
An FPGA Accelerator for Genome Variant Calling

Tiancheng Xu
Rice University

txu@rice.edu

Scott Rixner
Rice University

rixner@rice.edu

Alan L. Cox
Rice University

alc@rice.edu

Abstract—In genome analysis, it is often important to identify
variants from a reference genome. However, identifying variants
that occur with low frequency can be challenging, as it is
computationally intensive to do so accurately. LoFreq is a widely
used program that is adept at identifying low frequency variants.
This paper presents an FPGA-based accelerator for LoFreq. In
particular, this accelerator is targeted at virus analysis, which is
particularly challenging, compared to human genome analysis, as
the characteristics of the data to be analyzed are fundamentally
different. This accelerator can achieve up to 120× speedups on
the core computation of LoFreq and speedups of up to 32.4×
across the entire program.

I. INTRODUCTION

Genome analysis has become an important computing

workload as we work towards personalized medicine, better

understanding diseases, and other basic scientific inquiry.

One important aspect of genome analysis is variant calling.

Variant calling is the process of identifying variants from a

reference genome in genetic data. A typical pipeline consists

of the following three stages. First, genomes are read by a

sequencer to collect raw snippets of sequence data (called

“reads”). Second, the reads are aligned and mapped to a

reference genome (called “read mapping”). Finally, differences

between the reads and reference genome are examined and

variants are identified (called “variant calling”). Note that this

is not as trivial as looking for differences, because it involves

distinguishing between sequence read errors, read mapping

errors, and true genome variations (“variants”).

LoFreq is an alignment-based variant caller that can accu-

rately detect very rarely occurring variants [27], [31]. In partic-

ular, LoFreq accurately distinguishes between low frequency

variants and errors in sequencing or mapping using rigorous

statistical modeling. Unfortunately, LoFreq’s effectiveness at

detecting low frequency variants comes at a performance cost.

LoFreq is slower than other variant callers. Often, iVar [18]

is used instead of LoFreq, as it is faster. However, it is less

sensitive, so it may miss low frequency variants.

Despite its performance disadvantage, LoFreq’s sensitivity

can be invaluable. For example, since the outbreak of COVID-

19, LoFreq has been heavily used to track inter-host variants

and the evolutionary dynamics of SARS-CoV-2 [22]. It is

therefore important to improve the overall performance of

LoFreq in order to enable detection of low frequency variants

to further biological progress, understanding, and innovation.

The shape of the genomic dataset influences the available

parallelism within the core LoFreq algorithm. There are three

important parameters that characterize a dataset upon which

variant calling is performed. The first is the length of the

genome. All of the reads corresponding to a base (nucleotide)

in the reference genome form a column. Each column can be

processed independently, providing one source of parallelism.

The second parameter is the depth of each column, which is

the number of bases in that column. Each column may have

a different number of bases in it, as the reads will not be

mapped uniformly across the genome. The last parameter is

the number of bases that are different from the reference base

within a column. This parameter will also vary by column. The

computational workload within a column is proportional to the

product of the last two parameters. Unfortunately, compared to

parallelization across columns, parallelization within a column

is more challenging because of data dependencies that are

inherent to the algorithm.

This paper presents an FPGA-based accelerator for the

LoFreq variant caller. While the LoFreq algorithm is the same

regardless of the parameters described above, the accelerator

design is driven by the characteristics of virus data, which

has relatively short genome lengths but large and varying

depths. This is one important case in which the available

parallelism is more difficult to exploit and is well suited to

custom hardware acceleration. The accelerator performs the

core probability calculations of LoFreq in order to identify

variants. The accelerator design consists of several column

units. Each column unit is designed to process a single column

of data at a time. The column units make use of prefetching,

pipelining, and parallelization to efficiently identify variants in

that column. LoFreq processes every column independently, so

once a column unit completes the computation for one column,

it can begin processing another column. Furthermore, multiple

column units can operate on different columns independently

and in parallel.

Each column unit consists of multiple processing elements

that operate on different portions of the computation within

the column simultaneously. As LoFreq deals with very small

probabilities and is trying to detect variants that occur with low

frequency, these processing elements operate on very small

numbers that need high precision. Therefore, all operations

use double precision floating point arithmetic and all compu-

tations are done in log-space to avoid floating point underflow.

This means that the key computations within a processing

element are logarithms and exponentials. These computations978-1-6654-8332-2/22/$31.00 ©2022 IEEE

2
0
2
2
 I

E
E

E
 3

0
th

 A
n
n
u
al

 I
n
te

rn
at

io
n
al

 S
y
m

p
o
si

u
m

 o
n
 F

ie
ld

-P
ro

g
ra

m
m

ab
le

 C
u
st

o
m

 C
o
m

p
u
ti

n
g
 M

ac
h
in

es
 (

F
C

C
M

)
| 9

7
8
-1

-6
6
5
4
-8

3
3
2
-2

/2
2

/$
3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/F

C
C

M
5
3
9
5
1
.2

0
2
2
.9

7
8
6
1
8
3

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 08:00:53 UTC from IEEE Xplore. Restrictions apply.

are expensive in terms of both latency and resource use. The

processing element design is optimized to take into account

these long latency operations.

Using high level synthesis, this paper performs a design

space analysis of the accelerator architecture trading off the

number of column units vs. the number of processing elements

within each column unit to show how to best utilize the FPGA

resources. A column unit with 32 processing elements can

speed up the core computation of LoFreq by up to 120× over

the software version. Furthermore, the best overall accelerator

design is able to speed up the entire application by 10.2–32.4×

compared to a parallelized software version of LoFreq that

utilizes 16 hardware CPU threads.

II. GENOMICS ANALYSIS

The first step in a genomics analysis pipeline is sequencing.

Short genome fragments are read using a sequencer. As

previously stated, these fragments are known as reads. They

can be from anywhere within the genome and may contain

errors due to the nature of sequencing. The error rate of the

sequencer is generally well known.

The next step is to perform read mapping. Read mapping

is the process that maps these reads to a reference genome

in order to determine where the short read came from in

the longer DNA sequence. Note that again, reads may be

incorrectly mapped to the reference genome, as there are both

potential errors in the read from the sequencer and potential

mutations from the reference in the read fragment. Once all

of the reads are aligned and mapped to the reference genome,

every position in the reference genome will be covered by

many reads. At a given position, genome bases (nucleotides)

from all reads that cover this position form a column of

genome bases. As stated in the previous section, such a column

of bases is referred to as a column, and the total number of

bases in a column is known as the depth. The depth of a

column is denoted by N .

Within a column, there can exist bases that differ from the

corresponding reference base and the majority of other bases

in the column. Such a varying base could either be an error

from the previous stages (sequencing or read mapping), or

a true genome variation, a Single Nucleotide Variant (SNV),

that is of significant interest. Therefore, each base in a column

is associated with a quality score that is computed from the

sequence quality and the mapping quality of that read. The

probability that the base is erroneous can be computed directly

from the quality score.

Variant callers take aligned sequences and their quality

scores as input and attempt to identify variants in the data,

distinguishing between SNVs and errors. Variant calling on

SARS-CoV-2 genome data poses a unique challenge. Study

of the SARS-CoV-2 genome has much deeper columns, with

depths as high as 1,000,000, compared to that of human

genome data which typically have depths from 30 to 50. A

major challenge is to distinguish SNVs with extremely low

frequency from errors in such large columns. These SNVs

are of great significance but difficult to identify because

sequencing machines and read mappers produce errors at a

similarly low frequency.

LoFreq is a variant caller specialized in solving this chal-

lenge. LoFreq can accurately distinguish low frequency SNVs

from sequencing and mapping errors by virtue of its unique

and rigorous statistical modeling. It examines each column in

the alignment independently. For each column, LoFreq models

errors in that column using a Poisson-Binomial distribution. If

the number of varying bases is inconsistent with the computed

distribution, then SNVs most likely exist.

III. LOFREQ AND ITS COMPUTATION

As previously mentioned, LoFreq is able to identify SNVs

even when their frequency of occurrence is as low as that of

sequencing and mapping errors. However, this makes LoFreq

much slower than other variant callers, as it must do more

computation to identify low frequency variants.

As input, LoFreq takes a file of reads that have already been

mapped to a reference sequence along with quality scores,

which are a measure of confidence that both the read and the

mapping are correct. Before processing each column, LoFreq

initially must perform preprocessing on this data to do three

things. First, the entire column must be extracted from the

collection of mapped reads. This is non-trivial, as it involves

scanning a region of the file to find all of the bases that belong

in that column. Second, the error probability for each base

must be calculated from its associated quality score. Finally,

the number of observed varying bases from the reference

genome in the column must be counted.

After preparing the column, the core probability calculation

uses the depth of column (N), the number of observed varying

bases in the column (K), and the error probabilities to decide

whether there are SNVs among the observed varying bases.

A. Core Computation

The core of LoFreq operates on each column independently

of all other columns. It models sequencing and mapping errors

of an individual column in a Poisson-Binomial distribution.

The intuition is that if the number of observed varying bases

is not consistent with the error distribution, then chances are

high that SNVs exist; otherwise, these varying bases are most

likely sequencing or mapping errors.

In a column, each individual base is modeled as an inde-

pendent Bernoulli trial. The error probability of the nth base,

pn, indicates the probability that the base is a sequencing

or mapping error. Using this model, the algorithm calculates

the p-value to confirm or refute the null hypothesis that all

observed varying bases in the column are errors. A predeter-

mined threshold, t, is used to determine whether or not the null

hypothesis is true. If the calculated p-value is greater than t,

then the null hypothesis is not wrong and all observed varying

bases are most likely errors. If the calculated p-value is less

than or equal to t then the null hypothesis is likely incorrect;

therefore there is strong evidence for the existence of SNVs.

Consider the case where K varying bases are observed in

a column which has N bases in total. Prn(X = k) is the

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 08:00:53 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Probability Calculation Algorithm.

Input: Error Probability array Err arr, column depth

N , number of varying bases K.

Result: Probability mass function when n = N .

1 Allocate PL[K]; // PLn(X=k) for k from 0

to K − 1
2 Allocate PL prev[K]; // PLn−1(X=k) for k

from 0 to K − 1
3 PL prev[0] = 0; // ln(1)
4 for n from 1 to N do

5 pn = Err arr[n];

6 ln pn = ln(pn);
7 ln 1 pn = ln(1.0− pn);
8 if n < K then

9 PL prev[n] = −1e100; // approx. ln(0)
10 end

11 bound = (n < (K−1)) ? n : (K−1);
12 for k from 1 to bound do

13 PL[k] = log sum exp(PL prev[k] + ln 1 pn,

PL prev[k − 1] + ln pn);

14 end

15 PL[0] = PL prev[0] + ln 1 pn;

16 if n == K then

17 ln pval = PL prev[K − 1] + ln pn;

18 else if n > K then

19 ln pval = log sum exp(ln pval prev,

PL prev[K − 1] + ln pn);

20 end

21 PL prev = PL;

// moves data from PL to PL_prev;

22 ln pval prev = ln pval;

23 end

24 return PL, ln pval;

and computes the logarithm of both the error rate and the

accuracy (lines 6 and 7). The p-value is then computed based

on equation (5) (lines 16-20). At the end of each iteration,

the current values are stored in their prev counterparts in

preparation for the subsequent iteration.

B. Computation Characteristics

Table I shows the execution time breakdown of LoFreq on

several SARS-CoV-2 datasets. This data is collected on an

AMD Ryzen 7 5800X CPU using a single thread within a sin-

gle process. This table illustrates two important characteristics

of LoFreq on important, real-world datasets. First, processing

can take quite a long time (over 41 hours on SRR12380204).

Second, over 90% of the processing time takes place in the

core probability calculations (Algorithm 1).

Fortunately, there are multiple sources of potential paral-

lelism in the workload. The first is that different inner loop

iterations (shown in lines 12 to 14 in Algorithm 1) can be

fully parallelized (intra-column parallelism). The challenge

here is that intra-column parallelism is irregular because the

TABLE I. A breakdown of LoFreq’s execution time on
SARS-CoV-2 datasets

(Metric: Hours (Percentage)).

Pre-processing Prob Calculation Other

SRR11177792 0.28 (7.20%) 3.54 (91.76%) 0.04 (1.04%)
SRR12380204 1.47 (3.54%) 40.01 (96.04%) 0.17 (0.42%)
COVHA-P11-F06 0.76 (3.31%) 22.02 (96.30%) 0.12 (0.39%)

amount of parallelism depends on the parameter K, which

varies among columns.

Second, different columns within a dataset can be processed

in parallel (inter-column parallelism). Different instances of

Algorithm 1 can be launched to process columns in parallel.

For each SARS-CoV-2 alignment dataset, for example, the

total number of columns is fixed (29,903), while the com-

putation workload of each column can vary drastically. The

reason is that the parameters N and K can vary drastically

among columns.

Moreover, the three different types of operations in an outer

loop iteration, i.e., loading pn, calculating the logarithm of pn,

and the inner loop, can be pipelined.

Due to the nature of the problem, all input and intermediate

data are represented in double-precision floating point. On

an FPGA, computations on double-precision are less efficient

if not carefully tuned. In LoFreq, the fundamental opera-

tions are logarithm and exponential. The key computation

log_sum_exp includes serialized exponential and logarithm

operations, which has a long critical path latency.

The key input error rate array can take a non-trivial amount

of memory to store. For example, it requires 7.63 MB of

memory when N is 1, 000, 000. This makes it impractical to

store all of the input data on-chip.

The state-of-the-art implementation of LoFreq has used

CPU multi-processing to accelerate the computation. However,

Lofreq is still slow. As an example, when LoFreq is multi-

processed using 16 CPU threads, the end-to-end running time

on the SRR12380204 dataset is still 6.1 hours long.

IV. ACCELERATOR DESIGN AND IMPLEMENTATION

The FPGA accelerator performs the core probability com-

putation, Algorithm 1, of LoFreq, while the rest of the

application remains in software. The FPGA implementation’s

output is identical to the software version. The accelerator is

implemented using the high level synthesis tools in the Xilinx

Vitis Development Platform 2020.2. This section introduces

the design of the FPGA LoFreq accelerator.

A. Column Units

The FPGA accelerator is composed of multiple column units

(CUs). Each column unit operates independently on a single

column at a time. Multiple CUs can process multiple columns

in parallel. Figure 2 shows the design of a CU. The general

operation of the CU is as follows:

1) The software dispatches a column computation to the

column unit.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 08:00:53 UTC from IEEE Xplore. Restrictions apply.

Prefetching Unit

Logarithm Unit

 On-chip
Memory

ln(1.0-pn)

PL_prev[k] exp

mux

add sub

sub
mux add log

a > b?
Y

b

a N

add
k == K?

N

Y

add

add

1.0 N

Y

ln(pn)
PL_prev[k-1]

Control Unit

mux

a > b?

Processing Element (PE)

control signal

control signal

control signal

pn+2

pn+1

ln(pn+1),
ln(1.0-pn+1)

mux

k == 0?

Y

N

PL[k]

PE x-1

PE x

control signal

control signal

... ...

Fig. 2: Design of a Column Unit (CU).

2) The controller initiates a loop over the elements of the

column (corresponding to the outer loop in Algorithm 1

on line 4) after prefetching the first two error probabil-

ities (p1 and p2) and computing the initial logarithms

(ln(p1) and ln(1− p1)):

a) The error probability, pn+2, is prefetched.

b) The logarithms of pn+1 and 1−pn+1 are computed.

c) The previously computed logarithms on pn (ln pn

and ln 1 pn in the algorithm) are used for this

iteration.

d) The main processing elements (PE) will compute

PLn(X = k) for all k < K (lines 12–14 in

Algorithm 1). Multiple PEs operate on different

data in both a parallel and pipelined manner. Each

PE can initiate a new computation each cycle.

3) The column unit returns the results to the software.

This process is continually repeated until all of the columns

have been processed.

As previously mentioned, the column data is large, so it

cannot be stored on the FPGA chip. The error probabilities are

stored in DRAM on the FPGA board and must be prefetched

in order to keep up with the computation. By storing all of

the column data in DRAM, the design is decoupled from the

values of N for each column and is not memory resource

limited. The column unit is able to process columns with any

value of N (as long as the data fits in DRAM). The value of

K (which is obviously much smaller than N) does dictate the

amount of on-chip memory that is needed, as will be discussed

in Section IV-B.

The most expensive operations within the computation are

the logarithms and the exponentials. A dedicated logarithm

unit is used to compute the logarithms of pn+1 and 1− pn+1

during iteration n. In order for the error probability to be

available for these logarithm calculations, the prefetcher loads

pn+2 during iteration n. This forms a three-stage pipeline at

the macro level of the column unit in which the first stage

fetches pn, the second stage computes the logarithms of pn and

1− pn, and the third stage performs the column’s probability

calculations to compute the resulting partial PMF and p-value.

TABLE II. The latency and resource use of arithmetic units.

Floating Point Operators Latency FF use LUT use DSP use

add / sub 5 542 638 0
exp 20 1243 2088 15
log 20 3386 2120 19

B. Processing Elements

The core computation of each CU is the computation of

PLn(X=k). Multiple processing elements (PEs) within the

CU compute PLn(X=k) for different values of k in parallel.

Furthermore, each PE is pipelined, allowing it to initiate a new

computation every cycle.

The column unit does not have dedicated hardware to

compute SLn. Instead, the PEs are used for that purpose. Once

the PEs have computed all K − 1 values of PLn in step 2d

a final computation is issued to a PE to compute SLn. Note

the similarities between equations (3) and (5). SLn is actually

stored in the PLn array in the Kth location. This allows the

initial mux to select whether to pass through just PL prev[k]
(which is SLn−1 when k = K) or PL prev[k] + ln(1− pn)
(which is PLn−1(X=k)+ ln(1−pn) when k < K). A simple

adder (not shown) handles the computation of SLK during the

Kth iteration of the outer loop.

The primary computation of the PE is the log_sum_exp

calculation of equation 4. Logarithms and exponentials on

double precision floating point numbers are expensive both in

terms of resources and latency. Therefore, the PEs dictate the

overall performance of the accelerator. This requires careful

tuning of the floating point operation units. It is critical

to reduce the latency of the floating point operators while

not negatively affecting timing. Also, because the floating

point operators consume a non-trivial amount of LUTs and

DSPs, the use of resources needs to be tuned as well. Over-

utilizing either the LUTs or the DSPs will not only under-

utilize the other, but also limit the number of PEs and CUs

that can eventually be implemented. We use the floating-point

operation implementations in Xilinx LogiCORE IPs (v7.1) [3].

The latency and resource use of floating-point operators are

carefully tuned for each operation in log_sum_exp to opti-

mize overall performance and efficiency, as shown in Table II.

The on-chip memory is partitioned based on the number

of PEs so that all PEs can access data without competing for

memory ports. Note that the amount of on chip storage that is

required is 2K, as at any given time, the PEs are reading

PLn−1 and writing PLn. Even when K is 65536, which

is unusually large, the memory required is only 1 MB. This

memory is divided into two buffers. During each iteration of

the outer loop, the PEs will read from one buffer and write to

the other. For the next iteration, the input and output buffers

are swapped.

C. Design Trade-offs

There is a trade-off between exploiting intra-column and

inter-column parallelization to maximize performance across a

variety of datasets. More column units can exploit higher levels

of inter-column parallelism, whereas more PEs per column

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 08:00:53 UTC from IEEE Xplore. Restrictions apply.

unit can exploit higher levels of intra-column parallelism. The

more PEs per column unit, the fewer column units will fit in

the finite resources of an FPGA.

The amount of intra-column parallelism is limited by K

for each column. Therefore, there are diminishing returns to

increasing the number of PEs in a column unit. However, the

overhead of the column unit beyond the PEs makes it such

that there is a benefit to exploiting intra-column parallelism

to some degree. Therefore, it is critical to perform a design

space analysis to determine the best design point.

V. HOST SYSTEM DESIGN AND IMPLEMENTATION

LoFreq is written in standard C as a single-threaded pro-

gram. In order for LoFreq to utilize our Xilinx Alveo U250-

based accelerator, we had to change the LoFreq source code

that runs on the host.

Under the Xilinx Vitis Environment, the accelerator is

presented to the host system as an OpenCL device. So, our

changes to the LoFreq source code were to (1) use the OpenCL

API to initialize this device so that our accelerator for the

core probability computation on a column could be invoked

as an OpenCL kernel and (2) replace calls to the function that

performs the core probability computation on a column on

the host processor with invocations of that OpenCL kernel.

Since the ordinary function calls replaced are synchronous,

i.e., they do not return until the function has completed, we

invoke the OpenCL kernel synchronously. In other words, after

enqueueing commands to the OpenCL runtime that transfer the

inputs to the U250’s DRAM, execute the kernel, and transfer

the results back to the host, the host waits for the results to

be returned before starting any work on the next column.

Once the core probability computation is accelerated by the

U250, the parts of the computation that remain on the host

processor, such as preprocessing, will become a performance

bottleneck if they are executed sequentially. To parallelize

all parts of LoFreq’s execution, its developers used multiple

processes. However, rather than modifying the LoFreq source

code to implement multiprocess execution, they created a

Python script that divides the dataset into chunks, runs the

unmodified (single-threaded) LoFreq program on each chunk

in parallel, and merges the results from each of the processes

at the end. We directly use that Python script for multipro-

cessing in our system: each process works on one chunk and

all processes run concurrently. This works fine because the

Xilinx OpenCL runtime system allows multiple processes to

concurrently execute multiple kernels on the FPGA device.

Specifically, the OpenCL command queue allows the columns

submitted by different processes to be processed in parallel

on different column units. The OpenCL runtime automatically

distributes the execution of the columns over the CUs as the

CUs become available.

As discussed in Section III-B, the time that it takes to

process different columns varies widely, depending on the

values of N and K for a given column. Dividing the dataset

into chunks, i.e., groups of consecutive columns, achieves

a good balance between two competing factors: (1) mini-

mizing operating system overheads, such as process creation

and continual context switching between processes, and (2)

minimizing workload imbalance between the processes. We

find that dividing the datasets into many more chunks than

the number of processor cores or hardware thread contexts

yields the best performance results. However, at the operating

system level, we observe a subtle difference between the

multiprocess LoFreq and our accelerated implementation that

affects the trade-off between these competing factors. Pro-

cesses in our accelerated implementation are rarely preempted

by the operating system because their scheduling quantum

has expired, instead they are voluntarily relinquishing the

processor when they wait for the completion of an OpenCL

kernel on a column. Consequently, the number of context

switches is primarily a function of the number of columns,

and unrelated to the number of chunks, so increasing the

number of chunks, and thus the number of processes, to

achieve better load balance does not significantly increase the

context switching overhead. Moreover, the OpenCL command

queue decouples these processes from the hardware column

units, allowing each process to enqueue columns that will be

serviced as column units become available, making it practical

to use more processes than there are hardware column units.

VI. EVALUATION

A. Experimental Setup

System Configuration. The system used for evaluating

our accelerator design consists of an AMD Ryzen 7 5800X

processor (with 8 cores and 16 hardware thread contexts),

128 GB of DDR4 3200 memory, a 1 TB Samsung 980 PRO

SSD, and a Xilinx Alveo U250 card (Platform name: xil-

inx u250 gen3x16 xdma 3 1) [9]. The system was running

Ubuntu 18.04.4 LTS with Linux kernel 5.4.0 for compatibility

with the Xilinx kernel module.

The host program was developed in OpenCL 1.2 with Xilinx

XRT extensions, and the FPGA design was written as an

OpenCL kernel in C. The high-level synthesis and hardware

implementation were done using Xilinx Vitis 2020.02, which

under the hood uses Xilinx Vivado 2020.02 for logic opti-

mization, placement, and routing. All of the evaluated FPGA

designs were implemented to run at 300 MHz. Aggressive

optimization strategies were applied in the implementation:

the ExtraTimingOpt strategy is used for placement and the

AggressiveExplore strategy is used for routing [8]. Further-

more, physical optimizations were enabled. Individual column

units were implemented within one Super Logic Region [10]

in order to minimize boundary crossings.

Datasets. Table III describes the real-world datasets used

throughout this evaluation. These datasets come from the

NCBI SARS-CoV-2 data repository [5] and recent clinical

studies [14], [17].

Baseline. The stock multi-process implementation of

LoFreq [7] is used as the baseline in our performance evalu-

ation. It is configured to divide the dataset into 112 chunks,

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 08:00:53 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Accelerating genomics research with opencl and fpgas,”
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/wp/wp-accelerating-genomics-opencl-fpgas.pdf, accessed Jan
14, 2022.

[2] “Alveo card user guide,” https://www.xilinx.com/content/dam/xilinx/
support/documentation/boards and kits/accelerator-cards/ug1120-
alveo-platforms.pdf, accessed Jan 15, 2022.

[3] “Floating-point operator v7.1 - logicore ip product guide,” https://
docs.xilinx.com/v/u/en-US/pg060-floating-point, accessed Apr 8, 2022.

[4] “Gpu-accelerated tools added to nvidia clara parabricks v3.6 for
cancer and germline analyses,” https://developer.nvidia.com/blog/gpu-
accelerated-tools-added-to-nvidia-clara-parabricks-v3-6-for-cancer-
and-germline-analyses/, accessed Apr 7, 2022.

[5] “Ncbi sars-cov-2 resources,” https://www.ncbi.nlm.nih.gov/sars-cov-2/,
accessed Jan 15, 2022.

[6] “Nvidia clara parabricks documentation,” https://docs.nvidia.com/clara/
parabricks/3.7.0/index.html, accessed Jan 14, 2022.

[7] “Source code repository of lofreq,” https://github.com/CSB5/lofreq, ac-
cessed Jan 14, 2022.

[8] “Vivado design suite user guide - implementation,” https:
//www.xilinx.com/support/documentation/sw manuals/xilinx2021
1/ug904-vivado-implementation.pdf, accessed Jan 16, 2022.

[9] “Xilinx alveo u250 accelerator card,” https://www.xilinx.com/products/
boards-and-kits/alveo/u250.html, accessed Jan 15, 2022.

[10] “Xilinx large fpga methodology guide,” https://www.xilinx.com/
support/documents/sw manuals/xilinx2012 3/ug872 largefpga.pdf, ac-
cessed Apr 7, 2022.

[11] J. Arram, T. Kaplan, W. Luk, and P. Jiang, “Leveraging fpgas for
accelerating short read alignment,” IEEE/ACM Trans. Comput. Biol.

Bioinformatics, vol. 14, no. 3, p. 668–677, may 2017. [Online].
Available: https://doi.org/10.1109/TCBB.2016.2535385

[12] S. S. Banerjee, M. el Hadedy, C. Y. Tan, Z. T. Kalbarczyk, S. Lumetta,
and R. K. Iyer, “On accelerating pair-hmm computations in pro-
grammable hardware,” in 2017 27th International Conference on Field

Programmable Logic and Applications (FPL), 2017, pp. 1–8.
[13] P. Blanchard, D. J. Higham, and N. J. Higham, “Accurately computing

the log-sum-exp and softmax functions,” IMA Journal of Numerical

Analysis, vol. 41, no. 4, pp. 2311–2330, 08 2020. [Online]. Available:
https://doi.org/10.1093/imanum/draa038

[14] D. Butler, C. Mozsary, C. Meydan, J. Foox, J. Rosiene, A. Shaiber,
D. Danko, E. Afshinnekoo, M. MacKay, F. J. Sedlazeck, N. A.
Ivanov, M. Sierra, D. Pohle, M. Zietz, U. Gisladottir, V. Ramlall,
E. T. Sholle, E. J. Schenck, C. D. Westover, C. Hassan, K. Ryon,
B. Young, C. Bhattacharya, D. L. Ng, A. C. Granados, Y. A. Santos,
V. Servellita, S. Federman, P. Ruggiero, A. Fungtammasan, C.-S.
Chin, N. M. Pearson, B. W. Langhorst, N. A. Tanner, Y. Kim,
J. W. Reeves, T. D. Hether, S. E. Warren, M. Bailey, J. Gawrys,
D. Meleshko, D. Xu, M. Couto-Rodriguez, D. Nagy-Szakal, J. Barrows,
H. Wells, N. B. O’Hara, J. A. Rosenfeld, Y. Chen, P. A. D. Steel,
A. J. Shemesh, J. Xiang, J. Thierry-Mieg, D. Thierry-Mieg, A. Iftner,
D. Bezdan, E. Sanchez, T. R. Campion, J. Sipley, L. Cong, A. Craney,
P. Velu, A. M. Melnick, S. Shapira, I. Hajirasouliha, A. Borczuk,
T. Iftner, M. Salvatore, M. Loda, L. F. Westblade, M. Cushing,
S. Wu, S. Levy, C. Chiu, R. E. Schwartz, N. Tatonetti, H. Rennert,
M. Imielinski, and C. E. Mason, “Shotgun transcriptome, spatial
omics, and isothermal profiling of sars-cov-2 infection reveals unique
host responses, viral diversification, and drug interactions,” Nature

Communications, vol. 12, no. 1, p. 1660, Mar 2021. [Online]. Available:
https://doi.org/10.1038/s41467-021-21361-7

[15] M.-C. F. Chang, Y.-T. Chen, J. Cong, P.-T. Huang, C.-L. Kuo, and
C. H. Yu, “The smem seeding acceleration for dna sequence align-
ment,” in 2016 IEEE 24th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2016, pp. 32–39.
[16] Y.-T. Chen, J. Cong, J. Lei, and P. Wei, “A novel high-throughput

acceleration engine for read alignment,” in 2015 IEEE 23rd Annual

International Symposium on Field-Programmable Custom Computing

Machines, 2015, pp. 199–202.
[17] H. Doddapaneni, S. J. Cregeen, R. Sucgang, Q. Meng, X. Qin,

V. Avadhanula, H. Chao, V. Menon, E. Nicholson, D. Henke,
F.-A. Piedra, A. Rajan, Z. Momin, K. Kottapalli, K. L. Hoffman,
F. J. Sedlazeck, G. Metcalf, P. A. Piedra, D. M. Muzny, J. F.
Petrosino, and R. A. Gibbs, “Oligonucleotide capture sequencing

of the sars-cov-2 genome and subgenomic fragments from covid-
19 individuals,” bioRxiv : the preprint server for biology, p.
2020.07.27.223495, Jul 2020, 32766579[pmid]. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/32766579

[18] N. D. Grubaugh, K. Gangavarapu, J. Quick, N. L. Matteson, J. G.
De Jesus, B. J. Main, A. L. Tan, L. M. Paul, D. E. Brackney,
S. Grewal, N. Gurfield, K. K. A. Van Rompay, S. Isern, S. F. Michael,
L. L. Coffey, N. J. Loman, and K. G. Andersen, “An amplicon-based
sequencing framework for accurately measuring intrahost virus diversity
using primalseq and ivar,” Genome Biology, vol. 20, no. 1, 01 2019.
[Online]. Available: https://doi.org/10.1186/s13059-018-1618-7

[19] L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, “Hardware acceleration of
long read pairwise overlapping in genome sequencing: A race between
fpga and gpu,” in 2019 IEEE 27th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), 2019, pp.
127–135.

[20] S. Huang, G. J. Manikandan, A. Ramachandran, K. Rupnow, W.-m. W.
Hwu, and D. Chen, “Hardware acceleration of the pair-hmm algorithm
for dna variant calling,” in Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, 2017,
pp. 275–284.

[21] B. Kille, Y. Liu, N. Sapoval, M. Nute, L. Rauchwerger, N. Amato,
and T. J. Treangen, “Accelerating SARS-CoV-2 low frequency variant
calling on ultra deep sequencing datasets,” ArXiv, May 2021.

[22] Y. Liu, J. Kearney, M. Mahmoud, B. Kille, F. J. Sedlazeck, and T. J.
Treangen, “Rescuing low frequency variants within intra-host viral
populations directly from oxford nanopore sequencing data,” bioRxiv,
2021. [Online]. Available: https://www.biorxiv.org/content/early/2021/
09/06/2021.09.03.458038

[23] M. Lo, Z. Fang, J. Wang, P. Zhou, M.-C. F. Chang, and J. Cong,
“Algorithm-hardware co-design for bqsr acceleration in genome analysis
toolkit,” in 2020 IEEE 28th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2020, pp. 157–
166.

[24] A. McKenna, M. Hanna, E. Banks, A. Y. Sivachenko, K. Cibulskis,
A. Kernytsky, K. V. Garimella, D. D. Altshuler, S. Gabriel, M. J.
Daly, and M. A. DePristo, “The genome analysis toolkit: a mapreduce
framework for analyzing next-generation dna sequencing data.” Genome

research, vol. 20 9, pp. 1297–303, 2010.
[25] C. B. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling, S. Hauck, and

W. L. Ruzzo, “Hardware acceleration of short read mapping,” in 2012

IEEE 20th International Symposium on Field-Programmable Custom

Computing Machines, 2012, pp. 161–168.
[26] R. Poplin, V. Ruano-Rubio, M. A. DePristo, T. J. Fennell, M. O.

Carneiro, G. A. Van der Auwera, D. E. Kling, L. D. Gauthier,
A. Levy-Moonshine, D. Roazen, K. Shakir, J. Thibault, S. Chandran,
C. Whelan, M. Lek, S. Gabriel, M. J. Daly, B. Neale, D. G.
MacArthur, and E. Banks, “Scaling accurate genetic variant discovery
to tens of thousands of samples,” bioRxiv, 2018. [Online]. Available:
https://www.biorxiv.org/content/early/2018/07/24/201178

[27] J. J. Salk, M. W. Schmitt, and L. A. Loeb, “Enhancing the accuracy of
next-generation sequencing for detecting rare and subclonal mutations,”
Nature Reviews Genetics, vol. 19, no. 5, pp. 269–285, May 2018.
[Online]. Available: https://doi.org/10.1038/nrg.2017.117

[28] D. Sampietro, C. Crippa, L. Di Tucci, E. Del Sozzo, and M. D.
Santambrogio, “Fpga-based pairhmm forward algorithm for dna variant
calling,” in 2018 IEEE 29th International Conference on Application-

specific Systems, Architectures and Processors (ASAP), 2018, pp. 1–8.
[29] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics

co-processor provides up to 15,000x acceleration on long read
assembly,” SIGPLAN Not., vol. 53, no. 2, p. 199–213, mar 2018.
[Online]. Available: https://doi.org/10.1145/3296957.3173193

[30] P. Wang, Y. Lei, and Y. Dou, “Comparative analysis of fpga-based pair-
hmm accelerator structures,” Electronics, vol. 8, no. 9, p. 965, 2019.

[31] A. Wilm, P. P. K. Aw, D. Bertrand, G. H. T. Yeo, S. H. Ong, C. H. Wong,
C. C. Khor, R. Petric, M. L. Hibberd, and N. Nagarajan, “Lofreq: a
sequence-quality aware, ultra-sensitive variant caller for uncovering cell-
population heterogeneity from high-throughput sequencing datasets,”
Nucleic acids research, vol. 40, no. 22, pp. 11 189–11 201, 2012.

[32] L. Wu, D. Bruns-Smith, F. A. Nothaft, Q. Huang, S. Karandikar, J. Le,
A. Lin, H. Mao, B. Sweeney, K. Asanović, D. A. Patterson, and A. D.
Joseph, “Fpga accelerated indel realignment in the cloud,” in 2019 IEEE

International Symposium on High Performance Computer Architecture

(HPCA), 2019, pp. 277–290.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on June 30,2023 at 08:00:53 UTC from IEEE Xplore. Restrictions apply.

