running multiple full wave simu-

lations for each candidate microstructure and consumes sig-

nificant computation time.
To accelerate stress wave simulations, efficient surrogate 

models for metamaterials such as homogenized models are 
often employed.[4,5] They are posed as a single equation of 
the displacement field and can be readily used in simulations 
at the macroscopic scale. Among various choices of homog-

enized models, nonlocal surrogate models have received 
lots of attentions,[6–8] where integral operators are employed 
which embeds all time and length scales in their definitions. 
Comparing with continuum partial differential equation 
(PDE) counterparts, the nonlocal surrogate models provide 
a more natural affinity with the dispersive waves in a micro-

structure, and successfully reproduce many features of the 
decay and spreading of stress waves.[8] In nonlocal homog-

enization models the choice of kernel functions contains 

information about the small-scale response of the system. 
Hence, once equipped with the power of machine learning 
to identify the optimal form for the kernel function, effec-

tive nonlocal surrogate models can be obtained from high-
fidelity (HF) simulations and/or experimental measurements, 
so as to reproduce the material response with the greatest 
fidelity. To this end, the nonlocal operator regression (NOR) 
approach,[6,9,10] is proposed to obtain large-scale nonlocal 
descriptions and capture small-scale material behavior that 
would remain hidden in classical approaches to homogeni-
zation. NOR and the general homogenized surrogate mod-

els have greatly accelerated the simulation of heterogene-

ous materials at macroscale, but the choice of homogenized 
models is often selected case by case, which makes rigorous 
model calibration for multiple microstructure challenging 
and time consuming. Moreover, in metamaterials and the 
general heterogeneous material modeling problems, the data 
acquisition is often very challenging and expensive, which 
makes it critical for any method to learn the material model 
with a limited number of measurements.

Motivated by further accelerating the design process for 
metamaterials, in this paper we leverage NOR and the general 
heterogeneous material homogenization procedure, to answer 
the following question: Given knowledge on a number of mate-

rials with different microstructures, how can one efficiently 
learn the best surrogate model for a new and possibly unknown 
microstructure, with only a small set of training data (such as 
several pairs/measurements of displacement and loading fields 
from experiments)?

To answer this question, we develop sample-efficient data-
driven homogenized models for new metamaterial with unseen 
microstructure, which (1) allow for accurate simulations of 
wave propagation at much larger scales than the microstructure; 
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(2) provide constitutive laws that can be readily applied in sim-

ulation problems posed on various environments with general 
geometries and complex time-dependent loadings; and (3) uti-
lize the knowledge from previously studied materials to rapidly 
adapt to new microstructures. Specifically, inspired by a recent 
provable meta-learning approach of linear representations,[11] 

we propose meta nonlocal operator regression (MetaNOR), a 
sample-efficient learning algorithm for metamaterials where 
multiple tasks (microstructures) share a common set of low-
dimensional features in their kernel space, for accurate and effi-

cient adaptation to unseen tasks. The algorithm has three com-

ponents. First, in the meta-train stage, we learn a common set 
of features in the nonlocal kernel space from multiple related 
tasks (i.e., related microstructures), by minimizing the corre-

sponding empirical risk induced by nonlocal surrogate models. 
Second, in the meta-test stage, with estimated kernel feature 
representation shared across tasks, we transfer this knowledge 
to learn the model for a new and unseen microstructure, where 

only a few samples/measurements are required. Third, when 
partial physical knowledge is available, such as the effective 
wave speed for infinitely long wavelengths and/or the disper-
sion properties of the material for very long waves, we incor-
porate these physics-based constraints into the proposed meta-
learning algorithm to further improve the learning accuracy 
and sample efficiency.

Main contributions: we summarize the main contributions 
of this paper as follows: 

1. We design a novel meta-learning technique for learning 
nonlocal operators, by learning a common set of low-
dimensional features on multiple known tasks in their ker-
nel space and then transferring this knowledge to new and 
unseen tasks.

2. Our method is the first application of meta-learning 
approach on homogenized model for heterogeneous mate-

rials, which efficiently provides an associated model surro-

Figure 1.  Problem of interests and a schematic of the proposed algorithm. (a) One-dimensional metamaterial composed by dissimilar 

components 1 and 2. Components 1 and 2 have the densities ρ1 and ρ2 and Young’s modulus E1 and E2 . The horizon δ , and the wave 

length � , are reported for comparison. (b) A demonstration of our experiment setting. (c) A schematic of the main steps in MetaNOR.
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gates that are effective on applications with various loading 
and time scales.

3. We provide rigorous error analysis for the proposed algo-

rithm, showing that the estimator converges as the data 
resolution refines and the number of sample increases. We 
verify its efficacy on a synthetic dataset.

4. We illustrate the proposed method on one-dimensional 
metamaterials, to confirm the applicability of our technique 
and the improved sample efficiency over baseline nonlocal 
operator regression estimators.

Nonlocal operator regression (NOR)
We first review related concepts of the general nonlocal operator 
regression (NOR) approach, and then demonstrate the equiva-

lence of NOR and a linear regression model in the kernel space, 
which provides the foundation for us to formulate MetaNOR as a 
linear kernel feature learning problem with theoretical guarantees 
in the next section.

Throughout this paper, we use A∗ to denote its optima for each 
vector or matrix or operator A of interests, A+ to denote its 
ground-truth, and A◦ to denote an approximation solution to the 
optima. For any vector v = [v1, . . . , vq] ∈ R

q   , we use 
||v||l2 :=

√

∑q
i=1 v
2

i  to denote its l2 norm, and similarly 
||v||l1 :=

∑q
i=1 |vi| denotes the l1 norm. For any matrix 

A = [Aij] ∈ R
p×q , we use ||A||F :=

√

∑p
i=1

∑q
j=1 A
2

ij to denote 
its Frobenius norm, and use ||A|| to denote its spectral norm. � 

and � denote greater than and less than, up to a universal con-

stant, respectively. We use O, � and � as in the standard nota-

tions, and Õ as an expression that hides polylogarithmic factor in 
problem parameters. Ip denotes the p× p identity matrix.

Nonlocal models and Kernel learning
Nonlocal  Models[12] describe the state of a system, where any 
point depends on the state in a neighborhood of points. In hetero-

geneous materials, it is shown that nonlocality naturally appears 
in the homogenized model derived from micromechanical mod-

els,[13] which makes nonlocal operators good candidates for 
obtaining homogenized models for heterogeneous materials.[14]

Formally, on some bounded domain � ∈ R
p , we model the 

HF or ground-truth material response as a mapping between two 
function spaces, L+

: U → F , where U = {u(x), x ∈ �} (can be 
seen as the space of displacement fields) and F = {f (x), x ∈ �} 

(can be seen as the space of loading fields) are Banach spaces. 
The goal of nonlocal operator learning is to then find a surrogate 
operator Lθ : U → F  with parameter θ , such that Lθ ≈ L

+ . In 
particular, we assume that the action of the ground-truth material 
model may be approximated by an integral operator of the form:

 

where the kernel γ  takes inputs spatial locations x and y. 

Inspired by the application of nonlocal diffusion opera-

tor in metamaterial problems,[6,7] we choose to take 
γθ (x, y) := γθ (|y − x|) as a radial and sign-changing kernel 

(1)Lθ [u](x) =

∫
�

γθ (x, y)(u(y) − u(x))dy,

function, which is compactly supported on the ball of radius δ 
centered at x, denoted as Bδ(x) . Moreover, we represent γθ as a 

linear combination of basis polynomials:

with properly chosen basis polynomials {Pm(|y − x|)}.
Suppose we are given observations of K pairs of functions 

{uk(x), fk(x)}
K
k=1 where uk(x) are samples in U and L+[uk ] = fk , 

potentially with noise. Then, learning the nonlocal kernel γθ can 
be framed as an optimization problem. Here we consider the 
squared loss in the L2(�) norm:

Therefore, learning the surrogate operator Lθ is equivalent to 
finding optimal parameters θ = {Cm} by minimizing the objec-

tive J (θ) . Here, we stress that NOR aims to learn a surro-

gate operator for the ground-truth operator L+ , rather than the 
displacement field solution u(x) for a single instance loading 
field f(x). Since our goal is to provide a homogenized surro-

gate model which can be readily applied in simulation prob-

lems with time-dependent loadings, the former setting is more 
appropriate, which directly approximates the solution opera-

tor and finds the solutions for different loadings at different 
time instants. Moreover, approximating the operator also pos-

sesses the notable advantages of resolution independence and 
convergence.

NOR for metamaterial homogenization
We now seek nonlocal homogenized models for the stress wave 
propagation problem in a one-dimensional metamaterial, i.e., 
p = 1 , using NOR as described above. As illustrated in Fig. 1, 
each material is a heterogeneous bar formed by two dissimilar 
materials, with microstructure either made of periodic layers 
or randomly generated layers. The goal of NOR is to learn a 
surrogate model which is able to reproduce wave propagation 
on distances that are much larger than the size of the micro-

structure, without resolving the microscales.
We assume that there exists a (possibly unknown or nonfea-

sible) HF model that faithfully represents the wave propagation 
in detailed microstructures: for (x, t) ∈ � × [0, T ],

Here L+ is the HF operator that considers the detailed micro-

structure, û(x, t) is the HF solution which can be provided either 
from fine-scale simulations or from experiment measurements 
in practice, and g(x, t) represents a time-dependent force load-

ing term. Analogously, we will refer to the homogenized effec-

tive nonlocal operator as Lθ , and assume that the surrogate 
model has the form

(2)γθ (|y − x|) =

M∑

m=1

CmPm(|y − x|),

J (θ) = Eu

[

||Lθ [u] − f ||2
L2(�)

]

≈
1

K

K
∑

k=1

||Lθ [uk ] − fk ||
2

L2(�)
.

(3)∂2û

∂t2
(x, t) − L

+[û](x, t) = g(x, t).
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for (x, t) ∈ � × [0, T ] , augmented with Dirichlet-type bound-

ary conditions from the HF solution on a layer of thickness δ 
that surrounds the domain, and the same initial conditions as 
in the HF model. Here ũ(x, t) is the homogenized solution. As 
shown in,[15] the second-order-in-time nonlocal equation (4) is 

guaranteed to be well-posed as far as γθ is uniformly Lipschitz 
continuous. Therefore, when parameterizing the nonlocal ker-
nel γθ as a linear combination of basis polynomials following 
(2), one can make sure that the learnt model can be readily 
applied in simulation problems.

To learn the optimal Lθ , suppose we have K observations of 
forcing terms gk(x, t) and the corresponding HF solution/experi-
mental measurements ûk(x, t) , k = 1, . . . ,K  , measured at time 
instance tn ∈ [0, T ] and discretization points xi ∈ � . Without 
loss of generality, here we assume measurements are provided 
on uniformly spacing spatial and time instances, with fixed spa-

tial grid size �x and time step size �t . Denoting the collection 
of discretization points as χ = {xi}

L

i=1 , then the training dataset 
contains Ntrain := LK⌊T/�t⌋ measurements in total, specifically,

In NOR the squared loss then writes:

 To numerically evaluate the above loss, we discretize ∂
2
ûk

∂t2
 

with the central difference scheme in time and Riemann sum 
approximation of the nonlocal operator in space:

(4)
∂2ũ

∂t2
(x, t) − Lθ [ũ](x, t) = g(x, t),

Dtrain = {(ûk(xi, t
n), gk(xi, t

n))}
K ,L,⌊T/�t⌋
k,i,n=1 .

(5)

J (θ) ≈
1

K

K
∑

k=1

∣

∣

∣

∣Lθ [ûk ] − L
+[ûk ]

∣

∣

∣

∣

2

L2(�×[0,T ])

=
1

K

K
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

Lθ [ûk ] −
∂2ûk

∂t2
+ gk(x, t)

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(�×[0,T ])

.

(6)

∂2ûk

∂t2
(x, t) ≈ ¨̂uk(x, t) :

=
1

�t2
(ûk(x, t + �t) − 2ûk(x, t) + ûk(x, t − �t)),

(7)

Lθ [ûk ](x, t) =

∫

Bδ(x)

γθ (|y − x|)(ûk(y, t)

− ûk(x, t))dy ≈ Lθ ,�x[ûk ](x, t)

:= �x
∑

xj∈Bδ(x)∩χ

M
∑

m=1

CmPm(
∣

∣xj − x
∣

∣)

(ûk(xj , t) − ûk(x, t))

= �x

d
∑

α=1

M
∑

m=1

CmPm(α�x)(ûk(x + α�x, t)

− 2ûk(x, t) + ûk(x − α�x, t)),

for each x = xi ∈ χ , t = tn and d := ⌊δ/�x⌋ . Substituting the 
above schemes into (5), we then obtain

where the (reformulated) data pair ynk,i ∈ R and sn
k,i

∈ R
d are 

defined as

The parameter vector C := [C1, . . . ,CM ] ∈ R
M  , and the feature 

matrix B := (b1, . . . , bM ) ∈ R
d×M is defined as:

and the dimension of each feature equals to d. Therefore, the 
optimal parameters are obtained by solving a (constrained) 
optimization problem

Here R(θ) is a regularization term which aims to prevent 
over-fitting in the inverse problem, and ζ is the regulariza-

tion parameter. A commonly used regularization term is the 
Euclidean norm in the classical Tikhonov regularization, i.e., 
R(θ) := ||C||2

l2
 . The physics constraints denote the additional 

conditions which enforce partial physical knowledge of the 
heterogeneous material, for which we will explain later on.

From (8), we can see that NOR is equivalent to a linear 
model with M-dimensional features in the kernel space. When 
taking Pm , m = 1, . . . , d = M  as the Lagrange basis polyno-

mials, satisfying Pm(α�x) = 1 for α = m and Pm(α�x) = 0 

for all α  = m , we note that B becomes an identity matrix and 
NOR will be equivalent to a linear regression problem. There-

fore, algorithms and analysis on linear regression models can 
be immediately applied in NOR. In “Empirical experiments” 

section, this linear kernel regression setting will be employed 
as the baseline method on a new microstructure (task), which 
only uses data generated from that task.

Proposed meta‑learning algorithm
We now consider the problem of meta-learning in NOR, 
such that multiple tasks share a common set of low-dimen-

sional features in the kernel space. Given Ktrain observations 
(ûk(x, t), gk(x, t)) which belong to H unobserved underlying 
tasks, the meta-learning NOR model writes:

(8)J (θ) ≈
1

K

K
∑

k=1

∑

xi∈χ

⌊T/�t⌋
∑

n=1

(

ynk,i − (snk,i)
T
BC

)2
.

(9)
ynk ,i := −

1

�t2

(

2ûk (xi , t
n) − ûk (xi , t

n+1) − ûk (xi , t
n−1)

)

− gk (xi , t
n),

(10)

[sn
k,i]α : = �x

(

ûk(xi+α , t
n) + ûk(xi−α , t

n) − 2ûk(xi, t
n)

)

,

α = 1, . . . , d.

Bαm = Pm(α�x), m = 1, . . . ,M , α = 1, . . . , d,

(11)
min

θ
J (θ) + ζR(θ), s.t. Lθ satisfies physics-based constraints.

(12)∂2ûk

∂t2
(x, t) − Lθη(k)

[ûk ](x, t) = gk(x, t) + ǫk(x, t).
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Here, we assume that each task corresponds to a different 
microstructure and the underlying optimal surrogate kernel 
γθη(k)
, where η(k) ∈ {1, . . . ,H } denotes the index of task asso-

ciated with the k-th function pair. ǫk(x, t) is a smooth func-

tion related with the additive noise, describing the discrepancy 
between the ground-truth operator and the optimal surrogate 
operator, i.e., ǫk(x, t) := (L+ − Lθη(k)

)[ûk ](x, t) . Our goal is 
to recover the underlining low-dimensional representation for 
the kernel space, and use this representation to recover a bet-
ter estimate for a new and unseen task. Mathematically, we 
assume that there exists an unobserved kernel feature space 
span({Pm(|y − x|)}

M
m=1) , such that M ≪ d and

where Cη is the parameter for the η− th task. For a new and 
unseen microstructure, we assume there also exists a surrogate 
model for it:

with its optimal surrogate kernel inside the unobserved ker-
nel feature space span({Pm(|y − x|)}Mm=1) , i.e., there exists 
Ctest ∈ R

M such that

Then, with only a few measurements given for a new and 
unseen microstructure, we aim to efficiently recover this opti-
mal estimator γθtest.

Comparing with NOR and the other classical machine learn-

ing methods, our method aims at five desirable properties: (1) 
The learning algorithm is sample-efficient on the new task, 
which implies that the optimal estimator γθtest can be learnt even 
with very scarce measurements. (2) The estimator is resolution 
independent, in the sense that the learnt model can be applied to 
different resolution problems. (3) Beyond resolution invariance, 
we further aim for a robust consistent estimator, that is, the 
estimator converges as data resolution refines. (4) The method 
learns the nonlocal surrogate model directly from data, i.e., 
no preliminary knowledge on the governing law is required. 
(5) The learnt model is generalizable, meaning that it is appli-
cable to problem settings that are substantially different from 
the ones used for training in terms of loading and domain/time 
scales. Hence, once the nonlocal surrogate model is learnt, one 
can further employ it in further prediction tasks with a longer 
simulation time, a larger computational domain, and on a dif-
ferent grid.

Before demonstrating our main algorithm, we first estab-

lish the connection of our meta-learning model with the lin-

ear representation model illustrated in.[11] Following a similar 

(13)γθη (|y − x|) =

M∑

m=1

Cη,mPm(|y − x|),

(14)∂2û

∂t2
(x, t) − Lθtest [û](x, t) = g(x, t) + ǫ(x, t),

(15)γθtest (|y − x|) =

M∑

m=1

Ctest,mPm(|y − x|).

derivation in “NOR for metamaterial homogenization” section, 
we reformulate the training data following (9) and (10), then 
denote the collection of all (reformulated) data points as

With a slight abuse of notations, in the meta-learning algorithm 
we consider a uniform task sampling model which does not 
differentiate the datapoints from different sample k, time step n 

and spatial grid i, then use η(j) ∈ {1, . . . ,H } to denote the index 
of the task associated with the datapoint j. Then, discovering 
the kernel basis {Pm(|y − x|)}Mm=1 is equivalent to recovering 
a linear feature matrix B ∈ R

d×M with orthonormal columns, 
such that Pm(α�x) = Bαm and

where Cη(j) is the parameter for the η(j)− th task, and ǫj is addi-

tive noise. For the new task, with a collection of (reformulated) 
datapoints

recovering the optimal kernel γθtest is equivalent to recovering 
an optimal estimate Ctest , such that:

Our meta-learning model has two stages: firstly, the linear fea-

ture matrix B is recovered from Dtrain , the data from the first 
H known tasks, then the learnt feature representation will be 
employed to discover an estimate of the task parameter C◦

test
 

from a (scarce) test dataset corresponding to this new task. In 
particular, we employ the provable meta-learning algorithm 
recently proposed in.[11] In the following we briefly describe 
the main steps, with further theoretical results elaborated in 
“Prediction error bounds” section and discussions in “Physics-
based constraints” section.

Step 1  Data preprocessing for learning tasks We first nor-
malize each pair of solution ûk(x, t) and forcing term 
gk(x, t) with respect to the L2 norm of ûk(x, t) , then 
generate the reformulated data pairs following (9) and 
(10). To further ensure that the dataset satisfies the 
sub-Gaussian requirement (see Assumption 3.1), we 
normalize the training data pairs such that E[s] = 0 

and E[ssT ] = Id.

Step 2  Meta-train to learn Kernel features As the first stage 
of meta-learning, we solve for B ∈ R

d×M  and try 
to recover W := (C1, . . . ,CH )

T
B
T

∈ R
H×d  with 

rank(W) = r < d  . In particular, we consider the 
Burer–Monteiro factorization of W = UV

T  with 
U ∈ R

H×M  , V ∈ R
d×M  , and solve the following 

optimization problem

Dtrain = {(ynk,i, s
n
k,i)}
Ktrain ,Ltrain ,⌊Ttrain/�t⌋

k,i,n=1 = {(yj , sj)}
Ntrain
j=1 .

(16)yj = s
T
j BCη(j) + ǫj ,

Dtest = {(ytestj , s
test
j )}
Ntest
j=1 ,

(17)ytestj = (stestj )TBCtest + ǫtestj .
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  where Ntrain = KtrainLtrain⌊Ttrain/�t⌋ is the total num-

ber of training datapoints and ej is the j− th stand-

ard basis vector in RM  . The estimated feature matrix 
B

◦ can then be extracted, as an orthonormal basis 
from the column space of V◦ . As shown in,[16] all 
localminima of this optimization problem, V◦ , would 
be in the neighborhood of the optimal, that means, the 
approximated basis B◦ would provide a good estimate 
to the optimal low-dimensional feature space.

Step 3  Meta-test to transfer features to new tasks As the sec-

ond stage of meta-learning, we substitute the learnt 
feature matrix B◦ from the first stage, and estimate the 
new task parameter Ctest as follows:

  Since this is an ordinary least-square objective, an 
analytical solution can be obtained:

 where † indicates the Moore–Penrose pseudo-inverse.
Step 4  Postprocessing to obtain a continuous model To con-

struct the continuous model which can be employed 
in further prediction tasks with various resolutions, 
we employ the B-spline basis functions consisting of 
piece-wise polynomials with degree 2. In particular, 
we construct the basis polynomials as P◦m(|y − x|) :=∑d

α=1 B
◦
αmNα,2(|y − x|) , m = 1, . . . ,M , where Nα,2 

are constructed with evenly spaced knots on interval 
[0, (d + 1)�x] . Substituting the chosen polynomials 
{Pm(|y − x|)} into (2), we obtain the learnt nonlocal 
surrogate model for the new microstructure, which is 
defined by a continuous nonlocal kernel

Note that this kernel is indeed a twice differentiable function for 
|y − x| ≤ δ , the resultant nonlocal surrogate model is therefore 
well-posed and defined in a continuous way.

Prediction error bounds
We now provide error bounds for MetaNOR based on the results 
for linear regression provided in.[11] Throughout this section, we 
use ||v||l2(�) :=

√

�x
∑

xi∈χ v
2

i
 to denote the domain-associated 

l
2 norm for a vector with values on χ . This norm can be seemed 

as a discretized approximation for the L2(�) norm. Consider a 
solution pair (C◦,B◦) which corresponds to a local minimizer of 

(18)
min
U,V

H

Ntrain

Ntrain
∑

j=1

(

yj − eη(j) ·

[

s
T
j VU
T
])2

+
1

4

∣

∣

∣

∣U
T
U − V

T
V

∣

∣

∣

∣

2

F
,

(19)C
◦

test = argmin
Ctest

Ntest
∑

j=1

(

ytestj − (stestj )TB◦Ctest

)2
.

(20)
C

◦

test =





Ntest
�

j=1

(B◦)T stestj (stestj )TB◦





†

(B◦)T
Stest
�

j=1

s
test
j y

test
j

(21)γ ◦
θtest

(|y − x|) :=

M∑

m=1

(C◦
test,m

)P◦m(|y − x|).

(18) and (20), we use L◦

θtest
 to denote the corresponding nonlocal 

operator generated from the learnt nonlocal kernel γ ◦

θtest
 , and L◦

θtest ,h
 

to denote its approximation by Riemann sum following (7).

We now provide the error estimates for the kernel estimator, 
∣

∣

∣

∣γtest − γ ◦
θtest

∣

∣

∣

∣

l2([0,δ])
 , and for the prediction error. For the later, 

we consider a given time-dependent loading g(x, t) with 
x ∈ �pred and t ∈ [0, Tpred] , then use the learnt nonlocal model 
to predict the material response of our test microstructure, i.e., 
to provide an approximated displacement solution. Here, we 
stress that the prediction domain �pred and time interval [0, Tpred] 
may be different from the training datasets. We then discretize 
�pred and [0, Tpred] with grid sizes �x and �t , respectively, and 
denote the spatial grid set as χpred . For simplicity of analysis, 
here we take the same discretization sizes as those in the training 
dataset. However, since a continuous model is learnt, in practice 
one may employ different resolution or even discretization meth-

ods, as will be numerically demonstrated in the empirical experi-
ment of “Verification on synthetic datasets” section . We consider 
δ as a physical parameter, i.e., as a fixed value, and hence 
d = �(�x−1) . Denoting û(·, tn) as the ground-truth HF solution 
subject to loading g(x, t) and ūn(xi) as the numerical solution 
satisfying

for xi ∈ χpred and n = 1, . . . , ⌊Tpred/�t⌋ , we aim to provide 
the error bound in the discretized energy norm for displacement 
prediction:

We first detail three required assumptions for the analysis. 
In the following derivations, we always assume that the state-

ments below are true, and therefore will not list them in the 
statement of theorems again.
Assumption 3.1 For both the training and test datasets, 
the vectors sj are i.i.d. designed with zero mean, covariance 
E[ssT ] = Id  , and are I-sub-Gaussian. The additive noise vari-
ables ǫj = yj − sTj BCη(j) are also i.i.d. sub-Gaussian with vari-
ance parameter 1. Moreover, ǫj are independent of sj.

For the H training tasks, we define the popula-

tion task diversity matrix and condition numbers as 
T = (C1, . . . ,CH )

T
∈ R
H×M   ,  ν := σM (TTT/H )  a n d 

κ :=
1

ν
σ1(T
T
T/H ).

Assumption 3.2 The H underlying task parameters C∗

j  satisfies 
∣

∣

∣

∣Cj

∣

∣

∣

∣

l2
= �(1) , i.e., they are asymptotically bounded below 

and above by constants. Moreover, the population task diversity 
matrix is well-conditioned, i.e., κ ≤ O(1) , which indicates that 
ν ≥ �(1/M ).

(22)¨̄un(xi) − L
◦
θtest ,h

[ūn](xi) = g(xi, t
n)

∣

∣

∣

∣ū
n
− û(·, tn)

∣

∣

∣

∣

E(�)
: =

Lpred
∑

i=1

(

e
n

i
− e
n−1
i

�t

)2

+ 2�x

d
∑

α=1

Lpred
∑

i=1−α

(B◦C◦
test)α(en

i+α − e
n

i
)2,

where en
i

:= û(xi , t
n) − ū

n(xi).
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Moreover, we make the following additional assumptions asso-

ciated with the stability and consistency of the numerical scheme:

Assumption 3.3 The high-fidelity solution for our prediction 
task û ∈ C2(� × [0, Tpred]) and �t is sufficiently small such that 
it satisfies �t ≤ min[(8�x||B◦C◦||

l1)
−1, (2Tpred)

−1] . Moreo-

ver, the modeling error, ǫ(x, t) , is bounded by a constant E for 

all x ∈ �pred and t ∈ [0, Tpred].

We now proceed to provide error bounds to our linear 
kernel representation learning setting.

Theorem 3.4 Suppose we are given Ntrain total training 

datapoints from H diverse and normalized tasks, and Ntest 

numbers of test datapoint on a new task with unknown micro-

structure. If the number of meta-train samples Ntrain satisfies 

Ntrain � polylog(Ntrain, d,H )(κM )4max{H , d}, the number of 

meta-test samples Ntest satisfies Ntest � M log(Ntest), and the 

optimal test microstructure satisfies 
∣

∣

∣

∣C
∗
test

∣

∣

∣

∣

l2
≤ O(1), then 

any local minimizer of (18) and the learnt kernel converges to 

the underlying optimal kernel with the following error bound:

and the corresponding approximated solution ū has the follow-

ing excess prediction error bound for n = 1, . . . , ⌊Tpred/�t⌋ :

with probability at least 1− O((poly(d))−1 + N
−100
test ).

The proof is obtained by applying Theorems 2 and 4 in.[11] 

A more detailed proof is provided in Appendix.

Remark 1 This theorem indicates that when a sufficiently  
large training dataset is provided, for a new microstructure with 
very scarce measurements ( Ntest ≪ Ntrain/(max(H , d)M ) ), we 

have an approximated kernel error bound as Õ
(

(

M�x
Ntest

)1/2
)

 

and the energy error bound for the prediction task as 

Õ

(

E + (�t)2 +

(

M�x
Ntest

)1/2
)

 . Hence, when the nonlocal model 

serves as a good surrogate for the material response, i.e., E is 

negligible, the estimator from MetaNOR provides a converging 
kernel and solution for further prediction tasks.

Physics‑based constraints
As illustrated [6], when some physical knowledge is available, 
these knowledge can be incorporated into the optimization prob-

lem as physics-based constraints (11). In particular, when the 
effective wave speed for infinitely long wavelengths, c0 , is avail-
able, the corresponding constraint writes:

∣

∣

∣

∣γtest − γ ◦
θtest

∣

∣

∣

∣

2

l2([0,δ])
≤ Õ

(

�x
max{H , d}M 2

Ntrain

+ �x
M

Ntest

)

,

∣

∣

∣

∣ū
n − û(·, tn)

∣

∣

∣

∣

2

E(�)
≤ Õ

(

E
2 + �t4 + �x2

+ �x

[max(H , d)M 2

Ntrain

+
M

Ntest

])

,

where ρ̄ is the effective material density. Discretizing (23) by 
Riemann sum, we obtain the first constraint of {Cm}:

where A1m :=

∑
d

α=1
α2�x3Pm(α�x)  . Furthermore, when 

the curvature of the dispersion curve in the low-frequency 
limit, R, is also available, the corresponding constraint 
writes:

Discretizing (25) yields the second constraint of {Cm}:

where A2m :=

∑
d

α=1
α4�x5Pm(α�x) . Therefore, these two 

physics-based constraints are imposed as linear constraints 
for {Cm} . In empirical tests, we will refer to the experiments 
with these constraints applied as the “constraint” cases. In 
this work, we consider the heterogeneous bar composed by 
alternating layers of two dissimilar materials, with (aver-
aged) layer size L1 = (1− φ)L , L2 = (1+ φ)L for com-

ponents 1 and 2, respectively. Then the effective material 
density, Young’s modulus, the wave speed, and the disper-
sion curvature are given by ρ̄ = ((1− φ)ρ1 + (1+ φ)ρ2)/2 , 
Ē = 2/((1− φ)E−1

1
+ (1+ φ)E−1

2
) , c0 =

√

Ē/ρ̄  , and R = 0 . 
To apply (24) and (26), we reformulate the constraint optimi-
zation problem such that an unconstraint optimization problem 
of the form (8) is obtained. Detailed derivation is provided in 
the Appendix.

Empirical experiments
We evaluate MetaNOR on both synthetic and real-world data-

sets. On each dataset, we compare our MetaNOR approach 
with baseline NOR in (11). For NOR, we use linear regres-

sion with the L-curve method to select the proper regulariza-

tion parameter ζ  . In synthetic datasets, we generate the data 
from a known nonlocal diffusion equation and study the con-

vergence of estimators to the true kernel. We also apply our 
method to a real-world dataset for stress wave propagation in 
1D metamaterials.

In meta-training, we solve the optimization problem (18) 

using SciPy’s L-BFGS-B optimization module. The maximum 
iteration step is set to 10000. In meta-testing, the solutions are 
solved with NumPy’s linalg module.

(23)
∫ δ

0

ξ2γθ (|ξ |)dξ = ρ̄c20,

(24)ρ̄c2
0

=

M∑

m=1

Cm

d∑

α=1

α2�x3Pm(α�x) =

r∑

m=1

CmA1m

(25)
∫ δ

0

ξ4γθ (|ξ |)dξ = −4ρ̄c3
0
R.

(26)−4ρ̄c3
0
R =

M∑

m=1

Cm

d∑

α=1

α4�x5Pm(α�x) =

M∑

m=1

CmA2m
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Verification on synthetic datasets
We consider a synthetic dataset generated from a nonlocal dif-
fusion equation

Here, η denotes the index of task, with η ∈ {1, . . . , 8} . Each task 
is associated with a sine-type kernel:

with the estimated support of kernel as δ = 11 . To generate the 
training and test function pairs (uk(x), gk(x)) , for each task the 
kernel acts on the same set of function {uk}k=1,2 with 
u1(x) = sin(x)1[−π ,π ](x) and u2(x) = cos(x)1[−π ,π ](x) , and the 
loading function L

γ
+
η

[uk ] = gk is computed by the adaptive 
Gauss–Kronrod quadrature method, both on the computational 
domain � = [−40, 40] . To create discrete datasets with differ-
ent resolutions, we consider �x ∈ 0.0125× {1, 2, 4, 8} . In meta-
training, we use all samples from 7 “known tasks” 
η ∈ {1, 2, 3, 4, 6, 7, 8} . Then, the goal is to learn a good estima-

tor for the “unknown” new task with η = 5.

Effect of low-dimensional feature selection:  In this experi-
ment we aim to verify the low-dimensional structure of the 
kernel space and select a proper value of M, with all test 
measurements employed, i.e., Ntest = 2× 80/�x . In Fig. 2(b) 
we demonstrate the learnt kernel for M ∈ {1, 2, 4, 7} and 
�x ∈ {0.0125, 0.1} , together with the averaged loss on all 
test samples (denoted as “loss”) and the l2([0, δ]) errors for 
the kernel (denoted as ”kernel error”). It is observed that the 
learnt kernel is visually consistent with the true kernel when 
M ≥ 4 . Hence in the following investigations we fix M = 4 for 

all cases.Figure 2.  Problem settings and convergence study results 

for the MetaNOR verification on synthetic datasets.

Sampling efficiency on the new task: We now demonstrate 
the performance of the estimator in the small test measurement 
regime. We randomly select Ntest ∈ {10, 20, 40, 80, 160, 320} 

measurements from all available data on the test task, and study 
the convergence of the learnt kernel as Ntest increases. In this 
experiment we fix M = 4 and �x = 0.0125 . To generate a fair 
comparison, the means and standard errors are calculated from 
10 independent simulations. The errors of learnt kernels and 
the averaged loss on all test samples from MetaNOR and NOR 
are reported in Fig. 2(c). Averaged convergence rates are calcu-

lated on the relatively small data regime, i.e., for Ntest ≤ 160 , 
as: rate = log16 [error(Ntest = 10)/error(Ntest = 160)] . One can 
see that the kernel error from MetaNOR decreases almost linearly 
with the increase of Ntest – a half order faster than the bound sug-

gested in Theorem 3.4. This fact indicates a possible improvement 
of the analysis in the future work. On the other hand, NOR exhibits 
a much larger error and test loss in the same small test data regime, 
highlighting the advantage of our MetaNOR in sample efficiency.

Resolution independence and convergence We now study 
the performance of the estimator in terms of its convergence as 
the data mesh refines. Two types of experiments are designed, 

Lγ +
η

[uk ](x) :=

∫
Bδ(x)

γ +
η (|y − x|)(uk(y) − uk(x))dy = gk(x).

γ +
η (|y − x|) := exp(−η(|y − x|)) sin(6|y − x|)1[0,10](|y − x|),

both with limited measurements ( Ntest = 320 ). First, we keep 
the same resolutions ( �x ) in all tasks, to study the convergence 
of estimators to the true kernel as �x decreases. Additionally, to 
verify the consistency of estimators across different resolutions, 
we further investigate their performances when the training 
tasks and test tasks have different resolutions. In Fig. 2(d) the 
kernel errors and test losses are reported, as functions of �x 
in the test case (denoted as �xtest ). For the first study, a 0.88 
order convergence is observed, which is consistent with the 
error bound from Theorem 3.4. For the second study, one can 
see that no matter if we extract the features from a relatively 
coarse grid ( �xtrain = 0.1 ) or a fine grid ( �xtrain = 0.0125 ), the 
resultant estimator on the test task pertains a similar accuracy 
or even achieves convergence as the test grid size �xtest refines, 
when learning from fine measurements. These results highlight 
the advantage of our method on learning the kernel and the cor-
responding continuous nonlocal operator instead of learning the 
solution: the resultant model is not tied to the input’s resolution.

Application to wave propagation 
in metamaterials
We now apply MetaNOR to model the propagation of stress 
waves in one-dimensional metamaterials. Two experiments are 
considered: 

1. [Varying Disorder Parameter, see Fig.  3(a)] We aim 
to transfer the knowledge between different disor-
dered microstructures, where the size of each layer is 
defined by a random variable. For component 1, the 
layer size L1 ∼ U[(1− D)(1− φ)L, (1+ D)(1− φ)L] , 
a n d  f o r  c o m p o n e n t  2  t h e  l a y e r  s i z e 
L2 ∼ U[(1− D)(1+ φ)L, (1+ D)(1+ φ)L]   .  H e r e 
D ∈ [0.05, 0.5] is the disorder parameter for each task, and 
the Young’s modulus E1 = 1 and E2 = 0.25 are fixed. For this 
experiment we train with 9 microstructures, then test the meta-
learned parameter on a new microstructure with D = 0.3.

2. [Varying Young’s Modulus, see Fig.  3(d)] We aim to trans-

fer the knowledge between varying components. Periodic 
layers are considered ( D = 0 ) with fixed Young’s modu-

lus E1 = 1 in component 1 and varying Young’s modulus 
( E2 ∈ [0.2025, 0.7225] ) in component 2. For this experi-
ment we train with 8 microstructures, then test the meta-
learned parameter on an new microstructure with E2 = 0.25.

The HF dataset we rely on is generated by a classical wave solver, 
where all material interfaces are treated explicitly, and therefore 
small time and step discretization sizes are required. This solver 
and its results will be referred to as Direct Numerical Solution 
(DNS). In all training data, we set L = 0.2 , ρ1 = ρ2 = 1 , φ = 0 , 
and the domain � = [−50, 50] . Following the settings in,[6] two 
types of data, including 20 simulations from the oscillating 
source dataset and 20 simulations from the plane wave data-

set, are generated for meta-training and meta-test in each task. 
Parameters for the training and the optimization algorithm are set 
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to �x ∈ {0.025, 0.05, 0.1} , �t = 0.02 , T = 2 and δ = 1.8 . Addi-
tionally, we create two validation datasets, denoted as the wave 
packet dataset and the projectile impact dataset respectively, 
both very different from the meta-training and meta-test data-

sets. They consider a much longer bar ( �wp = [−133.3, 133.3] 

for wave packet and �impact = [−267, 267] for impact), under 
a different loading condition from the training dataset, and with 
a much longer simulation time ( Twp = 100 and Timpact = 600 ). 
Full details are provided in Appendix. 

Comparison metrics Notice that in this case, the data is not 
faithful to the nonlocal model, but generated from an HF model 
with microscale details. Therefore, there is no ground-truth kernel 
and we demonstrate the performance of estimators by studying 
their capability of reproducing the dispersion relation and the 
wave motion on the two validation datasets, and compare them 
with the results computed with DNS. The dispersion curve pro-

vides the group velocity profile as a function of frequency for each 
microstructure, which directly depicts the dispersion properties in 

Figure 2.  Problem settings and convergence study results for the MetaNOR verification on synthetic datasets.
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Figure 3.  Problem settings and numerical results for the MetaNOR application to wave propagation modeling problem in 1D metamaterials.
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this microstructure. We further report the relative prediction error 
in the discrete energy norm, 

∣

∣

∣

∣ū
n − û(·, tn)

∣

∣

∣

∣

E(�)
/
∣

∣

∣

∣û(·, tn)
∣

∣

∣

∣

E(�)
 , 

on the wave packet dataset. Last, we use the learnt kernel to per-
form long-term prediction tasks on the projectile impact dataset, 
to validate the model stability and generalizability.

Model validation To investigate the low-dimensional struc-

ture of kernel space, in Fig. 3(b) we report the estimated ker-
nels in experiment 1, their corresponding group velocities, and 
validation errors for �x = 0.025 and M ∈ {3, 5, 7} . We can 
observe that, while all MetaNOR models have successfully 
reproduces the DNS dispersion relation, the “constraint” cases 
have achieved a better prediction accuracy comparing with the 
ones without physical constraints. Hence, in the following stud-

ies we mainly focus on “constraint” cases. We employ the con-

straint model with M = 3 , �x = 0.05 , to predict the short-term 
( T = 20 ) and long-term ( T = 600 ) velocity profiles subject to 
projectile impact, and report the results in Fig. 3(c). The results 
are consistent with DNS simulations, verifying that our opti-
mal kernel can accurately predict the short- and long-time wave 
propagation. We then perform similar tests in experiment 2, with 
the predicted kernel, dispersion relation, and wave propagation 
prediction results provided in Fig. 3(e) and (f). All these results 
indicate that there exists a common set of low-dimensional fea-

tures for all microstructures, and MetaNOR provides a good 
surrogate model based on these features in the low-dimensional 
kernel space.

Sample efficiency We now consider both experiment settings 
with M = 3 and �x = 0.025 , and randomly pick Ntest ∈ [10, 104] 

numbers of datapoints on the new and unseen microstructure. For 
each Ntest , we repeat the experiment for 10 times, to plot the 
mean and standard error of results. Note that under this scarce 
sample setting the estimated model from NOR gets unstable and 
fails the prediction task. Hence we only report the MetaNOR 
results. From Fig. 3(g) we can see that as the number of test sam-

ple increases, for both experiments the validation error decreases. 
Notice that because of the unavoidable modeling error due to the 
discrepancy between nonlocal surrogates and the HF model, as 
shown in Theorem 3.4, one should not expect the prediction error 
to converge to zero. This result again verifies the robustness of 
MetaNOR in the small data regime.

Resolution independence and convergence Lastly, we con-

sider experiment setting 1 with M = 7 , to study the perfor-
mance of the estimator in terms of its convergence as the data 
mesh refines. In Fig. 3(h) the validation errors are reported for 
different combinations of �xtrain and �xtest . The learnt esti-
mator again demonstrates an improved accuracy as the data 
resolution refines.

Conclusion
We proposed a meta-learning approach for the nonlocal opera-

tor regression, by taking advantages of a common set of low-
dimensional features in a multi-task setting for accurate and effi-

cient adaption to new unseen tasks. Specifically, we reformulate 

the nonlocal operator regression as a linear kernel regression 
problem and propose MetaNOR as a linear kernel feature 
learning algorithm with provable guarantees. We apply such a 
method to metamaterial problems and show the superior transfer 
capability, showing meta-learning is a promising direction for 
heterogeneous material discovery. Future work could extend our 
method to obtain sharper estimates and apply to more general 
material types.
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Appendix A: Related works
Material discovery
Using machine learning techniques for material discovery 
is gaining more attention in scientific communities.[17–20] 

They has been applied to materials such as thermoelec-

tric material,[21] metallic glasses,[22] high-entropy ceram-

ics,[23] and so on. Learning models for metamaterials has 
also gained popularity with recent approaches such as.[9] 

For a comprehensive review on the application of machine 
learning techniques to property prediction and materials 
development for energy-related fields, we refer interested 
readers to.[24].
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Meta‑learning
Meta-learning seeks to design algorithms that can utilize previous 
experience to rapidly learn new skills or adapt to new environments. 
There is a vast literature on papers proposing meta-learning[25] meth-

ods, and they have been applied to patient survival analysis,[26] few 
short image classification,[27] and natural language processing,[28] just 
to name a few. Recently, provably generalizable algorithms with sharp 
guarantees in the linear setting are first provided.[11]

Transfer and meta‑learning for material 
modeling
Despite its popularity, few work has studied material discovery 
under meta or even transfer setting.[29] proposes a transfer-learn-

ing technique to exploit correlation among different material 
properties to augment the features with predicted material prop-

erties to improve the regression performance.[30] uses an ensem-

ble of model and a meta-model to help discovering candidate 
water splitting photocatalysts. To the best of our knowledge, 
our work is the first application of transfer or meta-learning to 
heterogeneous material homogenization and discovery.

.

Appendix B: Detailed proof 
for the error bounds
In this section we review two main lemmas from,[11] which pro-

vide a theoretical prediction error bound for the meta-learning of 
linear representation model as illustrated in (16) and (17). Then 
we employ these two lemmas and detailed the proof of Theo-

rem 3.4, which provides the error bound for the meta-learning of 
kernel representations and the resultant prediction tasks.

Lemma B.1  (11, Theorem 2) Assume that we are in a uniform task 

sampling model. If the number of meta-train samples Ntrain satisfies 
Ntrain � polylog(Ntrain, d,H )(κM )4max{H , d} and given any 
local minimum of the optimization objective (18), the column space 
of V∗, spanned by the orthonormal feature matrix B◦ satisfies

with probability at least 1− 1/poly(d).

Note that Assumption 3.2 guarantees that ν ≥ �(1/M ) and 
the above theorem yields

with probability at least 1− 1/poly(d).

Lemma B.2   (11, Theorem 4) Suppose the parameter associated with 

the new task satisfies ||Ctest||l2 ≤ O(1), then if an estimate B◦ of the true 

feature matrix B satisfies sin θ(B◦,B) ≤ ̟ and Ntest � M logNtest
, then the output parameter C◦

test
 from (20) satisfies

(B.1)sin θ(B◦,B) ≤ O

(

√

max{H , d}M logNtrain

νNtrain

)

,

(2)sin θ(B◦,B) ≤ Õ





�

max{H , d}M 2

Ntrain



,

(3)
∣

∣

∣

∣B
◦
C

◦
test − BCtest

∣

∣

∣

∣

2

l2
≤ Õ

(

̟
2 +
M

Ntest

)

,

with probability at least 1− O(N
−100

test ).

Combining Lemma B.2 with Lemma B.1, we obtain the 
following result for applying (18) and (20) as a linear feature 
meta-learning algorithm:

with probability at least 1− O((poly(d))−1 + N
−100
test ).

We now proceed to provide the proof for Theorem 3.4. In 
the following, we use C to denote a generic constant which 
is independent of �x , �t  , M, H, Ntrain and Ntest , but might 
depend on δ.

Proof With (4), we immediately obtain the l2([0, δ]) error 
estimate for the learnt kernel γ ◦

test
 as

with probability at least 1− O((poly(d))−1 + N
−100
test ).

For the error bound in the discretized energy norm, we 
notice that the ground-truth solution û satisfies:

for all x ∈ χpred , n = 1, . . . , ⌊Tpred/�t⌋ . Subtracting this equa-

tion with (22) and denoting en
i

:= û(xi, t
n) − ūn(xi) , we then 

obtain

where

With Assumption 3.3, we have the truncation error for the Rie-

mann sum part as 
∣

∣Lθtest û(x, t) − Lθtest ,hû(x, t)
∣

∣ ≤ C�x for a 

constant C independent of �x and �t but might depends on δ . 

(4)
∣

∣

∣

∣B
◦
C

◦
test − BCtest

∣

∣

∣

∣

2

l2
≤ Õ

(

max{H , d}M 2

Ntrain

+
M

Ntest

)

,

∣

∣

∣

∣γtest − γ ◦
θtest

∣

∣

∣

∣

2

l2([0,δ])
= �x

d
∑

α=1

(

M
∑

m=1

(C◦
test − Ctest)mPm(|α�x|)

)2

= �x
∣

∣

∣

∣BCtest − B
◦
C

◦
test

∣

∣

∣

∣

2

l2

= Õ

(

�x
max{H , d}M 2

Ntrain

+ �x
M

Ntest

)

,

¨̂u(xi, t
n) = Lθtest ,h[û](xi, t

n) + g(xi, t
n)

+ ǫ(xi, t
n) +

[

¨̂u(xi, t
n) −

∂2û

∂t2
(xi, t
n)

]

+
[

Lθtest [û](xi, t
n) − Lθtest ,h[û](xi, t

n)
]

(5)
e
n+1
i

− 2en
i

+ e
n−1
i

�t2
= �x

d∑

α=1

(B◦C◦

test)α(en
i+α

+ e
n

i−α − 2en
i
) + (ǫall)

n

i
,

(ǫall)
n

i
: = ǫ(xi, t

n) + �x

d
∑

α=1

(BCtest − B
◦
C

◦
test)α(û(xi+α , t

n)

+ û(xi−α , t
n) − 2û(xi, t

n))

+

[

¨̂u(xi, t
n) −

∂2û

∂t2
(xi, t
n)

]

+
[

Lθtest [û](xi, t
n)

−Lθtest ,h[û](xi, t
n)

]

.
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Similarly, we have the truncation error for the central difference 

scheme as 
∣

∣

∣

∣

¨̂u(xi, t
n) −

∂2û

∂t2
(xi, t
n)

∣

∣

∣

∣

≤ C(�t)2 with the constant 

C independent of �x , �t , and δ . Moreover, (4) yields

with probability at least 1− O((poly(d))−1 + N
−100
test ) . Hence 

we have the bound for ǫall:

To show the l2(�) error for en
i
 , we first derive a bound for its 

error in the (discretized) energy norm. Multiplying (5) with 
e
n+1

i
−e
n

i

�t
 and summing over χpred = {xi}

Lpred

i=1  yields:

With the formulation a(a− b) =
1

2
(a2 − b2 + (a− b)2) , we 

can rewrite the left hand side as

�

�

�

�

�

�x

d
�

α=1
(BCtest − B◦C◦

test)α(û(xi+α , t
n) + û(xi−α , t

n) − 2û(xi , tn))
�

�

�

�

�

≤ �x

�

�

�

�

�

d
�

α=1
(BCtest − B◦C◦

test)α(α�x)2 max
(x,t)∈�pred×[0,Tpred ]

�

�

�

�

∂2û

∂x2

�

�

�

�

�

�

�

�

�

≤ �xδ2
d

�

α=1

�

�(BCtest − B◦C◦
test)α

�

� max
(x,t)∈�pred×[0,Tpred ]

�

�

�

�

∂2û

∂x2

�

�

�

�

≤ �xδ2
√
d
�

�

�

�BCtest − B◦C◦
test

�

�

�

�

l2
max

(x,t)∈�pred×[0,Tpred ]

�

�

�

�

∂2û

∂x2

�

�

�

�

≤ Õ





�

max{H , d}M 2
Ntrain

+ M
Ntest





√
�xδ5 max

(x,t)∈�pred×[0,Tpred ]

�

�

�

�

∂2û

∂x2

�

�

�

�

,

�

�(ǫall)
n
i

�

� ≤ E + Õ



�x + (�t)2 +

�

�

�

�

�

max{H , d}M2

Ntrain

+
M

Ntest

�

�x



.

Lpred∑

i=1

(e
n+1
i

− 2en
i

+ e
n−1
i

)(e
n+1
i

− e
n

i
)

�t3

=
�x

�t

Lpred∑

i=1

d∑

α=1

(B◦C◦

test)α(en
i+α + e

n

i−α − 2en
i
)(e
n+1
i

− e
n

i
)

+
1

�t

Lpred∑

i=1

(ǫall)
n

i
(e
n+1
i

− e
n

i
).

Lpred
�

i=1

(e
n+1
i

− 2en
i

+ e
n−1
i

)(e
n+1
i

− e
n

i
)

�t3

≥
1

2�t

Lpred
�

i=1





�

e
n+1
i

− e
n

i

�t

�2

−

�

e
n

i
− e
n−1
i

�t

�2

+

�

e
n+1
i

− 2en
i

+ e
n−1
i

�t

�2




≥
1

2�t

Lpred
�

i=1





�

e
n+1
i

− e
n

i

�t

�2

−

�

e
n

i
− e
n−1
i

�t

�2


.

For the first term on the right hand side, with the formulations

a(b− a) =
1

2
(b2 − a2 − (a− b)2) , Assumption 3.3, and the 

exact Dirichlet-type boundary condition, i.e., en
i

= 0 for i < 1 

and i > Lpred , we have

For the second term on the right hand side we have

L∑

i=1−α

ai(bi+α − bi) =

α∑

i=1

aL+ibL+i

−

α∑

i=1

ai−αbi−α −

L∑

i=1−α

bi+α(ai+α − ai),

�x

�t

Lpred
∑

i=1

d
∑

α=1

(B◦C◦

test)α(en
i+α + e

n

i−α − 2en
i
)(e
n+1
i

− e
n

i
)

= −
�x

�t

d
∑

α=1

Lpred
∑

i=1−α

(B◦C◦

test)α(en
i+α − e

n

i
)

(e
n+1
i+α − e

n

i+α − e
n+1
i

+ e
n

i
)

= −
�x

2�t

d
∑

α=1

Lpred
∑

i=1−α

(B◦C◦

test)α

[

(e
n+1
i+α − e

n+1
i

)2 − (en
i+α − e

n

i
)2

−(e
n+1
i+α − e

n

i+α − e
n+1
i

+ e
n

i
)2

]

≤ −
�x

2�t

d
∑

α=1

Lpred
∑

i=1−α

(B◦C◦

test)α

[

(e
n+1
i+α − e

n+1
i

)2 − (en
i+α − e

n

i
)2

]

+
�x

�t

d
∑

α=1

Lpred
∑

i=1−α

(B◦C◦

test)α

[

(e
n+1
i+α − e

n

i+α)2 + (e
n+1
i

− e
n

i
)2

]

≤ −
�x

2�t

d
∑

α=1

Lpred
∑

i=1−α

(B◦C◦

test)α

[

(e
n+1
i+α − e

n+1
i

)2 − (en
i+α − e

n

i
)2

]

+ 2
�x

�t

Lpred
∑

i=1

∣

∣

∣

∣B
◦
C

◦

test

∣

∣

∣

∣

l1
(e
n+1
i

− e
n

i
)2

≤ −
�x

2�t

d
∑

α=1

Lpred
∑

i=1−α

(B◦C◦

test)α

[

(e
n+1
i+α − e

n+1
i

)2 − (en
i+α − e

n

i
)2

]

+
1

4

Lpred
∑

i=1

(

e
n+1
i

− e
n

i

�t

)2

.
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Putting the above three inequalities together, we obtain

With the discrete Gronwall lemma and the bound of �t in 
Assumption 3.3, for n = 1, . . . , ⌊Tpred/�t⌋ we have

with probability at least 1− O((poly(d))−1 + N
−100
test ) , which 

provides the error bound in the discrete energy norm.   �

Appendix C: Reduction of two physics 
constraints
In this section we further expend the discussion on physics-
based constraints in “Prediction error bounds” section. The 
overall strategy is to fix the last two polynomial features,

and

into the set of basis polynomials. We note that these two poly-

nomials satisfy

1

�t

Lpred
∑

i=1

(ǫall)
n

i
(e
n+1
i

− e
n

i
)

≤

Lpred
∑

i=1

((ǫall)
n

i
)2 +

1

4

Lpred
∑

i=1

(

e
n+1
i

− e
n

i

�t

)2

.

Lpred
�

i=1



(1− �t)

�

e
n+1
i

− e
n

i

�t

�2

−

�

e
n

i
− e
n−1
i

�t

�2




+ 2�x

d
�

α=1

Lpred
�

i=1−α

(B◦C◦

test)α

�

(e
n+1
i+α − e

n+1
i

)2 − (en
i+α − e

n

i
)2

�

≤ 2�t

Lpred
�

i=1

((ǫall)
n

i
)2.

Lpred
∑

i=1

(

e
n
i

− en−1
i

�t

)2

+ 2�x

d
∑

α=1

Lpred
∑

i=1−α

(B◦C◦test)α(en
i+α − en

i
)2

≤ 2Lpred((1− �t)−n − 1)max
i,n

∣

∣(ǫall)
n
i

∣

∣

2
≤ 4 exp(Tpred)Lpred max

i,n

∣

∣(ǫall)
n
i

∣

∣

2

≤ LpredÕ

(

E
2 + (�x)2 + (�t)4 +

(

max{H , d}M2

Ntrain
+
M

Ntest

)

�x

)

,

PM−1(ξ) = β1 :=

(

d
∑

α=1

α2�x3

)−1

PM (ξ) = β2ξ :=

(

d
∑

α=1

α3�x4

)−1

ξ

d∑

α=1

α2�x3PM−1(α�x) = 1,

d∑

α=1

α2�x3PM (α�x) = 1,

and

Then (24) writes

and (26) writes

Denoting

and

then

Substituting this equation into the loss function in (8), for each 
xi we obtain

where

d∑

α=1

α4�x5PM−1(α�x) =

∑
d

α=1 α4�x2

∑
d

α=1 α2
,

d∑

α=1

α4�x5PM (α�x) =

∑
d

α=1 α5�x2

∑
d

α=1 α3
.

ρ̄c
2
0 =

M−2∑

m=1

CmA1m + CM−1 + CM ,

−4ρ̄c3
0
R =

M−2∑

m=1

CmA2m +

∑
d
α=1 α4�x2

∑
d
α=1 α2

CM−1 +

∑
d
α=1 α5�x2

∑
d
α=1 α3

CM .

� :=







1 1
�

d

α=1 α
4
�x

2

�

d

α=1 α2

�

d

α=1 α
5
�x

2

�

d

α=1 α3






,

H :=

[

�x
2 4�x2 · · · d

2
�x
2

�x
4 16�x4 · · · d

4
�x
4

]

,

[

CM−1

CM

]

=�−1

[

ρ̄c2
0

−
∑

M−2

m=1
CmA1m

−4ρ̄c3
0
R−

∑

M−2

m=1
CmA2m

]

=�−1

[

ρ̄c2
0

−4ρ̄c3
0
R

]

− �x�−1
HBC.

(

ynk ,i − (snk ,i)
T
BC

)2

=

(

ynk,i − (snk,i)
T

(

M−2
∑

m=1

Cmbm + CM−1bM−1 + CMbM

))2

=

(

ynk,i − (snk,i)
T
M−2
∑

m=1

Cmbm − (snk,i)
T [bM−1, bM ]�−1

[

ρ̄c20

−4ρ̄c30R

]

+�x(snk ,i)
T [bM−1, bM ]�−1

HBC

)2

=

(

ynk ,i − (snk ,i)
T [bM−1, bM ]�−1

[

ρ̄c20

−4ρ̄c30R

]

−(snk ,i)
T (I− �x[bM−1, bM ]�−1

H)BC

)2

=

(

ỹnk ,i − (s̃nk ,i)
T
BC̃

)2

,



Early Career Materials Researcher Research Letter

MRS COMMUNICATIONS · VOLUME XX · ISSUE xx · www.mrs.org/mrc                15

s̃
n

k,i
:= (I− �x[bM−1, bM ]�−1

H)T sn
k,i

 , C̃ := [C1, . . . ,CM−2] , 
and I is an d × d identity matrix. Therefore, the analysis and 
algorithm can also be extended to the “constraints” cases.

Appendix D: detailed parameter 
and experiment settings
Meta‑train and meta‑test datasets
To demonstrate the performance of MetaNOR on both periodic 
and disordered materials, in empirical experiments we generate 
four types of data from the DNS solver for each microstruc-

ture. For each sample, the total training domain � = [−50, 50] 

and the training data is generated up to T = 2 . The spatial and 
temporal discretization parameters in the DNS solver are set 
to �t = 0.01 , and max |�x| = 0.01 . The other physical param-

eters are set as L = 0.2 , E1 = 1 , ρ1 = ρ2 = 1 , and φ = 0 . In 
experiment 1, we fix E2 = 0.25 and set the disorder parameter 
D ∈ [0.05, 0.50] . In experiment 2, we set E2 ∈ [0.2025, 0.7225] 

and the disorder parameter D = 0 . The training and testing data 
are obtained from the DNS data via linear interpolation with 
�t = 0.02 and �x = 0.05 . The two types of data are chosen to 
follow a similar setting as in:[[6]]  

1. Oscillating source. We let û(x, 0) =
∂ û
∂t

(x, 0) = 0   , 
g(x, t) = exp−( 2x

5kL
)2 exp−( t−0.8

0.8
)2 cos2( 2πx

kL
),  w h e r e 

k = 1, 2, . . . , 20.

2. Plane wave. We set g(x, t) = 0 , û(x,−200) = 0 , and 
∂ û
∂t

(−50, t) = cos(ωt) . In experiment 1 (random micro-

structures), we set ω = 0.20, 0.40, . . . , 4.0 . In experiment 2 
(periodic microstructures), we set ω = 0.30, 0.60, . . . , 6.0.

In these two types of loading scenarios, the displacement û(x, t) 
is mostly zero when x > 10 , which makes the corresponding 
datapoints carry very little information. To utilize the sample 
datapoints more efficiently, for the type 1 data, we only use 
datapoints from the x ∈ [−10, 10] region, and for the type 2 
data we only use datapoints from the x ∈ [−38,−18] region.

Validation dataset: wave packet
We create a validation dataset, denoted as the wave packet dataset, 
which considers a much longer bar ( �wp = [−133.3, 133.3] ), and 
with a 50 times longer simulation time ( t ∈ [0, 100] ). The mate-

rial is under a different loading condition from the training data-

set, g(x, t) = 0 and ∂ û
∂t

(−133.3, t) = sin(ωt) exp
(

−(t/5− 3)2
)

 , 
for ω = 1, 2, 3 . To provide a metric for the estimator accuracy, 
we calculate the averaged displacement error in the discretized 
energy norm at the last time step. This error metric is referred to 
as the “validation error”, which checks the stability and generaliz-

ability of the estimators.

ỹnk,i := y
n
k,i − (snk,i)

T [bM−1, bM ]�−1

[

ρ̄c20
−4ρ̄c30R

]

,

Application D: Projectile impact 
simulations
To demonstrate the performance of learnt model in long-term 
simulation, we simulate the long-term propagation of waves 
in this material due to the impact of a projectile. In particu-

lar, in this problem a projectile hits the left end of the bar at 
time zero, which generates a velocity wave that travels into the 
microstructures.

To demonstrate the generalization capability of our approach 
on different domains, boundary conditions, and longer sim-

ulation time, we consider a drastically different setting in 
this simulation task. In particular, a much larger domain, 
�impact = (−267, 267) , and a much longer simulation time 
t ∈ [0, 600] are considered. Notice that our training dataset 
are only generated up to T = 2 , this long-term simulation task 
is particularly challenging not only because it has a different 
boundary condition setting from all training samples, but also 
due to the large aspect ratio between training time scale and 
simulation time scale. On the left end of the domain, we pre-

scribe the velocity as ∂ û
∂t

(−267, 0) = 1 , and zero velocity on 
elsewhere.
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