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A Physics-Guided Neural
Operator Learning Approach

to Model Biological Tissues
From Digital Image Correlation
Measurements

We present a data-driven workflow to biological tissue modeling, which aims to predict
the displacement field based on digital image correlation (DIC) measurements under
unseen loading scenarios, without postulating a specific constitutive model form nor pos-
sessing knowledge of the material microstructure. To this end, a material database is
constructed from the DIC displacement tracking measurements of multiple biaxial
stretching protocols on a porcine tricuspid valve anterior leaflet, with which we build a
neural operator learning model. The material response is modeled as a solution operator
from the loading to the resultant displacement field, with the material microstructure
properties learned implicitly from the data and naturally embedded in the network
parameters. Using various combinations of loading protocols, we compare the predictiv-
ity of this framework with finite element analysis based on three conventional constitutive
models. From in-distribution tests, the predictivity of our approach presents good gener-
alizability to different loading conditions and outperforms the conventional constitutive
modeling at approximately one order of magnitude. When tested on out-of-distribution
loading ratios, the neural operator learning approach becomes less effective. To improve
the generalizability of our framework, we propose a physics-guided neural operator
learning model via imposing partial physics knowledge. This method is shown to improve
the model’s extrapolative performance in the small-deformation regime. Our results dem-
onstrate that with sufficient data coverage andlor guidance from partial physics con-
straints, the data-driven approach can be a more effective method for modeling
biological materials than the traditional constitutive modeling.

[DOI: 10.1115/1.4055918]

Keywords: operator-regression neural networks, implicit Fourier neural operator

(IFNO), data-driven material modeling, heart valve leaflet

1 Introduction

For many decades, constitutive models based on continuum
mechanics have been commonly employed for modeling the
mechanical responses of soft biological tissues. In Ref. [1], the
seminal phenomenological constitutive models were developed
and later employed for the modeling of soft tissues, including the
iris [2], cardiac heart valves [3-5], arterial vessels [6], and the
skin [7]. In the constitutive modeling approaches, a strain energy
density function is predefined with a specific functional form.
Then, the material parameters are calibrated through an inverse
method or analytical stress—strain fitting. The descriptive power of
these models is often restricted to certain deformation modes/
strain ranges, which might lead to limited predictivity and gener-
alizability [8—10].

To circumvent such a limitation, data-driven computing has
been considered in recent years as an alternative for modeling the
mechanical response of biological tissues [9,11-13]. Unlike the
traditional material identification techniques in constitutive mod-
eling, data-driven approaches directly integrate material identifi-
cation with the modeling procedures, and hence do not require a
predefined constitutive model form. In Ref. [11], a fully convolu-
tional neural network was trained based on synthetic datasets, to

!Corresponding author.
Manuscript received March 31, 2022; final manuscript received October 4, 2022;
published online xx xx, xxxx. Assoc. Editor: Adrian Buganza Tepole.
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estimate a displacement field of material points in the simulated
liver organ. In Ref. [14], Minano et al. construct the constitutive
law for soft tissue damage by solving the system of linear equa-
tions consisting of coefficients of shape functions, rather than non-
linear fitting to a predefined model. In Ref. [9], a local convexity
data-driven computational framework was developed that couples
manifold learning with nonlinear elasticity, for modeling a repre-
sentative porcine mitral (heart) valve posterior leaflet’s
stress—strain data. This framework was further extended to an
auto-embedding data-driven approach [12] to infer the underlying
low-dimensional embedding representation of the material data-
base. In Ref. [13], a neural network was developed to learn the
mechanical behavior of porcine and murine skin from biaxial test-
ing data by inferring the relationship between the isochoric strain
invariants and the value of strain energy, as well as the strain
energy derivatives. Despite these advances, data-driven methods
on soft tissue modeling are mostly focusing on the identification
of stress—strain and/or energy—strain relationships for a homoge-
nized material model, and are thus not capable to capture the
effects of material spatial heterogeneity. For example, the lack of
considering the soft tissue heterogeneity could induce large errors
in the predictions of tissue displacements and stresses [15].
Alternatively, there has been significant progress in the devel-
opment of deep neural networks (NNs) for heterogeneous material
modeling [16-27]. Among these works, we focus on the neural
operator learning approach [22-27], which learns the maps
between the inputs of a dynamical system and its state, so that the
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Fig. 1
TVAL specimen subject to biaxial stretching (the DIC tracking grid is shown in green), (b) schematic of a specimen
subject to Dirichlet-type boundary conditions, as the corresponding numerical setting of (a), and (c) first
Piola—Kirchhoff stresses P;; versus P,, of seven biaxial tension and constrained uniaxial tension testing protocols,
with further details provided in Table 1

network serves as a surrogate for a solution operator. Compared
with the classical NNs, the most notable advantage of neural oper-
ators is their generalizability to different input instances, render-
ing a computing advantage on prediction efficiency—once the
neural operator is trained, solving for a new instance of the input
parameter only requires a forward pass of the network. In
Refs. [28-30], neural operators have been successfully applied to
modeling the unknown physics law of homogeneous materials. In
Refs. [25-27,31], neural operators were used as a solution surro-
gate for Darcy’s flow in a heterogeneous porous medium with a
known microstructure field. In our previous work [22], an implicit
neural operator architecture, namely, the implicit Fourier neural
operator (IFNO), was proposed to model heterogeneous material
responses without using any predefined constitutive models or
microstructure measurements. In particular, we have investigated
the applicability of learning a material model for a latex material
directly from digital image correlation (DIC) measurements and
show that the learned solution operators substantially outperform
the conventional constitutive models such as the generalized
Mooney—Rivlin model.

To the best of our knowledge, the neural operator learning
approaches have not been applied to soft tissue biomechanics.
Moreover, the effectiveness of neural operator learning methods
in extrapolation to small and large deformation regimes has yet to
be systematically examined. To achieve these goals, in this work
we propose to advance the current data-driven methods of soft tis-
sue modeling by extending the neural operator learning approach.
In particular, we employ the IFNO to learn the material model
from DIC measurements on a representative tricuspid valve ante-
rior leaflet (TVAL) specimen from a porcine heart and assess its
predictability on unseen and out-of-distribution loading scenarios.
To further improve the generalizability of the proposed frame-
work, we also infuse partial physics knowledge via a soft penalty
constraint to obtain a novel physics-guided neural operator learn-
ing framework. This method is shown to improve the extrapola-
tive performance of our model in the small deformation regime.

The remainder of this paper is organized as follows. In Sec. 2,
we introduce our data-driven computing paradigm based on the
neural operator learning method, which integrates material identi-
fication, modeling procedures, and material response prediction
into one unified learning framework. In particular, a stable deep
layer architecture, i.e., the IFNO, is introduced in Sec. 2.2 and
incorporated with partial physics knowledge in Sec. 2.3. In Sec. 3,
we introduce our experimental setting on a representative TVAL
specimen. Four study scenarios, considering different sets of
experimental data for model training and predictions, are used to
examine the in-distribution and out-of-distribution predictivity of
the proposed IFNO method. The effectiveness of the IFNO
approach is also compared with finite element simulation results
based on three constitutive models. Then, we illustrate the
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P 1 (kPa)

Problem setup for the proposed data-driven computations: (a) an image of the speckle-patterned porcine

prediction results of the IFNOs and physics-guided IFNOs, and
compared their results with the modeling results based on fitted
constitutive models in Sec. 4. Finally, we provide a summary of
our achieved goals and concluding remarks in Sec. 5.

2 An Integrated Learning Framework

In this section, we first formulate the proposed workflow of
data-driven material modeling using the operator learning frame-
work and then introduce the deep neural operator model—the
IFNO [22]. Next, we propose to further infuse partial physics
knowledge via a soft penalty constraint to guide the training and
prediction of the neural operators.

2.1 Neural Operator Learning Methods. The main objec-
tive of this work is to model the mechanical response of a repre-
sentative soft biological tissue directly from DIC-tracked
displacement measurements, without any predefined constitutive
model nor knowledge of the tissue microstructure. As depicted in
Fig. 1 and Table 1, let us consider a soft biological tissue speci-
men that is mounted to a biaxial testing system and deforms under
external loading. Denoting the region of interest on this specimen
as a 2D domain €, our aim is to identify the best surrogate opera-
tor, that can accurately predict the displacement field u(x), x € Q,
given new and unseen loading scenarios. In this work, we model
the tissue mechanical response as a quasi-static and hyperelastic
problem for simplicity, so the resultant displacement field can be
fully determined by a displacement-type loading applied on the
domain boundary 0. Thus, given the Dirichlet-type boundary
condition, up(x) for x € 9Q, our ultimate goal is to predict the
corresponding displacement field u(x), x € Q.

Mathematically, let K be the unknown differential operator
associated with the momentum balance equation which depends
on the unknown tissue microstructure and mechanical properties.
For a given boundary condition up(x), the momentum balance
equation and boundary conditions are

xeQ
x €0Q

Klu](x) =0,

2.1
— up(x), (Y]
Hence, our goal is to provide a surrogate solution operator for
Eq. (2.1) as a mapping between any arbitrary up and the corre-
sponding material response u. To this end, we propose to embrace
the descriptive power of NNs, and develop a data-driven neural
operator with its input being up(x) and its output being the dis-
placement field u(x ) for any x € Q. leen a collection of
observed function pairs {(up)(x), u,(x)} from DIC measure-
ments, where the input {(uD) hi=1, ..,N is a sequence of
boundary displacement loadmg and G [(uD) 1(x) = u;(x) is the
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Protocols of the mechanical testing on a representative TVAL specimen

Set ID Experiment protocol max(/;) max (/) max(Pi;) max(Po) # of samples
1 Biaxial tensions Pyy : Ppp =1:1 1.46 1.68 184.1kPa 165.1kPa 3921
2 Biaxial tensions P : P = 1:0.66 1.48 1.63 187.1kPa 127.8 kPa 3797
3 Biaxial tensions Py : Py, = 1:0.33 1.52 1.52 186.9kPa 74.1kPa 3539
4 Biaxial tensions Py : Py, = 0.66 : 1 1.42 1.72 145.9 kPa 188.2kPa 4013
5 Biaxial tensions Py; : P, =0.33: 1 1.32 1.79 77.9 kPa 189.8 kPa 4175
6 Constrained uniaxial in x, Pyy : P»; = 0.05: 1 1.56 1.0 197.9kPa 10.6 kPa 3539
7 Constrained uniaxial iny, Py; : Py = 1:0.1 1.0 1.89 17.2kPa 176.1kPa 3539

The resultant displacement fields, based on digital image correlation, were used in the data-driven computations (P;; and P,, denote the first
Piola—Kirchhoff stresses in the x- and y-directions, respectively, and 4;, A, are the stretches ratios in these two directions).

Input Lifting Iterative Fourier layers Projection Output
function layer layer function
— loop for L times ) .
{ = > £IENO| ——> Q> ua(x) )
o= - " Laata(0) Minimize
——Glup; ] —>

— loop for L times _—

Py > jL;FNOI_ —> Q& uy (x)

R ) 1 [fphysics (9)

g[0;6] = 0,

Fig. 2 The architecture of the proposed physics-guided IFNO PG-IFNO, which consists of two subnetworks for the
prediction of two displacement field components. Each subnetwork starts from the input [x, tp(x)], then (1) lifts to a
high dimensional feature space by the lifting layer P and obtains the first hidden layer representation h(x,0); (2)
applies L iterative layers; (3) projects the last hidden layer representation h(x, LAt) back to the target dimension
through a shallow network Q. The optimal network parameter 0" is obtained by minimizing the hybrid loss function
defined as the weighted sum of the data-driven loss, £4a1a, and the physics constraint loss, £pnysics-

corresponding (potentially noisy) displacement field. With neural
operator learning, we aim to build an approximation of G by con-
structing a nonlinear parametric map G[-; 6] in the form of a NN,
for some finite dimensional parameter space ®. Here, 0 € O is
the set of network architecture parameters to be inferred by solv-
ing the minimization problem

N
min > G{(up): 0)(x) — w(x) [ 2.2
Jj=1

In this context, we have formulated the soft tissue response mod-
eling problem as learning the solution operator G of an unknown
PDE system from the DIC data.

Thus, our goal is to provide a neural operator, i.e., an approxi-
mated solution operator G[; 0] : up — u, that delivers solutions of
Eq. (2.1) for any input up. Compared with the classical PDE solv-
ers and the NN approaches, this is a more challenging task for sev-
eral reasons. First, in contrast to the classical NN approaches
where the solution operator is parameterized between finite
dimensional Euclidean spaces [32-36], the neural operators are
built as mappings between infinite dimensional spaces [25,27,37].
Second, for every new instance of material microstructure and/or
loading scenario f, the neural operators require only a forward
pass of the network, which implies that the optimization problem
(2.2) only needs to be solved once and the resulting NN can be uti-
lized to solve for new and unseen loading scenarios. This property
is in contrast to the classical numerical PDE methods [38—40] and
some machine learning approaches [41-45], where the optimiza-
tion problem needs to be solved for every new instance of the
input parameter of a known governing law. Finally, of fundamen-
tal importance is the fact that the neural operators can find solu-
tion maps regardless of the presence of an underl}ging PDE and
only require the observed data pairs {((up);, u;)};_,. Therefore,
the neural operator learning approach is particularly promising
when the mechanical responses are provided by experimental
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measurements, such as the displacement tracking data from DIC
considered in this paper.

2.2 Implicit Fourier Neural Operators. To provide an effi-
cient, deep, and stable integral neural operator for the solution
operator learning problem discovered above, we employ the
IFNOs [22]. IFNOs stem from the idea of modeling the solution
operator as a fixed point equation that naturally mimics the solu-
tion procedure for the displacement/damage fields in materials
modeling. The increment between neural network hidden layers is
modeled as an integral operator, which is directly parameterized
in the Fourier space to facilitate the fast Fourier transformation
and accelerated learning techniques for deep networks. As shown
in Ref. [22], by learning the material responses directly from data,
the material microstructure and properties are learned implicitly
and embedded naturally in the network parameters, enabling the
prediction of the material displacement for unseen loading
conditions.

Figure 2 depicts the NN architecture employed in this work.
Two IFNOs are built to predict u,(x) and uy(x), the x and y com-
ponents of the displacement field, respectively. For each IFNO,
the input is a vector function f(x) on Q that contains information
from x and up (x). Here, we notice that the displacement boundary
loading up(x) is only defined on Q. To make it well-defined on
the whole domain, we employ the zero-padding strategy proposed
in Ref. [31], namely, defining f(x) := [x, @tp(x)] where

if x € 0Q

(2.3)
ifx € Q\9Q
Then, we lift the input f(-) to a representation (feature) h(-,0) of
dimension d, that corresponds to the first network layer. For the
consistency of notation, we label the first argument of h as
the space (the set of nodes) and the second argument as the time
(the set of layers) and define the first network layer as

MONTH 2022, Vol. 00 / 000000-3
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h(x,0) = Plf](x) := Pf(x) +p

where P € R** and p € R are trainable parameters.

Second, we denote the /th network representation by h(x, [At),
and formulate the NN architecture in an iterative manner:
h(-,0) — h(-,Ar) — h(-,2At) — --- — h(-,T), where h(-,jAt),
j=0,....,L:=T/At is a sequence of functions representing the
features at each hidden layer, taking values in RY. Here, [ =0 (or
equivalently, +=0) denotes the first hidden layer, whereas ¢ =
LAt =T corresponds to the last hidden layer. In particular, the
layer update rule in the IFNOs writes

h(x, (1 + 1)Ar) = L™O[h(x, IAr)]
= h(x,IAt) + Ata(Wh(x, [At)
+F F[R(v)] - Flh(-, 1A0)]](x) + ¢)

Here, F and F~! denote the Fourier transform and its inverse,
respectively. In practice, 7 and F~! are computed using the fast
Fourier transformation and its inverse to each component of & sep-
arately, with the highest modes truncated and keeping onlcy the
first k modes. Also, ¢ € RY defines a constant bias, W € R is
the weight matrix, and F[x(-;v)] := R € C”"* is a circulant
matrix that depends on the convolution kernel k. We further
define ¢ as the activation function, which is chosen to be the pop-
ular rectified linear unit (ReLU) function [46]. Here we note that
the definition of ¢ stems from the relationship established between
the network update and a time stepping scheme, which enables
the employment of the accelerated training strategy for the NN in
the deep layer limit.

Third, the output . (x) or uy(x) is obtained through a projection
layer. Taking the IFNO for the prediction of u,(x), for example,
we project the last hidden layer representation ki (-, T) as

ue(x) = Q[h(-,T)|(x) := Q20(Q1h(x,T) + q) + ¢,

Here, Q; € R%* 0, e R ¢, € R%, and ¢, € R are the
trainable parameters.

Denoting the parameters and the corresponding operators asso-
ciated with u, and u, with the subscripts x and y, respectively, the
vanilla version of our neural operator learning architecture with-
out physics constraints (which will be denoted as IFNO in the fol-
lowing context, with a slight abuse of notation) is written as:

Glup; 0)(x) == [Qy o (LFNO)E o P, [f](x)
Q, o (LN) o P [f](x)]

o (x), 1y (x)] = u(x)

Note that the trainable parameters are collected in 0 :=
{vapxy (Ql)xv (QZ)xv (ql),w (qZ),\-?cX? W‘caRnP}Wpy?

(Q1),:(02),:(41),:(42),. ¢y, Wy, R}, obtained in the vanilla
IFNO by minimizing the data-driven loss only

0" = argmin Ly, (0), where
0O

N 2.4)
Laaa(0) := Zug[(u,;),-; 0)(x) — u(x)||72(0

Further, as the layer becomes deep (Ar — 0), the iterative archi-
tecture of the IFNOs can be seen as an analog of discretized ordi-
nary differential equations (ODEs). This allows us to exploit the
shallow-to-deep learning technique [22,37,47,48]. Specifically,
using the optimal network parameters 0 obtained by training an
IFNO of depth L, we initialize the (deeper) L-layer network. As
such, the optimal parameters learned on shallow networks are
considered as (quasi-optimal) initial guesses for the deeper
networks—accelerating the training for deeper NNs.
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2.3 Physics-Guided Neural Operators. So far, the neural
operator model introduced above fully relies on the data, and
hence its predictions may not be consistent with the underlying
physical principles. For instance, with the quasi-static and hypere-
lastic assumption of our model, the specimen has no permanent
deformation. In other words, if there is no loading applied to the
tissue (i.e., the specimen is at rest), we should observe a zero dis-
placement field in the specimen. However, this is generally not
guaranteed in a fully data-driven neural operator model.

In this work, we aim to further leverage the neural operator
learning architecture by imposing the underlying physical laws
via soft penalty constraints during model training. In particular,
considering a specimen at rest, the no-permanent-deformation
assumption implies that zero loading should lead to zero displace-
ment, i.e., G [0] = 0. To enable the neural operator predictions to
be consistent with this physical constraint, we propose a physics-
guided neural operator model that minimizes the residual of the
above physical law together with the fitting loss from the data.
This is achieved by solving the following minimization problem
with a hybrid loss function:

0" = argmin Laaa(0) + 7 Lohysics (0)
0cO

(2.5)

where the data-driven loss Ly, is defined in Eq. (2.4), and the
physics constraint 10ss Lppysics is defined as
2

Lonysies (0) == [1910; 01(x)[ |20 (2.6)
Here, y > 0 is a penalty parameter to enforce the zero deformation
state for material subject to zero loading. Thus, the physics-
guided neural operator is anticipated to improve the prediction
performance in the small deformation regime. In the following,

we will denote this model as the physics-guided IFNO, or the PG-
IFNO, in short.

3 Application to Tissue Biomechanics of the Heart
Valve Leaflet

We now consider the problem of learning the material response
of a TVAL specimen from displacement measurements based on
DIC tracking. In this problem, the constitutive equations and
material microstructure are both unknown, and the dataset has
unavoidable measurement noise. To demonstrate the efficacy of
the proposed IFNOs in conjunction with the physics-based enrich-
ment, we further compared our method against three conventional
approaches that use constitutive modeling with parameter fittings.
The gode and dataset have been publicly released at the following
link.

3.1 Tissue Preparation and Mechanical Testing. In this
section, we first introduce the experimental specimen and data
acquisition procedure. In brief, we followed our previously estab-
lished biaxial testing procedure, including acquisition of a healthy
porcine heart and retrieval of the TVAL [49,50]. We then sec-
tioned the leaflet tissue into a square specimen and measured the
thickness using an optical measuring system (Keyence, Itasca,
IL). Afterward, we applied a speckling pattern to the tissue sur-
face using an airbrush and black paint [51-53]. The painted speci-
men was then mounted to a biaxial testing device (Bio-Tester,
CellScale, Waterloo, ON, Canada) with an effective testing area
of 9 x 9 mm for the following tissue characterizations (Fig. 1(a)).

First, we performed a preconditioning protocol in which the
specimen was subjected to ten cycles of biaxial loading and
unloading that targeted a first Piola—Kirchhoff stress of 150 kPa to
emulate the valve’s in vivo functioning conditions [54]. Then, we
performed seven protocols of displacement-controlled testing to

2https://github.com/fishmoon1234/IFNO-tissue
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target various biaxial stresses: Pij: Py = 1:1, 1:0.66, 1:0.33,
0.66:1, 0.33:1, 0.05:1, 1:0.1, with the last two protocols for con-
strained uniaxial stretching in x and y (Fig. 1(c) and Table 1).
Here, P, and P, denote the first Piola—Kirchhoff stresses in the
x- and y-directions, respectively. Each stress ratio was performed
for three loading/unloading cycles. Throughout the test, images of
the specimen were captured by a CCD camera, and the load cell
readings and actuator displacements were recorded at 5 Hz. Due
to the use of displacement-controlled testing, we observed mild
deviations from the target stresses (see Table 1).

After testing, the acquired images were analyzed using the DIC
module of the Bio-Tester’s software. A 5.5 X 5.5 mm domain in
the central region of the TVAL specimen was selected since the
speckling pattern was more uniform and could yield more reliable
node tracking (see Figs. 1(a) and 1(b)). The pixel coordinate loca-
tions of the DIC-tracked grid were then exported for use in the
subsequent study scenarios. Based on the tracked coordinates, we
constructed two numerical testing datasets: (i) an original dataset
obtained directly from the experimental measurements, and (ii) a
smoothed dataset where moving least-squares (MLS) smoothing
was performed for the nodal displacements.

To generate the displacement fields u®€"!(x) for the original
samples, we subtracted each material point location with its initial
location on the first sample of each protocol, and the boundary
displacement was obtained by enforcing u°¢" (x) on the bound-
ary nodes. Next, to construct the smoothed samples for the i
material point, x; = (x;, y;), we employed a two-dimensional MLS
shape function ‘¥; to reconstruct the smoothed displacement field:
w5 (x y) = SO Wiy, ) u®E (x, ), based on  the
unsmoothed displacement vector of the NP points in the neighbor-
hood of x;. For further details regarding the MLS shape function
and the smoothing procedure, we refer interested readers to
Refs. [22], [55], and [56]. Both the smoothed and the original

datasets have 26,523 total time instants (samples), denoted
as Dbmomh _ {( )smonlh smooth 22 ,523 and Dong[ndl {( )ongmdl

I ] 1
Or'g‘"al}2f 15 = respectlvely Fmalfy, to create a structured grld for

the proposed IFNOs, we further applied a cubic spline interpola-
tion to the displacement field on a structured 21 x 21 node grid.

3.2 Baseline: Constitutive Modeling. As the baseline
method for comparisons with the proposed neural operator learn-
ing methods, we considered a constitutive modeling approach
using parameter fitting to the experimental stress—stretch data. In
particular, for comparisons with the IFNO approach, we employed
three models for the planar stress—strain behavior of the tissue: (i)
a Fung-type model, (ii) an invariant-based model, and (iii) a
structure-informed model. The Fung-type model was considered
with the strain energy density function given by

V=5 [exp(a1 B} + @k, + 2a:EnEx) — 1]

where ¢, ay, a», and a5 are the model parameters to be determined,
and E;, E,, are the principle Green—Lagrange strains in the x-
and y-directions, respectively.

The invariant-based model was chosen as the Lee—Sacks form
[8,57,58], with the strain energy density function defined as

Y=—0-3)+

> o 5 [WCXP<C2(11 -3) >

+(1 - w)exp<C3(l4 — 1)2) — 1]

Herein, ¢; (i =0,1,2,3) and w are the model parameters to be

determined, w € [0, 1] denotes the material anisotropy, and I, =

tr(C) and I, = m - Cm are the invariant and pseudo-invariant of

the right Cauchy—Green deformation C = F'F, respectively. In

this study, we consider the direction of the collagen fibers in the

reference conﬁgurauon to be in the circumferential direction (i.e.,
=[1,0, 0} ).
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Finally, for the structure-informed model, we use a simplified
ensemble fiber stress—strain relationship, along with a neo-
Hookean nonfibrous ground matrix [9,10,59,60], with the strain
energy density function

lp lpm_‘_lﬁens: (11_3)+P(1—1)

/2
N
—n/2
where 1, is the neo-Hookean stiffness and p is the penalty term to

enforce tissue incompressibility J = det(F) = 1 that can be ana-
Iytically determined by further applying the plane-stress condition
[59], E; =NT(0)EN(0) is the fiber strain along N(0) =
[cos(6), sin(0),0]", E = (C —1)/2 is the Green—Lagrange strain,
and I is the identity tensor. For the fiber stress—strain behavior, we
used an exponential model with a terminal stiffness for numerical

T(0)y, [Ec(0)] a0

stability
colexp(ci1Er) — 1], for Ef < Ey
o)
Sf ({)Zf Co[ p(CIEub) l}
+ coCq exp(clEub)( f— Eub)7 for Ef > Eub

where ¢y and c; are the material parameters and E;, is threshold
fiber strain for the transition to a linear fiber tangent modulus.
Finally, we used a Gaussian distribution function, with zero mean
and fiber dispersion of g, for I'y. Thus, for the structure-informed
model there are four parameters to be determined from optimiza-
tion: p,, co, 1, and g, whereas E;, is precalculated as the strain
corresponding to a predetermined stress threshold value of
10 MPa for a given pair of ¢y and ¢;.

In this work, constitutive model parameters were obtained by
nonlinear least-squares fitting to the biaxial stress—stretch data for
the training samples. In brief, the first Piola—Kirchhoff stresses in
the x- and y-directions were determined using the specimen thick-
ness L., the undeformed edge lengths L, and L,, and the measured
forces F, and F,: Py =F/L,L. and P» = F,/L.L.. The two
stretches were calculated as the ratio of the deformed to the unde-
formed edge lengths. To obtain the optimal parameters for the dif-
ferent model, differential evolution optimization was employed
that minimizes the residual mean squared errors in the stress
between the experimental data and model prediction [61]. Finally,
using the determined model parameters, finite element simulation
was performed in Abaqus [62] with the DIC-tracked nodal dis-
placements prescribed as boundary displacement conditions. The
relative errors of displacement fields were then evaluated by com-
paring the finite element solution and the DIC-based measure-
ments. In the following, we will refer to these baseline approaches
as the “Fung model” method, the “invariant-based” method, and
the “structure-informed” method.

3.3 Numerical Study Scenarios. Based on the seven
mechanical testing protocols listed in Table 1, four study scenar-
ios are considered to evaluate the interpolative and extrapolative
performances of the proposed neural operator learning methods.
In each study scenario, a subset of the samples was selected to
form the training set and to obtain the optimal neural operator by
solving (2.2) and (2.6). Then, the displacement field predictions
were made for the remaining samples and the results were com-
pared with the ground-truth displacement fields from the DIC
measurements, to evaluate the predictivity and generalizability of
our proposed methods. Due to the relatively large number of sam-
ples, in constitutive modeling approach, it is generally intractable
to perform finite element analysis for all 26,523 samples. To
reduce the computational cost, although we train both models on
samples from all cycles, we only evaluate the training and testing
errors for samples in the first loading/unloading cycle of each pro-
tocol for the three constitutive modeling approaches. Then, we
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considered the averaged relative error of displacement,
| #pred; — jllr2(0)/115]]12(q) as the error metric, so as to provide a
fair comparison between the constitutive modeling and our neural
operator learning approaches. Here, u; denotes the jth sample
from the DIC measurement, and upq; is the prediction from
either the neural operator or the corresponding baseline constitu-
tive model for this sample.

3.3.1 Study I. We mixed all samples from all seven protocols,
randomly selected 83% of samples for training, and used the
remaining for validation (10% of samples) and testing (7% of
samples). In this scenario, we ensured that the boundary condi-
tions of the samples in the testing set are inside the training
region. Therefore, with this study, we aimed to investigate the in-
distribution predictivity of the proposed method. With this study,
we not only investigate the performance of the proposed approach
in in-distribution learning tasks but also study the required amount
of training data by demonstrating the errors when using different
numbers of (randomly) selected training samples.

3.3.2  Study 2. For this study, we employed protocols 1, 2, and
4 for training and protocols 3, 5, 6, and 7 for testing. In this study
and the two studies below, the samples from the second loading/
unloading cycle of testing protocols are employed as the valida-
tion dataset for the purpose of hyperparameter tuning, while the
first cycle is reserved as the test dataset. We notice that the testing
protocols are not covered in any of training sets, and they have
smaller maximum tensions compared with the training sets.
Hence, with this study, we aimed to investigate the performance
of the proposed IFNO methods for predicting the out-of-distribu-
tion material responses in the small deformation regime.

3.3.3 Study 3. We used protocols 1, 6, and 7 for training and
protocols 2-5 for testing. The protocols considered in testing were
not covered in any of the training protocols, although the deforma-
tion range of the testing protocols may fall inside the range of the
training ones. Hence, we attempted to illustrate the out-of-distri-
bution prediction on the intermediate deformation regime.

3.34 Study 4. We used protocols 27 for training, and proto-
col 1 for prediction. We notice that the equibiaxial tension proto-
col (Py;: Py =I1:1) is not covered in any of other sets, and
protocol 1 exhibits the largest maximum tensions among all the
sets. Hence, with this study, we aimed to investigate the out-of-
distribution predictivity in the large deformation regime of the
proposed method.

4 Results and Discussions

In this section, we illustrate the performance of the proposed
neural operator learning approaches. All our numerical experi-
ments were performed on a machine with a 2.8 GHz 8-core CPU
and a single Nvidia RTX 3060 GPU, using a Pytorch implementa-
tion modified from the package provided in Ref. [27]. The optimi-
zation was performed with the Adam optimizer. For all IFNOs,
we set the dimension of & as d =16 and the number of truncated
Fourier modes as k = 8 x 8, with L =12 hidden layers. The net-
work was trained with the shallow-to-deep training procedure: we
initialized the L— layer network parameters from the (L/2)—
layer IFNOs model. For each depth L, we trained the network for
1000 epochs with a learning rate of 3 x 1073, then decreased the
learning rate with a ratio of 0.5 every 100 epochs. For all PG-
IFNOs we took the penalty parameter y = 1.0, although we noted
that this parameter can be further hand-tuned or optimized to
potentially achieve a better performance.

4.1 Study 1: In-Distribution Prediction. To verify the mod-
el’s predictivity for in-distribution learning tasks, in this study we
randomly selected 83% of the samples of all protocols to form the
training set and then built the vanilla IFNO model and the three
baseline constitutive models based on this common training set.
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Figure 3 (top) shows the relative displacement errors when using
different amounts of training samples, and the samplewise errors
for each model are provided in Fig. 3 (bottom). When comparing
the results between the original dataset and the smoothed dataset,
one can observe that their samplewise errors present a similar
trend, while the smoothing procedure slightly improves the pre-
diction accuracy for both the IFNO and three baseline models.
Probably unsurprisingly, from the left of Fig. 3 (top), one can see
that the accuracy of the IFNO improves when using more training
samples. In particular, the test error decreases with a convergence
rate of around O(N~03*), when the training dataset size, N,
increases. With only 45 samples, the IFNO achieves a comparable
accuracy as the three constitutive models trained on all 22,000
samples. When using all 22,000 measurements in both models,
the IFNO outperforms the conventional constitutive modeling
approaches by around one order of magnitude, on both the origi-
nal and smoothed datasets. To provide further insights into this
comparison, in Fig. 4 we visualized both the x- and y-
displacement solutions and the prediction errors obtained with the
IFNO and the structure-informed model (the best baseline model)
on two test samples, which correspond to the large deformation
(sample #2) and small deformation (sample #1) representatives,
respectively. The structure-informed model, which considered the
homogenized stress—strain at one material point (i.e., the center of
the specimen) due to limited information about the spatial varia-
tion in the stress measurement, failed to capture material heteroge-
neity and hence exhibited large prediction errors in the interior
region of the TVAL specimen domain. This observation confirms
the importance of capturing the material heterogeneity and veri-
fies the capability of the IFNOs in heterogeneous material
modeling.

4.2 Study 2: Out-of-Distribution Prediction on the Small
Deformation Regime. In this study, three protocols with the larg-
est tensions (i.e., sets 1, 2, and 4) were used for training, and the

other four protocols were used for prediction validation (sets 3, 5, 55
6, and 7 as listed in Table 1). Since the prediction sets are with a 55

different biaxial loading ratio that is unseen from the training sam-

ples, this is an extrapolative learning task in the small deformation 5:

region. Figure 5 (left) provides the relative displacement errors
from all models. One can see that compared with the interpolative
prediction task in study 1, the extrapolative predictions are less
effective for the neural operator. It was, in particular, noted that
for the vanilla IFNO model while the training error was at a rela-
tively low error (i.e., the model still possessed good expressivity
in sets 1, 2, and 4), the testing error deteriorates by ten times and
reached a similar level to the Fung-type model but slightly higher
than invariant-based and structure-informed models. Perhaps
unsurprisingly, this observation again verifies the sensitivity of
machine learning models in extrapolative tasks (see, e.g., Ref.
[9]). As shown in Fig. 5 (right), we demonstrate the samplewise
errors from the original dataset for each model, and we noticed
that the results on the smoothed dataset exhibit a similar trend.
One can observe that for the three baseline models, the level of
prediction errors is relatively similar for all four testing sets, while
large errors are observed in sets 6 and 7 (the sets with the smallest
maximum tensions) for the vanilla IFNO model. Those sets are
the furthest away from the training set and hence their sample dis-
tributions are substantially different from those in the training
sets.

In this study, we also investigated the performance of the pro-
posed PG-IFNOs. By infusing the no-permanent-deformation con-
straint, an improvement of the testing error was observed on both
original and smoothed dataset. From the samplewise errors, we
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can tell that the invariant-based and structure informed models 585

outperform PG-IFNO mostly on sets 6 and 7—which are the pro-
tocols on the small deformation regime. As we mentioned before,
those sets are differ greatly from the training set, it’s expected that
neural operator would be less accurate. On the set where
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Fig. 3 Error comparisons of different models—study 1: in-distribution prediction with training set on 83% of ran-
domly selected samples. Top: relative errors for the displacement field prediction on the training and test datasets.
Left: errors when using different amounts of (original) training samples in the IFNO model. Right: results of the IFNO
using 45 training samples and all training samples, and their comparison with three baseline models using all training
samples. We highlight the model with the best prediction accuracy in bold. Bottom: samplewise error comparison on
all biaxial testing protocol sets. Results from the original dataset are on left and results from the smoothed dataset are

on right.

deformation is closer to the training set, i.e., set 3 and set 5, the
PG-IFNO model shows a similar or even better performance than
the baseline models. This fact is verified by the solutions and pre-
diction errors on a representative sample in set 5, as depicted in

(a) Original Dataset

Ground-truth Vanilla IFNO Structure-informed
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Fig. 6. Compared with structure-informed method, the PG-IFNO 594
model has a lower solution error and captures the material hetero- 595
geneity. Hence, these results suggest that sufficient coverage of 596
sample distribution in the training protocol is critical for neural 597

(b) Smoothed Dataset
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Fig. 4 Visualization of the most accurate baseline constitutive model fitting and IFNO performances on two representative
test samples in (a) the original dataset and (b) the smoothed dataset—study 1 (corresponding to the two representative test

samples highlighted in Fig. 3—bottom)
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Fig. 5 Error comparisons of different models—study 2: out-of-distribution prediction on the small deformation
regime. Left: relative errors for the displacement field prediction on the training and test datasets. We highlight the
model with the best prediction accuracy in bold. Right: samplewise error comparison on all test sets from the original

(unsmoothed) dataset.
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Fig. 6 Visualization of IFNO and PG-IFNO performances on a test sample in (a) the original dataset and (b) the smoothed
dataset—study 2 (corresponds to the representative test sample defined in Fig. 5—right)
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out-of-distribution prediction on the intermediate deforma-

tion regime. Left: relative errors for the displacement field prediction on the training and test datasets. We highlight
the model with the best prediction accuracy in bold. Right: samplewise error comparison on all test sets from the orig-

inal (unsmoothed) dataset.

operator learning methods. Even though the constitutive modeling
approach can have the lower solution error if the predefined model
form exhibits good generalizability like the invariant-based or
structured-informed model, the neural operator approach is supe-
rior at capturing the heterogeneous features. On these challenging
extrapolative learning tasks, incorporating proper physics con-
straints seems to make the neural operator learning more versatile.
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4.3 Study 3: Out-of-Distribution Prediction on the Inter-
mediate Deformation Regime. In this study, protocol sets 1, 6,
and 7 were used in model training, while the rest of sets (protocols
2-5) were for prediction validation. As such, the prediction sets
are still with unseen tension ratios from the training sets, but the
deformation range of the testing protocols is within the range of
the training ones. In Fig. 7 (left), the relative displacement errors
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Fig. 8 Error comparisons of different models—study 4: out-of-distribution prediction on the /arge deformation
regime. Left: relative errors for displacement field prediction on the training and test datasets. We highlight the model
with the best prediction accuracy in bold. Right: samplewise error comparison on all test sets from the original

(unsmoothed) dataset.

are provided. We can see that the testing errors from the IFNOs
are still much larger than their respective training errors, due to
the out-of-distribution learning nature of this study. However, the
prediction error from the IFNOs outperforms all three constitutive
models by at least 1.15% and 0.67% on the original and smoothed
dataset, respectively. Therefore, as long as the dataset has suffi-
cient coverage of the deformation, neural operator learning meth-
ods can be a more effective approach than the traditional
constitutive models, even in the more challenging out-of-
distribution tasks. To provide further insights into this compari-
son, Fig. 7 (right) depicts the samplewise errors on the original
(unsmoothed) dataset. One can see that the prediction errors are
almost uniform among all protocol sets. In this study, the PG-
IFNO does not substantially improve the prediction accuracy
compared with the original IFNO, possibly because the physics
constraint stems from the zero loading case and is more helpful in
guiding the prediction in small deformation regimes.

4.4 Study 4: Out of Distribution Prediction on the Large
Deformation Regime. In the last comparative study scenario, the
experimental protocol for prediction was selected to be the one
with the largest maximum tension, with the aim to evaluate the
models’ extrapolative prediction abilities on the large deformation
regime. From Fig. 8, one can see that while the IFNO becomes
less effective on both datasets, the Fung-type model exhibits a bet-
ter fit to both the original and smoothed testing datasets. On the
other hand, the physics constraint does not help much in this
study. These results suggest that to ensure reliable predictions
from neural operator learning methods, with an insufficient cover-
age of deformation range in the training protocols, a judiciously
designed physics constraint for the data range becomes important.

5 Conclusion

In this work, we have applied the neural operator learning
method to modeling the mechanical responses of a biological tis-
sue specimen under different loading conditions. Specifically, a
data-driven computing workflow has been proposed, which learns
the material model directly from the DIC displacement tracking
measurements and integrates material identification, modeling
procedures, and material response prediction into one unified
learning framework. With the proposed neural operator learning,
the mechanical response of this tissue specimen can be modeled
as a data-driven solution operator from the boundary loading to
the resultant displacement field, and the learned model will be
applicable to unseen loading conditions. To verify its efficacy on
real-world soft tissue response learning tasks which feature spatial
heterogeneity, measurement noise, anisotropic and nonlinear
behaviors, we have used the proposed workflow to model a
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porcine heart TVAL specimen with the DIC measurement data
collected from biaxial and constrained uniaxial tension tests. In
the in-distribution validation case, our proposed neural operator
learning method has been shown to significantly outperform the
conventional constitutive modeling approach, with its predictions
on out-of-distribution learning tasks being less effective. To
improve the model generalizability on out-of-distribution tasks,
we have further leveraged the neural operator learning method
toward physically consistent predictions for tissue at rest and pro-
posed a physics-guided neural operator learning approach.
Numerical studies have demonstrated substantial improvements in
terms of enhanced generalization performance in the small defor-
mation regime. On the other hand, once the network is fully
trained, the prediction of displacement field under a new and
unseen loading only requires a forward pass in the neural operator
model. When tested on a single CPU core, on average it only takes
0.012 s for the neural operator to predict one sample of the dis-
placement field, while the same task takes 0.537 s in the baseline
finite element solver. Hence, these results suggest that with suffi-
cient coverage of training sample distribution and/or properly
designed physics constraints, the neural operator learning
approach could offer an alternative approach that outperforms the
conventional phenomenological model in complex and heteroge-
neous material modeling tasks on both accuracy and efficiency.
Despite the encouraging results presented herein, numerous
questions and potentials require further investigation. For exam-
ple, although the proposed no-permanent-deformation constraint
seems effective in the small deformation regime, it has little
impact on improving the prediction accuracy of the large defor-
mation regimes. As a natural extension, we will consider the
enforcement of other physics constraints, which would potentially
further enhance the performance of the method’s extrapolative
predictivity. Another natural future extension to be considered is
the generalizability to other specimens with a different computa-
tional domain and/or microstructure. We point out that in this
work, the neural operator model is trained by assuming that the
tissue has unchanged microstructure, geometry, and biomechani-
cal properties, leading to the constantly learned network parame-
ter 0. To achieve the generalizability across different specimens,
one possible approach is to consider varying 0 across different
geometries and microstructures and adapt the model using
transfer-learning techniques such as the metalearning methods
proposed in Ref. [63]. Similarly, translating the currently trained
model to whole organ simulations would be another interesting
generalization problem. On the other hand, another important next
step is to consider other boundary loading scenarios in our learn-
ing framework, such as the traction loading problems as demon-
strated in the synthetic dataset example in [22]. Moreover, in this
study, we have considered the three homogeneous
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phenomenological models: Fung-type, invariant-based, and
structure-informed models as the baseline constitutive modeling,
because of their popularity and proven efficacy in soft tissue mod-
eling [1,64,65]. However, we would also like to point out that by
considering other constitutive models, such as the Holzapfel
model [66], and/or incorporating the material microstructure into
the conventional model, one might further improve the accuracy
of the conventional constitutive model. Finally, another question
arises from the possibility of achieving improved performance by
optimizing the penalty parameter 7 in the physics-guided hybrid
loss function (2.5). It has been shown that an optimized penalty
parameter could further enhance the accuracy and trainability of
the constrained neural networks (see, e.g., Refs. [67-69]). Hence,
the performance of PG-IFNO might get further enhanced by
designing effective algorithms which select appropriate weights in
the hybrid loss function.
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