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32 We present a data-driven workflow to biological tissue modeling, which aims to predict
the displacement field based on digital image correlation (DIC) measurements under
unseen loading scenarios, without postulating a specific constitutive model form nor pos-
sessing knowledge of the material microstructure. To this end, a material database is
constructed from the DIC displacement tracking measurements of multiple biaxial
stretching protocols on a porcine tricuspid valve anterior leaflet, with which we build a
neural operator learning model. The material response is modeled as a solution operator
from the loading to the resultant displacement field, with the material microstructure
properties learned implicitly from the data and naturally embedded in the network
parameters. Using various combinations of loading protocols, we compare the predictiv-
ity of this framework with finite element analysis based on three conventional constitutive
models. From in-distribution tests, the predictivity of our approach presents good gener-
alizability to different loading conditions and outperforms the conventional constitutive
modeling at approximately one order of magnitude. When tested on out-of-distribution
loading ratios, the neural operator learning approach becomes less effective. To improve
the generalizability of our framework, we propose a physics-guided neural operator
learning model via imposing partial physics knowledge. This method is shown to improve
the model’s extrapolative performance in the small-deformation regime. Our results dem-
onstrate that with sufficient data coverage and/or guidance from partial physics con-
straints, the data-driven approach can be a more effective method for modeling
biological materials than the traditional constitutive modeling.
[DOI: 10.1115/1.4055918]
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34 1 Introduction

35 For many decades, constitutive models based on continuum
36 mechanics have been commonly employed for modeling the
37 mechanical responses of soft biological tissues. In Ref. [1], the
38 seminal phenomenological constitutive models were developed
39 and later employed for the modeling of soft tissues, including the
40 iris [2], cardiac heart valves [3–5], arterial vessels [6], and the
41 skin [7]. In the constitutive modeling approaches, a strain energy
42 density function is predefined with a specific functional form.
43 Then, the material parameters are calibrated through an inverse
44 method or analytical stress–strain fitting. The descriptive power of
45 these models is often restricted to certain deformation modes/
46 strain ranges, which might lead to limited predictivity and gener-
47 alizability [8–10].
48 To circumvent such a limitation, data-driven computing has
49 been considered in recent years as an alternative for modeling the
50 mechanical response of biological tissues [9,11–13]. Unlike the
51 traditional material identification techniques in constitutive mod-
52 eling, data-driven approaches directly integrate material identifi-
53 cation with the modeling procedures, and hence do not require a
54 predefined constitutive model form. In Ref. [11], a fully convolu-
55 tional neural network was trained based on synthetic datasets, to

56estimate a displacement field of material points in the simulated
57liver organ. In Ref. [14], Mi~nano et al. construct the constitutive
58law for soft tissue damage by solving the system of linear equa-
59tions consisting of coefficients of shape functions, rather than non-
60linear fitting to a predefined model. In Ref. [9], a local convexity
61data-driven computational framework was developed that couples
62manifold learning with nonlinear elasticity, for modeling a repre-
63sentative porcine mitral (heart) valve posterior leaflet’s
64stress–strain data. This framework was further extended to an
65auto-embedding data-driven approach [12] to infer the underlying
66low-dimensional embedding representation of the material data-
67base. In Ref. [13], a neural network was developed to learn the
68mechanical behavior of porcine and murine skin from biaxial test-
69ing data by inferring the relationship between the isochoric strain
70invariants and the value of strain energy, as well as the strain
71energy derivatives. Despite these advances, data-driven methods
72on soft tissue modeling are mostly focusing on the identification
73of stress–strain and/or energy–strain relationships for a homoge-
74nized material model, and are thus not capable to capture the
75effects of material spatial heterogeneity. For example, the lack of
76considering the soft tissue heterogeneity could induce large errors
77in the predictions of tissue displacements and stresses [15].
78Alternatively, there has been significant progress in the devel-
79opment of deep neural networks (NNs) for heterogeneous material
80modeling [16–27]. Among these works, we focus on the neural
81operator learning approach [22–27], which learns the maps
82between the inputs of a dynamical system and its state, so that the
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83 network serves as a surrogate for a solution operator. Compared
84 with the classical NNs, the most notable advantage of neural oper-
85 ators is their generalizability to different input instances, render-
86 ing a computing advantage on prediction efficiency—once the
87 neural operator is trained, solving for a new instance of the input
88 parameter only requires a forward pass of the network. In
89 Refs. [28–30], neural operators have been successfully applied to
90 modeling the unknown physics law of homogeneous materials. In
91 Refs. [25–27,31], neural operators were used as a solution surro-
92 gate for Darcy’s flow in a heterogeneous porous medium with a
93 known microstructure field. In our previous work [22], an implicit
94 neural operator architecture, namely, the implicit Fourier neural
95 operator (IFNO), was proposed to model heterogeneous material
96 responses without using any predefined constitutive models or
97 microstructure measurements. In particular, we have investigated
98 the applicability of learning a material model for a latex material
99 directly from digital image correlation (DIC) measurements and

100 show that the learned solution operators substantially outperform
101 the conventional constitutive models such as the generalized
102 Mooney–Rivlin model.
103 To the best of our knowledge, the neural operator learning
104 approaches have not been applied to soft tissue biomechanics.
105 Moreover, the effectiveness of neural operator learning methods
106 in extrapolation to small and large deformation regimes has yet to
107 be systematically examined. To achieve these goals, in this work
108 we propose to advance the current data-driven methods of soft tis-
109 sue modeling by extending the neural operator learning approach.
110 In particular, we employ the IFNO to learn the material model
111 from DIC measurements on a representative tricuspid valve ante-
112 rior leaflet (TVAL) specimen from a porcine heart and assess its
113 predictability on unseen and out-of-distribution loading scenarios.
114 To further improve the generalizability of the proposed frame-
115 work, we also infuse partial physics knowledge via a soft penalty
116 constraint to obtain a novel physics-guided neural operator learn-
117 ing framework. This method is shown to improve the extrapola-
118 tive performance of our model in the small deformation regime.
119 The remainder of this paper is organized as follows. In Sec. 2,
120 we introduce our data-driven computing paradigm based on the
121 neural operator learning method, which integrates material identi-
122 fication, modeling procedures, and material response prediction
123 into one unified learning framework. In particular, a stable deep
124 layer architecture, i.e., the IFNO, is introduced in Sec. 2.2 and
125 incorporated with partial physics knowledge in Sec. 2.3. In Sec. 3,
126 we introduce our experimental setting on a representative TVAL
127 specimen. Four study scenarios, considering different sets of
128 experimental data for model training and predictions, are used to
129 examine the in-distribution and out-of-distribution predictivity of
130 the proposed IFNO method. The effectiveness of the IFNO
131 approach is also compared with finite element simulation results
132 based on three constitutive models. Then, we illustrate the

133prediction results of the IFNOs and physics-guided IFNOs, and
134compared their results with the modeling results based on fitted
135constitutive models in Sec. 4. Finally, we provide a summary of
136our achieved goals and concluding remarks in Sec. 5.

1372 An Integrated Learning Framework

138In this section, we first formulate the proposed workflow of
139data-driven material modeling using the operator learning frame-
140work and then introduce the deep neural operator model—the
141IFNO [22]. Next, we propose to further infuse partial physics
142knowledge via a soft penalty constraint to guide the training and
143prediction of the neural operators.

1442.1 Neural Operator Learning Methods. The main objec-
145tive of this work is to model the mechanical response of a repre-
146sentative soft biological tissue directly from DIC-tracked
147displacement measurements, without any predefined constitutive
148model nor knowledge of the tissue microstructure. As depicted in
149Fig. 1 and Table 1, let us consider a soft biological tissue speci-
150men that is mounted to a biaxial testing system and deforms under
151external loading. Denoting the region of interest on this specimen
152as a 2D domain X, our aim is to identify the best surrogate opera-
153tor, that can accurately predict the displacement field uðxÞ; x 2 X,
154given new and unseen loading scenarios. In this work, we model
155the tissue mechanical response as a quasi-static and hyperelastic
156problem for simplicity, so the resultant displacement field can be
157fully determined by a displacement-type loading applied on the
158domain boundary @X. Thus, given the Dirichlet-type boundary
159condition, uDðxÞ for x 2 @X, our ultimate goal is to predict the
160corresponding displacement field uðxÞ; x 2 X.
161Mathematically, let K be the unknown differential operator
162associated with the momentum balance equation which depends
163on the unknown tissue microstructure and mechanical properties.
164For a given boundary condition uDðxÞ, the momentum balance
165equation and boundary conditions are

K½u�ðxÞ ¼ 0; x 2 X

uðxÞ ¼ uDðxÞ; x 2 @X
(2.1)

166167Hence, our goal is to provide a surrogate solution operator for
168Eq. (2.1) as a mapping between any arbitrary uD and the corre-
169sponding material response u. To this end, we propose to embrace
170the descriptive power of NNs, and develop a data-driven neural
171operator with its input being uDðxÞ and its output being the dis-
172placement field uðxÞ, for any x 2 X. Given a collection of
173observed function pairs fðuDÞjðxÞ;ujðxÞgN

j¼1 from DIC measure-
174ments, where the input fðuDÞjg; j ¼ 1;…;N is a sequence of
175boundary displacement loading and G† ½ðuDÞj�ðxÞ ¼ ujðxÞ is the

Fig. 1 Problem setup for the proposed data-driven computations: (a) an image of the speckle-patterned porcine
TVAL specimen subject to biaxial stretching (the DIC tracking grid is shown in green), (b) schematic of a specimen
subject to Dirichlet-type boundary conditions, as the corresponding numerical setting of (a), and (c) first
Piola–Kirchhoff stresses P11 versus P22 of seven biaxial tension and constrained uniaxial tension testing protocols,
with further details provided in Table 1AQ14
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176 corresponding (potentially noisy) displacement field. With neural
177 operator learning, we aim to build an approximation of G†

by con-
178 structing a nonlinear parametric map G½� ; h� in the form of a NN,
179 for some finite dimensional parameter space H. Here, h 2 H is
180 the set of network architecture parameters to be inferred by solv-
181 ing the minimization problem

min
h2H

XN

j¼1

jjG½ðuDÞj; h�ðxÞ � ujðxÞjj2L2ðXÞ (2.2)

182183 In this context, we have formulated the soft tissue response mod-
184 eling problem as learning the solution operator G of an unknown
185 PDEAQ4 system from the DIC data.
186 Thus, our goal is to provide a neural operator, i.e., an approxi-
187 mated solution operator G½�; h� : uD ! u, that delivers solutions of
188 Eq. (2.1) for any input uD. Compared with the classical PDE solv-
189 ers and the NN approaches, this is a more challenging task for sev-
190 eral reasons. First, in contrast to the classical NN approaches
191 where the solution operator is parameterized between finite
192 dimensional Euclidean spaces [32–36], the neural operators are
193 built as mappings between infinite dimensional spaces [25,27,37].
194 Second, for every new instance of material microstructure and/or
195 loading scenario f, the neural operators require only a forward
196 pass of the network, which implies that the optimization problem
197 (2.2) only needs to be solved once and the resulting NN can be uti-
198 lized to solve for new and unseen loading scenarios. This property
199 is in contrast to the classical numerical PDE methods [38–40] and
200 some machine learning approaches [41–45], where the optimiza-
201 tion problem needs to be solved for every new instance of the
202 input parameter of a known governing law. Finally, of fundamen-
203 tal importance is the fact that the neural operators can find solu-
204 tion maps regardless of the presence of an underlying PDE and
205 only require the observed data pairs fððuDÞj; ujÞgN

j¼1. Therefore,
206 the neural operator learning approach is particularly promising
207 when the mechanical responses are provided by experimental

208measurements, such as the displacement tracking data from DIC
209considered in this paper.

2102.2 Implicit Fourier Neural Operators. To provide an effi-
211cient, deep, and stable integral neural operator for the solution
212operator learning problem discovered above, we employ the
213IFNOs [22]. IFNOs stem from the idea of modeling the solution
214operator as a fixed point equation that naturally mimics the solu-
215tion procedure for the displacement/damage fields in materials
216modeling. The increment between neural network hidden layers is
217modeled as an integral operator, which is directly parameterized
218in the Fourier space to facilitate the fast Fourier transformation
219and accelerated learning techniques for deep networks. As shown
220in Ref. [22], by learning the material responses directly from data,
221the material microstructure and properties are learned implicitly
222and embedded naturally in the network parameters, enabling the
223prediction of the material displacement for unseen loading
224conditions.
225Figure 2 depicts the NN architecture employed in this work.
226Two IFNOs are built to predict uxðxÞ and uyðxÞ, the x and y com-
227ponents of the displacement field, respectively. For each IFNO,
228the input is a vector function f ðxÞ AQ5on X that contains information
229from x and uDðxÞ. Here, we notice that the displacement boundary
230loading uDðxÞ is only defined on @X. To make it well-defined on
231the whole domain, we employ the zero-padding strategy proposed
232in Ref. [31], namely, defining f ðxÞ :¼ ½x; ~uDðxÞ� where

~uDðxÞ ¼
uDðxÞ; if x 2 @X
0; if x 2 Xn@X

(
(2.3)

233234Then, we lift the input f ð�Þ to a representation (feature) hð�; 0Þ of
235dimension d, that corresponds to the first network layer. For the
236consistency of notation, we label the first argument of h as
237the space (the set of nodes) and the second argument as the time
238(the set of layers) and define the first network layer as

Table 1 Protocols of the mechanical testing on a representative TVAL specimen

Set ID Experiment protocol maxðk1Þ maxðk2Þ maxðP11Þ maxðP22Þ # of samples

1 Biaxial tensions P11 : P22 ¼ 1 : 1 1.46 1.68 184.1 kPa 165.1 kPa 3921
2 Biaxial tensions P11 : P22 ¼ 1 : 0:66 1.48 1.63 187.1 kPa 127.8 kPa 3797
3 Biaxial tensions P11 : P22 ¼ 1 : 0:33 1.52 1.52 186.9 kPa 74.1 kPa 3539
4 Biaxial tensions P11 : P22 ¼ 0:66 : 1 1.42 1.72 145.9 kPa 188.2 kPa 4013
5 Biaxial tensions P11 : P22 ¼ 0:33 : 1 1.32 1.79 77.9 kPa 189.8 kPa 4175
6 Constrained uniaxial in x, P11 : P22 ¼ 0:05 : 1 1.56 1.0 197.9 kPa 10.6 kPa 3539
7 Constrained uniaxial in y, P11 : P22 ¼ 1 : 0:1 1.0 1.89 17.2 kPa 176.1 kPa 3539

The resultant displacement fields, based on digital image correlation, were used in the data-driven computations (P11 and P22 denote the first
Piola–Kirchhoff stresses in the x- and y-directions, respectively, and k1, k2 are the stretches ratios in these two directions).

Fig. 2 The architecture of the proposed physics-guided IFNO PG-IFNO, which consists of two subnetworks for the
prediction of two displacement field components. Each subnetwork starts from the input ½x ; ~uD (x )�, then (1) lifts to a
high dimensional feature space by the lifting layer P and obtains the first hidden layer representation h(x ; 0); (2)
applies L iterative layers; (3) projects the last hidden layer representation h(x ;LDt) back to the target dimension
through a shallow network Q. The optimal network parameter h� is obtained by minimizing the hybrid loss function
defined as the weighted sum of the data-driven loss, ‘data, and the physics constraint loss, ‘physics.
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hðx; 0Þ ¼ P½f �ðxÞ :¼ Pf ðxÞ þ p

239240 where P 2 Rd�4 and p 2 Rd are trainable parameters.
241 Second, we denote the lth network representation by hðx; lDtÞ,
242 and formulate the NN architecture in an iterative manner:

hð�; 0Þ ! hð�;DtÞ ! hð�; 2DtÞ ! � � � ! hð�;TÞ, where hð�; jDtÞ;
243 j ¼ 0;…;L :¼ T=Dt, is a sequence of functions representing the
244 features at each hidden layer, taking values in Rd . Here, l¼ 0 (or
245 equivalently, t¼ 0) denotes the first hidden layer, whereas t ¼

LDt ¼ T corresponds to the last hidden layer. In particular, the
246 layer update rule in the IFNOs writes

hðx; ðlþ 1ÞDtÞ ¼ LIFNO½hðx; lDtÞ�
:¼ hðx; lDtÞ þ DtrðWhðx; lDtÞ
þF�1½F ½jð�; vÞ� � F ½hð�; lDtÞ��ðxÞ þ cÞ

247248 Here, F and F�1 denote the Fourier transform and its inverse,
249 respectively. In practice, F and F�1 are computed using the fast
250 Fourier transformation and its inverse to each component of h sep-
251 arately, with the highest modes truncated and keeping only the
252 first k modes. Also, c 2 Rd defines a constant bias, W 2 Rd�d is
253 the weight matrix, and F½jð�; vÞ� :¼ R 2 C

d�d�k is a circulant
254 matrix that depends on the convolution kernel j. We further
255 define r as the activation function, which is chosen to be the pop-
256 ular rectified linear unit (ReLU) function [46]. Here we note that
257 the definition of t stems from the relationship established between
258 the network update and a time stepping scheme, which enables
259 the employment of the accelerated training strategy for the NN in
260 the deep layer limit.
261 Third, the output uxðxÞ or uyðxÞ is obtained through a projection
262 layer. Taking the IFNO for the prediction of uxðxÞ, for example,
263 we project the last hidden layer representation hð�;TÞ as

uxðxÞ ¼ Q½hð�;TÞ�ðxÞ :¼ Q2rðQ1hðx; TÞ þ q1Þ þ q2

264265 Here, Q1 2 RdQ�d; Q2 2 R1�dQ ; q1 2 RdQ , and q2 2 R are the
266 trainable parameters.
267 Denoting the parameters and the corresponding operators asso-
268 ciated with ux and uy with the subscripts x and y, respectively, the
269 vanilla version of our neural operator learning architecture with-
270 out physics constraints (which will be denoted as IFNO in the fol-
271 lowing context, with a slight abuse of notation) is written as:

G½uD; h�ðxÞ :¼ ½Qx � ðLIFNO
x ÞL � Px½f �ðxÞ

Qy � ðLIFNO
y ÞL � Py½f �ðxÞ�

�½uxðxÞ; uyðxÞ� ¼ uðxÞ

272273 Note that the trainable parameters are collected in h :¼
fPx; px; ðQ1Þx; ðQ2Þx; ðq1Þx; ðq2Þx; cx;Wx;Rx;Py; py;
ðQ1Þy; ðQ2Þy; ðq1Þy; ðq2Þy; cy;Wy;Ryg, obtained in the vanilla

274 IFNO by minimizing the data-driven loss only

h� ¼ argmin
h2H

LdataðhÞ; where

LdataðhÞ :¼
XN

j¼1

jjG½ðuDÞj; h�ðxÞ � ujðxÞjj2L2ðXÞ

(2.4)

275276 Further, as the layer becomes deep (Dt! 0), the iterative archi-
277 tecture of the IFNOs can be seen as an analog of discretized ordi-
278 nary differential equations (ODEs). This allows us to exploit the
279 shallow-to-deep learning technique [22,37,47,48]. Specifically,
280 using the optimal network parameters h� obtained by training an
281 IFNO of depth L, we initialize the (deeper) ~L-layer network. As
282 such, the optimal parameters learned on shallow networks are
283 considered as (quasi-optimal) initial guesses for the deeper
284 networks—accelerating the training for deeper NNs.

2852.3 Physics-Guided Neural Operators. So far, the neural
286operator model introduced above fully relies on the data, and
287hence its predictions may not be consistent with the underlying
288physical principles. For instance, with the quasi-static and hypere-
289lastic assumption of our model, the specimen has no permanent
290deformation. In other words, if there is no loading applied to the
291tissue (i.e., the specimen is at rest), we should observe a zero dis-
292placement field in the specimen. However, this is generally not
293guaranteed in a fully data-driven neural operator model.
294In this work, we aim to further leverage the neural operator
295learning architecture by imposing the underlying physical laws
296via soft penalty constraints during model training. In particular,
297considering a specimen at rest, the no-permanent-deformation
298assumption implies that zero loading should lead to zero displace-
299ment, i.e., G† ½0� ¼ 0. To enable the neural operator predictions to
300be consistent with this physical constraint, we propose a physics-
301guided neural operator model that minimizes the residual of the
302above physical law together with the fitting loss from the data.
303This is achieved by solving the following minimization problem
304with a hybrid loss function:

h� ¼ argmin
h2H

LdataðhÞ þ cLphysicsðhÞ (2.5)

305306where the data-driven loss Ldata is defined in Eq. (2.4), and the
307physics constraint loss Lphysics is defined as

LphysicsðhÞ :¼ jjG½0; h�ðxÞjj2L2ðXÞ (2.6)

308309Here, c > 0 is a penalty parameter to enforce the zero deformation
310state for material subject to zero loading. Thus, the physics-
311guided neural operator is anticipated to improve the prediction
312performance in the small deformation regime. In the following,
313we will denote this model as the physics-guided IFNO, or the PG-
314IFNO, in short.

3153 Application to Tissue Biomechanics of the Heart

316Valve Leaflet

317We now consider the problem of learning the material response
318of a TVAL specimen from displacement measurements based on
319DIC tracking. In this problem, the constitutive equations and
320material microstructure are both unknown, and the dataset has
321unavoidable measurement noise. To demonstrate the efficacy of
322the proposed IFNOs in conjunction with the physics-based enrich-
323ment, we further compared our method against three conventional
324approaches that use constitutive modeling with parameter fittings.
325The code and dataset have been publicly released at the following
326link.2

3273.1 Tissue Preparation and Mechanical Testing. In this
328section, we first introduce the experimental specimen and data
329acquisition procedure. In brief, we followed our previously estab-
330lished biaxial testing procedure, including acquisition of a healthy
331porcine heart and retrieval of the TVAL [49,50]. We then sec-
332tioned the leaflet tissue into a square specimen and measured the
333thickness using an optical measuring system (Keyence, Itasca,
334IL). Afterward, we applied a speckling pattern to the tissue sur-
335face using an airbrush and black paint [51–53]. The painted speci-
336men was then mounted to a biaxial testing device (Bio-Tester,
337CellScale, Waterloo, ON, Canada) with an effective testing area
338of 9� 9 mm for the following tissue characterizations (Fig. 1(a)).
339First, we performed a preconditioning protocol in which the
340specimen was subjected to ten cycles of biaxial loading and
341unloading that targeted a first Piola–Kirchhoff stress of 150 kPa to
342emulate the valve’s in vivo functioning conditions [54]. Then, we
343performed seven protocols of displacement-controlled testing to

2https://github.com/fishmoon1234/IFNO-tissue
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344 target various biaxial stresses: P11 : P22 ¼ 1:1, 1:0.66, 1:0.33,
345 0.66:1, 0.33:1, 0.05:1, 1:0.1, with the last two protocols for con-
346 strained uniaxial stretching in x and y (Fig. 1(c) and Table 1).
347 Here, P11 and P22 denote the first Piola–Kirchhoff stresses in the
348 x- and y-directions, respectively. Each stress ratio was performed
349 for three loading/unloading cycles. Throughout the test, images of
350 the specimen were captured by a CCD camera, and the load cell
351 readings and actuator displacements were recorded at 5 Hz. Due
352 to the use of displacement-controlled testing, we observed mild
353 deviations from the target stresses (see Table 1).
354 After testing, the acquired images were analyzed using the DIC
355 module of the Bio-Tester’s software. A 5:5� 5:5 mm domain in
356 the central region of the TVAL specimen was selected since the
357 speckling pattern was more uniform and could yield more reliable
358 node tracking (see Figs. 1(a) and 1(b)). The pixel coordinate loca-
359 tions of the DIC-tracked grid were then exported for use in the
360 subsequent study scenarios. Based on the tracked coordinates, we
361 constructed two numerical testing datasets: (i) an original dataset
362 obtained directly from the experimental measurements, and (ii) a
363 smoothed dataset where moving least-squares (MLS) smoothing
364 was performed for the nodal displacements.
365 To generate the displacement fields uoriginalðxÞ for the original
366 samples, we subtracted each material point location with its initial
367 location on the first sample of each protocol, and the boundary
368 displacement was obtained by enforcing uoriginalðxÞ on the bound-
369 ary nodes. Next, to construct the smoothed samples for the ith

370 material point, xi ¼ ðxi; yiÞ, we employed a two-dimensional MLS
371 shape function Wi to reconstruct the smoothed displacement field:

usmoothðxi; yiÞ ¼
PNP

k¼1 Wkðxi; yiÞuoriginalðxk; ykÞ, based on the
372 unsmoothed displacement vector of the NP points in the neighbor-
373 hood of xi. For further details regarding the MLS shape function
374 and the smoothing procedure, we refer interested readers to
375 Refs. [22], [55], and [56]. Both the smoothed and the original
376 datasets have 26,523 total time instants (samples), denoted
377 as Dsmooth ¼ fðuDÞsmooth

j ; usmooth
j g26;523

j¼1 and Doriginal ¼ fðuDÞoriginal
j ;

378 u
original
j g26;523

j¼1 , respectively. Finally, to create a structured grid for
379 the proposed IFNOs, we further applied a cubic spline interpola-
380 tion to the displacement field on a structured 21� 21 node grid.

381 3.2 Baseline: Constitutive Modeling. As the baseline
382 method for comparisons with the proposed neural operator learn-
383 ing methods, we considered a constitutive modeling approach
384 using parameter fitting to the experimental stress–stretch data. In
385 particular, for comparisons with the IFNO approach, we employed
386 three models for the planar stress–strain behavior of the tissue: (i)
387 a Fung-type model, (ii) an invariant-based model, and (iii) a
388 structure-informed model. The Fung-type model was considered
389 with the strain energy density function given by

w ¼ c

2
exp a1E2

11 þ a2E2
22 þ 2a3E11E22

� �
� 1

� �
390391 where c, a1, a2, and a3 are the model parameters to be determined,
392 and E11, E22 are the principle Green–Lagrange strains in the x-
393 and y-directions, respectively.
394 The invariant-based model was chosen as the Lee–Sacks form
395 [8,57,58], with the strain energy density function defined as

w ¼ c0

2
I1 � 3ð Þ þ c1

2
w exp c2 I1 � 3ð Þ2

� �h
þ 1� wð Þexp c3 I4 � 1ð Þ2

� �
� 1
i

396397 Herein, ci (i ¼ 0; 1; 2; 3) and w are the model parameters to be
398 determined, w 2 ½0; 1� denotes the material anisotropy, and I1 ¼

trðCÞ and I4 ¼ m � Cm are the invariant and pseudo-invariant of
399 the right Cauchy–Green deformation C ¼ FTF, respectively. In
400 this study, we consider the direction of the collagen fibers in the
401 reference configuration to be in the circumferential direction (i.e.,

m ¼ ½1; 0; 0�T).

402Finally, for the structure-informed model, we use a simplified
403ensemble fiber stress–strain relationship, along with a neo-
404Hookean nonfibrous ground matrix [9,10,59,60], with the strain
405energy density function

w ¼ wm þ wens ¼
lm

2
I1 � 3ð Þ þ p J � 1ð Þ

þ
ðp=2

�p=2

C hð Þwf Ef hð Þ
� �

dh

406407where lm is the neo-Hookean stiffness and p is the penalty term to
408enforce tissue incompressibility J ¼ detðFÞ ¼ 1 that can be ana-
409lytically determined by further applying the plane-stress condition

410[59], Ef ¼ NTðhÞENðhÞ is the fiber strain along NðhÞ ¼
½cosðhÞ; sinðhÞ; 0�T; E ¼ ðC� IÞ=2 is the Green–Lagrange strain,

411and I is the identity tensor. For the fiber stress–strain behavior, we
412used an exponential model with a terminal stiffness for numerical
413stability

Sf ¼
@wf

@Ef

¼
c0 exp c1Efð Þ � 1½ �; for Ef 	 Eub

c0 exp c1Eubð Þ � 1½ �
þ c0c1 exp c1Eubð Þ Ef � Eubð Þ; for Ef > Eub

8>><
>>:

414415where c0 and c1 are the material parameters and Eub is threshold
416fiber strain for the transition to a linear fiber tangent modulus.
417Finally, we used a Gaussian distribution function, with zero mean
418and fiber dispersion of r, for Ch. Thus, for the structure-informed
419model there are four parameters to be determined from optimiza-
420tion: lm, c0, c1, and r, whereas Eub is precalculated as the strain
421corresponding to a predetermined stress threshold value of
42210 MPa for a given pair of c0 and c1.
423In this work, constitutive model parameters were obtained by
424nonlinear least-squares fitting to the biaxial stress–stretch data for
425the training samples. In brief, the first Piola–Kirchhoff stresses in
426the x- and y-directions were determined using the specimen thick-
427ness Lz, the undeformed edge lengths Lx and Ly, and the measured
428forces Fx and Fy: P11 ¼ Fx=LyLz and P22 ¼ Fy=LxLz. The two
429stretches were calculated as the ratio of the deformed to the unde-
430formed edge lengths. To obtain the optimal parameters for the dif-
431ferent model, differential evolution optimization was employed
432that minimizes the residual mean squared errors in the stress
433between the experimental data and model prediction [61]. Finally,
434using the determined model parameters, finite element simulation
435was performed in Abaqus [62] with the DIC-tracked nodal dis-
436placements prescribed as boundary displacement conditions. The
437relative errors of displacement fields were then evaluated by com-
438paring the finite element solution and the DIC-based measure-
439ments. In the following, we will refer to these baseline approaches
440as the “Fung model” method, the “invariant-based” method, and
441the “structure-informed” method.

4423.3 Numerical Study Scenarios. Based on the seven
443mechanical testing protocols listed in Table 1, four study scenar-
444ios are considered to evaluate the interpolative and extrapolative
445performances of the proposed neural operator learning methods.
446In each study scenario, a subset of the samples was selected to
447form the training set and to obtain the optimal neural operator by
448solving (2.2) and (2.6). Then, the displacement field predictions
449were made for the remaining samples and the results were com-
450pared with the ground-truth displacement fields from the DIC
451measurements, to evaluate the predictivity and generalizability of
452our proposed methods. Due to the relatively large number of sam-
453ples, in constitutive modeling approach, it is generally intractable
454to perform finite element analysis for all 26,523 samples. To
455reduce the computational cost, although we train both models on
456samples from all cycles, we only evaluate the training and testing
457errors for samples in the first loading/unloading cycle of each pro-
458tocol for the three constitutive modeling approaches. Then, we
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459 considered the averaged relative error of displacement,
jjupred;j � ujjjL2ðXÞ=jjujjjL2ðXÞ, as the error metric, so as to provide a

460 fair comparison between the constitutive modeling and our neural
461 operator learning approaches. Here, uj denotes the jth sample
462 from the DIC measurement, and upred;j is the prediction from
463 either the neural operator or the corresponding baseline constitu-
464 tive model for this sample.

465 3.3.1 Study 1. We mixed all samples from all seven protocols,
466 randomly selected 83% of samples for training, and used the
467 remaining for validation (10% of samples) and testing (7% of
468 samples). In this scenario, we ensured that the boundary condi-
469 tions of the samples in the testing set are inside the training
470 region. Therefore, with this study, we aimed to investigate the in-
471 distribution predictivity of the proposed method. With this study,
472 we not only investigate the performance of the proposed approach
473 in in-distribution learning tasks but also study the required amount
474 of training data by demonstrating the errors when using different
475 numbers of (randomly) selected training samples.

476 3.3.2 Study 2. For this study, we employed protocols 1, 2, and
477 4 for training and protocols 3, 5, 6, and 7 for testing. In this study
478 and the two studies below, the samples from the second loading/
479 unloading cycle of testing protocols are employed as the valida-
480 tion dataset for the purpose of hyperparameter tuning, while the
481 first cycle is reserved as the test dataset. We notice that the testing
482 protocols are not covered in any of training sets, and they have
483 smaller maximum tensions compared with the training sets.
484 Hence, with this study, we aimed to investigate the performance
485 of the proposed IFNO methods for predicting the out-of-distribu-
486 tion material responses in the small deformation regime.

487 3.3.3 Study 3. We used protocols 1, 6, and 7 for training and
488 protocols 2–5 for testing. The protocols considered in testing were
489 not covered in any of the training protocols, although the deforma-
490 tion range of the testing protocols may fall inside the range of the
491 training ones. Hence, we attempted to illustrate the out-of-distri-
492 bution prediction on the intermediate deformation regime.

493 3.3.4 Study 4. We used protocols 2–7 for training, and proto-
494 col 1 for prediction. We notice that the equibiaxial tension proto-
495 col (P11 : P22 ¼1:1) is not covered in any of other sets, and
496 protocol 1 exhibits the largest maximum tensions among all the
497 sets. Hence, with this study, we aimed to investigate the out-of-
498 distribution predictivity in the large deformation regime of the
499 proposed method.

500 4 Results and Discussions

501 In this section, we illustrate the performance of the proposed
502 neural operator learning approaches. All our numerical experi-
503 ments were performed on a machine with a 2.8 GHz 8-core CPU
504 and a single Nvidia RTX 3060 GPUAQ6 , using a Pytorch implementa-
505 tion modified from the package provided in Ref. [27]. The optimi-
506 zation was performed with the Adam optimizer. For all IFNOs,
507 we set the dimension of h as d¼ 16 and the number of truncated
508 Fourier modes as k ¼ 8� 8, with L¼ 12 hidden layers. The net-
509 work was trained with the shallow-to-deep training procedure: we
510 initialized the L� layer network parameters from the ðL=2Þ�
511 layer IFNOs model. For each depth L, we trained the network for
512 1000 epochs with a learning rate of 3� 10�3, then decreased the
513 learning rate with a ratio of 0.5 every 100 epochs. For all PG-
514 IFNOs we took the penalty parameter c ¼ 1:0, although we noted
515 that this parameter can be further hand-tuned or optimized to
516 potentially achieve a better performance.

517 4.1 Study 1: In-Distribution Prediction. To verify the mod-
518 el’s predictivity for in-distribution learning tasks, in this study we
519 randomly selected 83% of the samples of all protocols to form the
520 training set and then built the vanilla IFNO model and the three
521 baseline constitutive models based on this common training set.

522Figure 3 (top) shows the relative displacement errors when using
523different amounts of training samples, and the samplewise errors
524for each model are provided in Fig. 3 (bottom). When comparing
525the results between the original dataset and the smoothed dataset,
526one can observe that their samplewise errors present a similar
527trend, while the smoothing procedure slightly improves the pre-
528diction accuracy for both the IFNO and three baseline models.
529Probably unsurprisingly, from the left of Fig. 3 (top), one can see
530that the accuracy of the IFNO improves when using more training
531samples. In particular, the test error decreases with a convergence
532rate of around OðN�0:34Þ, when the training dataset size, N,
533increases. With only 45 samples, the IFNO achieves a comparable
534accuracy as the three constitutive models trained on all 22,000
535samples. When using all 22,000 measurements in both models,
536the IFNO outperforms the conventional constitutive modeling
537approaches by around one order of magnitude, on both the origi-
538nal and smoothed datasets. To provide further insights into this
539comparison, in Fig. 4 we visualized both the x- and y-
540displacement solutions and the prediction errors obtained with the
541IFNO and the structure-informed model (the best baseline model)
542on two test samples, which correspond to the large deformation
543(sample #2) and small deformation (sample #1) representatives,
544respectively. The structure-informed model, which considered the
545homogenized stress–strain at one material point (i.e., the center of
546the specimen) due to limited information about the spatial varia-
547tion in the stress measurement, failed to capture material heteroge-
548neity and hence exhibited large prediction errors in the interior
549region of the TVAL specimen domain. This observation confirms
550the importance of capturing the material heterogeneity and veri-
551fies the capability of the IFNOs in heterogeneous material
552modeling.

5534.2 Study 2: Out-of-Distribution Prediction on the Small
554Deformation Regime. In this study, three protocols with the larg-
555est tensions (i.e., sets 1, 2, and 4) were used for training, and the
556other four protocols were used for prediction validation (sets 3, 5,
5576, and 7 as listed in Table 1). Since the prediction sets are with a
558different biaxial loading ratio that is unseen from the training sam-
559ples, this is an extrapolative learning task in the small deformation
560region. Figure 5 (left) provides the relative displacement errors
561from all models. One can see that compared with the interpolative
562prediction task in study 1, the extrapolative predictions are less
563effective for the neural operator. It was, in particular, noted that
564for the vanilla IFNO model while the training error was at a rela-
565tively low error (i.e., the model still possessed good expressivity
566in sets 1, 2, and 4), the testing error deteriorates by ten times and
567reached a similar level to the Fung-type model but slightly higher
568than invariant-based and structure-informed models. Perhaps
569unsurprisingly, this observation again verifies the sensitivity of
570machine learning models in extrapolative tasks (see, e.g., Ref.
571[9]). As shown in Fig. 5 (right), we demonstrate the samplewise
572errors from the original dataset for each model, and we noticed
573that the results on the smoothed dataset exhibit a similar trend.
574One can observe that for the three baseline models, the level of
575prediction errors is relatively similar for all four testing sets, while
576large errors are observed in sets 6 and 7 (the sets with the smallest
577maximum tensions) for the vanilla IFNO model. Those sets are
578the furthest away from the training set and hence their sample dis-
579tributions are substantially different from those in the training
580sets.
581In this study, we also investigated the performance of the pro-
582posed PG-IFNOs. By infusing the no-permanent-deformation con-
583straint, an improvement of the testing error was observed on both
584original and smoothed dataset. From the samplewise errors, we
585can tell that the invariant-based and structure informed models
586outperform PG-IFNO mostly on sets 6 and 7—which are the pro-
587tocols on the small deformation regime. As we mentioned before,
588those sets are differ greatly from the training set, it’s expected that
589neural operator would be less accurate. On the set where

J_ID: BIO DOI: 10.1115/1.4055918 Date: 17-October-22 Stage: Page: 6 Total Pages: 12

ID: asmeml23d3b2server Time: 18:31 I Path: //chenasprod/kglpro4/ApplicationFiles/Journals/ASME/BIO#/Vol00000/220140/Comp/APPFile/AS-BIO#220140

000000-6 / Vol. 00, MONTH 2022 Transactions of the ASME



PROOF COPY [BIO-22-1106]

590 deformation is closer to the training set, i.e., set 3 and set 5, the
591 PG-IFNO model shows a similar or even better performance than
592 the baseline models. This fact is verified by the solutions and pre-
593 diction errors on a representative sample in set 5, as depicted in

594Fig. 6. Compared with structure-informed method, the PG-IFNO
595model has a lower solution error and captures the material hetero-
596geneity. Hence, these results suggest that sufficient coverage of
597sample distribution in the training protocol is critical for neural

Fig. 3 Error comparisons of different models—study 1: in-distribution prediction with training set on 83% of ran-
domly selected samples. Top: relative errors for the displacement field prediction on the training and test datasets.
Left: errors when using different amounts of (original) training samples in the IFNO model. Right: results of the IFNO
using 45 training samples and all training samples, and their comparison with three baseline models using all training
samples. We highlight the model with the best prediction accuracy in bold. Bottom: samplewise error comparison on
all biaxial testing protocol sets. Results from the original dataset are on left and results from the smoothed dataset are
on right.

Fig. 4 Visualization of the most accurate baseline constitutive model fitting and IFNO performances on two representative
test samples in (a) the original dataset and (b) the smoothed dataset—study 1 (corresponding to the two representative test
samples highlighted in Fig. 3—bottom)
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598 operator learning methods. Even though the constitutive modeling
599 approach can have the lower solution error if the predefined model
600 form exhibits good generalizability like the invariant-based or
601 structured-informed model, the neural operator approach is supe-
602 rior at capturing the heterogeneous features. On these challenging
603 extrapolative learning tasks, incorporating proper physics con-
604 straints seems to make the neural operator learning more versatile.

6054.3 Study 3: Out-of-Distribution Prediction on the Inter-
606mediate Deformation Regime. In this study, protocol sets 1, 6,
607and 7 were used in model training, while the rest of sets (protocols
6082–5) were for prediction validation. As such, the prediction sets
609are still with unseen tension ratios from the training sets, but the
610deformation range of the testing protocols is within the range of
611the training ones. In Fig. 7 (left), the relative displacement errors

Fig. 5 Error comparisons of different models—study 2: out-of-distribution prediction on the small deformation
regime. Left: relative errors for the displacement field prediction on the training and test datasets. We highlight the
model with the best prediction accuracy in bold. Right: samplewise error comparison on all test sets from the original
(unsmoothed) dataset.

Fig. 6 Visualization of IFNO and PG-IFNO performances on a test sample in (a) the original dataset and (b) the smoothed
dataset—study 2 (corresponds to the representative test sample defined in Fig. 5—right)

Fig. 7 Error comparisons of different models—study 3: out-of-distribution prediction on the intermediate deforma-
tion regime. Left: relative errors for the displacement field prediction on the training and test datasets. We highlight
the model with the best prediction accuracy in bold. Right: samplewise error comparison on all test sets from the orig-
inal (unsmoothed) dataset.
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612 are provided. We can see that the testing errors from the IFNOs
613 are still much larger than their respective training errors, due to
614 the out-of-distribution learning nature of this study. However, the
615 prediction error from the IFNOs outperforms all three constitutive
616 models by at least 1.15% and 0.67% on the original and smoothed
617 dataset, respectively. Therefore, as long as the dataset has suffi-
618 cient coverage of the deformation, neural operator learning meth-
619 ods can be a more effective approach than the traditional
620 constitutive models, even in the more challenging out-of-
621 distribution tasks. To provide further insights into this compari-
622 son, Fig. 7 (right) depicts the samplewise errors on the original
623 (unsmoothed) dataset. One can see that the prediction errors are
624 almost uniform among all protocol sets. In this study, the PG-
625 IFNO does not substantially improve the prediction accuracy
626 compared with the original IFNO, possibly because the physics
627 constraint stems from the zero loading case and is more helpful in
628 guiding the prediction in small deformation regimes.

629 4.4 Study 4: Out of Distribution Prediction on the Large
630 Deformation Regime. In the last comparative study scenario, the
631 experimental protocol for prediction was selected to be the one
632 with the largest maximum tension, with the aim to evaluate the
633 models’ extrapolative prediction abilities on the large deformation
634 regime. From Fig. 8, one can see that while the IFNO becomes
635 less effective on both datasets, the Fung-type model exhibits a bet-
636 ter fit to both the original and smoothed testing datasets. On the
637 other hand, the physics constraint does not help much in this
638 study. These results suggest that to ensure reliable predictions
639 from neural operator learning methods, with an insufficient cover-
640 age of deformation range in the training protocols, a judiciously
641 designed physics constraint for the data range becomes important.

642 5 Conclusion

643 In this work, we have applied the neural operator learning
644 method to modeling the mechanical responses of a biological tis-
645 sue specimen under different loading conditions. Specifically, a
646 data-driven computing workflow has been proposed, which learns
647 the material model directly from the DIC displacement tracking
648 measurements and integrates material identification, modeling
649 procedures, and material response prediction into one unified
650 learning framework. With the proposed neural operator learning,
651 the mechanical response of this tissue specimen can be modeled
652 as a data-driven solution operator from the boundary loading to
653 the resultant displacement field, and the learned model will be
654 applicable to unseen loading conditions. To verify its efficacy on
655 real-world soft tissue response learning tasks which feature spatial
656 heterogeneity, measurement noise, anisotropic and nonlinear
657 behaviors, we have used the proposed workflow to model a

658porcine heart TVAL specimen with the DIC measurement data
659collected from biaxial and constrained uniaxial tension tests. In
660the in-distribution validation case, our proposed neural operator
661learning method has been shown to significantly outperform the
662conventional constitutive modeling approach, with its predictions
663on out-of-distribution learning tasks being less effective. To
664improve the model generalizability on out-of-distribution tasks,
665we have further leveraged the neural operator learning method
666toward physically consistent predictions for tissue at rest and pro-
667posed a physics-guided neural operator learning approach.
668Numerical studies have demonstrated substantial improvements in
669terms of enhanced generalization performance in the small defor-
670mation regime. On the other hand, once the network is fully
671trained, the prediction of displacement field under a new and
672unseen loading only requires a forward pass in the neural operator
673model. When tested on a single CPU core, on average it only takes
6740.012 s for the neural operator to predict one sample of the dis-
675placement field, while the same task takes 0.537 s in the baseline
676finite element solver. Hence, these results suggest that with suffi-
677cient coverage of training sample distribution and/or properly
678designed physics constraints, the neural operator learning
679approach could offer an alternative approach that outperforms the
680conventional phenomenological model in complex and heteroge-
681neous material modeling tasks on both accuracy and efficiency.
682Despite the encouraging results presented herein, numerous
683questions and potentials require further investigation. For exam-
684ple, although the proposed no-permanent-deformation constraint
685seems effective in the small deformation regime, it has little
686impact on improving the prediction accuracy of the large defor-
687mation regimes. As a natural extension, we will consider the
688enforcement of other physics constraints, which would potentially
689further enhance the performance of the method’s extrapolative
690predictivity. Another natural future extension to be considered is
691the generalizability to other specimens with a different computa-
692tional domain and/or microstructure. We point out that in this
693work, the neural operator model is trained by assuming that the
694tissue has unchanged microstructure, geometry, and biomechani-
695cal properties, leading to the constantly learned network parame-
696ter h. To achieve the generalizability across different specimens,
697one possible approach is to consider varying h across different
698geometries and microstructures and adapt the model using
699transfer-learning techniques such as the metalearning methods
700proposed in Ref. [63]. Similarly, translating the currently trained
701model to whole organ simulations would be another interesting
702generalization problem. On the other hand, another important next
703step is to consider other boundary loading scenarios in our learn-
704ing framework, such as the traction loading problems as demon-
705strated in the synthetic dataset example in [22]. Moreover, in this
706study, we have considered the three homogeneous

Fig. 8 Error comparisons of different models—study 4: out-of-distribution prediction on the large deformation
regime. Left: relative errors for displacement field prediction on the training and test datasets. We highlight the model
with the best prediction accuracy in bold. Right: samplewise error comparison on all test sets from the original
(unsmoothed) dataset.
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707 phenomenological models: Fung-type, invariant-based, and
708 structure-informed models as the baseline constitutive modeling,
709 because of their popularity and proven efficacy in soft tissue mod-
710 eling [1,64,65]. However, we would also like to point out that by
711 considering other constitutive models, such as the Holzapfel
712 model [66], and/or incorporating the material microstructure into
713 the conventional model, one might further improve the accuracy
714 of the conventional constitutive model. Finally, another question
715 arises from the possibility of achieving improved performance by
716 optimizing the penalty parameter c in the physics-guided hybrid
717 loss function (2.5). It has been shown that an optimized penalty
718 parameter could further enhance the accuracy and trainability of
719 the constrained neural networks (see, e.g., Refs. [67–69]). Hence,
720 the performance of PG-IFNO might get further enhanced by
721 designing effective algorithms which select appropriate weights in
722 the hybrid loss function.
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