2022 IEEE International Symposium on Workload Characterization (IISWC) | 978-1-6654-8798-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/IISWC55918.2022.00013

2022 IEEE International Symposium on Workload Characterization (IISWC)

UVM Discard: Eliminating Redundant Memory Transfers for
Accelerators

Guilherme Cox?
Alan L. Cox!

Weixi Zhu!

Jan Vesely?

Mark Hairgrove?

Scott Rixner!

1 {wxzhu, alc, rixnerj@rice.edu, Rice University
2 [gcox, jvesely, mhairgrovej@nvidia.com, NVIDIA

Abstract

An increasing number of applications benefit from het-
erogeneous hardware accelerators. Such accelerators often
require the application to manually manage memory buffers
on devices and transfer data between host and device buffers.
A programming model that unifies the virtual address space
across the host and devices is appealing because it enables
automatic memory transfers and simplifies application-level
programming. However, the automatic memory transfers
can sometimes be redundant, which decreases performance.
NVIDIA’s UVM (unified virtual memory) driver provides a
unified virtual address space for CPU-GPU programming.
This paper identifies redundant memory transfers (RMTs)
as a common performance issue with UVM. To address
this issue, this paper proposes a data discard directive, and
evaluates two implementations of that directive, UvmDiscard
and UvmDiscardLazy. This directive exploits application-level
knowledge to avoid RMTs. The implementations were inte-
grated with NVIDIA’s open-source UVM driver to demonstrate
their usefulness on real-world CUDA UVM applications. For
example, the use of the discard directive increases training
throughput by 61.2% on a large deep learning application
that oversubscribes GPU memory.

1. Introduction

Heterogeneous computation with specialized accelera-
tors — including GPUs, TPUs and FPGAs - is becoming
ubiquitous in recent HPC platforms. For example, seven of
the recent TOP10 supercomputers use NVIDIA’s discrete
general-purpose graphics processing units (GPGPUs) [8].
These GPUs provide massive thread-level parallelism and
offer much higher memory bandwidth compared with
CPUs. Furthermore, they have specialized hardware units to
accelerate critical computing operations to further benefit
scientific computation, machine learning and other domain-
specific applications [9].

Unfortunately, accelerators still suffer from poor pro-
grammability which potentially undermines the efficient uti-
lization of these petascale systems. While parallel program-
ming frameworks including CUDA, OpenCL and OpenMP
have simplified the writing of accelerator code, one of

Weixi completed this work as an intern at NVIDIA mentored by Guilherme
Cox.

the biggest programming challenges remains - applications
must carefully manage data placement between accelerators
and the host in a correct and efficient manner. Accelerator
memory capacities are much smaller than the host memory
capacity, and are often smaller than the datasets upon which
they are capable of operating. This requires applications to
first allocate memory buffers on the accelerator and transfer
data to those buffers before initiating a computation kernel.
Once the computation is complete, the application must
then coordinate the transfer of the results back to the
host memory and potentially deallocate memory buffers.
Furthermore, pointers cannot be transferred back and forth
between the host and accelerator as such pointers will
only be valid on the host or accelerator, but not both.
Parallel programming frameworks provide various degrees
of support for these operations, but generally the application
must be aware of them all.

Such application-level manual memory management is
difficult and error-prone. The host buffers and device buffers
need to be simultaneously managed in both places, and the
memory transfers must be manually orchestrated along with
heterogeneous computations. Furthermore, such memory
management is even more complex when the application
must work across a family of accelerators (i.e., different
GPU versions) that have differing memory capacities. The
application then must manually manage the buffer sizes
given the capacity of the specific accelerator installed in
the system. In practice, many applications simply target a
specific memory size. They require that size as a minimum
and are unable to effectively use excess memory on larger
devices. More sophisticated applications employ much more
complex memory management strategies in which device
buffers are manually migrated back and forth so as to enable
the application to work with limited memory resources on
the accelerator.

The use of a shared virtual address space can help
alleviate some of these issues by enabling the system to
automatically migrate memory when necessary. NVIDIA
has implemented one such shared virtual address space
system, called unified virtual memory (UVM) [5]. In UVM,
the address space is shared across the host and devices, even
when the devices are connected with a non-cache-coherent
interconnect. This means that pointers are valid everywhere
and the system can orchestrate data transfers between the
host and devices without application intervention. The UVM

978-1-6654-8798-6/22/$31.00 ©2022 IEEE 27
DOI 10.1109/IISWC55918.2022.00013
Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 07:41:49 UTC from IEEE Xplore. Restrictions apply.

programming model frees the application and framework
from specifically managing buffers on the GPU, greatly
simplifying programming and enabling applications to
readily take advantage of differing memory capacities across
devices.

NVIDIA’s UVM system by default tries to cache hot data
in the GPU DRAM and uses CPU DRAM as swap space. This
strategy is typically beneficial because most applications
exhibit data locality. Memory accesses to remote data
trigger host/device page faults which initiate memory trans-
fers. With cache-coherent interconnects, the UVM system
may switch to using remote memory accesses to benefit
rare cases with poor data locality. While the fault-driven
transfers lead to large latency spikes, the remote-access
mode cannot trigger desirable data transfers. Consequently,
the UVM programming model offers an explicit prefetch
command. Explicitly prefetching data in an effective manner
does add some complexity to the programming model.
However, these prefetches are a performance optimization
and are not required for correctness.

The UVM system allows applications to operate on
datasets that exceed the GPU memory capacity without any
extra application-specific code. This greatly simplifies the
programming effort. Without UVM, more than 2,000 extra
lines of application-specific code are required to support
large training sizes in deep learning [11, 12]. However, using
the UVM system comes at a price. That price, which this
paper is the first to identify, is a ubiquitous performance
issue introduced by UVM on applications that cannot fit in
a GPU’s memory — redundant memory transfers (RMTs).
RMTs are automatic memory transfers orchestrated by the
UVM system that are not needed for correctness. They arise
due to a semantic gap between the UVM system and the
user program. For example, when a buffer is transferred
but then overwritten before being read, that transfer was
redundant.

In addition, this paper makes the following contributions.
First, it characterizes the RMTs that arise in real-world GPU
applications. Second, it proposes a novel memory discard
directive that bridges the semantic gap. Specifically, this
directive allows the user to inform the UVM system that the
data contained within a specified memory region will no
longer be used, so the data does not need to be transferred
for correctness. Third, this paper evaluates two implementa-
tions of the discard directive within NVIDIA’s open-source
UVM driver, UvmDiscard and UvmDiscardLazy. UvmDiscard
caters to ease of use by the application programmer, but this
comes at the cost of higher run-time overhead due to current
GPU hardware limitations. In contrast, UvmDiscardLazy
overcomes these hardware limitations, but compromises
programmability. UvmDiscardLazy demonstrates the poten-
tial benefits of enhancing the GPU hardware, which would
allow the ease of use of UvmDiscard with the performance
of UvmDiscardLazy.

For a GPU database application with a data size twice
the GPU memory, UvmDiscard enables a 4.17 times speedup
by eliminating 85.8% of memory transfers. Similarly, with
the addition of only tens of lines of application code,

28

malloc (...); // Allocate host buffers h A, h B, h C
cudaMalloc (...); // Allocate device buffers d A, d B, d_C
Generate input data for h_A, h B

cudaMemcpyAsync (...); // Copy input to d_A, d_B

Launch GPU code: vectorAdd(d_A,d_B,d C)

cudaMemcpyAsync (...); // Copy output to h_C
cudaDeviceSynchronize () ;

print (h_C);

Listing 1: CUDA VectorAdd example

cudaMallocManaged (..) ; // Allocate UVM buffers A, B, C

Generate input data for A, B

cudaMemPrefetchAsync (..); // Prefetch A,B and prefault C
on GPU (optional)

Launch GPU code: vectorAdd(A,B,C)

cudaMemPrefetchAsync (..); // Prefetch C to CPU (optional)

cudaDeviceSynchronize () ;

print(C);

Listing 2: UVM VectorAdd example

UvmDiscard can eliminate up to 60.9% of memory transfers
by a compute-intensive recurrent neural network leading
to 22.8% higher training throughput, and also decrease
memory transfers by 60.6% on a memory-intensive convo-
lutional neural network resulting in 61.2% higher training
throughput.

2. Background

2.1. NVIDIA’s UVM programming model

Listing 1 shows a CUDA example that calculates the sum
of two vectors. In this example, manual buffer management
is required for separate device and host buffers. In addition,
explicit data marshaling and copying must be performed
and coordinated with host and device computation.

NVIDIA’s UVM simplifies the CUDA programming
model by providing a unified virtual address space between
the host and device. As shown by Listing 2, the program
is no longer required to manage separate device buffers or
insert explicit memory transfer commands. The pointers to
the UVM buffers are valid for both host code and device
code, and memory transfers are orchestrated automatically
driven by page faults.

UVM allows the user to optionally issue prefetch oper-
ations, so that data transfers can be better overlapped with
computation. The prefetch command “pre-faults” the virtual
memory region. If the UVM buffer has never been touched,
then the buffer will be mapped to zero-filled physical
memory on the destination processor. If, however, the buffer
was previously mapped and used, then it will be migrated
to the destination processor. Therefore, future accesses from
the destination processor become local accesses and will
not trigger page faults. This makes prefetching desirable
for GPU buffers, because GPU page faults can significantly
hinder the thread-parallelism of GPU kernels.

2.2. An overview of NVIDIA’s UVM driver

NVIDIA’s UVM driver requires a GPU that supports
page faults, so that will be assumed for the remainder of the
paper. By default, NVIDIA’s UVM driver treats the GPU’s
DRAM as a cache and tries to optimize data locality for

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 07:41:49 UTC from IEEE Xplore. Restrictions apply.

Virtual
Memory

Physical "
Pinned | copPy
Memory Data pages | = >
CPU CPU

Figure 1: A typical lifetime of NVIDIA's UVM bulffer.

the device code. Figure 1 illustrates the typical lifetime
of a UVM bulffer allocated by the CUDA API call named
cudaMallocManaged: (DThe buffer is initially mapped to
zero-filled CPU pages when the host code triggers CPU
page faults while writing the initial data to the buffer. @ The
buffer is migrated to GPU pages when a CUDA prefetch is
issued or the device code triggers GPU page faults while
accessing the buffer. The CPU pages remain pinned while
the buffer is mapped to GPU pages. (3)The buffer is migrated
back to CPU pages when a CUDA prefetch is issued, the
host code triggers CPU page faults by accessing the buffer,
or the eviction process wants to make room to cache other
buffers on the GPU. The GPU pages are reclaimed after the
buffer is migrated back to the CPU.

To summarize, the UVM driver enables fault-driven data
locality by maintaining coherent page tables among CPU
and GPUs, where a physical page is exclusively mapped by
one of the page tables. Therefore, besides migrating data
with CUDA prefetch commands, any memory accesses to a
virtual address mapped by a remote page table will trigger
page faults that perform automatic memory transfers.

In addition, the UVM driver allows GPU memory
oversubscription. When a GPU is under memory pressure,
the UVM driver can automatically evict GPU physical
pages back to the host memory, so that migration-involved
GPU page faults or prefetch commands can succeed. In
contrast, the pre-UVM CUDA programming model requires
the programmer to find any inactive GPU buffers, transfer
the data back to the CPU buffers if still useful, and free the
inactive GPU buffers. Such a manual process is error-prone
and requires ad-hoc efforts for each application.

2.3. Cache-coherent remote memory access

Recent IBM power CPUs have supported NVIDIA’s
cache-coherent CPU-GPU interconnect, NVLink and
NVSwitch, that can abstract certain types of NVIDIA GPUs
as NUMA nodes and provide much higher bandwidth
than PCI Express [10, 33, 40]. Similarly, an Intel QPI-
based hardware interconnect has been proposed to sup-
port shared virtual memory on heterogeneous CPU-FPGA
platforms [32]. While cache-coherent interconnects migrate
data automatically as it is accessed, remote accesses can
easily become a bandwidth or latency bottleneck unless the
application or system carefully places and migrates data.

Cache-coherent remote memory access among CPUs
and GPUs will therefore not eliminate the need to optimize
application performance through page placement and mi-
gration in heterogeneous CPU-GPU systems, just as the
emergence of cache-coherent NUMA architectures, such
as Stanford’s DASH architecture [28], did not eliminate

29

e N
Memory
Pinned | €OPY | Free | Pinned | €OPY |Useless
Data <- ' 1 -
pages | pages | pages data
GPU GPU CPU GPU CPU GPU
UvalscardL —) =)
Discarded

GPU
Figure 2: UvmDiscard eliminates redundant memory trans-
fers.

Physical
Memory

GPU

that on NUMA architectures. In fact, the effects of page
misplacement can be worse in a heterogeneous system. For
example, on a heterogeneous system equipped with the
most recent NVIDIA A100 GPUs and CPUs with common
DDR4-3200 SDRAM connected by NVLink or NVSwitch,
the GPU local memory bandwidth is over 2TB/s, but the
GPU-to-GPU remote access bandwidth is limited to 600GB/s.
Furthermore, the GPU-to-CPU remote access bandwidth is
limited to 25GB/s, which is much lower than the GPU local
memory bandwidth.

3. Redundant memory transfers in UVM

This paper is the first to identify the ubiquitous re-
dundant memory transfer issue that happens frequently
on intermediate buffers in heterogeneous computations.
This section discusses this issue with an example of deep
learning training.

3.1. Transferring useless data

Figure 2 illustrates an example of redundant memory
transfers in the following steps:)The UVM buffer is
initially mapped to zero-filled GPU pages when the GPU
code writes short-lived data to the buffer. 2)The GPU code
finishes using the short-lived data and so it has no further
use for any of the data in the buffer. 3)Nonetheless, the
buffer is automatically migrated to the CPU due to GPU
memory pressure, even though it contains no useful data
because the system has no way to know that the data are
useless. @Before the GPU code can write new data to the
buffer, it is automatically migrated to the GPU even though
it contains no useful data again because the system cannot
tell if the data are useless. 5)New data are written to the
buffer.

Redundant memory transfers can happen at both direc-
tions, and the root cause is the underlying UVM driver
cannot recognize useless data and has to migrate for
correctness. The user program may choose to free and
reallocate the intermediate buffer. However, such a solution
is not applicable when only part of the buffer becomes
useless. Additionally, for temporary buffers only used by
the GPU, repeatedly freeing and reallocating them imposes
other overhead beyond redundant memory transfers.

The scenario in Figure 2 appears in real-world appli-
cations. For example, the forward phase for deep learning

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 07:41:49 UTC from IEEE Xplore. Restrictions apply.

= --- baseline ,»-"’

O 400{ —— optimal (without RMTs) =T

U /"

= "

1] P i

5 200 e =

o 2"

) T

o e,

0L—= , ‘ : :
60 80 100 120 140

batch Size

Figure 3: PCle traffic of ResNet-53.

training stores a lot of intermediate results which becomes
useless after each backward step. If the model cannot
fit in the GPU’s memory, a large number of redundant
memory transfers could be triggered and degrade the
training throughput.

Figure 3 quantifies the redundant memory transfer
issue when training a convolutional neural network ResNet-
53 on an ImageNet dataset with different workload sizes
(denoted by training batch size). When the workload size
grows beyond the GPU memory capacity, UVM starts to
automatically transfer memory back and forth. However,
the actual required, i.e., non-redundant, amount of memory
transfer is less than half of the amount of memory transfer
ordinarily performed by UVM.

Although some redundant memory transfers can be
avoided with manual effort, Section 6 elaborates that it is
more difficult and less efficient compared with using the
discard directive proposed in this paper.

3.2. Discussion

The redundant transfers of useless data that arise
automatically motivate the new kind of UVM memory
directive, “discard”, that is proposed by this paper. A discard
directive marks the data within a specific region of virtual
memory as discarded and informs the UVM driver that
the next automatic memory transfer of it can be skipped.
Figure 2 illustrates how this discard directive eliminates
redundant memory transfers. After the data become useless,
the application issues the discard operation so the eviction
process ((®) can skip migrating useless data and directly
reclaim free GPU pages from discarded GPU pages. Before
the buffer gets written (7)), the driver can skip migrating
old temporary data and directly zero-fill new GPU pages.
Therefore, this advice can save redundant memory transfers
in both directions.

As discussed in Section 2.3, most applications can benefit
from improved data locality brought by automatic data
transfers. Therefore, a UVM system that supports cache-
coherent remote memory accesses still needs a discard
directive to eliminate redundant memory transfers.

4. Semantics and application-level usage

This section defines the semantics of UvmDiscard, and
illustrates how to use it in applications to eliminate RMTs. It
is a CUDA API call that takes arguments defining a virtual
memory region.

30

cudaMallocManaged (..) ;

Initialize (A)

cudaMemPrefetchAsync (..); /
)

Launch GPU kernel (A, B);

UvmDiscardAsync (A, ..); /
kernel

/ UVM buffers A, B

Prefetch/fault A,B (optional
Enqueued after previous GPU

cudaMemPrefetchAsync (..); //
Launch GPU kernel (B, A);
cudaDeviceSynchronize () ;
print (A);

Prefault A on GPU (optional)

Listing 3: A CUDA example of UvmDiscard

4.1. Semantics

UvmDiscard notifies the UVM system that the data
values within the specified unified virtual address range
are no longer useful. After a virtual page gets discarded,
a subsequent read by either a CPU or a GPU can return
either zeros or old data values. The old data values are not
necessarily the most recently written values, but they are
values written previously by the program. On the other
hand, a new value written after the discard operation by
either a CPU or a GPU is guaranteed to be seen by a
subsequent read, until a future discard operation is made.
As shown in Listing 3, the UvmDiscard operation works
like other CUDA APIs.

4.2. Application-level usage

The user must be aware of when a buffer becomes
useless in order to use UvmDiscard correctly. Nonetheless,
it is straightforward to use UvmDiscard in a CUDA program
where all CUDA APIs and GPU kernels are submitted
through the same CUDA stream. Moreover, rather than
trying to infer the exact data that will be uselessly trans-
ferred, users should simply call UvmDiscard on all useless
data.

In practice, it is beneficial to overlap computation
with memory operations, e.g. prefetch operations, but the
user must synchronize and order them correctly. Similarly,
UvmDiscard should be ordered like a memory operation
with other CUDA APIs and computation. CUDA has pro-
vided a rich set of synchronization APIs to help with the
overlapping.

The discard operation must be called after the host or
GPUs are done using the data. In Listing 3, the discard
operation must be ordered after the completion of the first
GPU kernel.

It is preferable to order a memory prefetch operation
after the discard operation, so the buffer can be prefaulted
before being repurposed again. Otherwise, the benefit of
discard operation can be suppressed by extra page faults.
In Listing 3, the program re-purposes buffer A to save
new data. It inserts a memory prefetch operation after the
previous discard operation completes and before launching
the new GPU kernel. Therefore, the new GPU kernel will
not trigger GPU page faults if the buffer was reclaimed.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 07:41:49 UTC from IEEE Xplore. Restrictions apply.

5. Two alternative implementations

Accelerators like GPUs are still evolving to support
more virtual memory functionalities. Currently, NVIDIA
GPUs don’t have per-PTE (page table entry) access or
dirty bits [4], so the driver cannot tell whether a page
has been accessed or modified since it is discarded if the
driver keeps it mapped. This restricts the way to implement
UvmDiscard in NVIDIA’s UVM driver. However, the GPU
hardware limitation can be overcome by maintaining a
software dirty bit with the coordination of the user program.
This compromises user-level programmability, but helps
explore the performance implications of new GPU hardware
features. This leads to an alternative implementation named
UvmDiscardLazy.

5.1. UvmDiscard eagerly destroys mappings

UvmDiscard eagerly destroys all virtual mappings within
the specified virtual region. If a discarded virtual page is
later re-accessed, a page fault will be triggered. The driver
then gets notified that the underlying physical page may
hold new values, so it can no longer reclaim the page
without transferring memory.

However, eager unmapping introduces two potential
overheads. First, the unmapping request in the UVM system
can be very expensive. In NVIDIA’s UVM system, the
page table mapping may exist in a CPU, a GPU and
even be replicated by a cache-coherent peer GPU. So,
UvmbDiscard may need to send GPU PTE clearing and GPU
TLB invalidation commands via CPU-GPU interconnects
and wait for the GPU to acknowledge their completion.
Second, the eager unmapping can sometimes be unnecessary
and further introduce unnecessary GPU page faults when a
discarded buffer is repurposed to be used by the same GPU,
which may severely degrade GPU performance. However, as
Section 2.1 explains, this can be alleviated with a prefetch
operation, though the cost of waiting for GPUs to destroy
and reestablish PTEs is unavoidable.

The eager unmapping is a design choice forced by
NVIDIA GPU hardware limitations. If the GPU supports
per-PTE dirty bits, then the discard operation can clear the
dirty bits and rely on the hardware to automatically set
them back to notify the driver of new modifications to a
discarded virtual page.

5.2. UvmDiscardLazy requires programmer sup-
port

To overcome the above GPU hardware limitations, the
driver can track dirty bits in software for discarded virtual
regions. Therefore, UvmDiscardLazy works by clearing the
software dirty bits of the specified virtual memory without
eagerly destroying any of its virtual mappings. Because
the hardware cannot automatically track the dirty bits, the
user-level program is required to notify the driver if it
intends to reuse the discarded memory. This notification
must be done before the program is about to re-purpose
a discarded virtual region. Therefore, the driver will not

31

reclaim the GPU physical pages that hold new values as
discarded ones.

Prefetches are commonly issued before using any mem-
ory on the GPU. Such prefetches either transfer data from
the host to the GPU or they allocate, zero, and map new
buffers. This eliminates the expensive, on-demand GPU
page faults that would otherwise occur. Since it is best
practice to use such prefetches in CUDA, they should also
be used before re-accessing discarded memory. Therefore,
the prefetch operation is modified to also set the software
dirty bits of the prefetched virtual region. This prefetch
operation is now mandatory in order to make use of a region
discarded by UvmDiscardLazy and serves two purposes. If
the region was not reclaimed, then the prefetch operation
simply sets the software dirty bits, so the driver knows
that the memory is no longer “discarded”. If the region
was reclaimed, it allocates, zeroes, and maps new physical
memory for that virtual memory.

Note that maintaining the dirtiness of GPU pages
in software is significantly cheaper than unmapping or
mapping GPU PTEs, so UvmDiscardLazy can significantly
outperform UvmDiscard if its eager unmapping requests
are mostly unnecessary when very few discarded pages
are ultimately reclaimed. Section 7 will elaborate the
performance advantages of using UvmDiscardLazy.

5.3. Skipping memory transfers

After a virtual page gets discarded, the UVM system
will skip the memory transfers of the underlying physical
page until it gets accessed again. In UvmDiscard this means
a page fault occurs or the virtual page is prefaulted by
a prefetch operation. In UvmDiscardLazy this means the
user program indicates the dirtiness of a virtual page with
a prefetch operation. There are two major scenarios of
memory transfers that can be avoided.

The first and most common case happens when the
automatic eviction process selects a virtual page to reclaim
after the discard operation. When a 2MB GPU allocation
happens under GPU memory pressure, the UVM driver
will start the automatic eviction process to reclaim GPU
physical pages. The reclamation process involves swapping
out a 2MB GPU physical page which is believed not recently
used to the CPU DRAM. Discarded GPU physical pages are
prioritized by the reclamation process, because they can
be reclaimed without a memory transfer. In this case, the
discard operation saves GPU-to-CPU redundant memory
transfers.

The second scenario happens when accessing or
prefetching a virtual page to a GPU after it gets discarded
and the underlying GPU physical page gets reclaimed. Since
the underlying GPU physical page has been reclaimed, a
new GPU physical page will be allocated, zero-filled, and
mapped. Without the discard operation, the underlying
GPU physical page would have been swapped out to the
CPU, and a prefetch or GPU access to the virtual page will
transfer the swapped physical page back to the GPU. In this
case, the discard operation saves CPU-to-GPU redundant
memory transfers.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 07:41:49 UTC from IEEE Xplore. Restrictions apply.

= DDR4-3200

Cy |

o 20

L ST

- PCle30 . _.

5 104 —— CPU->GPU PCle-3
3 —— CPU->GPU PCle-4
< —= GPU->CPU PCle-3
- & ~— GPU->CPU PCle-4

8KB 64KB 512KB 4MB 32MB 256MB 2GB
Transfer size

1KB
Figure 4: cudaMemPrefetchAsync throughput on PCle-3/4.

5.4. 2MB granularity

NVIDIA’s recent GPUs support 2MB and 4KB mappings.
Using 2MB mappings in their GPUs can greatly increase the
coverage of GPU TLBs and reduce GPU address translation
overhead. At the same time, just like non-temporal page
zeroing functions on the CPU [43], the GPU copy engine can
achieve higher bandwidth when zeroing a larger contiguous
GPU memory chunk. Consequently, and similar to Linux’s
2MB transparent huge page (THP) support, NVIDIA’s
UVM driver will allocate, zero, and map a 2MB physical
page upon first touch to a 2MB-aligned virtual region. In
order to increase the availability of 2MB-aligned physical
memory, the UVM driver uses a similar defragmentation
method of evicting inactive 2MB GPU physical pages as
Quicksilver [43].

Because of the above features in NVIDIA’s UVM system,
the discard operation prefers full 2MB-aligned virtual
regions and sometimes ignores partial ones. This helps
avoid splitting 2MB GPU mappings from partial unmapping
requests.

Additionally, this better utilizes the CPU-GPU inter-
connect bandwidth. As shown in Figure 4, the bandwidth
is better utilized with larger transfer sizes. If the discard
operation is partially performed on a 2MB GPU physical
page at a 4KB granularity, then the rest of the 2MB page
may be transferred at higher cost. This can outweigh the
benefit of the saved memory transfers.

5.5. Discarded GPU page queue

NVIDIA’s UVM driver maintains three physical page
queues for each GPU, including free, unused and used page
queues. The free page queue contains free pages that are
readily available to be allocated. The unused page queue
is a FIFO queue containing leftover pages by the eviction
process. These pages are not being used by the GPU and can
be reclaimed directly. The used page queue is a pseudo-LRU
queue which contains all physical pages being used. Upon
a GPU page fault or a prefetch operation, the underlying
GPU physical pages are moved to the most recently used
side of the queue.

The eviction process starts when the GPU’s free page
queue is empty. It first tries to dequeue and reclaim a 2MB
GPU page from the unused page queue. If it fails, it then
tries to reclaim the least recently used side of the used
page queue by swapping the physical data out to the CPU
DRAM.

32

The discard operation adds another GPU page queue
with FIFO order, which maximizes the time to keep each
discarded GPU page in the page queue so that they have a
higher chance to be recovered when they get accessed by
the same GPU after a discard operation. This helps save
the cost of GPU page zeroing. The eviction process is thus
modified. It starts reclaiming pages from the discarded page
queue after it finds the unused page queue empty, because
reclaiming GPU physical pages from these page queues
does not trigger memory transfers.

5.6. Delayed physical reclamation

After a discard operation, the underlying physical page
of the discarded virtual page is not immediately reclaimed. If
the virtual page was mapped on a CPU, then the underlying
CPU page remains pinned. If the virtual page was mapped
on a GPU, then it gets moved from the used GPU page queue
to the discarded GPU page queue. Under GPU memory
pressure, the underlying physical page may be selected
by the eviction process to be reclaimed. The reclamation
can involve sending unmapping requests if the page was
discarded by UvmDiscardLazy instead of UvmDiscard.

5.7. Access after discard

After a UvmDiscard operation, if a virtual page gets
reused by the same GPU and its underlying GPU physical
page has not been reclaimed, then the GPU physical page
is re-mapped and moved from the GPU’s discarded page
queue to the most recently used side of the GPU’s used page
queue. However, the cost of the same case is cheaper with
UvmDiscardLazy - there is not need to reestablish any GPU
mappings that were destroyed eagerly but unnecessarily.

Extra GPU page zeroing is also required if the discarded
physical page to be re-purposed was not fully prepared
before. For example, the UVM driver may allocate a 2MB
physical page without zero-filling it if a GPU touches the
first IMB of a 2MB buffer that holds data on another GPU.
Therefore, discarded pages cannot be assumed to have been
prepared. To address this issue, a new data structure is
added to track whether each 2MB GPU physical page has
been fully prepared before, i.e., each of its 4KB pages has
either been zeroed or migrated over. If necessary, the whole
2MB GPU physical page will be zeroed.

6. Programmability

This section presents pseudo code for a deep learn-
ing training program taken from Darknet which is also
representative of the approaches used by TensorFlow and
PyTorch [11, 12]. The program is shown with three different
memory management methods in Listings 4, 5 and 6. Lines
that are executed on the host or perform control operations
are shown in black. Lines that correspond to CUDA API
calls are shown in bold. And lines that correspond to device
kernel execution are shown in italics.

Listing 4 describes the pseudo code where memory is
managed by initially manually allocating host and device
buffers and then orchestrating data transfers along with

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 07:41:49 UTC from IEEE Xplore. Restrictions apply.

// This will not work if device buffers exceed GPU
capacity
For layer i from 1 to N:
Allocate host buffers h_output; and h_weight;
Allocate device buffers d_output; and d_weight;
Initialize d_weight; with random values
Allocate host buffers h_data, h_labels

Allocate device buffers d_data, d_labels, d_gradients

For each batch:
Generate h_data, h_labels
Transfer h_data, h_labels to d_data, d_labels

Set d_outputy to point to d_data
For layer i from 1 to N:
d_output; = forward;(d_output;_;, d_weight;)

Set d_outputy,; to point to d_labels

For layer i from N to 1:
d_gradients = backward;(d_output;,, d_output;, d_weight;)
// d_outputj now holds useless data
d_weight; = update;(d_gradients, d_weight;)

For layer i from 1 to N:
Transfer d_weight; back to h_weight;

Listing 4: A DL example with manual memory management

// Device buffers can exceed GPU memory capacity
For layer i from 1 to N:

Allocate host buffers h_output; and h_weight;

Initialize d_weight; with random values
Allocate host buffers h_data, h_labels

For each batch:
Generate h_data, h_labels
Allocate device buffers d_data, d_labels
Transfer h_data, h_labels to d_data, d_labels

Set d_outputy to point to d_data
For layer i from 1 to N:
Allocate device buffers d_output;, d_weight;
// No need to swap in d_output; which will be
overwritten
Transfer h_weight; to d_weight;
d_output; = forward;(d_output;.;, d_weight;)
Transfer d_output; to h_output;
Deallocate d_output;
// No need to swap out d_weight; which was not changed
Deallocate d_weight;
Deallocate d_outputg

Set d_outputy,; to point to d_labels

For layer i from N to 1:
Allocate device buffers d_output;, d_weight;, d_grad;
Transfer h_output;, h_weight; to d_output;, d_weight;
// No need to swap in d_grad; which will be overwritten
d_grad; = backward;(d_output;,;, d_output;, d_weight;)
// d_outputj;; now holds useless data
Deallocate d_output;,;
d_weight; = update;(d_grad;, d_weight;)
// d_grad; now holds useless
Deallocate d_grad;
Transfer d_weight; to h_weight;
Deallocate d_weight;

data

Listing 5: A manual solution to oversubscribe GPU memory

computations. Such a program is easy to write, but can
only work if all buffers fit on the GPU. This is unrealistic
for most programs, as dataset sizes are growing faster than
GPU capacity, and programs generally need to support
various GPU models whose memory capacities can differ
by an order of magnitude.

Listing 5 is a more realistic application that supports

datasets that are larger than the GPU memory capacity.

33

For layer i from 1 to N:
Allocate UVM buffers output;, weight;
Initialize weight; with random values
Allocate UVM buffers data, labels, gradients

For each batch:
Generate data, labels
Prefetch data, labels to device

Set outputy to point to data

For layer i from 1 to N:
Prefetch output; to device
output; = forward;(output;.;, weight;)

Set outputy,; to point to labels

For layer i from N to 1:
Prefetch output;, gradients to device
gradients = backward;(output;,, output;, weight;)
// outputi;; now holds useless data
Discard output;,;
weight; = update;(gradients, weight;)
// gradients now holds useless
Discard gradients

data

Listing 6: A DL example with UVM and UvmDiscard

40 50 60 70 80
PyTorch-LMS 16/112 17/118 17/148 19/113 18/150
DarkNet-UVM 29/2 29/2 25/45 22/104 20/152
DarkNet-Discard 29/2 29/2 28/10 26/34 24/58

TABLE 1: Throughput(img/sec)/PCle traffic(GB) of training
VGG-16 with different batch sizes on GTX 1070.

The code is functionally equivalent to Listing 4. However,
if a single neural network layer’s memory footprint already
exceeds the GPU memory capacity, then this will crash.

Finally, Listing 6 shows the UVM solution. The program
is just as easy, if not easier, to write compared to Listing 4.
Although in the deep learning case there is not need of
data marshaling, it still benefits from the unified address
space by eliminating dual buffer management. Further, the
UVM solution allows GPU oversubscription without any
burden on the programmer. Inserting discard directives to
eliminate redundant transfers of useless data is as easy as,
if not easier, than inserting allocation and deallocation API
calls as is done in Listing 5.

Table 1 shows the training throughput of VGG-16 with
PyTorch and UVM (with and without discard). For batch
sizes of 60 or larger, the GPU memory is oversubscribed.
PyTorch implements a manual swapping approach [11], as
shown in listing 5. PyTorch augments that approach with a
manual caching mechanism to avoid costly allocation and
deallocation API calls (costs are shown in Table 2), exploit
reuse and eliminate some redundant transfers of useful
data. PyTorch’s manual caching and swapping approaches
cost 1,806 and 2,509 lines of code, respectively. UVM by
itself outperforms PyTorch’s mechanisms, both in terms of
higher throughput and lower PCle traffic.! Furthermore,
when equipped with UvmDiscard, the PCle traffic is reduced
and the training throughput is further increased when the
GPU memory is oversubscribed.

1. This explains why companies like Facebook deploy their large-scale
recommendation systems with UVM [31].

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 07:41:49 UTC from IEEE Xplore. Restrictions apply.

Buffer Size 2MB 8MB 32MB 128MB
cudaMalloc 48 184 726 939
cudaFree 32 38 63 1184
UvmDiscard 4 7 20 70

TABLE 2: Cost of CUDA API calls in us.
7. Evaluation

This section evaluates UvmDiscard and UvmDiscardLazy
using both micro-benchmarks and real-life applications.
The evaluation not only quantifies their bottom-line per-
formance impact on benchmarks and applications, but
also presents results from driver-level instrumentation to
elaborate their impact. While UvmDiscard is normally
expected to improve performance by eliminating RMTs, its
eager unmapping implementation can cause non-negligible
overheads when RMTs do not exist. Additionally, the
evaluation contrasts it with how UvmDiscardLazy alleviates
such overheads and encourages new GPU hardware features
to be supported.

7.1. Methodology

The evaluation platform consists of a 12-core AMD
Ryzen 3900X processor along with NVIDIA’s 3080Ti GPU.
The GPU memory capacity is 12GB, and the CPU DRAM
capacity is 64GB. The CPU DRAM is DDR4 3200, so PCle-4
throughput is bottlenecked at 25GB/s. The AMD B550-based
motherboard supports switching between PCle-3 and PCle-
4, and we collect results with both PCle generations.

We evaluate three systems. UVM-opt as a baseline uses
UVM programming model and adopts optimizations of
memory prefetching and overlapping CUDA APIs with
computation. UvmDiscard exercises the implementation
of UvmbDiscard over UVM-opt. UvmDiscardLazy further
replaces the UvmDiscard operations that are paired with
prefetch operations in UvmbDiscard, but not all of them
because the prefetch operation sometimes introduces GPU
memory thrashing.

We use two different methodologies for evaluating the
effects of GPU memory oversubscription. For the micro-
benchmarks and GPU database application, we fix the input
sizes of the applications and run an idle GPU program
that occupies specific amounts of GPU memory to create
oversubscription ratios of <100%, 200%, 300% and 400%. The
oversubscription ratio is the ratio of the GPU memory con-
sumption of the application to the available GPU memory.
For deep learning, we fix the training data set and gradually
increase the training batch size to oversubscribe memory.

The microbenchmarks include FIR and Radix-sort from
existing benchmark suites [25, 38]. They exhibit relatively
simple memory transfer patterns, which makes it easier to
analyze and explain how UvmDiscard and UvmDiscardLazy
are affecting their performance.

The real-world applications include a common GPU
database operation and deep learning training. They exhibit
much more complicated memory transfer patterns and
provide more realistic use cases for understanding both
the applicability and effects of UvmDiscard and UvmDis-
cardLazy.

34

Ovsp. rate <100% 200% 300% 400%
UVM-opt 1/1 1/1 1/1 1/1
UvmDiscard 1/1.01 0.51/0.52 0.62/0.65 0.71/0.71
UvmDiscardLazy | 1/1.00 0.52/0.52 0.62/0.66 0.72/0.71

TABLE 3: Normalized runtime of FIR (PCle 3/4).

Ovsp. rate <100% 200% 300% 400%
UVM-opt 5.66 11.44 13.38 14.34
UvmbDiscard 5.66 5.88 7.81 8.78
UvmbDiscardLazy | 5.66 5.88 7.81 8.78

TABLE 4: PCle traffic (GB) of FIR.

7.2. FIR

FIR runs a finite impulse response (FIR) filter to produce
an impulse response to any length of a finite input. The
program iterates through a large input buffer, prefetches
a window of the host data to the FIR GPU kernel and
calculates the FIR filter. The target buffer to discard is
the sliding window of the input buffer at the end of each
iteration, because the sliding window becomes useless.

Since the problem size is fixed, 5.66 GB of input data is
prefetched to the GPU for all configurations. However, both
UvmDiscard and UvmDiscardLazy consistently eliminate
5.56GB of redundant memory transfers (eviction from CPU
to GPU), as shown in Table 4. Correspondingly, Table 3
shows their reduced GPU runtime. The reduction of overall
GPU runtime is slightly higher with PCle 4, because the
application spent less time in memory transfers compared
with PCIle 3. When memory is not oversubscribed, the API
cost of UvmDiscard can be overlapped with computation.

7.3. Radix-sort

Radix-sort sorts a large input array of keys and values.
In each iteration, it launches a GPU kernel to perform
local radix sorts with results saved in a temporary buffer.
At this time, the input buffer can be discarded. It then
launches another GPU kernel, reorders the local partitions
from the temporary buffer and overwrites the results back
to the input buffer. At this time, the temporary buffer can
be discarded. In this application, GPU thrashing happens
when the application oversubscribes memory, where each
GPU kernel oversubscribes memory.

Table 5 demonstrates the normalized GPU runtime
when all systems use proper prefetching operations, which
are performed only when memory is not oversubscribed.
Without prefetch operations when memory is not over-
subscribed, UvmDiscard may introduce as high as a 3.9x
slow-down (not shown) merely from extra GPU page faults
which only reestablishes GPU mappings unnecessarily
destroyed by UvmDiscard. Although alleviated with prefetch
operations, the extra unmapping and mapping operations
from discard and prefetch operations still introduced a
slow-down over 1.2x. In contrast, UvmDiscardLazy makes
such overheads negligible, encouraging new GPU hardware
features. The benefit of eliminating RMTs from both discard
implementations diminishes when GPU kernel starts to
thrash memory, which becomes a dominant bottleneck as
shown in Table 6.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 07:41:49 UTC from IEEE Xplore. Restrictions apply.

Ovsp. rate <100% 200% 300% 400%
UVM-opt 1/1 1/1 1/1 1/1
UvmDiscard 1.21/1.28 0.87/0.83 0.95/0.93 0.97/0.97
UvmbDiscardLazy | 1.00/1.02 0.87/0.83 0.95/0.92 0.97/0.99

TABLE 5: Normalized runtime of Radix-sort (PCle-3/4).

Ovsp. rate <100% 200% 300% 400%

UVM-opt 5.00 300.80 345.40 356.85
UvmDiscard 5.00 24493 31550 339.76
UvmDiscardLazy | 5.00 24492 31552 339.76

TABLE 6: PCle traffic (GB) of Radix-sort.

The thrashing issue is why UvmbDiscard or UvmDiscard-
Lazy have less impact on Radix-sort compared with FIR.
However, it remains difficult to solve GPU thrashing. The
GPU does not follow a deterministic pattern to access paral-
lel columns of data. If the GPU cannot fit all data consumed
by a single GPU kernel, then manually prefetching its data
usually does more harm. Therefore, the best practice to
alleviate GPU thrashing is still rewriting the program with
better data locality so that the automatic memory migration
driven by GPU page faults can work better.

7.4. Hash-join

Hash-join is a common operation for databases that
can be accelerated by GPUs. Because modern databases are
large, the memory footprint can easily exceed the memory
capacity of a GPU. We exercise a GPU hash-join application
which cannot fit in the GPU memory [37].

The application first launches two GPU kernels that
preprocess two database tables. Both kernels use many
intermediate buffers that can be discarded and their outputs
become the input of the third GPU kernel that computes the
joined database table of the final results. The results then
get discarded and such a process is repeated by reusing the
existing buffers, which simulates what happens in a GPU
database.

Table 8 shows the amount of memory transfers and
Table 7 shows the total GPU runtime of the two hash-
join operations. By discarding the intermediate buffers,
the redundant memory transfers are eliminated and the
total GPU runtime is reduced. Unlike the previous two
applications, UvmDiscardLazy introduces no more than 4%
overhead when memory is not oversubscribed, because in
this case not all UvmDiscard calls can be replaced with
UvmDiscardLazy. However, it still alleviates the overhead
compared with UvmDiscard.

7.5. Deep learning

Training a deep learning neural network is a common
task accelerated by GPUs. Each training step contains two
phases: the forward process and the backward process. The
forward process generates outputs of each layer which
overwrite their output buffers, and the backward process
uses the previously computed outputs to generate gradients
and update the weights of the neural network model.

Plenty of buffers can be discarded in the training
process. For example, after forwarding or backwarding

35

Ovsp. rate <100% 200% 300% 400%
UVM-opt 1/1 1/1 1/1 1/1
UvmbDiscard 1.05/1.09 0.24/0.31 0.51/0.54 0.86/0.89
UvmbDiscardLazy | 1.02/1.04 0.24/0.31 0.51/0.54 0.86/0.88

TABLE 7: Normalized runtime of Hash-join (PCle-3/4).

Ovsp. rate <100% 200% 300% 400%
UVM-opt 2.98 34.62 3642 58.23
UvmDiscard 2.98 4.89 16.19 46.61
UvmDiscardLazy | 2.98 4.89 16.19 46.44

TABLE 8: PCle traffic (GB) of Hash-join.
each layer, intermediate buffers used by the CUDNN library
can be discarded. Also, after backwarding each layer, its
intermediate buffers that save the outputs and gradients
can be discarded, as they will be overwritten in the next
training loop.

We exercise the discard directive on a deep learning
platform named Darknet [3] which is written in pure C and
CUDA after converting it to use the UVM programming
model.

A wide variety of popular neural networks are selected,
named VGG-16, Darknet-19, ResNet-53 and RNN [15, 24, 30,
36]. The first three CNN-based neural networks are trained
on the ImageNet dataset [20], while the RNN neural network
is trained on the Shakespeare novel corpus. Their training
workload increases linearly as the batch sizes increases.
For CUDA buffers, VGG-16 allocated 12.0 GB and 21.1 GB
at batch sizes of 75 and 150; Darknet-19 allocated 11.2
GB and 23.4 GB at batch sizes of 171 and 360; ResNet-53
allocated 10.8 GB and 28.5 GB at batch sizes of 56 and
150; RNN allocated 10.2 GB and 20.0 GB at batch sizes of
150 and 300. The 3080 Ti GPU reports a total of 11.77GB
physical memory. We trained each neural network three
mini-batches and measure the average throughput of the
next seven mini-batches. These measurements exclude the
pre-processing of input data.

7.5.1. When DL fits the GPU. Figure 6 and Figure 7
demonstrate the training throughput. When everything
fits in the GPU, UVM-opt demonstrates slightly lower
throughput compared with No-UVM for the three CNN
models because the highly-optimized CNN-related GPU
kernels from CUDNN library cannot fully overlap the cost
of prefetch operations, which neither transfer or prefault
memory but only update the recency of page accesses.
In this case, UvmDiscard can degrade the throughput by
16% because of its unnecessary eager unmapping, which
also introduces unnecessary prefaulting in the prefetch
operations. UvmDiscardLazy on the other hand significantly
reduces such overheads and demonstrates negligible over-
head compared with UVM-opt.

When computation is more intensive, the overlapping
works better and the degradation from CUDA APIs becomes
negligible, as shown in Figure 6d and Figure 7d.

7.5.2. DL with large training size. Sometimes a deep
neural network may oversubscribe GPU memory when
it uses a large training size, e.g. the model is very large
or it uses a large batch size for fine-tuning. As shown in

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 07:41:49 UTC from IEEE Xplore. Restrictions apply.

PCle traffic (GB)

--- UVM-opt J#27 4001 ___ yvM-opt .
_.300{ —— Discard/Lazy /" i - —— Discard/Lazy .
& ’,’ % 300 x’/
= s = 1
v - = !
£ 200 £ /
% / £ 200 o
5 = A
o i o /
g 100 = 9 100 -
Vi -
o# e
0 0
50 75 100 125 150 200 300
batch size batch size
(a) VGG-16 (b) DarkNet-19

Figure 5: PCle traffic in deep learning. UvmDiscard and UvmDiscardLazy fully

5001 --- UVM-opt o === UVM-opt :
——— Discard/Lazy ¢ _ 3001 —— Discard/Lazy i
400 Lo @
4)
/, v
300 — & 200
7 . ©
200 -7 =t
/// / 8 100
100 . a
//I
0—5= 0
50 75 100 125 150 150 200 250 300
batch size batch size
(c) ResNet-53 (d) RNN

eliminate RMTs.

800 =
— 250 —— ho-UVM = —— no-UVM " = —— no-UVM S 120
o —— UVM-opt o —— UVM-opt 9 200 —— UVM-opt g 1
B --- Discard 3 600 --- Discard £ 1 --- Discard 5 0
E 200 DiscardLazy £ DiscardLazy iE \ —— DiscardLazy 110
= = T 150 \ =
2150 3 400 3 5
'gv '51 'g\ 100 .g' 100 { — no-UvM A
8 100 8 8 Ef — UvM-opt
5 £ 200 ¢ £ 2 -~ Discard
= 50 B ggli— DiscardLazy
50
50 75 100 125 150 200 300 50 75 100 125 150 150 200 250 300
batch size batch size batch size batch size
(a) VGG-16 (b) DarkNet-19 (c) ResNet-53 (d) RNN
Figure 6: Training throughput of deep learning with PCle-4.
e — 7 - —. 7 _ — no-UvM
o 250 no-UvM 5 no-Uvm . no-Uvm 9110 — WMopt
o —— UVM-opt 9 —— UVM-opt 92007 —— UVM-opt 0 —~ Discard
S 200 -— Discard S 600 -—- D?scard S -—- D?scard E 100 — DiscardLazy
E DiscardLazy £ DiscardLazy £ 150 —— DiscardLazy N
+ 150 5 400 5 = 2
2 & 2100 2
3 100 3 Ef 5 80
i 2 200 2 3
£ < £ 50 2
= 50 — E S £ 70
50 75 100 125 150 200 300 50 75 100 125 150 150 200 250 300
batch size batch size batch size batch size
(a) VGG-16 (b) DarkNet-19 (c) ResNet-53 (d) RNN

Figure 7: Training throughput of deep learning with PCle-3.

Figures 5, the PCle traffic increases along with the batch size.
In some circumstances, the amount of data transfers may
drastically increase because the CUDNN library switches to
a different algorithm that uses a different size of workspace
buffer. However, in all four neural networks, the PCle traffic
can all be dramatically decreased with discard operations. A
huge amount of redundant memory transfers results from
swapping in and out intermediate buffers or useless data.
The training throughput is consistently improved with
either PCle-3 or PCle-4 as in Figure 6 and Figure 7 whether
using UvmbDiscard or UvmDiscardLazy. When the batch
size increases and the four neural networks start to over-
subscribe GPU memory, the training throughput decreases
and UvmDiscardLazy is consistently the best performer.
Furthermore, both UvmDiscard and UvmDiscardLazy con-
sistently improve the training throughput regardless of
whether the neural network is compute-intensive (RNN) or
memory-intensive (Darknet-19, VGG-16 and ResNet-53).

8. Related work

In addition to cache-coherent interconnects, recent
architectures have adopted a heterogeneous design that lets

36

the CPU and GPU share the physical memory or use the
same cache, e.g. AMD’s APU and Apple’s M1 chips [16, 18,
19]. Such a heterogeneous architecture can bring advantages
like lower power consumption due to the smaller cost of
data transfers. However, their GPU DRAM bandwidth is
usually much lower than what a discrete GPU card can
achieve.

Unix-like systems have the madvise system call to
enable applications to provide the system with user-level
knowledge of memory usage patterns [1, 2]. For example,
MADV_SEQUENTIAL and MADV_WILLNEED give the
operating system hints about future memory access patterns,
so that instead of general memory management policies,
the operating system can prefetch memory according to
these hints from the user program. The prefetching effect
is similar as cudaMemPrefetchAsync in NVIDIA’s UVM
driver, except that the latter operation is guaranteed to
prefetch memory.

Another example is MADV_FREE/MADV_DONTNEED.
These two directives can help reduce the cost of reclaiming
unneeded physical memory and increase throughput for
applications like Redis [17]. Specifically, they can reduce

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 07:41:49 UTC from IEEE Xplore. Restrictions apply.

I/O costs since their semantics discard the data content
of the specified virtual memory region, which eliminates
the need to save that data back to the disk under memory
pressure. The effects of these directives, discarding data
content and freeing physical memory, is similar to those of
UvmbDiscard and UvmDiscardLazy.

Several techniques have been developed to deal with
applications that consume more memory than the GPU’s
physical memory. These techniques include rewriting the
algorithms to reduce their workload sizes to fit in the GPU
memory [23, 35], compressing sparse data to minimize data
migration [34, 39, 42] and optimizing the runtime library to
avoid RMTs [13]. In addition, optimizing data replacement
policies with predictions of memory accesses can also
reduce memory transfers [21, 22]. These techniques can be
used in conjunction with UvmDiscard and UvmDiscardLazy.
Furthermore, a compiler-assisted approach that detects the
buffer reuse distance can be extended to diagnose the
insertion of UvmDiscard API calls [29].

Some applications like databases can benefit from
caching the intermediate results in the GPU buffer for higher
throughput [6], while other applications like deep learning
use many intermediate results during the back-propagation
process [14, 26]. These applications may implement ad-
hoc manual memory management policies to migrate
these intermediate buffers in and out [27]. However, such
approaches can require thousands of lines of additional
code to process data larger than GPU memory [7]. Other
approach chooses to recompute intermediate results to save
memory consumption, but it does not ultimately avoid
RMTs [41].

9. Conclusion

Unified virtual memory has the potential to greatly
simplify heterogeneous programming across host CPUs and
accelerator devices, such as GPUs. However, performance
hurdles remain. This paper has shown that the addition
of a discard directive enables the elimination of some
RMTs by enabling the application to notify the system
that the contents of a memory buffer are no longer needed
and can be discarded safely. Two implementations have
been evaluated within NVIDIA’s open-source UVM driver
in order to demonstrate their usefulness on real-world
applications characterized with RMTs. Both UvmDiscard and
UvmDiscardLazy demonstrate up to four times speedup on a
GPU database application. Furthermore, they can eliminate
over 60% memory transfers across different types of deep
neural networks and improve their training throughput
from 23% to 61%. UvmDiscardLazy also consistently allevi-
ates the API overhead of UvmDiscard, encouraging new GPU
hardware features to combine the ease of use of UvmDiscard
with the performance of UvmDiscardLazy.

37

References

(1]

—
—_
[}

(13]

(14]

[22]

(23]

“madvise (2) linux manual page,” https://man7.org/linux/man-pages/
man2/madvise.2.html.

“madvise freebsd manual pages,” https://www.freebsd.org/cgi/man.
cgi?query=madvise&sektion=2.

“Darknet: Deep learning platform,” 2021. [Online]. Available:
https://github.com/AlexeyAB/darknet

“Nvidia pascal mmu format” 2021. [Online]. Avail-
able: https://github.com/NVIDIA/open-gpu-doc/blob/master/pascal/
gp100-mmu-format.pdf

“Nvidia unified virtual memory,” 2021. [Online]. Available:
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

“Omniscidb: Advanced memory management,” 2021. [Online].
Available: https://www.omnisci.com/platform/omniscidb

“Tflms patch, github,” 2021. [Online]. Avail-
able: https://github.com/IBM/tensorflow-large-model-support/blob/
master/patches/tensorflow_v2.2.0_large_model_support.patch

“Top 10 supercomputers,” 2021. [Online]. Available: https://www.
top500.org/lists/top500/2021/11/

“Nvidia tensor cores,” 2022. [Online]. Available: https://developer.
nvidia.com/tensor-cores

“Nvlink - nvidia,” 2022. [Online]. Available: https://en.wikichip.org/
wiki/nvidia/nvlink

“Pytorch large model support from ibm,” 2022. [Online]. Available:
https://github.com/IBM/pytorch-large-model-support

“Tensorflow large model support from ibm,” 2022. [Online]. Available:
https://github.com/IBM/tensorflow-large-model-support

R. Asai, M. Okita, F. Ino, and K. Hagihara, “Transparent avoidance of
redundant data transfer on gpu-enabled apache spark,” in Proceedings
of the 11th Workshop on General Purpose GPUs, 2018, pp. 22-30.

A. A. Awan, C.-H. Chu, H. Subramoni, X. Lu, and D. K. Panda,
“Oc-dnn: Exploiting advanced unified memory capabilities in cuda 9
and volta gpus for out-of-core dnn training,” in 2018 IEEE 25th
International Conference on High Performance Computing (HiPC).
IEEE, 2018, pp. 143-152.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” 2020.

A. Branover, D. Foley, and M. Steinman, “Amd fusion apu: Llano,”
Teee Micro, vol. 32, no. 2, pp. 28-37, 2012.

J. L. Carlson, Redis in action. Manning Publications Co., 2013.

A. Corporation, “Introducing m1 pro and m1 max: the most powerful
chips apple has ever built,” 2021.

M. Daga, A. M. Aji, and W.-c. Feng, “On the efficacy of a fused cpu+
gpu processor (or apu) for parallel computing,” in 2011 Symposium
on Application Accelerators in High-Performance Computing. IEEE,
2011, pp. 141-149.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference
on computer vision and pattern recognition. Ieee, 2009, pp. 248-255.

D. Ganguly, R. Melhem, and J. Yang, “An adaptive framework for
oversubscription management in cpu-gpu unified memory;” in 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2021, pp. 1212-1217.

D. Ganguly, Z. Zhang, J. Yang, and R. Melhem, “Adaptive page
migration for irregular data-intensive applications under gpu memory
oversubscription,” in 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2020, pp. 451-461.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 07:41:49 UTC from IEEE Xplore. Restrictions apply.

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770-778.

B. Hu and C. J. Rossbach, “Altis: Modernizing gpgpu benchmarks,”
in 2020 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE Computer Society, 2020, pp.
1-11.

Y. Ito, H. Imai, T. L. Duc, Y. Negishi, K. Kawachiya, R. Matsumiya,
and T. Endo, “Profiling based out-of-core hybrid method for large
neural networks,” arXiv preprint arXiv:1907.05013, 2019.

T. D. Le, H. Imai, Y. Negishi, and K. Kawachiya, “Tflms: Large
model support in tensorflow by graph rewriting,” arXiv preprint
arXiv:1807.02037, 2018.

D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta,
J. Hennessy, M. Horowitz, and M. S. Lam, “The stanford dash
multiprocessor,” Computer, vol. 25, no. 3, pp. 63-79, 1992.

L. Li and B. Chapman, “Compiler assisted hybrid implicit and explicit
gpu memory management under unified address space,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2019, pp. 1-16.

L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and
Applications, vol. 5, pp. 64-67, 2001.

D. Mudigere, Y. Hao, J. Huang, A. Tulloch, S. Sridharan, X. Liu,
M. Ozdal, J. Nie, J. Park, L. Luo et al., “High-performance, distributed
training of large-scale deep learning recommendation models,” arXiv
e-prints, pp. arXiv-2104, 2021.

N. Oliver, R. R. Sharma, S. Chang, B. Chitlur, E. Garcia, J. Grecco,
A. Grier, N. Jjih, Y. Liu, P. Marolia et al., “A reconfigurable computing
system based on a cache-coherent fabric,” in 2011 International
Conference on Reconfigurable Computing and FPGAs. IEEE, 2011, pp.
80-85.

C. Pearson, L-H. Chung, Z. Sura, W.-M. Hwu, and J. Xiong, “Numa-
aware data-transfer measurements for power/nvlink multi-gpu sys-
tems,” in International Conference on High Performance Computing.
Springer, 2018, pp. 448-454.

A. H. N. Sabet, Z. Zhao, and R. Gupta, “Subway: Minimizing data
transfer during out-of-gpu-memory graph processing,” in Proceedings
of the Fifteenth European Conference on Computer Systems, 2020, pp.
1-16.

38

[35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

K. Shirahata, H. Sato, and S. Matsuoka, “Out-of-core gpu memory
management for mapreduce-based large-scale graph processing,” in
2014 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2014, pp. 221-229.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and
A. Ailamaki, “Hardware-conscious hash-joins on gpus,” in 2019 IEEE
35th International Conference on Data Engineering (ICDE). IEEE,
2019, pp. 698-709.

Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mc-
Cardwell, A. Villegas, and D. Kaeli, “Hetero-mark, a benchmark suite
for cpu-gpu collaborative computing,” in 2016 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 2016, pp.
1-10.

R. Tang, Z. Zhao, K. Wang, X. Gong, J. Zhang, W. Wang, and P.-C.
Yew, “Ascetic: Enhancing cross-iterations data efficiency in out-of-
memory graph processing on gpus,” in 50th International Conference
on Parallel Processing, 2021, pp. 1-10.

L P. N. team, “Functionality and performance of nvlink with ibm
power9 processors,” IBM J. Res. Dev., vol. 62, no. 4-5, p. 9:1-9:10, jul
2018. [Online]. Available: https://doi.org/10.1147/JRD.2018.2846978
M. Wahib, H. Zhang, T. T. Nguyen, A. Drozd, J. Domke, L. Zhang,
R. Takano, and S. Matsuoka, “Scaling distributed deep learning
workloads beyond the memory capacity with karma,” in SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1EEE, 2020, pp. 1-15.

X. Yang, S. Parthasarathy, and P. Sadayappan, “Fast sparse matrix-
vector multiplication on gpus: Implications for graph mining,” arXiv
preprint arXiv:1103.2405, 2011.

W. Zhu, A. L. Cox, and S. Rixner, “A comprehensive analysis of
superpage management mechanisms and policies,” in 2020 { USENIX}
Annual Technical Conference ({ USENIX}{ATC} 20), 2020, pp. 829-842.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 07:41:49 UTC from IEEE Xplore. Restrictions apply.

